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INTRODUCTION 

I 
N THINKING about graduation theory, the authors became intrigued 
by the notion of characteristic or peri0dogram function introduced 
by M. D. W. Elphinstone in his paper "Summation and Some Other 

Methods'of Graduation--the Foundations of Theory" [3]. Such a function 
can be obtained in relation to each adjusted average and difference equa- 
tion method of graduation. Also, because of the connection between inter- 
polation and graduation, pointed out, for instance, by T. N. E. Greville 
[6], the notion of periodogram has meaning for the interpolation method 
of graduation and interpolation in general. In view of these applications, 
the periodogram function seems worthy of further exploration and devel- 
opment, and that is what we undertake here. 

Our paper has been subdivided into three parts and two appendixes. 
In Part I, following to a large extent Elphinstone's approach, we present 
the general notion of a periodogram. In Part II we examine symmetric 
linear operators and their periodograms in preparation for the discussion 
of periodograms of graduators (operators related to graduation processes) 
in Part III. Only the main ideas are set out in these parts; the more de- 
tailed mathematical proofs and statements are given in Appendix A. In 
Appendix B appear the graphs of periodograms of graduators discussed in 
the text. 

It has been pointed out to us by Greville that the characteristic func- 
tion studied by 1. J. Sch0enberg in [13] is closely related to the function in 
which Elphinstone later--and we still later--took interest. Schoenberg's 
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pared under the supervision of Professor C. J. Nesbitt [2]. This dissertation was written 
while the first author was a National Science Foundation Summer Fellow and an 
Actuarial Science Fellow at the University of Michigan. 
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2 PERIODOGRAMS OF GRADUATION OPERATORS 

characteristic function is periodic, and what we have done essentially is to 
take a cycle of his function and by transformation stretch it out over the 
domain of positive real numbers >_ 1 for examination of its significance in 
the graduation process. We are indebted also to Greville for showing us 
how some of the basic facts concerning periodograms are elegantly given 
by or derivable from Schoenberg's work. 

I .  THE GENERAL NOTION O:F PERIODOGRAM 

Graduation may be viewed as an effort to represent a physical phe- 
nomenon by a systematic revision of some observations of that phe- 
nomenon. For many graduation techniques in use, this revision involves 
taking as the graduated value at x a symmetrically weighted average of 
observed values at neighboring arguments; it is this general method to 
which periodogram analysis is applicable. 

If the observed function is defined for integral arguments, then the 
symmetrically weighted average of an odd number of neighboring values 
yields a function with the same domain of definition, while an even num- 
ber of nearby values gives rise to a function defined on the half-integers. 

With this motivation we proceed to establish suitable notation. Let u, 
be the function of observed values (where u, is ordinarily defined only for 
x an integer) extended for convenience by defining u, = 0 for x not an 
integer, and let v, be the revised function. Then we can write as a general 
formula, covering both the case of an odd number of observed values and 
that of an even number, 

vc = ~ p , u c + , / 2  = • • • + p - l u c - 1 / 2  + pouc  + p lu~+l /~  + • • • , ( 1 ) 
t 

where the p / s  are real numbers representing symmetric weights, and thus 
p, = p_,. 

Now when we define the basic symmetric linear operator G, for t an 
integer by 

G,w,  = , ( 2 ) 
~,wz I = 0 

where w. is any real valued function defined on the set of real numbers, 
we can express (1) in either the form 

or the form 
v~ = P u ~ ,  (4) 
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where 

P= ~ p , G t .  (5)  

We applied the name basic symmetric linear operator to G,. I t  is linear 
since Gi(au, + bv,) = a(G, ux) + b(Gt v,), and it is symmetric since G, = 
G_,. We shall refer to P, which is a linear combination of operators G, and 
hence has the symmetric and linear operator properties, as a symmetric 
linear operator (SLO). 

In order to motivate our present study more convincingly, we shall now 
restrict our attention to the finite situation in which all the pt's are zero 
for some index n and beyond. Thus, v~ is based on the sequence 

{ Uc--(n--1)12, U¢--(n--3) /21 • • • , Uc+(n--3) /2, Uc+(n--I)]2} • 

Consider the following Fourier sum, adapted from Whittaker and 
Robinson [20, p. 264]: 

<n/2>r 21rk 27rk ] 
w,=ao+ k~=l [akcos ( x - - c l + b k s i n  ( x - - c )  

n n J ' 

where 
(~-l)/': ' 

ao: ( l /n)  ~ uc+j, 
i ~ - ( , * - 1 ) / 2  

(6)  

(.-D/2 

b,,12 = ( 1/n) ~ uo+# sin j~-, 
i = - ( n - l ) / 2  

and (n/2) = the greatest integer not larger than n/2. 
The notation (n/2) rather than the customary [n/2] is used, since we 

shall reserve the square bracket notation for the summation operator. 
Now if x is in the set { c - - ( n - - 1 ) / 2 ,  c - - ( n - - 3 ) / 2 , . . . ,  c +  

(n -- 1)/2}, then w, = u,; that is, we have a sum of sinusoidal curves 
which reproduces those values of ux upon which vc is based. This fact 
enables us to find v~ by applying the operator P to w, and setting x = c. 

(,,-1)/2 2 j7rk 
ak-- ( 2 / n )  ~ u o + s c o s - -  k # O , n / 2 ,  

i = - ( n - 1 ) l ~  n 

an /~  = 0 , 

(n--1)/2 2 j lr k 
bk=(2 /n )  ~ u,+jsin k # n / 2 ,  

i = - - ( n - - 1 ) / 2  



Thus 

V, = Puc = _Pw, 

, - t  ~ <n/2>_ 27rk 
= ~ p , G ,  ~ ao+ ~ [ a k c o s  

~ 0  n 
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( X - -  ~:) 

+ bk sin 27rk ( x - -  c) ] f 
n x ~ c  ° 

If we apply Gt to (a cos "i x + b sin "i x), we have 

Gt (a cos "ix + b sin "ix) 

= I[2 cos ('it/2)] (a cos "ix + b sin "ix) t # 0 }  (7 )  

( (a  cos "Ix + b sin "Ix) t = 0 

and, hence, 

( , - i  ) <,/2>, ,-~ _ ~ t )  
v , = a o  p o + 2 ~ p ,  + ~  (p0+2~ptcos- - -  

t=l t=l (8) 

