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ICKNELL and Nesbitt have made a very comprehensive analysis of 
a general insurance issued to a life age x that  provides benefits of 
amount B(,~t for decrement from the body of insured lives due to 

cause i, 1 = 1, 2 , . . . ,  m, occurring at time t, 0 < t < n, and a matur i ty  
benefit of B~_~ paid upon survival for n years. In their paper they used 
a mathematically convenient continuous model. 1 That  is, they assumed 
that  the level premium for the package of benefits is paid continuously 
and that  all benefit payments are made at the instant of the occurrence 
of the respective contingencies. They were particularly interested in alter- 
native methods of allocating the total reserve and premium for this gen- 
eral insurance to the various causes of decrement. In this analysis their 
principal tools were differential equations that  express the instantaneous 
expected rate of change in the total expected reserve fund or some portion 
of it. This approach proved to be very fruitful and led to a variety of 
interesting results. 

I t  is the purpose of this paper to reproduce some of their key results 
by building on a statistical foundation. This approach has the advantage 
that  it draws attention to the fact that  the time until decrement and, in 
this multiple decrement analysis, also the cause of decrement are random 
variables and that  net premiums and reserves may be defined as expected 
values. This approach also leads naturally to a consideration of the vari- 
ance of the present value of future losses. This variance may, with the 
same limitations that  usually apply to results from individual risk theory, 
be of interest in determining limits within which the present value of 
future losses may be expected to fall with stated probability. * 

1 W. S. Bicknell and C. J. Nesbitt, "Premiums and Reserves in Multiple Decrement 
Theory," TSA, VIII (1956), 344-75. 

Stated rather bluntly, these limitations result from the difficulty of determining 
the distribution of total losses. In those risk situations where the normal distribution 
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Our deviations from the notation of Bicknell and Nesbitt are designed 
to emphasize the statistical nature of this approach. Thus we let t be the 
random variable time until benefit payment for the general insurance 
issued at age x, 0 <_ x. 3 To avoid the double use of t as a random variable 
and also as a label for identifying total premiums, reserves, and proba- 
bilities, as is done by Bicknell and Nesbitt, we will omit in this paper the 
use of t in this labeling role. 

We will assume that t has a cumulative distribution function that  may 
be given in actuarial notation by 

F ( t : x )  = 0 ,  t < O ,  

f' - , p ~ + , d s ,  (0 <_ t< n) 

= 1 , ( n < t )  

where the usual assumptions concerning the continuity of ,p= implied by 
Jordan 4 are made. Note that  t is a random variable of the "mixed" type. 
That  is, it cannot be classed as a continuous random variable, for, in 
general, F(t: x) has a discontinuity at t = n, and it cannot be classed as 
a discrete random variable, for, on the interval 0 <_ t < n, F(t:x) is a 
continuous and increasing function. 

The probability density function (pdf) associated with the random 
variable t is then, in actuarial symbols, 

t'(t:x) = ,p, u,a-,, (0 _< t < n) 

= . p , ,  (t = n )  

= O. (elsewhere) 

may be justified by a limiting distribution theorem, contingency reserves for random 
fluctuations are usually small relative to the contingency reserves required to guard 
against other types of threats to solvency. In other risk situations where the problem 
of random fluctuations is of greater importance (e.g., in life insurance groups involving 
a very small number of lives), the usual limiting distribution theorems often do not 
provide us with a satisfactory approximate distribution. 

s In this paper we will use the same symbols for random variables and for their 
observed values. In this matter we are following Scheff6 (Henry Scheff6, Analysis of 
Variance [New York: John Wiley & Sons, 1959], p. 4). Although this decision may 
obscure an important statistical distinction, it leads to a rather considerable saving in 
symbols, and hopefully, contributes to easier reading. 

