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A THOUGHT ON FERMI PROBLEMS FOR ACTUARIES

By Runhuan Feng

on more and more computing facilities. However, this is an 
unsustainable solution as the industry practice continues to 
move toward more detailed modeling and financial report-
ing involving more stochastic components. In the foresee-
able future, the costs of such nested simulations will be 
prohibitive even for the most resourceful companies. The 
running time of simulations can still be too long for results 
to be delivered in a timely manner. 

Due to the lack of alternative methods in the current prac-
tice, unscientific compromises on the scale of simulations 
may have to be made in order to save costs and cut running 
time. However, these “hash” end results may no longer be 
trusted or may even mislead management to wrong strategic 
decisions, exposing the industry to substantial model risks 
and systemic risks in the long term.

One potential solution to this efficiency problem is to follow 
the spirit of Fermi’s estimate, which is to find good approx-
imation with reasonable simplifying assumptions. For 
complicated problems such as the modeling of guaranteed 
benefits, it is unrealistic to expect a simple one-size-fits-all 
rule of thumb. Nevertheless, there are many computational 
techniques developed in the academic literature that can be 
used to construct a modern-day “back-of-the-envelope” cal-
culation, which requires only modest computational efforts.
We take the guaranteed minimum death benefit (GMDB) as 
an example to show that some deterministic techniques can 
be used to reach fast and efficient results.

A Simplified Example of Stochastic Reserving
While the actuarial practice on reserve calculation can be 
highly complex and vary company by company, we shall 
take a minimalistic approach here to summarize the basic 
principles of reserving under Actuarial Guideline (AG) 43. 
Policyholders make purchase payments to buy variable 
annuity products, which offer a selection of fund allocations 
at the discretion of policyholders. Then the policyholders’ 
account values are linked to the particular equity-index/fund 
allocation in which they invest. The GMDB is a type of ben-

I n physics and engineering education, Fermi prob-
lems are named after the physicist Enrico Fermi who 
was known for his ability to make good approximate 

calculations with little or no actual data, involving mak-
ing justified guesses and deducing bounds without using 
sophisticated tools. As an illustration, we can use the fol-
lowing example:

How many McDonald’s restaurants operate in the United 
States?

There are 10 McDonald’s in Champaign-Urbana area, 
which has a population of about 200,000. Assume the num-
ber of McDonald’s scales with population. Since the popu-
lation of the United States is 300 million, a “back-of-the-
envelope” calculation estimates the number of McDonald’s 
at 15,000. The actual number is 14,267 as of 2014.

Using a simplifying assumption is a classic feature of Fermi 
problems. Although the uniform assumption italicized 
above is not perfectly correct, the focus of the problem is to 
produce good and fast approximation, when exact answers 
are either too time-consuming to determine or too difficult 
to carry out. 

Why Are Fermi Problems of Relevance to 
Actuaries?
With the increasing complexity of equity-linked products, 
insurance companies are facing unprecedented exposure 
to financial risks in addition to traditional insurance risks. 
Furthermore, the financial risks embedded in equity-linked 
insurance are often complicated by policyholder behaviors, 
such as in the investment fund choice/allocation, the use 
of reset features, and options of withdrawal and surrender 
benefits, etc.  

The current market practice is to develop very complex 
models and to rely almost exclusively on Monte Carlo sim-
ulations. As the computational burden of simulation grows 
exponentially, many companies simply respond by adding 
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Valuation actuaries typically quantify and assess the above-
mentioned losses by running spreadsheet calculations 
through simulated scenarios of fund performances, or using 
other software that performs much the same procedure. The 
calculations can be summarized as illustrated in figure 1.

1. A set of economic scenarios is generated to reflect a 
company or regulator’s expectation of the variability of 
economic outcomes over the lifetime of the policies.

2. Under each scenario, policyholders’ account values are 
projected according to certain accounting conventions 
and model assumptions. Spreadsheets are used to com-
pute the outcomes of profitability measures such as 
the present value (PV) of accumulated surplus/deficits. 

