

Article from
The Modeling Platform
November 2017
Issue 6

 NOVEMBER 2017 THE MODELING PLATFORM | 5

Making Spreadsheets
Great Again
By Bob Crompton

One of the most important innovations affecting actuarial
work has been the electronic spreadsheet. Spreadsheets
are now so ubiquitous that it is hard to realize that there

was a time when actuaries did their work without them.

Spreadsheets have been used for almost every conceivable aspect
of actuarial work, and actuaries have demonstrated considerable
ingenuity, insight and skill in developing spreadsheet solutions
in a fraction of the time needed to develop corresponding solu-
tions through more formal channels.

But spreadsheets have no enforced structure or control. Much
of what we see in spreadsheet- land is ad hoc and chaotic, put
together in the heat of the moment. Many spreadsheets are
large and unwieldy, difficult to control and subject to bouts of
unexplainable behavior—much like a St. Bernard or a teenager
just learning to drive.

This bad behavior results in recriminations and finger- pointing,
with actuaries bearing the burden of blame for mistakes attribut-
able to spreadsheets. Owners of actuarial spreadsheets need to be
more proactive in ensuring the accuracy of spreadsheet results.

This is not an article on best practices; rather, it is an article
on how to deal with worst practices and still end up with ver-
ifiable results. I discuss some of the ways we have been able to
apply structure, identify anomalies, determine architecture and
purpose, fix errors and generally make users of spreadsheets
comfortable with results.

For spreadsheets of more than a trivial size, manual inspection
is a fool’s game. There is simply not enough time nor enough
human concentration to effectively manually inspect a typ-
ical actuarial spreadsheet. This article, therefore, is limited
to techniques that address the structure and form of spread-
sheets rather than techniques that directly address spreadsheet

results. Techniques addressing results are adequately discussed
elsewhere. The techniques discussed in this article use the
often- dormant power of spreadsheets to analyze themselves and
make spreadsheets great again!

FORMULA LISTING
Since the heart and soul (and maybe the pancreas, too) of a
spreadsheet are the formulas that are used to determine the
results, it is important to have a sense of formulas used. Excel
provides a special range of all the formulas in each worksheet.
This range can be used to display information about the for-
mulas. In Figure 1, basic formula metrics are displayed. While
giving complete sample code to get such analytics is beyond the
scope of this article, the sidebar “Notes and Observations About
the Code” on pages 10–11 gives a starting point for developing
these tools.

Figure 1
Basic Formula Metrics

Worksheet Name Formula Count
Reserve Summary 497

Trad 49

Acquired 15,867

BOLI 156

Bank 103

Hybrid 4,325

Group Life 552

International 973

Total 22,522

It is clear from the formula count that the heavy lifting in this
spreadsheet is performed in “Acquired” and “Hybrid.” Any
spreadsheet review or audit would naturally focus on these two
worksheets. But there are more metrics we can create with the
range of formulas. A simple listing of formulas, as shown in Fig-
ure 2, can reveal important characteristics of the spreadsheet.

This display shows the location of each formula, along with the
formula presented as a string and the current value for each
formula. We can glean several important observations just by
scanning the formula list:

6 | NOVEMBER 2017 THE MODELING PLATFORM

Making Spreadsheets Great Again

• Some formulas are simple and need little or no review. For
example, the first seven formulas listed in Figure 2 are simple
references to other cells in the spreadsheet, with or without a
simple arithmetic operation.

• Some formulas are complex and may need thorough review.
The eighth and ninth formulas in Figure 2 fall into this
category. One easy way to spot complexity is to autofit the
column width of the Formula column, then scan to find the
formulas that take up all the space.

• Sometimes formulas hide constants. The 10th, 11th and
12th formulas in Figure 2 are of this nature. These items
may also require thorough review to determine if they are
truly reflective of the intent of the spreadsheet.

• Sometimes there are broken formulas, such as the last two
in Figure 2. Broken formulas typically—but not always—are
formulas that are no longer used. But even if broken for-
mulas are not material to spreadsheet results, they signal a
casual attitude toward spreadsheet maintenance and should
be investigated.

The formula listing provides an overview of spreadsheet com-
plexity as well as where potential issues lie.

LISTING LINKS TO OTHER SPREADSHEETS
One of the common attributes of most actuarial spreadsheets
is links to other spreadsheets. Links provide a quick and easy
way to update data. Links mean that we can create a beautiful
cascading waterfall of data transfer, moving massive amounts of
data effortlessly downstream to all dependent spreadsheets.