4 C. W. Jordan, Life Contingencies (Chicago: Society of Actuaries, 1952). 
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The conditional pdf of t, given survival until time s, will also be required 
in the sequel and is given by 

f ( t l s : x )  = f ( t : x ) / [ 1  - F ( s : x ) l  

= t--,p,+, tt,,+t, (0 < s <_ t < n) 

= . . . .p .+ . ,  (t = n) 

= O. (elsewhere) 

I t  will be helpful to note that the force of decrement, known in life- 
testing applications of statistics as the failure rate, is 

u,+, = f ( t : x ) / [ 1  - e ( t : x ) ] ,  0 < t < n .  

The statistical nomenclature already introduced is not sufficient for 
our purposes, for, in the multiple decrement model under consideration, 
two random variables t and i, the cause of decrement, are involved. The 
joint pclf of these two random variables may be expressed in actuarial 
notation as 

k(t ,  i : x )  = tp ,  ..co I.',x+$ , 

lq, pX, , 

= 0 .  

( O < t < n , i = l ,  2 , . . . , m )  

( t =  n , i =  m +  1), 

(elsewhere) 

This pdf can be pictured as m sheets of probability, one sheet for each of 
the m causes of decrement. Integrating over sets in the (t, i) plane will 
yield required probabilities concerning the cause and time of decrement. 
However, this visualization is not complete, for actually we have m + 1 
causes of decrement. The (m + 1)st cause operates upon survival for n 
years and might be called the maturity or retirement cause. 

This joint pdf may also be written as h(t, i : x )  = f ( t : x ) g ( i [ t : x ) ,  the 
product of the pdf of the random variable t and the conditional pdf of i 
given t. In this form we have 

h(t, i :x)  = (,p, u ~ , ) ( # ~ , h , . + , )  , 

---- n P z  , 

- ' 0 .  

(0__< t < n , i  = I, 2 , . . . ,  m) 

(t= n , i =  m +  1) 

(elsewhere) 

The conditional pdf associated with t and i given survival until time s 
will be required later and is given by 

h(t,/Is:x) = k( t ,  i : x ) / [ 1  - F ( s : x ) ] .  

(0 < s <_ t < n , i  = 1, 2 , . . . ,  m +  1) 
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In actuarial notation this is 

h(t, i l s:x) = ,_.p~. ~,(,~,, 
n--sPx+a 

- - - 0 .  

A STATISTICAL APPROACH TO PREMIUMS AND RESERVES 

(O <_ s <__ t < n , i = 1 , 2 , . . . , m )  

( 0 < s <  t =  n , i =  m +  1) 

(elsewhere) 

I. TOTAL PREMIUMS AND RESERVES 

The present value of the loss to the insurer that results from a decre- 
ment at time t from cause i is given by 

L(t, i :x)  = ~ ~.+,"'~(~) _ P a q  , (o _< t < n,  i = 1, 2, . . . ,  m)  

= v~B.+~-  P a ~ .  (t = n, i - -  m + 1) 

In this expression/5 is the total annual premium rate. 
The premium rate is now determined by imposing the requirement that 

the expected present value of future losses (a function of the random vari- 
ables t and i) be zero. That  is, we require that ~[L(t, i:x)] = 0, where 
is the expected value operator which is introduced in the current actuarial 
syllabus by Hoel3 We are requiring that 

~ [ ' L ( t , i : x ) h ( t , i : x ) d t + L ( n ,  m +  l : x ) h ( n ,  m +  l : x )  = 0 .  
- - ~ - o l  

Solving this equation for/5 and introducing actuarial notation, we have 

1 

The variance of L(t, i :x)  may serve as a measure of the risk assumed 
by the insurer in issuing this general insurance. We have 

V a r [ L ( t , i : x ) ]  = ~ [ L (  t, i : x  ) 2] 

= ~ [ ~ L ( t , i : x ) 2 h ( t , i : x ) d t + L ( n , m + l : x ) ' h ( n , m + l : x ) .  
- -  , ~  

