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A s actuaries we often find ourselves focusing on the internal consistency of our 
models and examining whether they are well calibrated and produce output in 
line with observable experience and intended uses. However, we may neglect 

the risks assumed by relying on a particular algorithm or model structure (i.e., model 
risk). This is particularly critical for real-world interest rate scenario generators, which 
produce stochastic interest rates under a realistic probability measure. In this article we 
review some common uses of real-world interest rate scenario generators in the life 
insurance industry and explore three fundamentally different approaches to building 
such generators.

Common Uses of Real-World Interest Rate Models
The use of risk-neutral and real-world interest rate models has grown substantially 
in the last decade as life and annuity products have become more complex. The need 
for risk-adjusted management information has grown, and accounting and regulatory 
frameworks have become more sophisticated, demanding principle-based views of risk 
and valuation. Here are some common uses for real-world interest rate models: 
• Financial reporting 

 - U.S. statutory valuation, Actuarial Guideline (AG) 43—This is a valuation 
standard for variable annuities with guaranteed benefits. Some companies use 
stochastic interest rates for the valuation. 
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Most models will fall under one of the following cat-
egories:
• Short-rate models
• Key-rate models
• Function-based models.

SHORT-RATE MODELS
Single short-rate models refer to the commonly discussed 
equilibrium models, such as Vasicek, Cox-Ingersoll-
Ross (CIR), Brennan-Schwartz and Black-Karasinski. 
These models define the instantaneous interest rate (i.e., 
the short rate) using stochastic differential equations:

These all follow a visible structure with a drift compo-
nent (i.e., a(b-r)dt) and a stochastic component (σdZ), 
where Z is a Wiener process. The drift component 
includes a mean reversion target (b) and mean reversion 
speed (a). σ is a measure of the volatility of the short rate 
and can be applied in different ways. 

A key advantage of most of these models (e.g., Vasicek 
or CIR) is that bond prices at any maturity have an ana-
lytical form (i.e., there is an explicit formula to define 
zero coupon bond prices at any time t) from which the 
yield curve can be derived. However, these models are 
based on the instantaneous spot rate, or the short rate, 
which is the rate an entity can borrow money for an infi-
nitely small period of time. Also, the structure of these 
models is simplistic and could produce unintended term 
structures (e.g., inverted yield curves or negative rates in 
the United States).

In more sophisticated models, practitioners can add 
more conditions in short-rate models such as embedding 
stochastic processes such as volatility or mean-reverting 
targets (e.g., two-factor Vasicek or Brennan-Schwartz 
models).

 - U.S. regulatory capital requirements—C-3 
Phase 1 prescribes an interest rate generator. C-3 
Phase 2 requirements are similar to AG43. 

 - U.S. GAAP, SOP 03-1—Requires a valuation 
under a “range of scenarios” covering risks 
applicable to that business. For products with 
interest rate risk exposure, this may include the 
use of real-world interest rate scenarios. 

 - Canadian Asset Liability Method—May be 
done using stochastic real-world interest rate sce-
narios. The guidance specifies general require-
ments that would generally be covered using 
key-rate models or function-based models (dis-
cussed below), as well as calibration criteria to 
ensure that the scenarios are adequately adverse. 

 - Asset adequacy testing—This may be done in 
a variety of ways, and commonly includes a sto-
chastic real-world valuation to determine wheth-
er assets are sufficient to support the in-force 
liabilities under moderately adverse economic 
conditions. This often supplements testing under 
the “New York 7” scenarios and other determin-
istic scenarios. 

• Other applications that are often modeled using real-
world scenarios include economic capital, pricing 
and embedded value. 

A real-world interest rate stochastic model not only 
reflects a “best-estimate” assumption for future interest 
rates, but also a best-estimate view of their fluctuation. 
Best-estimate assumptions are also used for a variety 
of financial reporting and other purposes beyond those 
discussed above.

Constructing Real-World Interest Rate Models
With many approaches available to construct real-
world interest rate models, it is easy to struggle trying 
to balance the different needs and select and calibrate 
a suitable model. In the discussion below we will walk 
through some basic categories of interest rate models and 
the considerations in selecting a model. 
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KEY-RATE MODELS
The stochastic equations used in single short-rate models can also be adopted to generate observable measures 
such as forward rates or yields. Under this approach, multiple stochastic processes are used to project the rate 
at each maturity term in the yield curve. These processes are then made codependent using an explicit correla-
tion matrix or a copula. The following formulas provide a general definition of key-rate models:

Figure 1: Yield Curve Model Derived from Short Rate at Two 
Different Time Periods (T1 and T2)—Illustrative Only

CONTINUED ON PAGE 6
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Since each key rate is modeled under a separate stochastic process, the model can be defined to capture all possible 
(or desirable) curve movements (e.g., parallel shifts, twists, butterfly shifts), providing more flexibility and control to 
the user.