N akcos ( x - - c ) + b k s i n 2 r r k ( x - - c )  • 
n n zma 

The term ak cos (2~-k/n) (x -- c) + bk sin (2~-k/n) (x -- c) in formula 
(6) represents a sinusoidal curve with period n/k.  Application of P to w, 
multiplies this term by the factor 

( - '  

p0+  2 ~ p ,  COS - "  • 

This factor is a function of k or, equivalently, a function of/~ = n/k,  the 
wave length of the sinusoidal term it-multiplies. This function takes on 
values for only [3 = n, n/2, . . . , n/<n/2> as a factor in formula (8), but 
we shall extend the domain and denote the resulting function by 

n'--1 

6 ~ p ( ~ ) = p o + 2 ~ p ,  cos(Trt/~) 8 > 1 .  ( 9 )  
t e l  

The function (Pp(tS) will be called the periodogram function or simply 
the periodogram of P. When no confusion can arise, the subscript denoting 
the operator will be suppressed. In Part II, we shall reformulate the con- 
cept to take account of the different f6rms that a single operator _P may 
a s s u m e .  

The role of the function 6~(O) is best seen in formula (8). In obtaining 
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vo from a series of values of u=, the sinusoidal terms of wave length n / k  are 
multiplied by 6~(n/k), and we have a measure of the extent to which 
waves of length n / k  are retained by the graduation. I t  must be borne in 
mind that this is a relative measure in that the actual waves in w, for a 
specific point c are determined by the data set {u~-(,-1)/2, . . . ,  uc+(,-~)12}. 
As the graduation process moves to the next point, the data set changes to 
{uo+1-(,-~)/2, . . . ,  u~+1+(~-~)/2}, and there will be some changes in the 
waves. The waves should not vary drastically for nearby values of c be- 
cause of the many common data values; but, for widely separated c, there 
may be considerable differences. 

If. SYMIMIETRIC LINEAR OPERATORS AND THEIR PERIODOGRAMS 

Prior to any further development of the notion of a periodogram, we 
briefly investigate symmetric linear operators. Here only a broad outline 
is given; the more detailed proofs and formulas are presented in Appendix 
A. To connect the two developments, we insert references such as A.3 to 
denote the formula proved in section A.3 of Appendix A. First we con- 
sider symmetric linear operators as elements of a vector space and some 
implications arising therefrom. Then we formalize the concept of the 
periodogram of a symmetric linear operator and seize uponsome conse- 
quences of this idea for use in later applications. 

The Space V .  o/ Symmetric Linear Operators 

An SLO is finite if p, = 0 for all t at least as large as some nonnegative 
integer, and the smallest such number is the length, d(P), of P. I t  is not 
hard to see by an induction argument that if the SLO's P~, t'2, • • • ,  Pk 
are finite and not identically zero, the length of the product operator 
PIP2 • • • Pk is given by 

d(PIP2.  • .Pk) = ~ d ( P i )  -- ( k - -  1).  (10 )  

The set, V,,  of all SLO's of length less than or equal to n is a vector 
space over the set of real numbers, where the operations of vector addition 
and scalar multiplication are just the natural operator addition, and com- 
bination of operator and real number, respectively. Since any vector of 
V~ can be expressed as a linear combination of the linearly independent 
vectors Go, G~, . . . ,  G,_,, it follows that ]1, is a finite vector space of 
dimension n. As such, any set of n linearly independent vectors forms a 
basis for V, with any vector of V, expressible as a linear combination of 
the basis vectors. Among the possible bases for V , ,  we have 

(i) {Go, C , , . . . ,  C,_I], 
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(ii) 

(iii) 

(iv) 

(v) 

(vi) 

Any 
vectors 
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{[1], [ 2 ] , . . . ,  [n]}, 

{ ~ o ,  ~ 1 ,  . . . , ~ , , - 1 }  , 

{~0, ~1, • • • ,  #n-l}, where /~m, the m-interval mean operator, is 

equal to 1 ~Gm, except that  #0 = 1, 

{[1], [2], . . . , In]}, where [m], the average m operator, is defined by  

[~] = [m]/m, 

{[2] °, [ 2 ] L , . . . ,  [2]~-'}. 

vector of one basis is expressible as a linear combination of the 
of a second basis, and the total i ty  of such relations for all the 

vectors of the first basis defines a t ransformation from the one basis to the 
other. These transformations relating the pairs of bases are impor tant  for 
computat ions of periodograms. However,  the members  of the pairs of 
bases i and iv, ii and v, iii and vi, are so closely connected tha t  the trans- 
formations relating one member  of a pair  to the other are quite trivial, 
and we need not be concerned further with bases iv, v, or vi. For the 
explicit relationships among bases i, ii, and iii, together with their mathe-  
matical  justification, the reader m a y  refer to formulas A.3 through A.8. 

The  frequent appearance in graduat ion and interpolation formulas of 
Sheppard 's  central difference operator,  8, makes some further analysis 
desirable. The operator ~ is not in Vn, but  ~ = G2 --  2G0 is in Vn. In  fact, 

,=0 m - [ - t  G2~, ( 1 1 )  

so ~2m is in Vn for m = 0, 1, . . . , <(n --  1)/2).  Since ~ is not in Vn, we 
cannot  expect to form a basis for V~ containing only powers of ~. How- 
ever, ~0, ~0 ,  ~ ,  ~ 2 , . . . ,  ending with ~-1 if n is odd and with ~n-2  if n 
is even, forms a basis for V~. 

With these several bases for V, available, we return to developing the 
notion of the periodogram of a symmetr ic  linear operator.  

Periodograms of Symmetric Linear Operators 
In  Par t  I ,  the periodogram 6"p(/~) of a symmetr ic  linear operator  P was 

defined for the case tha t  6' is expressed in terms of the basis {G0, G1, . . . ,  
G~-I}. We now reformulate the concept of periodogram in order to per- 
mi t  the use of any basis of V~ for the symmetr ic  linear operators P. 
Throughout  this section we shall let 

u~ = a cos ( 2 ,  x/3) + b sin (2 ,  x/a) fl > 1, 
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that is, we shall here direct our attention to a single sinusoidal function 

with wave length 8,/~ >- I, whereas in Part I, formula (6), to motivate the 
introduction of periodograms, we considered a Fourier sum of such sinus- 

oidal functions (with special values of /~) which reproduces a set of ob- 
served values. 