Using our statistical framework, we now define the total reserve, to 
be denoted by ,V, 0 < s < n, through the use of a somewhat more gen- 
eral loss function. We let L(t, i Is: x) denote the value at time s of losses 
occurring at time t from cause i given survival until time s. We have 

L(t, i l s :x )  = v*-'B(,~t -- Pa,_--=Tt, (0 <_ s <_ t < n, i = 1, 2 , . . . ,  m) 

= v ~ - ' B ~ . -  Pa~_-~L. (t = n, i = m + 1) 

6 p. G. Hoel, Introduction to Mathematical Statistics (New York: John Wiley & Sons, 
1954). 
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We now define the total reserve to be the expected value of this condi- 

tional loss function. We have 

o~r=~[L(t,i[ s : x )  l 

+ L ( n ,  m +  l l  s : x ) h ( n ,  m +  l l  s : x ) .  

Upon substituting actuarial notation, this becomes 

. ¢= v,-°B(,+) ,-°~',+°4' u('),+,dt+ v,-'B ~ ,_°p,+° --/sa,+°:~_-_- 7. 

In passing, we note that our determination of/5 is simply a special case 
of this development, where s = 0, and we impose the condition that 
0V = 0. 

The differential equation that served as a starting point for the devel- 
opment for Bicknell and Nesbitt may now be obtained by differentiating 
.ITr. This differentiation will be carried out in some detail because it will 
serve as a model for later developments. Using our statistical notation 
and assuming that differentiation under the integral sign is justified, we 
have 

±f." d .'V= L(t, i l s : x ) [ f ( s : x ) / 1 - - F ( s : x ) l h ( t ,  i l s : x ) d t  
ds x ° 

+ ~ f" t  ~( ~,-,B(').,÷, -/sa,-~) +/51 h( t, ~1 s :x)at 
1 

fi t  

- ] ~ B , ( ~ ) )  ( s, i l  s : x ) + L ( n ,  m +  1 I s : x )  
1 

X [ f ( s : x ) / 1 - - F ( s : x ) ] h ( n , m + l l s : x )  

+ [ ~ (v"- 'B - / 5a ._ - - -~ )+ /5]h (n ,m+l l s : x )  
X"}- n • 

Now we introduce actuarial notation and observe that the sum of the first 
and fourth terms of this expression is equal to #~+, ,V and that the sum 
of the second and the fifth terms is ~,~r + / 5 .  As a result, our expression 
reduces to 

d m 
d-'s" .fr = ~x+, f -  ~-~B(~) ~(i.) + 8 f + / 5  x- t -$  X-t-a 

1 

which is equation (I.13) in the Bicknell and Nesbitt paper• 
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With this result we can now proceed with the other developments 
found in Section I of the Bicknell and Nesbi t t  paper. Later  in this paper 
we will be especially interested in one of these results. The result is ob- 
tained by mult iplying this differential equation by the integrating factor 
v'. This yields 

_a v. y = p v . -  ~2 v'4'+~.CB~L-Y ~ ds  
1 

Integrating from 0 to h, 0 _< h < n, we have 

[±fo' ]/ P =  v'u~).(B;~) -- f,')as + vh y a~. 
1 

We will now use this result to prove the celebrated Hat tendorf  Theo- 

rem3 First, we observe that, as a result of the premium formula just 

developed, we have 

L ( t , i : x )  = v ' ( B ~ , - - , V )  

1 

( O < t < n , i = l , 2 ,  . . . ,  m)  

fo"[± ] = -  v.4~2,(B;?- ~ )  ds. ( t = n , i = m + l )  
1 

This loss function may  be interpreted as isolating the pure risk component 

of the insurance. 

Letting 

1 

we have 

±# • V a r [ L ( t , i : x )  ] = v2 t (B~t - -~V)2  *, u(i~ dt t r x  z + t  
1 

1 

+ ~ J ( t )  2. # (~) .d t+L(n ,  + 1 :  ,p. .~_, m x)  2.p 
x • 

" 7  

e j. F. Steffensen, "On Hattendorf's Theorem in the Theory of Risk," Skandinavisk 
Aktuarietidskrift, XII (1929), 1-17. 
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We now turn our attention to the next to last term. Using integration by 

parts, we have 

Inserting this result into our expression for the variance completes the 
development, and we have 

±f0 
1 

A more rigorous proof of this result would have required use of the Stieltjes 
integral. 

