

Roll Your Own
Cluster Model
By Bob Crompton

Model efficiency is an important area of model manage-
ment, and model compression is one of the dimen-
sions of such efficiency. Model compression improves

efficiency by creating a significantly reduced number of mod-
el points compared to a seriatim model. Cluster modeling is a
model compression methodology that has been successfully im-
plemented for a number of years.

A good introduction to cluster modeling can be found in the
article “Cluster Analysis: A Spatial Approach to Actuarial Mod-
eling.”1 For simplicity, this article is referred to as “the Milliman
article.” Some actuarial software incorporates cluster modeling;
if yours doesn’t, this article is for you.

SOFTWARE USED
The clustering in this article is performed with the open source
software R.2 In addition to the software included in the standard
installation, I used two additional packages—xlsx and fpc—to
perform some of the tasks discussed in this article. To install
these packages, use the R console commands:

install.packages(“xlsx”, dependencies = TRUE)

install.packages(“fpc”, dependencies = TRUE)

Since these packages are not part of the home library, they will
need to be added. They can be manually loaded as follows:

library(xlsx)

library(fpc)

CREATING A CLUSTER MODEL
I obtained from a colleague an in-force file of universal life (UL)
policies. There are five plan types in the file and 1,347 records.

The broad steps we need to create a cluster model are:

• Generate synthetic policy attributes.
• Apply weighting to the attributes as appropriate.
• Split data into segments.
• Import the file of in-force attributes to R.

• Apply the clustering algorithm.
• Export results.
• Reconfigure in-force files for the reduced number of cells and

rerun the model.

These steps are considered in this article.

GENERATE SYNTHETIC POLICY ATTRIBUTES
One of the most interesting aspects of the Milliman article
is the use of synthetic policy attributes—that is, policy at-
tributes that are not found either in the in-force file or are
not simple transformations of data found in the in-force file.
Quinquennial ages are examples of simple transformations of
in-force data.

The development of clusters uses attributes associated with
projected cash flows in addition to the attributes found in the
in-force file. For example, the life/health model used in the Mil-
liman article includes the following synthetic attributes:

• Present value of proxy profits
• Present value of proxy profits through 10 projection years
• Present value of proxy profits through 20 projection years

There are three other attributes used in this model, of which
two are synthetic. The only native attribute is beginning reserve.

It is instructive to review the synthetic attributes for the term life
model included in the Milliman article:

• Beginning reserve
• Cumulative present value of proxy cash flows
• Present value of proxy cash flows
 • Years 1–5
 • Years 6–10
 • Years 11–15
 • Years 16–20
 • Years 21–25
 • Years 26–30
• Projected death benefits
 • Years 1–5
 • Years 6–10
 • Years 11–15
 • Years 16–20
 • Years 21–25
 • Years 26–30
• Projected premiums
 • Years 1–5
 • Years 6–10
 • Years 11–15
 • Years 16–20
 • Years 21–25
 • Years 26–30

14 | DECEMBER 2016 THE MODELING PLATFORM

This is 20 attributes, of which only one is native, with all the
rest being synthetic. Why are there so many? The complexity of
reserving for level term, combined with the mortality patterns
during and after the level term period, mean extensive informa-
tion is required if we want a well-fitting cluster model.

The attributes I used for my model were those used in the Mil-
liman article for the traditional life/health model with one ex-
ception. I did not include the present value of total proxy prof-
its because my original projections only went for 20 years. The
information contained in the early years’ proxy profits and the
later years’ proxy profits overlaps the information contained in
total proxy profits.

APPLY WEIGHTS TO ATTRIBUTES
Weights adjust the relative importance of the various attributes
used for clustering. Weighting affects both the selection of the
representative cell for a cluster as well as the cells assigned to
the cluster.

Consistent with the cluster attributes, the weights I used for my
model were those used in the Milliman article for the traditional
life/health model.

CREATE SEGMENTS
The in-force file needs to be split into segments. The Milliman
article describes segments as follows:

You divide the business into segments, which instructs
the program not to map across segment boundaries. Seg-
ments might include plan code, issue year, GAAP [gen-
erally accepted accounting principles] era or any other
dimension of interest.

So clustering is applied at the segment level. In my example, the
entire file is treated as one segment. If I had used multiple seg-
ments, they would have been based on plan code.