With this convention the periodogramfunction, or simply periodogram, 
(Pp(B), of a symmetric linear operator P is the real valued function of/7 
alone, defined by the relation 

o,~(~)u= = _pu=. (12) 

Such a function exists, since, if P, expressed in terms of the basis 
{Go, Ol, • • . ,  G,_:}, is 

n - - 1  

~ ptGt, 
* ~ 0  

then 

/ _ _  N. n - - 1  Pu,=tl~oPiGi)[a COS(27rxll~)-l-b sin (27rx//7) ] 

n - - 1  

= [ p 0 +  2 • p, coseTrt /B)]ia cos(2~'x/B) + b sin(27rx/B) I. 

The periodogram of a SLO assumes different forms, depending upon the 
basis of V, in terms of which the SLO is expressed. However, as the right 
members of formula (12) are the same no matter what basis P is expressed 
by, so also are the left members, and hence the different forms of 6'e(/~) 
arising from the several bases for V, are identical. This fact is a fruitful 
source of trigonometric identities, as indicated in formula A.9. 

From this reformulation by formula (12) of the notion of a periodogram, 
we have the convenient addition and multiplication rules 

6'P~(B) = (PP(B)+ 6'q(J) (13) 
and 

~pQ(~) = ~p(~). ~Q(~). (14) 

To show formula (13), we write 

[6'p+Q (~)]u. = (P + Q)u. = P u. + Q u~ 

= ~'~(O)u=+ m~(~)u= 

-- [ , ~ ( ~ ) +  ~(a) ]u=.  
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Also, 
[(PpQ(B)lu, = (PQ)u. = P(Q u,) 

= P[6'Q(~)u~I = ~'~(~) ( p u x )  

= cQ(~) ~ ' . (~)u .  = 6'~,(~) c Q ( ~ ) u , .  

Formula (14) provides the useful corollary 

Cpm(3 ) = [6'1,(3)1 ~ . (15) 

From formula (7) of Part I or elsewhere, the periodogram of the opera- 
tor Gt is available. The periodograms for the other basis operators are eas- 
ily computed. Elphinstone [3] gives (Ptml(/~)' and (P~,-(3). We summarize 
the formulas for reference purposes: 

2 cos Ort/{3) t # O} 
¢~,,(~) = 

1 t = O  
(16) 

s in  (~rm/B)/sin (r/B) 
6'tml(~) = (--  1)m+'m o = 1  

(17) 

¢ . ( ~ )  = cos (~- /3) ,  ( 1 8 )  

and 
¢ . , . (p )  = [cos (*/ t~)l" ,  

6'~,, ,(fl)  = [ - - 4  s in  2 (~' /3)1" • 

(19) 

(20) 

I t  may be noted that the periodogram of a finite SLO characterizes the 
SLO; that is, if P and Q are finite symmetric linear operators, say, 

n - - 1  

P = ~ ]  pt~ 
t ~ O  

and 
n ' - - I  

Q= 

then P = Q implies (Pp(/3) - 6'~(/3), and conversely. 
The implication from left to right follows from the definition of the 

periodogram of a SLO. For the converse, we may assume that n >_ n'. 
Then, we can write 

n - - 1  

0 = 6'p([3) --6 'Q(3)  = ( p o -  qo) + ~ ( p , -  q , ) [ cos l r /3 ] ' ,  
t ~ 0  
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where qt = 0 for t >__ n t. In particular, this relation holds for B = (i + 

l)/i, where i = I, 2 .... , n. This yields a system of n equations in n 

unknowns (Pt -- q~), t = 0, I, 2, . . . , n -- I, and the determinant of this 

system has [cos (iTr/i + 1)] i-1 for the element in row i, column j.  This is 
a Vandermonde determinant and thus is equal to 

H [ c o s ( j r r / j +  1) - - c o s ( i T r / i +  1 ) I .  
~<i 

Each factor of this product  is different from zero, so that  the product  does 
not  equal zero; hence the only solution to the system of n equations is the 
trivial one p, -- q, = O, t = O, 1 , 2 , . . . , n - l ,  that  is to say, P = Q .  

Factored Form for 6'[,~(B). 

I t  will be useful for discussing periodograms to know that  6'i,~l(B), 
m > 1, has a convenient factored form, namely, 

m - - 1  

6~[~,I(B) = 2~-1 l -  I [ c o s ( z / B )  - c o s ( T r i / m ) ] .  ( 2 1 )  
/ , ~ 1  

To prove this, we write 

m - - 1  

[m] = X~-'p.,,, 
t m 0  

and from formula (19) have 

r t t--1 

From formula (17), (P[~(#) = 0 for B = m, m/2 ,  . . . , m / ( m  -- 1), and 
hence (Pt,~I(B) as a polynomial in cos (Tr/B) has roots cos (~ri/m), i = 1, 
2, . . . , m - 1. Further, 

p,,-i = 2 ~-~ , 

and hence formula (21) follows. 
We can now prove that  i f  P is a finite SLO, then a necessary and su~cient 

condition for P to have a factor [m], that is, P = [m] Q for some symmetric 
linear operator Q, is that the periodogram (P~(B) is zero for  B = m, m/2 ,  
. . . .  m / ( m  - 1). The condition is necessary since -P = Ira] Q implies 

~(~) = 6 , ~ ( ~ )  6,Q(a) 

= 0 ,  B =  m ,  m / 2 ,  . . . , m / ( m  - -  1). 
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The condition is also sufficient. For let 

n - - I  

p = ~ p ,#t ,  
t ~ 0  

where P,-1 # 0; then 

may be written as 

n - - 1  

6'~(~ ) = ~ P ,  [ c o s ( ~ / ~ )  1' 

i n - - 1  n - - m  

(Pe(B) = 2 '~-I Y I  [cos(Tr/fl ) - cos( , r i /m)]  ~ q, [cos(Tr/~) 1 ' .  
t ~ l  t ~ 0  

Now setting 

we have 

n - - m  

Q= 
t ~ 0  

• ~(t9 = *tml(t3) 6'dt~) = *tmjdt~), 

and, since an operator is characterized by its periodogram, it follows that 

P =  [m]Q. 