II. r~D~.PF.ND~NT PREMIUMS AND RESt.RYeS 

The essence of the independent premium concept is that the premium 
associated with each cause of decrement is used to offset benefit payments 
made as a result of this cause. In terms of a loss function associated with 
cause j, 0" - 1, 2 , . . . ,  m) this concept may be expressed by 

oL(~)(t , i : , )  = ~ ' ~ , - " P ( ~ ) ~ n ,  ~ = i  (O_<t<n) 

- --"P(i)~,-- 1, 1 ~ i  ( i =  1, 2, . . . ,  m )  

= , " B ~ ) . -  " P ( i ) a . i .  ( t =  n,  i = m + 1 ) 

In this expression ./5o~ is the independent premium rate associated with 
cause j and B,q~. is that part of B ~ ,  arbitrarily associated with cause j, 
as is done by BickneU and Nesbitt, subject to the condition that 

i m l  

We determine the qso~ by imposing the requirement that ~[.LO~ 
(t, i:x)] = 0 , j  = 1, 2 , . . . ,  m. We are requiring that 

n 

.~. £ "L(O( t, i:x)k(t, i:x)dt+"L(i)(n, m+ X:x)  
$ , m ~ - -  

Xh(n ,m+l:x)=O,  j = l ,  2 , . . . , m .  

Solving for ,/~o~, we have 

[L" ]/ = ,, . < ~ ) d t + B ( ~ . p .  a::~. 
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From this equation for ~/5o~ and the corresponding one for /5  it is easy to 
confirm that 

i= I  

We now define the j th  independent reserve, denoted by ~o~,  in a 
manner similar to that used in the total premium case. We let ~L °~ (t, i[ 
s: x) denote the value at time s of a loss occurring at time t, from cause i, 
offset by the j th  independent premium. We have 

~Ui>(t, il s : x )  = v'-'B~i+~,--°Pi)a,_-_~, ( i =  j )  

= -~P~>a,-~,  ( i #  j )  

= v " - ' S ( ~ .  - -  ~/5(~> a._----;i. 

(O<_s<_t<n) 

( i = l ,  2 , . . . , m )  

( t = n , i = m + l )  

Then we set 

~p( i )=~ [,,Ui) ( t, i l s : x ) ] 

±f" = "L(i)(t,i[ s : x )h ( t ,  il s : x )d t  
1 

+"L(i)(n, m +  l I s : x ) h ( n ,  m +  1 [ s : x )  

Recalling that 

~_~-P<;> =P 
1 

and the definition of total reserve, it is now clear that 

1 

From these equations it is now also clear that a change in ~,+~,n<~) i # j 
will leave apo~ and ~po~ unchanged. This behavior, in part, motivates the 
title of this section. 

Differentiating this expression for ~po~ with respect to s yields 

d-X" " + ' - ' + "  " ' '  

This is the fundamental differential equation of the independent premi- 
um and reserve section of Bicknell and Nesbitt's paper. 

It  is instructive to note that, although this is called an "independent 
system of premiums," the loss functions used to define the premiums are 



A S T A T I S T I C A L  A P P R O A C H  TO P R E M I U M S  A N D  R E S E R V E S  9 

functions of the random variables of time until death and cause of death 
that are not in general statistically independent. Thus, although 

~ " L ( i )  ( t, i : x ) = L ( t, i : x ) 
i==l 

and 
tr$ 

,[ (t, i : , ) ]  = , t L ( t ,  i : , ) l  = 0 ,  

we find in general that 

Vat ["L(i) ( t, i : x ) ] 
/=,1 

does not equal Var L[(t, i:x)]. 7 
We have succeeded in decomposing the total premium and total re- 

serve into components related to the causes of decrement. However, the 
simple solution that  we found in those cases does not have a direct 
analogue in the decomposition of the total variance. 

