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BAYESIAN STATISTICS " 

DONALD A. JONES 

INTRODUCTION 

w ' ~ m ~  objective of this paper is to bring Bayesian statistics to the 
| a t t e n t i o n  of the members of the Society of Actuaries. This may 
- 1 - h a v e  been done superficially when Fortune published an article, 
"The Science of Being Almost Certain" (February, 1964), that gave equal 
photographic coverage to Bayesian statistics and to classical statistics in 
a broad brush look at the recent history of Statistics. However, the pur- 
pose here is to present a more technical exposition of the rudiments of 
Bayesian statistics. The exposition will not be sufficient to make the 
readers practicing Bayesians, but I hope that it will induce them to share 
my optimism for the future applicability of statistics to actuarial problems 
under the Bayesian outlook. 

The foundations of Bayesian statistics is laid on a personalistic defini- 
tion of probability in contrast to the statistical (or relative frequency) 
definition, which is at the heart of classical statistics, that is, the general 
set of ideas which has dominated the statistics classrooms for the last 
thirty years. In Section II  we shall see that these personalistic probabili- 
ties satisfy the same axioms, or laws, that statistical probabilities satisfy, 
so the Bayesians' calculus of probability will not be new. On the other 
hand, the definition of probability forms the bridge between mathematical 
probability and the applications. Thus, what the Bayesian calculates and 
how he interpretshis calculations will be new and will often be in conflict 
with classical training, but I think that his interpretations will rarely be 
in conflict with intuition. 

The purpose of the first section is motivation--the need for something 
like personalistic probability in graduation theory is indicated. A discus- 
sion of personalistic probability at the Society Examination II  level then 
follows in Section II. Sections I I I  and IV contain the statistical inference 
material of the paper by means of discussing two examples. Some of the 
criticisms of classical statistics which have induced statisticians to look 
for new methods are illustrated by the examples in Section III.  A four- 
step procedure for Bayesian analysis is illustrated by these same examples 
in Section IV. 

I .  SOME HISTORY 

As a point of departure for our look at the relationship between the 
statistician's definition of probability and his statistical methods let us use 
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34 BAYESIAN STATISTICS 

E. T. Whittaker 's introduction of his difference-equation method of grad- 
uation, which he first read before the Edinburgh Mathematical Society in 
1919. Difference-equation graduation means the theory that is chapter 5 
of M. D. Miller's E l e m e n t s  o f  G r a d u a t i o n  [13]. More precisely, assume that 
we have n observed values, u~, u2,. • •, u,, from which we wish to obtain 
n graduated values. For the given observed values define a function of n 

.variables, say, 

L ( y , ,  y~ ,  . . . , y~ )  = F ( y , ,  y~,  . . . y~ )  a t- h S ( y , ,  y2 ,  . . . , y ~ )  , (1) 

where 

F ( y l ,  y 2 ,  . . . ,  Y n )  = ~ . ~ W , ( y , - u x )  2, 

n - - k  

S( y,, y2, . . . ,  y~) = ~ ( ~ y , ) 2 ,  

h is a positive number, k is a positive integer, and the Wx's are suitably 
chosen weights (e.g., exposures when graduating mortality rates). Of 
course, h, k, the ux's, and the Wx's are variables too, but they are to be 
constant in the determination of a set of graduated values. Both F and S 
are commonly used measures of fit and smoothness, respectively, each of 
which decreases with "improvement." Thus, if 

< 

then the y ( , ~ ' s  are a better set of graduated values than are the y ( 3 ~ ' s .  T h e  

graduated (by the difference-equation method) values are the numbers 
Vl, v2, . . . , v~ such that  L ( v l ,  v2, . . . , v~) <_ L ( y l ,  y2 ,  . • • y~ )  for all y's. The 
analysis and algebra to find these values by desk calculator for W = 1 
and k = 2 are given in Miller's monograph. 

Whittaker 's principal contributions to this method of graduation are a 
justification for adopting Vl, v~, . . . , v~ (as defined above) as the graduated 
values and the derivation of the difference equation which the v ' s  must 
satisfy in order that they will minimize L. The algebra needed to find the 
v's, which is given in Miller [13], is Robert Henderson's contribution to 
this graduation method--often called the "Whittaker-Henderson meth- 
od." We will limit our consideration here to Whittaker 's justification of 

• the method as given in T h e  C a l c u l u s  o f  O b s e r v a t i o n s  ([22], p. 302) or in 
his "On a New Method of Graduation" [20]. 