Figure 2 below illustrates the process of three rates of different maturities under a single scenario.

Figure 2: Key Rate Projection under a Sample Stochastic Scenario
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Figure 3 below illustrates the evolution of the average yield curve at different points in time across all simulated 
scenarios.

Figure 3: Average Evolution of the Yield Curve across Multiple Scenarios
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However, the larger number of stochastic variables (and required parameters) significantly increases the difficul-
ties—and risks—in calibrating the model, which should be considered when weighing the benefits of modeling each 
key rate. 

FUNCTION-BASED MODELS
Since modeling each key rate may be unfeasible and introduce unwanted parameter risk, practitioners can achieve 
a more parsimonious modeling of yield curves by studying the functional properties of the curve itself. Instead of 
modeling specific points of the yield curve, function-based models focus on key latent features underlying the yield 
curve. Empirical studies (Pooter, 2007) have shown that changes in the level, slope and curvature of the yield curve 
explain most of its behavior. Changes in the level of the curve lead to parallel shifts (see Figure 4.1), changes in slope 
lead to flattening or steepening of the curve (see Figure 4.2), and changes in curvature lead to butterfly shifts in the 
yield curve (see Figure 4.3). 

Figure 4: Illustration of Level, Slope and Curvature Effects
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Function-based models project the term structure of interest rates directly from the stochastic projection of these com-
ponents. A common function-based definition of yield rates is provided by the Nelson-Siegel framework.

A generic representation of level, slope and curvature and their associated factors is as follows:

American Academy of Actuaries’ Interest Rate Generator (AIRG)
Probability measure: real-world

Yield interpolation method: Nelson-Siegel

Lt (level factor)—associated with the 20-yr rate
• Uses a stochastic log volatility model.
• Log long-term rate follows a mean-reverting Black-Karasinski (BK) process.
• Its mean-reversion strength varies with nominal spread.
• Log volatility of the long-term rate also follows a mean-reverting BK process.

St (slope factor)—associated with the difference between 20-year rate and one-year rate 
• Follows an extension of the Vasicek process.
• Its volatility varies with long-term rate.
• Its mean-reversion strength varies with the log long-term rate.

Ct (curvature factor)—modeled with a constant factor
• Effectively removes any humps.
• Produces a “normal” nonlinear shape of the curve.

Note: AIRG does not model curvature stochastically and therefore does not introduce butterfly shifts of the yield curve in the 
simulated scenarios. The lack of these features can undermine the reliability of this model for purposes that require capturing 
all the plausible movements in the curve (e.g., economic capital or profit testing).

REAL-WORLD INTEREST RATE …  | FROM PAGE 7

This is the approach used in the American Academy of Actuaries’ Interest Rate Generator (AIRG) and therefore 
implicitly adopted by many actuaries in the United States. 

Figure 5: American Academy of Actuaries’ AIRG (American Academy of Actuaries, 2010)
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Model Types Advantages Disadvantages

Short-rate • Simple to define and implement
• Analytical tractability
• Minimal computational demands

• Overly simplistic view of interest rates
• Can produce unintended yield rates 

and curve shapes

Key-rate • Increased precision and control over 
desired outcomes

• Most effective approach to achieve a 
refined view of tail risks for VaR and 
other tail metrics

• Ability to flex parameters to achieve 
calibration criteria

• Models become significantly more 
complex

• Large number of parameters signifi-
cantly intensifies data requirements 
and the dependency to the collected 
data

• Requires significant judgment in set-
ting parameters and interpreting the 
credibility of historical data

Function-based • Focuses on the few components 
that explain the most (i.e., Pareto 
principle)

• Reduced data consumption require-
ments in calibration

• Inability to reconcile underlying 
dynamics with other models (e.g., 
arbitrage-free models)

• There is a significant dependency 
on long-duration rate historical data, 
which is not always available (e.g., 
30-year rates in the United States).

• As noted with the Academy’s genera-
tor, some variations will not be able 
to generate all possible forms of the 
yield curve.

Closing Remarks
Many actuarial liabilities show significant asymmetries with respect to interest rates; risks that are not apparent in 
traditional deterministic measurements. Their risk profile may be reflected not only with respect to the level of interest 
rates but also with the shape of the curve, the volatility and mean-reversion dynamics. Liabilities may also be long-
term in nature, in which case modelers should understand the assumptions (and shortcomings) behind the projection 
of long-term interest rates. Policyholder behavior is commonly tied to the projected interest rates, which increases the 
relevance of real-world interest rate models.

Actuaries should have an understanding of the complexity and specificity of the interest rate models used given the 
intended purpose. The approaches discussed in this article, although not exhaustive, provide a starting point in under-
standing some of the primary options available.

Selecting a model is only the beginning of the process. Depending on the model selected, users will need to calibrate 
the parameters using a suitable set of historical data and exercise actuarial judgment in defining other model specifi-
cations.

CONTINUED ON PAGE 10
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