I I I ,  DEPENDENT PREMIUMS AND RESERVES 

At the heart of the dependent system of premiums and reserves is the 
concept that the reserve allocated to all other causes, as well as accumu- 
lated premiums associated with the specific cause of decrement, is used 
to offset benefit payments arising from that cause of decrement. In terms 
of a loss function associated with cause j ,  j = 1, 2 , . . . ,  m, this concept 
may be expressed by letting 

b L ( i ) ( t , i : x )  = v'(B(~i+)t--~fT(-i))--~P(i)a~, ( j = i )  ( 0 < t < n )  

= v * ~ I r ( i ) - - ~ ( i ) a O ,  ( j # i )  ( i =  1, 2 , . . . ,  m)  

= v , B ( ~ ,  - -  bp(i) a ~ .  ( t = n ,  i = m + 1 ) 

In this expression ]?o~ is the dependent reserve associated with cause j ,  
a/5(9 the corresponding dependent premium rate and 

# 

As in the independent premium case, we determine the dependent 

7 An e lementary  example developed by  set t ing m -- 2, n -- co, v~!~, = 1, ~..+,. (*) = 1, 
B.m __ 1 and  n(2) __ t, shows t h a t  Covar  [~LO)(t, i:x), "L(2)(t, i :x)]  # 0 and  confirms +8 J-.'~+ t 

this s ta tement .  
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premium rates by imposing the condition that the expected value of each 
of the m loss functions be zero. That is, $[bLO9 (t, i:x)] = 0 or 

•fo"bL• ;)(t, x) (t, :x)  i :  h i dt  

+bLCi ) (n ,  m +  1 : x ) h ( n ,  m +  1 :x)  = 0 . 
This yields 

l fo  + bp(i) = Vt[ (B~i)+t--~ fr(-i)~, tr,~'x+t ~ ,,(i) +b .?( i )  t ,--x# (-i)ldtx~-, 

In this equation u~+{ > = u~t  -- u~-~,. Note that this is equation (III.10) 
of the Bicknell and Nesbitt paper. 

An examination of this set of equations yields some obvious results. 
First, the possibility of negative dependent premium rates is clear. Second, 
it is apparent that if bgr(-,~,.(i)t ,~+t = b.fr(,~,,(-i),_ ,-,+t, when 0 _< t < n, then 
.p(,9 = bp(,~. Later, after defining dependent reserves this condition can 
be restated as t9"g~t  = ~V(i)g~t.  Finally, since 

we have that 

~ b L C i ) (  t, i : x )  = L (  t, i : x ) ,  
i = l  

1 

The premium equations, as they now stand, suffer from the fatal defect 
that they depend on the yet-undefined dependent reserves. This difficulty 
will shortly be overcome. In the meantime, these equations serve to em- 
phasize the distinctive characteristics of a dependent premium system. 

We proceed now to the definition of the j th  dependent reserve, to be 
denoted by b~o~. We let bLO~ (t, i[ s" x) be the loss function associated with 
cause j ,  given survival until s. We have 

bL( i) ( t, i [ s : x ) = V*-" ( B(j+),--~ ~f (- i)  ) --bp( i) 6,_--=~ , ( . 7 = i )  

( O < _ s < t < n )  

~-- V t - - s  ~ ~-r(i) - -  bP(i)at_--zi-] , 

- -  , j . - - + B ( i )  - -  - - - x + .  - -  bp( i) a ~ _ - - z ~  

( ) # i )  

( i = 1 ,  2 , . . . , m )  

( t = n )  

( i = m + l )  
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The j th  dependent reserve is then defined as 
~.?( i )=~[bL( i ) ( t , i ]  s : x ) ]  

- - - - a l  

Observing that 

we can state that 

11 

+~L(J)(n,  m +  l l s : x ) h ( n ,  m +  l l s : x ) .  