Whittaker, following George King ([11], p. 114), starts with the premise 
that  the objective of a graduation is to find the "most  probable" values. 
Thus to every set of possible true values (i.e., every ordered set of n num- 
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bers yl, ys, • • • , y.) ,  he assigns a p robab i l i ty}  The  first p robabi l i ty  as- 
signed is called the antecedent  probabi l i ty ,  and i t  answers "How prob-  
able?"  before observations are considered. Now, according to Whi t t aker ,  
before observed values are seen, some sets of y 's  are more probable  than 
others due to conceptions of smoothness. Thus the antecedent  probabi l i ty  
should be a function of a measure of smoothness,  for example, 

n - - 3  

S ( y l ,  ys ,  . . . ,  y , )  = ~ (A3y~) s. 

Now S is a sum of squares, so " b y  analogy to the normal  frequency law" 
W h i t t a k e r  assigned 

Prob.  (y l ,  ys ,  • • • ,  y , )  = c . e -Ot s )hs  (2)  

where h is an a rb i t r a ry  constant  and c is the constant  to make  the to ta l  
p robabi l i ty  1. 

To make  inferences from observations containing random errors, we 
mus t  have a probabi l i ty  dis t r ibut ion for the errors. Whi t t ake r  assumed 
each observed value minus the corresponding true value to be normal ly  
dis t r ibuted with mean zero and known variance. Precisely, the condi- 
t ional p robabi l i ty  of observing ul when the true value is y~ is 

Kle-OIs)W,("~-v, )t , 

where K1 and W~ are constants,  like c and h above. Similar probabi l i t ies  
hold for each index. If, in addit ion,  the errors of observat ion are assumed 
to be independent ,  then the condit ional  p robabi l i ty  of observing Ul, 
u2, . . . , ,6  when the true values are yl, y2, • • • , y ,  is 

K e  ~=, 

Whi t t ake r ' s  "mos t  probable"  values are to be the most  probable  after  
considering the observed values;  thus he wants  the condit ional  probabi l i ty  
tha t  the true values are yl, ys, • • • ,  y , ,  given tha t  the observed values are 
u l ,  u s , . . . ,  u , .  This condit ional  p robabi l i ty  is the produc t  of (2) and (3) 
divided by  the marginal  p robabi l i ty  for the observed values at  u~, u 2 , . . . ,  

u,,  say, G ( u l ,  us ,  . . . u , ) ,  
K e-(1/2)(F+hs) 

(4) 
G (  u l ,  us ,  . . .  , u , )  " 

Whi t t ake r ' s  final step is to find those y 's  which maximize (4), or, since G 
and K are not  functions of the y's, i t  is equivalent  to find those y 's  which 

Today Whittaker would have talked of probability density for these continuous 
random variables. 
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minimize F + hS. Thus, we have Whittaker's justification of his method 
of graduation. 

To use or not to use the difference-equation method has probably been 
decided on computational grounds rather than on the merits of its theo- 
retical justification. However, G. J. Lidstone and Whittaker corresponded 
in the Tramactlons of the Faculty of Actuaries (XI, 233-37) concerning 
two criticisms which Lidstone had made of Whittaker's justification. In 
addition to historical interest, their correspondence illustrates a need for 
a definition of probability. 

One of Lidstone's criticisms was of the antecedent probability given by 
(2) when applied to the usual problem of seeking graduated mortality 
rates. The maximum value of (2) is attained when, and only when, S = 0, 
and this is equivalent to A3y, = 0 for x = 1, 2, . . . ,  n -- 3. From this 
Lidstone argued (correctly) that the "most [antecedent] probable" mor- 
tality rates would lie on a second-degree polynomial. He then asserted 
that "this assumption [about the probability distribution] is simply not 
true, but rather one contradicted by general previous experience." Second, 
Lidstone criticized the theory's lack of a formula for the arbitrary h (in 
his presentation Whittaker had suggested that all the W's be taken equal 
for simplicity, which explains Lidstone's silence about no formula for the 
W's). He summarized: "Thus the method starts with a hypothesis which 
is not in accordance with experience, and ends with a constant which is 
not determinable from the data . . . .  I t  is for this reason that it appears 
to me to be better (as it is simpler) to reach the expression F + hS by 
more general and less theoretical considerations." 