IMPORTING THE DATA INTO R
For the import operation, I am demonstrating how to import
from Excel because Excel is ubiquitous. I will demonstrate two
possibilities because there is more than one way to skin a cat. (I
don’t actually know this from personal experience, but genera-
tions of folk wisdom attest to the truth of this statement. Who
am I to question generations of folk wisdom?)

Importing Directly from Excel
For the first import operation, I use the read.xlsx function.
The read.xlsx function is from the xlsx package.

Use the following console command:

MyInforce <- read.xlsx(“c:/Inforce.xlsx”, 1)

2nd parameter indicates which tab to import

DECEMBER 2016 THE MODELING PLATFORM | 15

MyInforce, the variable containing the output from the read.xlsx
operation, is a data frame. Data frames are formatted matrix-like
data structures. They are convenient since they can be used in many
built-in functions that require matrix input.

Importing From a Comma-Separated File
For this import operation, I use the read.table function:

MyInforce <- read.table(“c:/Inforce.csv”, header
= TRUE, sep = “,”)

The read.table operation yields a data frame, the same as the
read.xlsx operation.

Comments on Excel vs. CSV Files
The read.xlsx function has the obvious benefit of conve-
nience. You are working directly from Excel so you don’t have to
reformat. In addition, if you put each segment in a separate tab,
it is easy to loop through the tabs with the read.xlsx function.

Unless all of your segments are less than 2,000 or so records,
reading directly from Excel may not be in the cards. Note that
the R manual on data import/export has the following warning:

The most common R data import/export question seems
to be “how do I read an Excel spreadsheet.”

… The first piece of advice is to avoid doing so if possible!
If you have access to Excel, export the data you want from
Excel in tab-delimited or comma-separated form, and use
read.delim or read.csv to import it into R.3

However, if you are committed to using Excel as your data source,
the manual contains a description of a few other R packages that
provide Excel import capability. Experiment with some or all of
these to see if they work any better than the xlsx package.

CSV files don’t have either of these problems. I was able to
load a file of 100,000 records in less than 5 seconds using the
read.table function. The only issue I have noted with CSV
files is that if you forget to reformat comma-separated numeric
values, chaos and darkness will result.

APPLY CLUSTERING ALGORITHM
Once the data is in R, it is simple to create clusters. There are
a number of cluster functions available. I used the pam function
because the output contains the information we need to create
the clusters. Pam is based on a version of the K-means approach
to clustering. The following code is for the cluster model with
13 cells. Note that the data is standardized by setting one of the
function parameters shown. Standardization often gives better
results when using clustering algorithms.

fit <- pam(MyInforce, 13, stand = TRUE)

The output variable fit is a list containing, among other things,
the index number of the representative cells for each cluster in the
component id.med, and the cluster assignment of each of the in-
force records in the component clustering. So the component
id.med is a vector with length equal to the number of clusters
(in this instance, 13), and the component clustering is a vector
with length equal to the number of in-force records.

Roll Your Own Cluster Model

DIY clustering is an easy and
straightforward process using
existing code.

Table 1
Comparison of Policy Attributes ($1,000s)

Attribute Original Clustered Ratio
Initial reserve 522,352.9 523,339.7 100.2%

Projected first-year premiums 77,247.2 79,570.8 103.0%

Projected first-year benefits 38,000.4 40,133.5 105.6%

Present value proxy profits, years 1–10 125,481.3 128,489.8 102.4%

Present value proxy profits, years 11–20 (104,775.4) (109,964.9) 105.0%

However, there are some serious drawbacks to using the read.
xlsx approach:

• It’s s-l-o-w! An Excel file with 10,000 records took about 35
minutes to load using read.xlsx.

• It’s memory intensive. My computer was unable to load a file
of 25,000 records because the Java back-end to xlsx ran out
of memory.

16 | DECEMBER 2016 THE MODELING PLATFORM

Optimal Number of Clusters
What is the optimal number of clusters? If we don’t care much
about model fit, and are mainly concerned about processing time,
then obviously one cluster is optimal. In that case, we simply de-
fine the cluster based on the average policy number. (This is tech-
nically known as “humor.” It is not intended to be taken seriously.)

The function pamk in the package fpc estimates the optimal
number of clusters based on “optimum average silhouette
width.” A cluster silhouette is a measure of how close each point
in one cluster is to points in the neighboring clusters. The fur-
ther away the points are, the better.