But links can create an extensive update burden if the data
sources of the links are updated and given new names every
period. Such a burden also creates concern that link updates are
performed accurately.

One way to address this concern is to list all of the spreadsheet’s
links and compare them to the prior period. Excel will provide
a list of your spreadsheet links, but there is limited functionality
included in the native listing. Instead, we can construct a routine
that will compile all links in the spreadsheet.

In Figure 3, we show the current period link address versus
the prior period link address. Our expectation is that most of
the links will be updated to use a new file consistent with the
convention of naming files with the period end date included
in the file name. Because some of the links access the same data
source as in the prior period, they are flagged with a contrasting
cell fill.

Figure 2
Sample Formula List

Worksheet Name Cell Formula Current Value
1 Reserve Summary C9 =’Trad’!D45 197,103,261

2 Reserve Summary D9 =’Trad’!E45 193,331,261

3 Reserve Summary E9 =’Trad’!F45 193,943,838

4 Reserve Summary C10 =’Bank’!N72- ’Bank’!N83 1,327,193,384

5 Reserve Summary D10 =’Bank’!O72- ’Bank’!O83 1,394,889,616

6 Reserve Summary C11 =’Acquired’!N15 41,374,518

7 Reserve Summary D11 =’Acquired’!O15 35,436,540

8 Reserve Summary S9 =AVERAGE(OFFSET(OFFSET(Q9,0,0,1,- 2),0,0,1,- S7)) 180,336,812

9 Reserve Summary S10 =AVERAGE(OFFSET(OFFSET(Q10,0,0,1,- 2),0,0,1,- S7)) 1,978,348,388

10 Trad Q8 =16394*0.98*0.98*0.98*0.98*0.98*0.98*0.995 14,450

11 Trad Q11 =38832*0.98*0.98*0.98*0.98*0.98*0.98*0.98*0.98*0.98*0.98*0.98*0.98*0.98*0.98*0.995 29,119

12 Trad Q24 =P24+900000 22,500,000

13 Acquired C26 =#REF! #REF!

14 Acquired D26 =#REF! #REF!

 NOVEMBER 2017 THE MODELING PLATFORM | 7

A word of warning about this technique—it does not scale well.
(This is a common problem with Visual Basic for Applications,
or “VBA”). We ran into one spreadsheet that had 20,000 links,
and it took well over an hour to list the links with our VBA auto-
mation tool.

FORMULA LOCKDOWN
Formula lockdown is an approach we see in a number of end-
user computing standards. While we understand the intent
behind these types of standards, we believe that any standard
that materially impedes workflow will not be successfully imple-
mented. Spreadsheet users and owners, being more vested in the
operation of the spreadsheets, will always be able to circumvent
standards that make their lives more difficult.

One approach we have taken is to identify formulas that are
nonvolatile—that is, we expect these formulas will not be
updated except in unusual cases. We then apply formula locking
selectively to only these nonvolatile formulas.

If nonvolatile formulas are identifiable in some way, such as
special formatting, it is possible to programmatically perform
the selective lockdown.

Lockdown can be implemented without a password. This is
usually preferable to lockdowns that have passwords. If the

proverbial milk truck runs over the spreadsheet owner and no
one can find where she wrote down the password, the spread-
sheet may become unusable.

Lockdowns with no passwords can also be unlocked program-
matically without passwords. This means that unlocking for
necessary changes can be accomplished with minimal interrup-
tion of workflow.

Such an approach will not stop deliberate maliciousness, nor
will it stop determined stupidity. However, the implementation
of formula locking will mean that any changes require inten-
tionality on the part of the one updating the spreadsheet, so at
least some casual errors would be prevented.

HIGHLIGHTING CONSTANTS
(AKA HARD- CODED NUMBERS)
For some reason, almost all spreadsheets of any size have con-
stants. Perhaps spreadsheet gnomes sprinkle these throughout
the spreadsheet while the owner is asleep.

We have seen constants put into the middle of a column or row
of formulas as test values, then not changed. We have seen con-
stants put in as manual adjustments, then not changed. We have
seen constants put in as true- up values, then not changed. Excel
allows you to be as boneheaded as you truly are.