~ b L ( i ) ( t , i [  s : x )  = L ( t , i [  s : x ) ,  
/=1 

This integral equation formulation of the problem of the determina- 
tion of dependent premiums and reserves is not tractable. In order to 
obtain alternative equations suitable for computation, we differentiate 
with respect to s. The details are similar to those displayed in Section I. 
We find that 

J~-b.V(i)=bP(i)+~b.~r(i)--#(j+).(B(.i+)o--.fr) ( j =  1,2, • m) 
ds  ' "" ' 

which is equation (III.1) in the Bicknell and Nesbitt paper. From this 
differential equation the practical formulas for computing dependent re- 
serves and premiums may be developed as in the Bicknell and Nesbitt 
paper. 

As was remarked in connection with our discussion of the independent 
premium system, the loss functions used to define the various dependent 
premium components are all functions of the same two random variables, 
time until decrement and cause of decrement, and we could not in general 
expect them to be stochastically independent. Thus it is surprising to 
observe that Covar [bL(k)(t, i:X), bLO~(t, i:x)] = 0 ( j  ~ k). To prove this, 
we first write 

Covar [ bL<k) ( t, i : x ), bL(i) ( t, i : x ) ] 

= f " {  ,,, ( B ~ ,  - ,¢)  + ( ~, ~ f~c~) - ~Pc~) dt t) } 

x { ~'(B%--y)+ C~' ,~T~(;) -- ~Pc;)a,7) },p.u.c~,dt 

±£ 
h~k or i 

+ ( ~. ~?(~)- bP(~)a~)( v . ~ ( ~ ) -  ~P(~)a~l).p" . 

RUSHMORE M U I ~ A L  L [ ~  
LIBRARY 
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For convenience we let 

fo n ( a ) =  v * ( B ~ t - , ~ V ) ( v t  ~ V ( i ) - b P ( i ) a ~ )  t P x ~(k)x+, dt  

fo n -- 4, #(i) dt  ( b ) =  v ' ( B ( ~ , - - f ) ( v ' ~ f z ( k )  bP(k )a~) , r**+,  

( c ) = ( v" ~ ? (~) - bp(,) a~_t) ( v ,  ~ ? ( i )  _ bp(i) a ~  ) ~ p , .  

Then 

Covar[bL(k)(  t, i : x  ),  bL(i)( t, i : x ) ] = ( a ) + (  b ) 4 . (  c ) 

_ fo"  ( v t ~?(k)_ bp(k)a~) ( V* ~ ' ( i ) _  bp( i )d~)d tPx"  

Now, using parts integration on the final term of this expression, we have 

Covar [ bL(k) ( t, i : x ) , bL( i) ( t, i : X ) ]  = ( a ) 4 . ( b )  

fo" 4- t p . [ v t ~ ? ( k ) - - b P ( k ) a q ] "  [ d ( v t ~ ? ( i ) ) - - b P ( J ) v t d t ]  

fo" 4- tPx[ vt ~z(i) -- bP(~')a,--l] [d ( vt ~?(k)) _ b p ( k ) v t d t ] .  

But, since we can easily show that 

d 
d-it v'b?(~)--v'bP(~)=, -- V' (B(~), --  f )  ~(~+),, ( h =  1, 2, . . . ,  m )  

the final integrals may be rewritten and the covariance shown to be equal 
to zero. 