As a corollary, we note that for any finite symmetric linear operator P, 
the periodogram (Pe(B) has zeros of multiplicity r at (3 = m, m / 2 , . . . ,  
m/ (m -- 1), if, and only if, P = [m]rQ for some symmetric linear operator 
(?. 

This completes our investigation of the space Vn of symmetric linear 
operators of length less than or equal to n. We shall make use of some of 
these results in the succeeding part when we examine periodograms of 
graduation formulas. 

III. PERIODOGRA.MS OF GRADUATORS 

In this part we shall direct our attention to graduation. In particular, 
we shall define precisely "graduation operator" or "graduator" as a suit- 
ably restricted SLO. Since a graduation operator is, among other things, 
an SLO, it will make sense to talk about the periodogram of a graduator. 
We shall see that the additional properties of a graduator show up char- 
acteristically in the periodogram. 

Elphinstone [3] has presented the periodograms of several graduators. 
In Part  I I  we built up a certain amount of machinery for the purpose of 
computing periodograms of symmetric linear operators. We shall make 
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use of this material in computing the periodograms of some graduators 
which Elphinstone did not consider. In Part I we noted that the periodo- 
gram provides a measure of the extent to which waves of various lengths 
are retained by the graduation. We shall elaborate upon these remarks 
and see how satisfactory the graduators we discuss are from this view- 
point. 

Reproduction Conditions 
In one approach to graduation of actuarial data, the sequence of ob- 

served values {u~-t} is considered as a sum sequence {w~, + e~ t}, where 
{w,+t} denotes the "true" underlying sequence and {e,+,} an error se- 
quence. I t  is further considered that subsequences of moderate length 
from the {w,.+t} sequence can be approximated well by a polynomial. 
Objectives of the graduation are to reproduce the {w~-t} sequence and to 
minimize and smooth out the error sequence. With this in mind, a com- 
monly used restriction in graduation is that of requiring the graduation 
process to reproduce polynomials of a certain degree, often the third; that 
is to say, if one were to graduate a sequence of such polynomial values by 
the process, the same sequence of values would result. In other words, 
such polynomial sequences are in what Greville [7] calls the "smooth 
space" of the graduation process and are left invariant by it. 

Such a restriction will be called a reproduction condition. A reproduction 
condition on a symmetric linear operator, 

P = ~ p~Gt 
t = O  

takes the form of restrictions on the coefficients pc of P. For example, if 
P is to reproduce polynomials of degree 2r + 1 or less, the relations 

p0+ 2 ~ p ~ =  1 ( 2 2 )  

and 

. . .  =   2rp, = 0 ( 2 3 )  
t ~ 0  t ~ 0  | D 0  

must hold. 
We have seen that P can be expressed in many ways. In each form, 

reproduction conditions appear as restrictions on the coefficients. For in- 
stance, if 

e = + + + . . . ,  

the reproduction condition of degree 2r + 1 is equivalent to the require- 
m e n t s p 0 =  l a n d p l t = 0 ,  t =  2 , 4 , . . . , 2 r .  

R U S I t M O R E  M l Y r U A L  L I F E  

LIBRARY 
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Graduation Operators . 

A graduation operator, Q, is a symmetric linear operator 

q,G~ , 
| 

having both a reproduction condition and the property that the indexes 
of all nonzero coefficients are either all odd or all even. The latter condi- 
tion provides that Q is applicable to data spaced at unit intervals. If the 
indexes of nonzero coefficients are all even, for example, qo Go + q~ G2 + 
q4 G4 = qo + q~ (E + E -1) + q4 (E 2 + E--2), one has the usua] graduation 
application involving an odd number of data points symmetrically spaced 
at unit intervals about the point of application, which is at a data point. 
If the indexes are all odd, for example, ql G1 + q3 G3 = ql (E 1/2 + E --1/2) + 
q3 E ~/2 + E--3/'0, one has an unusual graduation application based on an 
even number of data points symmetrically spaced at unit intervals about 
the point of application, which is midway between two data points. Such 
an application might be useful if the data were mortality rates tabulated 
on an age nearest birthday basis and one were seeking graduated rates on 
an age last birthday basis. We introduced the operator G, so tha t the  two 
types of formulas could be developed mathematically together; however, 
every now and then one observes a distinction between the two. 

We shall now take a look at some characteristics of the periodogram of 
a graduator which arise because of the defining conditions'for the gradua-' 
tor. Initially, we observe that if 

n - - 1  

O_ = q,a, 
t=O 

is a graduation operator, then 6'Q(/~) approaches 1 asymptotically as /$ 
increases without bound. For, since Q nmst reproduce polynomials of 
some degree, we have the relation 

n - - 1  

'limt~_,oo (PQi/3) = olim[ q o + 2  ~ q, cos(Trt//3) ] 

n - 1  

= q 0 +  2~__~ qc = 1 , 

by formula (22). 
Although the values 0f/~ actually occurring in the Fourier sum which 

was used in the development of' the periodogram in Part  I are never less 
than 2, we have defined the peri0dogram function for all real numbers 
greater than or equal to 1. This extension was due in part to the fact that 
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at ~ = 1, the order of contact of the periodogram with the horizontal 
reflects the reproduction condition of the graduation operator. Spe- 
cifically, the highest order of polynomials reproduced by a graduator Q is 
equal to the order of contact of its periodogram with the horizontal at ~ = i. 
Originally we established this fact by an elementary but lengthy induction 
argument. Greville has pointed out that for graduators with even indexes 
the result follows quickly from a statement proved much more elegantly 
by Schoenberg[13]. The result also holds for graduators with odd indexes 
(even number of terms) but follows a little less quickly. How these state- 
ments follow is indicated in Appendix A.10, and there is also given the 
connection to a related statement of Elphinstone. 

As an additional result, we note that 

n - - 1  

(PO(1) = q 0 + 2 Z q t c o s T r t =  +_1 
$ = 1  

according as the nonzero coefficients of Q have even or odd indexes. The 
value of (Po(2) is readily available if Q is written in terms of powers of ~, 
say, 

0 = Z 

since in this case 

~Q(2) = q~+ ~ q~[cos(~/2)15 = q~. 