3. Combining all scenarios, the profitability measures are 
then ranked to form an empirical distribution.

4. The reserves/risk capitals are then determined by an 
estimation of a chosen risk metric, such as value at risk 
or conditional tail expectation (CTE), applied to the 
distribution of profitability measures.

Fee Income (fixed percentages of acct 
values)

efit that offers a minimum account value guarantee at the 
time of policyholders’ death. The insurer’s gross liability is 
in essence a put option, which pays the amount by which 
the guarantee base exceeds the then-current account value 
at the time of death. 

However, the rider is much more complicated than a con-
ventional put option, as the option is funded not by an 
upfront fee, but rather by a stream of mortality and expenses 
(M&E) charges that are fixed percentages of account values 
deducted on a periodic basis. The financial risk is not only 
on the liability side from investment volatility interacting 
with mortality risk, but also present on the income side. 
For example, in adverse economic scenarios where the 
equity-index/fund values are persistently low over time, the 
insurer’s liability is high, as the account value is expected to 
be lower than the guarantee base. Meanwhile, the problem 
is exacerbated by the fact that these lower account values 
also generate lower-than-expected fee income.

CONTINUED ON PAGE 24

Figure 1
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equity prices, volatilities, etc.? This goes back to the 
idea of Fermi’s problem, which is to provide good esti-
mates with a minimal amount of computational effort.
While trying not to get into mathematical details, we can point 
out some quantitative tools developed in the literature that have 
not yet gained much attention in the practitioners’ world. 

Differential Equation Methods
The basic step of the above-mentioned spreadsheet calcula-
tion is to determine incremental changes in surplus for each 
valuation period.

Changes in surplus = Fee income + Interest on surplus – 
Benefit payments – Expenses

From a mathematical point of view, the spreadsheet calcula-
tions are essentially numerical algorithms based on differ-
ence equations. Each row in a spreadsheet corresponds to 
a recursive formula, aka a first-order difference equation. 
Such equations typically do have explicit solutions that 
can be represented in terms of the sample paths of account 
values. 

Here is an example of the PV of accumulated deficiency 
for a GMDB rider, which was derived in Feng et al. (2015) 
based on a practitioner’s spreadsheet calculation. The policy 
lasts for T years and fees are collected n times each year as 
a fixed percentage md  of account value . The 
initial guarantee base is  with a rollup rate  and the 
interest rate is  per annum. The symbols  and  are 
standard actuarial notation for survival and mortality rates. 
In this formula for the PV of accumulated deficiency, the 
first term is the PV of all benefit payments (put options) 
over all periods up to maturity and the second term is the 
PV of all fee income. For simplicity, we ignore non-asset-
value-based expenses.

While the simulation procedure is easy to implement and 
works generally for all product designs, one should bear in 
mind that simulation-based techniques are statistical proce-
dures for which estimation errors are unavoidable. 

It is a well-known fact that the sampling error of Monte 
Carlo simulation for averages in general goes down by Carlo simulation for averages in general goes down by 

 as the sample size  increases. In other words, the 
sample size has to increase a hundredfold in order for the 
estimate to improve one significant digit. What makes it 
more challenging is that practitioners are typically inter-
ested in sensitivity measures, such as sensitivity of profit-
ability to interest rate shocks, Greeks for hedging, etc. A 
small sampling error of the profitability measures can lead 
to a huge relative error of sensitivity measures.

Analytical Alternative Solutions
There is typically a trade-off between efficiency and gen-
erality of computational methods. In contrast with simula-
tions, which can be used for all models despite their ineffi-
ciency at times, analytical approximations are only efficient 
under specific model assumptions, as less computation is 
achieved through careful use of analytical properties of the 
underlying model. 

An example would be the celebrated Black-Scholes option 
pricing formula. It is developed under the normality 
assumption of log equity returns and flat term structure of 
interest rates, which were all proved wrong by empirical 
evidence. Yet it is widely accepted for pricing and hedging 
with some fine-tuning of the volatility parameter in the for-
mula. Some practitioners have described this as “the wrong 
number in the wrong formula to get the right price.” 