This result enables us to write, using a well-known result from staffs- 
tics, 8 

Var [L(t,  i : x )  ] = ~ ] V a r  [bL(i)(t, i : x )  ]. 
iffil 

IV. LOEWY PREMIUMS AND RESERVES 

The Loewy decomposition of total premium and total reserve into com- 
ponents related to the causes of decrement involves a differencing opera- 
tion on successive subtotal premiums and reserves, each of which recog- 
nizes one more cause of decrement than its predecessor. To avoid intro- 
ducing an additional source of variation, we fix the order in which the 
causes of decrement enter the subtotals for the purpose of this section. 
Rather than performing the required differencing directly, we will ap- 
proach this decomposition from our statistical point of view. 

s Hoel, op. cir., p. 200. 
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Some new notation is required. We let/5~" and ,V~ be, respectively, the 
total premium rate and the total reserve when the first j causes of decre- 
ment in their prescribed order are recognized in the distribution of the 
random variables t and i. The loss functions lJ-(t, i:x) and IJ(t, i[s:x) 
used in determining the total premium rate and the total reserve are the 
same as those defined in Section I, except that the j reminds us that only 
the firstj  causes of decrement are recognized. The pdf of the modified dis- 
tribution needed in this approach is given by 

h i - ( t , i : x ) =  #-u(~) , g~'z z-t-t 

f o  n " . -- 1 -- tPT~#~+t d = nPT~ , 

~ 0 ,  
where 

( O < _ t < n , i =  1, 2, . . . ,  j )  

( t = n , i = m + l )  

( elsewhere ) 

J 
= 

i=1 

If we let r./5(9 be the Loewy premium rate associated with cause of 
decrement j,  the Loewy concept can be formulated in terms of a loss 
function as follows: 

#-(  t, i :x  ) = v'B(~.)~,- (PJ-~ + '~P(~)) a~ ( 0 < t < n, i = 1, 2, . . . ,  j ) 

where 

= ~n~_}.n - ( p j - - l +  Lp( i )  ) ~n--]' ( ~ = " '  ~ = m + I ) 

J 

X-~n 
i--1 

Then imposing the condition that ~[I.2(t, i:x)] = 0 and solving for the 
Loewy premium rate, we have 

i=1 
- - j  ~ i - - 1  - ~ - -J  

+ ( vnlS~+n--l':---a,--l) ,ip~[ / -' a~:~ . 

The direct difference method, L/5o~ = / s j  _ PL'~, is also apparent from 
the definition of the loss function. 

Before reducing this Loewy premium equation to one of the alternative 
forms in the Bicknell and Nesbitt paper, we need to examine an implica- 
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tion of the basic differential equation of Section I. We recall that, in our 
Loewy premium notation, 

d i 
- - , (,) y i )  dr(v' , f#-)  = v@ i- ~ v ~'z+, 

1 

- i = B J - "  Now if we set B,~t = W j-l, 0 < t < n, and B~+, z+,, we may use this 
equation to write 

a v , (y ' -  y -l) d-2[ v,(t~7'_--,~TJ-1)] = v,(p_i--PJ-1) +u~+,  -- . 

Multiplying this differential equation by the integrating factor ,p~, inte- 
grating from 0 to n, and using our boundary conditions yields 

r f 0  ,p~vt(,V~__,~i-t) = (p~_pi-__21) vttp~dt= O, 
0 

or that P-~ -- P J-_2. Using this result, we are left with the differential 
equation 

d, ' j V t ( fl177. ~ ,T/~7.i-- I ) , a-t[ ] = 

which has zero as its unique solution, given our boundary conditions. 
Therefore, we may conclude that  with this very special j t h  benefit that 
v,(,~_# _ , ~ - i )  = 0 or that ,V~ = ,~s-i. 

This result has, of course, an important but obvious relationship to 
the problem of benefit and price structure determination in individual 
insurance. If the second or withdrawal benefit is set equal to the reserve 
(not necessarily the legally enforced reserve) on the first or death benefit, 
the total premium and reserve for the package of two benefits are the 
same as for the one benefit insurance considered separately• 

This result has been achieved by relying heavily on a hypothesis which 
as yet we have not stated. This hypothesis is that the causes of decrement 
are what Hooker and Longley-Cook call "nonselective. ''9 They state that  
"if the circumstances or attributes influencing decrement i are independ- 
ent of those influencing the other decrements, then decrement i is non- 
selective." Stated more crudely, we are relying on the assumption that the 
addition of cause of decrement j does not alter the already recognized 
causes of decrement. That  this assumption may not be realized in many 
practical situations is apparent• 