Figure 3
Current Period Versus Prior Period Link Addresses

Current Period vs. Prior Period
Worksheet Cell Current Link Prior Link Status

Tab 1 Q7 =+’C:\Users\Bob\AppData\Local\Microsoft\ =+’C:\Users\Bob\AppData\Local\Microsoft\ Same File

Tab 1 Q14 =+’C:\Users\Bob\AppData\Local\Microsoft\ =+’C:\Users\Bob\AppData\Local\Microsoft\ Different Date

Tab 1 Q21 =+’C:\Users\Bob\AppData\Local\Microsoft\ =+’C:\Users\Bob\AppData\Local\Microsoft\ Different Date

Tab 1 Q22 =+’C:\Users\Bob\AppData\Local\Microsoft\ =+’C:\Users\Bob\AppData\Local\Microsoft\ Different Date

Tab 1 Q26 =+’C:\2017\03\Wealth\Polysystems\Results\ =+’C:\2017\03\Wealth\Polysystems\Results\ Different Date

Tab 1 Q27 =+’C:\2017\03\Wealth\Polysystems\Results\ =+’C:\2017\03\Wealth\Polysystems\Results\ Different Date

Tab 1 Q33 =+’C:\Users\Bob\AppData\Local\Microsoft\ =+’C:\Users\Bob\AppData\Local\Microsoft\ Different Date

Tab 1 Q39 =’C:\2017\03\Life\GWLA Reinsurance\[qry =’C:\2017\03\Life\GWLA Reinsurance\[qry Same File

Tab 1 Q40 =’C:\2017\03\Life\GWLA Reinsurance\[qry =’C:\2017\03\Life\GWLA Reinsurance\[qry Same File

Tab 1 Q41 =’C:\2017\03\Life\GWLA Reinsurance\[qry =’C:\2017\03\Life\GWLA Reinsurance\[qry Same File

Tab 1 Q51 =’C:\2017\03\Wealth\Polysystems\Results\ =’C:\2017\03\Wealth\Polysystems\Results\ Same File

8 | NOVEMBER 2017 THE MODELING PLATFORM

Making Spreadsheets Great Again

However, Excel also provides a special range of all the constants
in each worksheet, so it is a straightforward exercise to program-
matically highlight cells with constants. In Figure 4, constant
cells are highlighted with gray fill so that they contrast with cells
containing formulas.

But we can do even better than this! We can write a routine
(macro) that allows the spreadsheet user to select a range of col-
umns or rows and inspect all constants in the range that exceed
a specified threshold. This improves efficiency, especially when
the spreadsheet user knows where the critical cells are.

FINDING CONSTANTS HIDDEN IN FORMULA CELLS
As the formula- listing technique demonstrated, sometimes con-
stants are included in formula cells. Because Excel does not have
a native method of identifying this type of formula, such cells
are not easy to find. In fact, this is the second most difficult tech-
nique discussed in this article. We had to jump through several
hoops in order to automate locating these cells.

However, once the automation is in place, we can treat these
cells like constant cells. We can apply contrasting formatting if
we wish. We can also incorporate a routine that will allow the
spreadsheet user to inspect all such cells and update them as
required.

FINDING BROKEN FORMULAS
Like constants, but unlike constants hidden in formulas, broken
formulas can be discovered using native Excel capabilities. This
means that anything we implement for constants we can imple-
ment with equal facility for broken formulas.

We can put special formatting on broken formulas to highlight
their locations. We can implement routines that will inspect all
broken formulas. And we can implement routines to inspect
broken formula dependencies.

VALIDATION CONTROLS FOR MANUAL ENTRIES
A typical requirement for many end- user computing standards is
some form of validation applied to keypunched data entries in a
spreadsheet. Although this form of data entry is not widespread

in most actuarial spreadsheets, we have heard of instances of
some outrageous spreadsheet results generated from such things
as the entry of “No” rather than “N” or vice versa.

Once again we can use Excel’s native abilities to help out. Figure
5 shows a listing of all constants with dependencies. We can
use this chart to determine if any of our manual entries need
validation controls. By examining the form of the dependency
formulas, we can construct appropriate validation limits. Man-
ual entries without dependencies need no validation controls.

This was the most difficult of all the routines discussed in this
article. However, we followed the process used by astute pro-
grammers: we searched the internet to see if anyone had done
this before. A BIG THANKS to the obsessive souls who take
the time to put this sort of thing out on the web for the public.1

A final note on this routine: The Range.Dependents property
shows dependencies only on the same worksheet. In order to
capture dependencies existing on other worksheets, the Active-
Cell.ShowDependents method must be used.