How is one formula based on seemingly unrealis-
tic assumptions preferred more than simulations under 
more complex and realistic models on interest rates, 
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Bear in mind that the basic principle of AG43 reserving is to determine the 70%-CTE of the PV of accumulated deficiency. 
                                     

There are several advantages of using the above explicit solution over simply running spreadsheet calculations. 

(1) The cash flow structure becomes more apparent and it is easier to identify scenarios under which outgoes exceed incomes.
 
(2)  The above solution is an additive functional of the underlying fund values . The tail distribution of an addi-

tive functional can be determined or approximated by analytical methods. See below for an example of comonotonic 
approximations. 

(3) The computational complexity of summation is typically less than that of (spreadsheet) recursion. 

If we shrink the valuation period to zero, then the difference equation (corresponding to spreadsheet calculation) goes to its 
limit—a differential equation. In other words, it can be treated as if the fees are taken continuously and benefits are payable 
immediately upon death. Even though the assumptions are not realistic, the continuous-time approximation can be very close 
to the discrete-time true value, just as we often use continuously paying annuities to approximate monthly paying annuities 
for pricing annuities-certain. There are many well-established numerical methods for solving ordinary/partial differential 
equations, such as finite-difference, finite-elements, etc. An example of such approximations can be found in Feng (2014). 

Furthermore, there are many cases of guaranteed benefits, for which analytical formulas for risk-neutral valuation and risk 
measures are available under certain model assumptions. For example, we recently worked out closed-form pricing formulas 
for guaranteed minimum withdrawal benefit (GMWB) and guaranteed lifetime withdrawal benefit (GLWB). They can be 
used to remove inner components of nested simulation for financial reporting on these complex riders

Comonotonic Approximations
Observe that the accumulated deficiency L is essentially determined by a weighted sum of fund values at various time points. 
The adverse scenarios of the accumulated deficiency are results of tail events of the weighted sum. Instead of going through 
all the trouble with simulating or analyzing the complex dependency among various fund values, one can study the extreme 
events by looking at a single random variable that characterizes the dependency. 

CONTINUED ON PAGE 26
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much easier than averaging the individual measurements 
of the horses at all times. In a similar way, comonotonic 
bounds usually provide much more efficient solutions with 
only small compromises on accuracy, in the same spirit as 
in Fermi problems.

A recent work in Feng et al. (2015) gives several examples 
where comonotonic approximations can be used to estimate 
various risk measures of the PV of accumulated deficien-
cies. Here we reproduced the table for the comparison of 
efficiency among comonotonic approximations (labeled 
“optimizations”) and Monte Carlo simulations (standard 
deviations in brackets). If we only need accuracy up to three 
decimal places, then the approximations (labeled “75% 
reduced”) can be about 30 times faster than simulations 
based on a sample size of 1 million scenarios. To achieve 
accuracy up to four decimal places, the approximation 
(labeled “50% reduced”) runs roughly 750 times faster than 
simulations based on the sample size of 100 million.

Here is a simplified description of the mathematics behind 
this. For any continuous random vector , the 
sum of the random vector dominates the sum of the vector 
conditioned on another random variable  in the sense of 
the so-called “convex order.” 

The left-hand-side single random variable is known as a 
comonotonic bound. Ignoring the technical definition of 
convex order, the most important consequence of such a 
relation is that the CTEs of the two sums are also ordered 
regardless of the choice of .

Note, however, that the computation of risk measures for 
the single random variable  is much easier than that of 
the sum of highly dependent random variables, S. The goal 
of comonotonic approximation is to find the best choice 
(optimization) of  so that the CTE of S l is as close as 
possible to S.
 
Perhaps the best way to visualize a comonotonic approxi-
mation for the reserving exercise is to think of the fund val-
ues at various time points as competing horses in a chariot. 
Even though the horses have different speeds individually, 
their average performance can be characterized by the speed 
of the chariot. Keeping track of the speed of the chariot is 
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Note
Computational Risk Management Lab is a research lab, 
housed in the Department of Mathematics at the University 
of Illinois, whose mission is to develop and implement 
efficient computational solutions for risk management 
problems. We invite practitioners to make use of our state-
of-art research resources and to provide us with challenging 
research questions. Interested practitioners should contact 
rfeng@illinois.edu for further information.
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