In particular, if the nonzero .coefficients of Q have odd indexes, then 
6'Q(2) = 0, which, by the last section of Part II, implies Q has [2] as 
factor. 

Periodograms of Basic Operators 
Graduation operators are generally expressed as linear combinations of 

either the basic symmetric linear operators G,, (or some similar operators), 
or even powers of 6, with perhaps a summation factor or two. From Part  
I I  it follows that we can construct the periodogram of any symmetric 
linear operator and therefore any graduation operator from the periodo- 
grams of the basic operators. For instance, if 

n - - |  

Q = qo + ~ . ,  q ,a , ,  

then 
n - - 1  

6'o(~) = qo+ ~ ,  q,6'o,(~). 
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It  will be of value then to have tables of these basic perlodograms avail- 
able, and such tables are presented in [2]. 

f nterpretation of Periodograms 
In view of formula (8), we can think of the periodogram of a graduator 

in the following way. If one were to fit a Fourier sum to a sequence of 
graduated values, the coefficients of the sum could be computed by mul- 
tiplying the coefficients of the Fourier sum that fits the sequence of un- 
graduated values by the appropriate periodogram values. Thus the values 
of the periodogram are weights and indicate to what extent waves of a 
given length are preserved by the graduation. 

Intuitively one feels that a satisfactory graduator will suppress short 
waves (reflecting local irregularities) while retaining longer waves (re- 
vealing trends). Such qualities of a graduator would be indicated by its 
periodogram if the periodogram values were small for O small and near 1 
for O large. In addition, there seems to be merit in a graduator with a 
monotonically increasing periodogram having few inflection points. 

Clearly, a periodogram function may assume negative values for some 
ranges of B- Indeed, in summation type graduators, that is, graduation 
operators with factors of [m], the zeros of ~Pc,,1(/3) and the continuity of 
~P(0) imply that, if an odd power of [m] occurs as a factor, there must be 
negative values of the periodogram. In such instances, it follows in our 
interpretation of the periodogram of a graduator that waves of length 0 
are inverted. There seems to be no excuse for tolerating large negative 
values, but small values need not be alarming. 

We shall now compute and discuss the periodograms of several gradua- 
tion operators. We shall mention first those with which Elphinstone dealt, 
then carry on with some other published graduators, and finally end by 
examining the periodogram of a special summation graduator. 

Elphinstone's Survey of Graduators 
Elphinstone [3, p. 38], in his survey of graduation methods, analyzes 

the periodograms of several graduation operators, including some which 
were never intended to graduate a sequence of data. Of the better-known 
graduators, he considers seriously the formulas of Spencer [15], Hardy [9], 
Sheppard [14], Rhodes [12], and Whittaker [19], concluding that, of this 
list, the only graduator "without obviously objectional features is Whit- 
taker's" and the best summation type graduator is Spencer's. 

Elphinstone has carefully plotted the periodograms of these and other 
graduators, and we shall not reproduce that work except to make avail- 
able, in Appendix B, his periodogram of Whittaker's formula so that the 
comparisons and comments to be made may be followed more easily. 
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Periodograms of Some Linear Compound Graduators 
The definition of a graduation operator does not, of course, determine 

the coefficients of the operator if it is of length > 1. The device used for 
fixing the coefficients of a particular formula provides, then, a convenient 
characteristic by which one can distinguish various graduators. 

The coefficients of finite linear compound graduators may be deter- 
mined by minimizing the mean square error of some order, m, of the dif- 
ferences of the graduated values, under certain assumptions, one of which 
is that differences beyond the third may be neglected (in Sheppard's and 
Woifenden's terminologies, that j = 3). Such formulas are designated by 
Wolfenden "the P~ formulas," or simply "the R,, formulas." The case of 
m = 0, which is a least squares best-fitting formula, was first investigated 
extensively by De Forest in 1871, after preliminary consideration by 
Schiaparelli; that of m = 4 was proposed by De Forest in 1873 as the most 
logical smoothing method whenj = 3. Omitting the unimportant cases of 
m = 1 or 2, the formulas when m = 3 were examined many years later by 
Sheppard and Larus. De Forest's priority and details of all these cases 
are set out in Wolfenden's paper [21]; a summary, including other methods 
of graduation, is given in his book (pp. 119--48 [22]). A somewhat less- 
inclusive discussion, which omits the important m = 4 case, is given by 
Miller [11]. 

Lidstone [10] and Aitken [1] utilize Tchebycheff polynomials of the first 
kind to fit polynomials of a given order to a sequence of data by the meth- 
od of least squares. This technique has been shown by Sheppard and 
Lidstone, among others, to provide results identical to those obtained by 
minimizing the mean square error of the 0th differences. Therefore, the 
periodogram of the 21-term minimum R~ formula is exactly that of Shep- 
pard's 21-term formula which Elphinstone presents in his survey. 

Greville [4] summarized the work of Lidstone and Aitken and cleverly 
employed the Tchebycheff polynomials to find the coefficients for mini- 
mum R~ formulas for values of m > 0. Using his results, we shall compute 
the periodograms of several minimum R~ formulas. In particular, we shall 
consider the 21-term minimum R] and R] formulas reproducing third de- 
gree polynomials and the 29-term minimum R] and R] formulas with the 
same order of reproduction. For reference purposes we shall denote these 
formulas by Q1, Q~, Q3, and Q4, respectively. Greville [5] has published 
tables of the coefficients of minimum R] and R] formulas reproducing 
third degree polynomials for odd (5 to 29, inclusive) length formulas, and 
we shall use these tables for computing 6'Q,(/3) for i = 1, 2, 3, 4. The 
results of our calculations are displayed by graphs in Appendix 13. 

One observes that in each instance 6'~,(0) has the desirable small values 
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for/3 < 8, but the small values persist beyond this point in the longer, 
that is, 29-term, formulas. In fact, one wonders if perhaps the longer for- 
mulas do not overgraduate and emphasize smoothness to the extent that 
they not only smooth waves which indicate local irregularities but also 
distort those indicating trends. 