FINDING DEPENDENT WORKBOOKS
With the extensive use of spreadsheet links, an additional
risk that spreadsheet users face is that changes to “upstream”
workbooks will break the links in a “downstream” workbook,
or—even worse—cause the links to access unintended data.

There is no direct way to detect downstream connections from
a workbook. However, if the directory or directories of all (or
nearly all) potential downstream connections can be enumer-
ated, it is possible to construct a routine that will check for
downstream dependencies.

This approach involves opening all workbooks in the indicated
directories and checking for links to the upstream file. Since
the search must look at each formula in each workbook in the
search directories, this can be a time- consuming process just for
one upstream file. Perhaps this approach should be considered
a just- in- time process whenever spreadsheet restructuring is
undertaken.

Figure 4
Highlighting Cells With Constants

6/30/16 9/30/16 12/31/16 3/31/17

Traditional 61,610,504 62,220,911 62,830,632 63,448,005

UL 152,868,104 159,319,432 162,543,593 176,438,180

VUL 318,894 333,619 383,290 492,108

Total 214,797,502 221,873,962 225,757,515 240,378,293

 NOVEMBER 2017 THE MODELING PLATFORM | 9

CONCLUSION
Many actuarial spreadsheets are created using worst practices,
resulting in spreadsheets that do not always behave as intended
and are difficult to control. However, several techniques allow us
to understand the structure and complexity of these spreadsheets
and spot areas where mistakes are likely to occur. We can then
address the problems so that we have confidence in the results.

Much of what is discussed in this article grew out of having
to perform model validation on spreadsheet models. We have
implemented all of these techniques in one form or another.
Most of them are general enough that they can be applied to
almost all spreadsheets. One or two—notably spotting excep-
tions in spreadsheet link updates—are highly dependent on
spreadsheet context. ■

Bob Crompton, FSA, MAAA, is a vice president
of Actuarial Resources Corporation of Georgia,
located in Alpharetta, Ga. He can be reached at
bob.crompton@arcga.com.

ENDNOTE

1 Some of the sites that I found to be helpful are listed here. Although there are
many other sites, these are the ones I wound up using the most. The Microsoft
Developers Network site is indispensable (https://msdn.microsoft .com/vba/vba
- excel). Stack Overflow has many good worked examples to questions (https://
stackoverflow .com). Ozgrid is another site with worked responses to questions
(www.ozgrid.com). Code Project has articles as well as answers to questions (www
.codeproject.com).

Figure 5
Sample List of Constants With Dependencies

Constant
Worksheet

Constant
Cell

Constant
Value

Dependent
Worksheet

Dependent
Cell(s)

BOLI/COLI D1 26504 BOLI/COLI D4

BOLI/COLI O1 26504 BOLI/COLI O33

Acquired AB7 spwl Acquired AA96 AA97 AA98 AA100

Acquired AC7 spwl Acquired AA82 AA83 AA84 AA86 AA89

Acquired AB8 term Acquired AA96 AA97 AA98 AA100

Acquired AC8 term Acquired AA82 AA83 AA84 AA86 AA89

Acquired AB9 term Acquired AA96 AA97 AA98 AA100

Acquired AC9 term Acquired AA82 AA83 AA84 AA86 AA89

Summary Z13 31488.33 Acquired AA13 AA29 AA82 AA83 AA84 AA96 AA97

Summary AA22 - 277000 Acquired AA29 AA82 AA83 AA84 AA96 AA97 AA98

Summary AA23 1300000 Acquired AA29 AA82 AA83 AA84 AA96 AA97 AA98

10 | NOVEMBER 2017 THE MODELING PLATFORM

Making Spreadsheets Great Again

Notes and Observations About the Code
I am not an expert on VBA; however, my Google- fu is strong!
This may be even more important than being an expert, since
nearly everything you could want, or even imagine, in Excel
macros has been done and posted on the internet. The ability
to locate specimen macros on the internet is your best bet to
becoming proficient in VBA.

Specimen macros not only give insight into techniques that
might otherwise take a long time to track down, but they also
show good style. After reviewing a number of macros, you learn
that good code is succinct and easier to read than poor code.

One of the benefits to using macros is that they are self-
documenting in the sense that they fully describe the actions
and calculations they perform.