Lidstone's criticisms are much in the spirit of classical statistics; for 
example, his first criticism seems to imply the existence of common ex- 
perience evaluated identically by all concerned and thus leading to 
unique probabilities, just as we have unique "areas." Whittaker's inter- 
pretation of his graduation method is not unlike that which would be 
given by a Bayesian statistician today except that a good formulation of 
personalistic probability did not exist at the time to put meaning in the 
probabilities assigned. In his published response to Lidstone, Whittaker 
ignored the h criticism and claimed that "most probable" was undefined 
before consideration of the observed values, so Lidstone's parabola of 
mortality rates was a red herring. Lidstone responded, " I  used the term 
'most probable' with the ordinary meaning 'having the greatest ch an ce ' -  
in this case the a priori chance discussed in Whittaker's hypothesis," and 
so ended the public correspondence. As we view the history of the differ- 
ence-equation method of graduation up to today, it is clear that most ac- 
tuaries have shared Lidstone's viewpoint. "Smoothness" is of the eye and 
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the mind, so perhaps today's personalistic definition of probability would 
have settled the misunderstanding between Whittaker and Lidstone and 
hence shaped the destiny of Whittaker-Henderson graduation in a differ- 
ent form. 

With this look at a point in actuarial history where there existed a need 
for a precise definition of probability, let us turn to the two primary 
competing definitions today. 

I I .  P E R S O N A L I S T I C  P R O B A B I L I T Y  

What meaning do you give to: "The probability of getting a head on a 
single toss of this coin is 0.5"? I would expect answers which could be 
classified in one of the following four categories: (a) "head" is one of two 
equally likely outcomes due to symmetry; (b) in a long sequence of re- 
peated tosses, the proportion of outcomes that are heads is 0.5; (c) "I'd 
bet even money for a head, and I 'd bet even money against a head on a 
given toss of the coin"; and (d) "I can't say exactly, as I have always left 
that to my intuition." The first two of these responses are nonpersonal in 
the sense that they say something about the coin (and the flips) but noth- 
ing about you. In this same sense the latter two are personal--in fact, the 
last one says something about you and nothing about the coin. To pursue 
the first and the last responses would be digressions here because the con- 
troversy today is primarily between classical statisticians, who would give 
response (b), and the Bayesians, who would give response (c). 

Response (b) is in the spirit of the statistical definition, that is the "long- 
run frequency" concept of probability which is found in most beginning 
(classical) statistics textbooks. All the textbooks listed in the 1964 Syl- 
labus for Part I I  give this definition (e.g., [8], p. 10: "Similarly, for each 
event A we have a probability, P(A), representing the proportion of times 
the event A occurs in a long sequence of repetitions of the random experi- 
ment"). This statement follows an informal postulate as to the existence 
of random experiments: "experiments repeatable under essentially con- 
stant conditions," so that the "proportions are found to be stable for 
large n." 

Let us not halt for either the debate on the tenuous representation of 
the abstract "random experiment" by the real experiments of applications 
or to inquire how one "would find" P(A). Both of these are important and 
unsettled challenges for adherents of the statistical definition, but neither 
is the real issue here. The chief objection of Bayesians is raised against the 
limited domain of the definition. 

Bayesians believe that the role of statistics is to furnish a guide for con- 
sistent behavior in the presence of uncertainty; thus they seek a prob- 
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ability which can serve uncertainties of all origins, not just those of "ran- 
dom experiments." Indeed, they believe that the exclusion of uncer- 
tainty about matters of fact from the domain of (statistical definition) 
probability has foiled the development of statistical inference. Edwards, 
Lindman, and Savage put it this way: 

With rare exceptions, statisticians who conceive of probabilities exclusively 
as limits of relative frequencies are agreed that uncertainty about matters of fact 
is ordinarily not measurable by probability. Some of them would brand as non- 
sense the probability that weightlessness decreases visual acuity; for others the 
probability of this hypothesis would be 1 or 0 according as it is in fact true or 
false. Classical statistics is characterized by efforts to reformulate inference 
about such hypotheses without reference to their probabilities, especially initial 
probabilities. 