We now rearrange our equation for Lp0). We have, peeling one term 
from the sum and adding and subtracting 

fo " ~  ~-~ ,~,,(i) dt t ~t rz r - z +  $ ' 

0 p. F. Hooker and L. H. Longley-Cook, Life and Other Contingenc{es, Vol. II (Cam- 
bridge: Cambridge University Press, 1957), pp. 20-29. 
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~[~ n i--1 " 
+1 f0 

+ fo"( v,frs-----!l--pj-la__. ,,-,,~-uci)dt=+, 

n j --1 - i - - 1 .  i 
+ ( v BZ_4__p,_.Zaa~_l)np~t / _i 

We note that the second term in braces is simply the expected value of the 
loss function associated with j causes of decrement, the benefit for the 
j th  cause equal to ~j-1. By the previous remarks and recalling that under 
these conditions p~'-i =/5_j, this expected value is zero, and we are left 
with 

which is equation (IV.8) of the Bicknell and Nesbitt paper. This equation 
suggests that, for suitably defined benefits, negative Loewy premiums 
are a possibility. 

Loewy reserves will now be defined with the help of the loss function 

L!( t, i l s : x )  = vt-"B(~) -- (pi-1 • +t  ~ + Lp(i)  ) a t _ ,  t '  

(O< s < t < n , i =  l, 2 , . . . ,  3) 

v"-" i-1 (pj-1 = (BI-~q-BC.2,,)- --q- r'P(O) a._--~q. 

( t = n , i = m + l )  
Then ,gr_~ = ~[Li_(t, i ls:x)], which we will rewrite as 

_ j ~ n 

"k" f , n (  v'-°,~ ri-x PS-la " J t~C i) at 
- - -  - -  ,---=ri)t-.P;+. ~+, 

- t  - ] 
+ (  

+ [£nl)t-.(n(~|--t~ri-1)l_.p~q_.ld(z~ld, 

_ £ " z p ~ , )  at__z_;_l _ i  J dt t-mP~+el~Tc+t 

+ 'p., 
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Now the first bracketed expression is equal to ,I ?J'-I by our remarks 
above concerning the addition of an additional benefit equal to the pre- 
vious subtotal reserve. The second bracketed expression offers us a for- 
mula for the Loewy reserve associated with cause of decrementj. We have 

If" L ? ( i )  _.~ yJ_ ,? j - -1  v t _ s ( B ( i )  t - j--1 - -- - y - - ) ,  o'-" . ( i )  dt --s.z-ptr-z-p$ 

,~-,P;+,j - -  x + , : n - ,  I "  

Then 
d d [.?t -;-1 _ _  ___ - y - - ]  ds L?(j) ~_~ 

and we may write down equation (IV.5) of the Bicknell-Nesbitt paper 
by using the results of Section I. 

Building on a statistical foundation, we have now retraced the steps 
of Bicknell and Nesbitt in decomposing total premium and total reserve 
into components related to the cause of decrement in three special ways. 
I t  seems natural to ask if a similar decomposition can be made of the 
total variance. In discussing independent premiums, we pointed out that,  
in general, Var [L(t, i:x)] does not equal 

£ Var [~Ld) ( t ,  i :x )  ], 
1 

but in the dependent premium section we found a contrary result. 
In a Loewy type analysis, Var [LJ(t, i:x)] -- Vat [ ~Z2~2(t, i:x)] might 

serve as a measure of the risk associated with cause j .  Although such a 
decomposition might be of interest, it seems rather artificial. The arbi- 
trary recognition of additional causes of decrement alters the distribution 
of t after each such addition. I t  is only when all recognized causes of 
decrement from the body of insured lives are built into our probability 
distribution that the variance offers a realistic measure of risk. 
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