THE FORMULA- LISTING MACRO
The formula- listing macro is the first of these tools that was
assembled, and for that reason it has evolved more than
the others. The key to the formula listing is getting the range
object of all formulas in a worksheet. The code for this is:

Set FormulaCells = Range(“A1”). _
SpecialCells(xlCellTypeFormulas, 23)

Excel contains a number of special ranges. You can get a sense
of these by hitting the F5 key while in Excel. This brings up the
Go- To dialogue. If you click the button labeled “Special...,” you
will see all of the special ranges that Excel can easily create
for you.

Once this range is created, it is easy to loop through each cell
and extract the pertinent information. For example:

.Cells.Count contains the formula count

Use a “For Each” loop through the range as follows:

For Each fCell In FormulaCells

Then the appropriate attributes can be accessed. For example,

• fCell.Address contains the cell address
• fCell.Formula contains the cell formula
• fCell.Value contains the current value to which the

formula evaluates

Because most actuarial spreadsheets contain multiple
worksheets, it is important to loop through each of the
worksheets. I typically use a For Each loop like the following:

For Each ws In ActiveWorkbook.Worksheets
 If ws.name <> TabName Then
 ws.Activate

The worksheet named TabName is the worksheet I add
to contain the formula listing, so I exclude this from the
processing.

ALTERNATE SORTING OF RESULTS
The results in the formula listing are not arranged by column.
The natural order seems to me to be one in which the results
start from column A, then proceed column- wise to the right-
most column, since this is how spreadsheet logic typically
proceeds. But sorting by cell doesn’t work since cell AA1000
precedes cell A1.

In order to address this, I have written user- defined functions
that allow me to sort results by column. There is no end to the
possibilities!

HIDDEN WORKSHEETS AND COLUMNS
One of my serendipitous discoveries was that when using
a For Each loop through each worksheet, it operates on
hidden worksheets as well as visible worksheets. Sometimes
in spreadsheet review, it is easy to forget that there may be
hidden worksheets. Running the formula listing reminds me
of this whenever the formula count tableau shows names of
worksheets that I can’t see.

Hidden columns are likewise displayed whenever we list any
of the special ranges. Although hidden columns are usually
more apparent than hidden worksheets, it is still convenient
to have listings that do not require un- hiding columns
or rows.

ERROR TRAPPING
Because VBA contains only rudimentary error- trapping
abilities, the macro may contain some odd “GoTo” statements.
For example, in the formula- listing macro, if there are
no formulas in a worksheet, an error is generated when
attempting to set FormulaCells. In this case, error trapping

 NOVEMBER 2017 THE MODELING PLATFORM | 11

sends the code to the part that lists the number of formulas
(zero in this case), but skips the attempt to list the formulas
themselves, since there are none.

THE CONSTANTS SEARCH- AND- REPLACE MACRO
The constants search- and- replace macro and the formula-
listing macro are very similar, but a few additional details may
prove useful when using the constants search- and- replace
routine.

First we create a range of constants:

Set ConstantCells = Range(“A1”). _
SpecialCells(xlCellTypeConstants, 23)

Then we allow the user to select some arbitrary range for the
search- and- replace operation:

Set SearchRange = Application.InputBox(_
“Click Rows or Columns”, _
“SEARCH RANGE SELECTION”,,,,,, 8)

We then reduce our review- and- replace operation to
the intersection of the ConstantCells range and the
SearchRange range:

Set SearchCells = Application. _
Intersect(SearchRange, ConstantCells)

The Intersect function is one of the most powerful and useful
functions when dealing with Excel ranges.

WEAPONS OF MASS IMPLEMENTATION
In certain situations you may want the routines outlined here
installed on a number of spreadsheets. Manually copying code
from one spreadsheet to another quickly becomes tedious.
It also creates another point of potential error. Any tedious
manual process is a process that is ripe for automation. You
can construct a macro that will perform the implementations.
It is a straightforward process to programmatically select
a directory and install the VBA code in all (or only some) of
the spreadsheets in the directory. If you like buttons for your
macros, you can put all of your buttons on a single worksheet
and copy it to all of the target spreadsheets. You can then
programmatically connect the buttons to the macros.

DEFAULT ACTIONS FOR USER INPUT
When we originally developed this macro, the default action
was to enter the threshold value as the new value for cell. One
client told us that this resulted in unintentional changes in
the spreadsheet. We changed the macro so that updating the
spreadsheet with new values required intentional clicking.

Users are the ultimate arbiters of usability!

That’s it for macros. And now, as The Dude would say, let’s go
bowling.