From the general shape of the graphs of the periodograms of the gradu- 
ators in our sample, it appears that the length of the graduator has more 
effect upon the periodogram than the smoothing criterion (i.e., order of 
differences for which the mean square error is minimized). If we compare 
the periodograms of graduators of the same length, we see that in each 
instance the periodogram values for large/3 are smaller for the R] case. 
This phenomenon is to be expected, since the minimization of the mean 
square error of third differences of the graduated values is the more drastic 
smoothing condition, and for a given /3 a smaller value of (P(/3) means 
more suppression of waves of length/3. 

In summary, while minimum R~ formulas are certainly not suitable for 
graduation for all m and all lengths, there surely are some satisfactory 
graduators in this class, and we would not dismiss such operators as "little 
more than the solutions of pr6blems in elementary algebra" [3, p. 34]. 

Periodograms of Some Difference Equation Graduators 

Difference equation graduators are so called because the technique for 
establishing the coefficients of the graduator involves the solution of the 
difference equation which arises from minimizing a function designed to 
measure fit and smoothness. A quite general function of this type is 
Spoerl's [16] 

Z(v, -- ux) ~ q- gY.(Av,) ~ q- hZ(A2v,) 2 q- kY,(A'v,) ~ , (24) 

where g, h, and k are arbitrary nonnegative weights, u, is the ungradu- 
ated sequence, and v, the graduated sequence. In formula (24), the first 
sum is the traditional measure of fit, while the other three sums are meas- 
ures of smoothness. Clearly one could have any number of additional 
sums for measuring smoothness involving higher orders of difference. 
The effect of additional sums upon the periodogram of the resultant 
graduator will be observed shortly. 

Formula (24) is minimized upon satisfaction of the difference equation 

u~ = (1 -- g8 ~ q- h~ 4 -- k~6)v,, (25) 

subject to some provision for starting values. If exactly one of g, h, or k 
is different from 0, we shall call the graduator a difference equation gradua- 
tor, while if more than one of g, h, or k is nonzero, we shall, following 
Spoerl, say we have a mixed difference equation graduator. 



PERIODOGRAMS OF GRADUATION OPERATORS 17 

Formula (25) can be rephrased to give 

vx = (1 - -  g~2 + h ~  _ k~8)-1 u , .  ( 2 6 )  

I t  follows from a method attributed by Whittaker [20, p. 308] to A. C. 
Aitken's thesis, and further elaborated by Spoerl, that the operator 
(1 - -  g~2 + h~4 _ k~8)-I has an expansion q0 + 95 G5 + • • •,  with qs, con- 
verging to zero sufficiently rapidly for graduation purposes, so that 

v, = (qo + q2G2 + . . . ) u ~ .  (27) 

Furthermore the same type of argument shows that 

6"(/3) = { 1 +.g[4 sin 2 0r/B)] + h[16 sin 4 (~r/O)] 
(28) 

+ k[64 sin' (7r//3)] }-I. 

Whittaker [19], the originator of the difference equation method, con- 
sidered the case of g = h = 0. Elphlnstone's survey of graduators includes 
the Whittaker formula with k = 1, and we repeat it only for comparison 
with other graduation operators, in particular the 'Whittaker formula 
where k = 20. We see that there is a remarkably similar shape for the 
periodograms of these two graduators, denoted by Q5 and Q6, respectively. 
Furthermore, quite expectedly, the larger value of k in Qs, indicating 
greater emphasis on the measure of smoothness, has the effect of reducing 
the periodogram value for any/3, that is, 6"Q,(/3) < 6'0,(/3). 

We shall now turn to Spoerl's mixed difference equation graduators. 
Specifically let 

QT= ( 1 - 6  4+.6)-1 

and 
Qs=  ( 1 - 6  5 + 3  4 - 3 " ) - x  

The periodograms 6"o,(B) and 6"o,(/3) resemble 6"0,(/3) and 6"0°(/3). They 
also give evidence of the general result that, if two mixed difference equa- 
tion graduators Q and Q' have the same arbitrary weights for all but one 
of the smoothness sums and the respective weights for them are j and j ' ,  
then 6"0(/3) < 6"o'(/3) according as j  > j '  [see formula (28)]. At this point 
the effect of including additional smoothness sums involving higher orders 
of differences in the function to be minimized is clear. Additional sums re- 
sult in smaller periodogram values. 

The periodograms of difference equation graduators (including the 
mixed difference case) are never negative and always have the "steady 
sweep" which prompted Elphinstone to single out Whittaker's formula 
(with k = 1) as a clearly superior graduator. We would submit that he is 
unduly harsh on periodograms with small negative values, such as those 
for minimum R~ graduators and a little too lenient in not restricting the k 
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tO values somewhat larger than I, inasmuch as 6"Q,(/3) departs rather 
quickly from 0 as/3 increases beyond the relatively small value of 4. 

The Periodogram of a Summation Graduator 

I t  follows from an observation in Part II  that, if a graduator has [m] as 
a factor, then there is a set of m -- 1 values of/3 for which the periodo- 
gram of a graduator is zero. Since it seems desirable to have small values 
for a periodogram of a graduation operator for small wave lengths, this 
theorem suggests that a satisfactory graduator can be constructed from 
several summation factors. Accordingly, we shall consider the graduator 

Q9 = (1/840)([4] [5] [61 [7])[1 - (61/12)~ 2] . 

The particular choice of Qg has several advantages over many of the 
other graduators which could be built up using the summation factor 
criterion alone. Judicious choice of distinct m's provides a large number 
of zeros of 6"Q, (/3) in the range/3 _< 7. This tends to keep the periodogram 
values small in that range. Furthermore, Q9 is a 21-term formula and is 
therefore comparable to Spencer's 21-term formula and the two 21-term 
formulas Q1 and Q2. The graduation operator Q9 reproduces polynomials 
"up through the third degree, a common actuarial criterion for fit, and it is 
this property which necessitates the inclusion of the factor [1 -- (61/12)~2]. 

The periodogram 6"~, (/3) provides justification for our choice of Qg. The 
values for/3 < 7 are negligible, while at/3 = 7 the periodogram begins a 
steady rise toward the horizontal asymptote at 6'(0) --- 1. Indeed, 6"Q,(/3) 
compares quite favorably with the other periodograms considered. 