DECEMBER 2016 THE MODELING PLATFORM | 17

We pass these back from R using the following export code:

write.table(fit$id.med, “c:/Cluster_index.csv”,
sep = “,”)

write.table(fit$id.clustering, “c:/Cluster_
assignment.csv”, sep = “,”)

It is possible to use the write.xlsx approach to write directly
to Excel files; however, the same caveats regarding speed and
memory mentioned in the discussion of importing the data will
apply to exporting the data as well.

RECONFIGURING THE IN-FORCE FILE
Once the cluster assignments and the cluster representative cells
are determined, reconfiguring the in-force file is straightfor-
ward. Static items such as issue age, sex, plan code and similar
items are set equal to these items from the representative cell.

Dynamic items such as initial reserve, initial fund, amount of
insurance and similar items are summed over all the in-force
records belonging to the cluster.

RESULTS OF THE TEST FILES
The results from the test clustering are shown in Table 1. I com-
pare the clustered vs. unclustered results for the total net cash
flows and the totals of the synthetic attributes.

Observations on Cluster Model Fit
Given that this model has a 99 percent compression ratio (13 cells
compared to 1,347 in the original model), the fit is reasonable.

Model projections for premiums, benefits and distributable
earnings are shown in Figure 1.

Although the purpose of this article is merely to show how to
create cluster models, a brief discussion of how to improve the
fit might be helpful. There are two obvious possibilities. The
first is to adjust the weighting factors. For example, the weight-
ings for both early and late proxy profits could be increased.
This would likely improve the fit for first-year benefits as well
as for proxy profits.

The second obvious adjustment is to split the model into three
or four segments, rather than just one segment. Three segments
with four cells each might perform better at fitting the original
data since the different UL plans have differing patterns of cash
flows and profit emergence.

OTHER THINGS TO CONSIDER
In addition to simply generating and identifying clusters, there
are several other things we can consider as we create cluster
models.

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000
Premiums

Original Model

Cluster Model

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

Distributable Earnings
Original Model
Cluster Model

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000
Original Model

Cluster Model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 1
Model Projections for Premiums, Benefits and
Distributable Earnings

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Bob Crompton, FSA, MAAA, is a vice president
of Actuarial Resources Corporation of Georgia,
located in Alpharetta, Ga. He can be reached at
bob.crompton@arcga.com.

ENDNOTES

1 Avi Freedman and Craig Reynolds, “Cluster Analysis: A Spatial Approach to Actuar-
ial Modeling,” Milliman Research Report, August 2008, http://www.milliman.com/
uploadedFiles/insight/research/life-rr/cluster-analysis-a-spatial-rr08-01-08.pdf.

2 R Core Team, R: A Language and Environment for Statistical Computing (Vienna: R
Foundation for Statistical Computing, 2016), https://www.R-project.org/.

3 This can be accessed at https://cran.r-project.org/.

4 The pam function is contained in the package cluster: Maechler, M., Rousseeuw,
P., Struyf, A., Hubert, M., Hornik, K. (2015). cluster: Cluster Analysis Basics and Ex-
tensions. R package version 2.0.3. The quickest way to access the documentation
for pam is to enter “??pam” at the command prompt in R. You can also access the
documentation at https://cran.r-project.org/web/packages/cluster/index.html.

Interestingly, using the pamk function to investigate the opti-
mal number of clusters in the range of two to 100 results in an
optimal cluster count of three. That seems to explain how the
99 percent compression model performed as well as it did. Of
course, silhouette optimization is not what actuaries are really
interested in, so this result does not mean we should automati-
cally choose three clusters.

Testing for Sensitivity to Order of Attributes
Many K-means algorithms used for clustering seem to be based
on the expectation-maximization algorithm. There are some an-
ecdotes that these algorithms are sensitive to the order in which
the attributes are presented. The documentation for the pam
function claims it is “a more robust version of K-means.”4 It is
not clear if this means it does not exhibit sensitivity to the order
of attributes. I did not bother tracing back to the source refer-
ence for the algorithm, but it is something users can easily test.

I tested for this sensitivity by running pam with two additional
input files that differed only in the column order of the data.
Both additional files produced clusters identical to the original
in-force file.

CONCLUSION
As presented here, DIY clustering is an easy and straightforward
process using existing code. As my father-in-law used to tell me,

“It’s easy once you know how.” In R, once you know how, many
things are insanely easy. The difficult part of R is that it is so
extensive, finding the right package to do just what you want is a
time-consuming task.

18 | DECEMBER 2016 THE MODELING PLATFORM

Roll Your Own Cluster Model