Application to Interpolation Method of Graduation 

Along the lines of the work of Vaughan and Greville ([17], [6], [8], par- 
ticularly [6]), we have explored the symmetric linear operators (which we 
call subtabulators) that can be obtained from the array of linear com- 
pound coefficients used in applying interpolation formulas to subtabulate 
at intervals of 1/m of the original interval of tabulation. One may then 
proceed to consider the periodogram of the subtabulator and how it dis- 
plays the properties of the interpolation formula. For instance, one finds 
that Vaughan's principle may now be restated: A necessary and su.ficient 
condition for a discrete interpolation formula to reproduce polynomials of the 
rth degree is that the periodogram 6"(/3) of the subtabulator of the interpolation 
formula has zeros of order r -b 1 at/3 = m, m/2, . . . , m/(m -- 1) and has 
order of contact r with the horizontal at/3 = 1. 

For full facility in applying this idea, one needs convenient procedures 
for passing to and fro from interpolation formulas to subtabulators in 
various forms (particularly the factored form with [m] r+l as factor). We 
have made some progress in this direction, but a complete development 
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would amount to the discrete analogue of the paper cited in [8]. This would 
be a formidable undertaking, as the discrete case appears more varied and 
difficult than the continuous case discussed by Greville and Vaughan, and 
the latter case is a natural one to consider since polynomial interpolation 
formulas are continuously defined. However, the discrete case may be 
more relevant for the consideration of the interlocking formulas intro- 
duced by White [18]. 

For reasons of length, we do not include here our exploration of dis- 
crete interpolation formulas and their related subtabulators and periodo- 
grams. Until further development and presentation of this material are 
made, it may be obtained by reference to [2]. 

APPENDIX A 

To facilitate the reading of the body of the paper, the more detailed 
mathematical proofs, as well as some results which seem worthy of men- 
tion but do not fit naturally into the general development, appear here. 

The function e(t), defined to be 0 or 1 according to whether the integer 
t is odd or even, will he used extensively. We note that by its use [m] may 
be expressed as 

[ m ] =  ~_~e(m-tA-1)Gt .  ( 2 9 )  
t ~ 0  

A.1. 
[m + 1] = [2][m] -- [m -- 1]. 

Proof: By a number of devices, [2][m] may be expressed as [m A- 1] -b 
[m -- 1]. (For example, the relation follows by  taking a = m, b = 2 in 
the formula [a][b] = [a q- b -- 1] -{- [a q- b -- 3] q- . . .  q- [a -- b q- 1].) 
To use formula (29) for this purpose, we write 

m 

[ 2] [m] = G , ~ e ( m - -  t-t- 1)Gt 
t = 0  

= ,(m 4- 1 )G1 +*( m)(G2-4- 2Go) 

-4- ~ e ( m  -- t +  1) ( G , + I T G , - I )  
t = 2  

m + l  m - - 1  

= - t +  2 ) 6 , +  - t ) a ,  
t ~ O  t ~ O  

= [ m + l ] + [ m - - l ] .  

A.2. 

[ m l  = ~-~e(m--t-1)(-l~( '- t- ' ) /2,-o ( m + t - - 1 ) / 2 ) t  j [ 2 1 ' ,  

m > l  . 



20 PERIODOGRAMS OF GRADUATION OPERATORS 

Proof:  Let  
r a - - 1  

t i n ]  = ~ a ~ [ 2 1 ' ,  

and assume similar relations for [m + 1] and [m - 1]. Expanding each 
side Of the equation of'A.1 in powers of [2], and equating the coefficients 
we get 

ag,~'l = - - a ~ - l ,  

and 

a7 '+l -- a?_, - aT-', 
m a m + l  ~ G i n _  2 

t = 1 , 2 , . . . , m - - 2 ,  ( 3 0 )  

a m  m + l  ~ .  a m m _ l ,  

The relations [1] = 1.[2] 0 and [2] = 0-[2] 0 + 1.[2] 1 show that  ao 1 = 1, 
ao 2 = 0, and a~ = 1. I t  follows that  

a'~ +1= --a'~ -1 implies 

a,,+t = ,, implies m--1  am-~ 

ag' = ¢ ( m -  1)( - -1) ( , , , -ot2 ,  

m 
a m - ~  = 0 ~ 

and 
a~+l m implies m = 1 ---- ara--1 ara-- I  • 

These three statements show that  the coefficients given in A.2 are correct 
for t = 0, m -- 2, and m - 1, respectively. In  particular, A.2 holds for 
m = 1 and 2. 

Now, assuming that  A.2 holds for the coefficients a~ -1 and a~ appearing 
in the expansions.of [k .-- 1] and [k] and considering the coefficients a~ +1 
for [k + 1], we have from formula (30) 

a~ +'= a~_,- a~-' 

((k+t-2)/21[-1 
k--t- l(k+'- 

= ~ ( k -  t ) ( -  1 ) (k - ' )P  _ + 
t - 1  ) t 

=~(k+ l--t--1)(--1)C~+l-L-t)/2 l ( k +  l +t--1)/2)t 

t = l ,  2, . . . ,  k - - 2 .  
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Thus, by induction we have 

a'f=e(m--t--1)(--1)(m-~-')/2 [ (m+t-1)/2]t 
t = l ,  2, . . . ,  m - - 3 .  

Since the cases t = 0, m -- 2, and m -- 1 were previously verified, A.2 is 

proved. 
The recursion relation (30) provides us with a sort of "Pascal triangle" 

method for calculating the coefficients once we have a01, a0 ~, and a~. How- 
ever, zeros appear alternately, and the relation involves coefficients from 
three rows. This is illustrated by the following table. 

TABLE 1 

VALUES OF aT' 

1 
0 

--I 
0 
1 
0 

--I 
0 

1 
0 

--2 
0 
3 
0 

--4 

a~ 

1 
0 

- 3  
0 
6. 
0 

m 
a3 

1 
0 

--4 
0 .  

10 

a? 

1 
0 

--5 
0 

1 
0 

--6 

ag' aT' 

1 
o 

The explicit relationships between the bases {Go, Gt, . . . ,  G,-1}, 
{[i], [2], . . . ,  In]} and {#0 #t, . . .  , #,-t} of the space V, of SLO's of 
length less than or equal to n can now be given based on definitions, rela- 
tion A.2, and some incidental computation. We will proceed by consider- 
hag pairs of bases in turn. 

A.3. 

G t n  ~ • 

1] m = 0 .  

This follows easily from the definitions of G,~ and [m], and also may be 
obtained from formula (29). 

A.4. 
, n  

[ml=~_~(m--t+l)G~, r e = l ,  2, . . . ,  n ,  
C = 0  

which is simply formula (29) for all integers m under consideration. 

RUSItMORE MUTUAL LIFE 
LIBRARY 
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A . 5 .  

G , ~ = {  
£ e ( m - - t ) ( - - 1 ) ( m - * ) / 2  + 2t~ ' , 
L=o t l 

#o m = 0  r e = l ,  2, . . . ,  n - - l ,  

Proof: Write G~ = [m + 1] -- [m -- 1], use A.2, and simplify. 

A.6. 

" ( ° / ~,m = (1/2.,)a7 = (1/2~) ~_,~(~- t) a,, 
*=o (m- - t )~2  

m = 0 ,  1, . . . ,  n - - 1 .  
Proof: By  induction on m. 

A.7. 

[ m ]  = e ( m - - t - -  1 ) ( - -  1) ('~-t-1)/2 

by  A.2. 

A.8. 

.+1 {( 1 ~,m= (1/2m) ~_,~(m+t_ 1) 
,=1 (m-q-t-- 1 ) / 2  

m = 1 , 2 ,  . . . ,  n 

-- [t], re=l, 2, ... n-l, 
( m + t + l ) / 2  

u°= [1]. 

Proof: As a preliminary, it m a y  be shown tha t  if one writes 

m + l  
[ 2 ] ' ~ =  ~_~bT[t] , m>_O, ( 3 1 )  

t ~ l  

then 

b '~=e(m +t - -1 )  ( r e + t - - I ) ~ 2  ( m + t + l ) / 2  ' ( 3 2 )  

t = l ,  2, . . . ,  r e + l ,  

with b ° = 1. Formulas (31) and (32) give the inversion of A.2. To  prove 
formula (32), one establishes from the relation [2] m = [2]. [2] m-I the 
recurrence formula 

bin--1 b'l'= bTL - t +  ,+1 t =  2, 3, . . . ,  m - -  1 (33)  
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and the end term formulas 

and 

bT = b~ -1 , 

b~ = ,.-i bm-I 

b~+l = b~ -1 • 

From these it follows that  b~ = 0, b~41 = 1, m = 0, 1, . . . ,  n -- 1, and 
the given formula for b? holds for t = m, m + 1. Then one may  verify 
formula (32) for initial values of m, and by induction, utilizing formula 
(33), establish formula (32) for all nonnegative integers m and t = 1, 
2, . . . ,  m + 1. Finally, A.8 follows immediately from formulas (31) and 
(32). 

A.9. By equating the periodograms of each side of one of the relations 
A.3 to A.8, one obtains a trigonometric identity. For example, the periodo- 
grams for each side of A.8, with lr/fl replaced by ~, give 

cos '~ a = ( 1 / 2 "  sin e )  ~ ( m + t - -  1)  
,=1 ( m + t - -  1 ) / 2  

- -  sin t e ,  
( m + t + l ) / 2  

where a is not  an integral multiple of ~r. 
A.10. Schoenberg [13, p. 50] considered graduators with even indexes 

(odd number of terms) and a characteristic function ~(u). In  our notation, 
Schoenberg's characteristic function ~o(u) for a graduator 

Q= 
| 

may be expressed as 
n--1 

, ( u )  = qo+ 2 ~ q, cos( tu/2); 

hence 

When the indexes t are all even, ~o(u) is periodic with period 2~r, and when 
the indexes t are all odd, ~(u) is periodic with period 4~'. The function 
¢(u) --  1 is similarly periodic, and thus for the even indexes case it has 
the same ordinate and derivatives at u = 2~" that  it has at  u = 0. 

Schoenberg proves [13, p. 54] that  a graduator reproduces polynomials 
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of degree 2r + I if, and only if, ~o(u) - 1 has at u = 0 a zero of order 
2r + 2. Because of the periodicity, for the even indexes case the same 
must  hold at u = 27r. Now u = 27r corresponds to/5 = 1, and if the de- 
rivatives ~(k)(27r) = 0 for k = 1, 2, . . . ,  2r + 1, then (P(~)(1) = 0 for 
k = 1, 2 , . . . ,  2r + 1. From this, and the fact pointed out by Schoenberg 
that  symmetric graduators always have odd degree of reproduction of 
polynomials, it follows for the even indexes case that  the highest order of 
polynomials reproduced by  Q is equal to the order of contact of 6~Q(/5) 
with the horizontal at /5 = 1. 

For  the case of odd indexes, 9 (u  + 27r) = --~(u);  hence in the neigh- 
borhood of u = 2~r (which now corresponds to the middle of a cycle) 
~(u) has ordinates which are equal in value but  opposite in sign to cor- 
responding ordinates in the neighborhood of u = 0. Then the order of 
contact  of ~(u) with the horizontal at u = 27r is the same as the order of 
contact  of ~(u) with the horizontal at u = 0. From this it follows that  
our statement about the order of contact  of (PQ(/5) with the horizontal at 
/5 = 1 holds also for the case that  the indexes t are all odd. 

Elphinstone's characteristic function, P ( - -4  sin 2 a/2) [3, p. 30], is 
related to the periodogram (P(~) by the equation 

P --4sin 2~ =6'(~). 

He states that  " the highest order of polynomials exactly reproduced is the 
same as the order of contact  of the characteristic function with the hori- 
zontal at  a = 0." Thus, while we observed the behavior of the periodo- 
gram at/5 = 1, Elphinstone remarked about the situation at a = 0 (fl = 
co). In  fact, Elphinstone's remark will also follow from Schoenberg's 
theorem since /5 = co relates to u = 0. This explains the similarity be- 
tween Elphinstone's observation and ours, since essentially we are work- 
ing at related points of a complete cycle of a periodic function. For the 
periodogram, the cycle has been stretched over the domain /5 = 1 to 
/5 = co for the even indexes case; in the odd indexes case, the stretching 
is over the domain/5 = ½ (u = 4*r) to/5 = co, and/5 = 1 (u = 21r) is at 
mid-cycle. 
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