These efforts have been many and ingenious. I t  is disagreement about which 
of them to espouse, incidentally, that distinguishes the two main classical 
schools of statistics. The related ideas of significance levels, "errors of the first 
kind," and confidence levels, and the conflicting idea of fiducial probabilities are 
all intended to satisfy the urge to know how sure you are after looking at the 
data, while outlawing the question of how sure you were before. In our opinion, 
the quest for inference without initial probabilities has failed inevitably [(6), 
p. 196]. 

Now let us turn to the alternative definition adopted by Bayesians. 
The personalistic definition of probability, which is based on a postu- 

lated consistent behavior of the individual relative to his state of informa- 
tion, experience, and opinions, may  be given the following formulation in 
terms of gambling. "His [the individual's] probability for the event A, 
denoted by P(A), is the amount  tha t  he is willing to pay if A does not 
obtain, in return for a promise to receive 1 -- P(A) if A does obtain (bet- 
ting on A), and he is willing to accept the reverse gamble." The notation 
is not  adequate, for it reflects neither the individual nor his current state 
of information, etc. However, this inadequacy is more tolerable than cum- 
bersome notation. To think of the bets in terms of money is an approxima- 
tion to more realistic and rigorous formulations which include a theory of 
utility. The reader who seeks rigor and completeness may find a formula- 
tion of that  order and many  of the arguments for and against such a 
definition in the first five chapters of L. J. Savage's Foundations of Sta- 
tistics, which also has an excellent annotated bibliography. 

"Consistent  behavior" means that  the individual will not  set up a series 
of gambles (viz., personal probabilities) which will result in no gain for all 
outcomes and a loss for at  least one outcome. Abstractly, this means that  
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he must assign his probabilities so they satisfy certain rules or axioms. 
Fortunately, these are the familiar ones: 

(i) P(A) >__ 0 ; 

(ii) P(S) = 1 ; 

(iii) P(A + B) = P(A)  + P(B) -- P(AB)  . 

S, as used in equation (ii), is the entire sample space or the certain event. 
As an illustration of how the necessity of the axioms follows from con- 

sistent behavior, let us look at the argument for (iii), the so-called addition 
theorem. Let A and B be two events of the consistent individual's world. 
Suppose that he bets on A, bets on B, bets against AB, and against 

TABLE 1 

GAINS 

OUTCOMES 

]~ET AB AB ,$B .~B 
(1) (2) C3) (4) 

On a 1--P(A) 1--P(A) --P(A) --P(A) 
On B. 1--P(e) --P(B) 1--P(B) --P(B) 
Against AB . . . . .  --[I--P(AB)] P(AB) P(AB) P(AB) 
Against A+B.. .  --[1--P(A+B)] --[1--P(A+B)] --[1--P(A+B)] P(A+B) 

A -I- B [the motivation for this choice is by viewing (iii) as P(A) -I- 
P(B) = P(AB)  + P(A .-1- B)]. His possible gain for each bet and outcome 
is shown as an entry in Table 1. 

The net gain from all bets for a given outcome is the total of the entries 
of the appropriate column. Observe that each column total is P(AB)  + 
P(A + B ) -  P ( A ) -  P(B); in other words, for this combination of 
gambles the individual's net gain is the same for all outcomes. Consistent 
behavior requires that this net gain not be negative, so we have 

P(AB)  + P(A + B) -- P(A)  -- P(B) > O. 

On the other hand, the individual must be willing to accept the reverse of 
each of the four gambles, and thus he must choose his probabilities to 
satisfy also 

--[P(AB) + P(A a t- B) -- P(A)  -- P(B)] >_ O. 

These two inequalities imply (iii). 
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These properties of personalistic probabilities are sufficient to validate 
the familiar methods of calculation with classical probabilities--except 
those calculations which involve conditional probabilities. For the ad- 
herent to the personalistic definition, the conditional probability of .4, 
given B, denoted by P(A [B), is word for:word like that of P(A), with 
the additional provision that all payments are canceled if B does not ob, 
tain. The conslstent-behavior postulate requires that the "multiplication 
law" of probability holds for the personalistic conditional probabilities, 
that is 

(iv) P ( A  ]B) • P(B)  = P ( A B ) .  

If P(B)  --- O, then P ( A B )  = O, and P ( A  [B) is undefined, so (iv) should 
be interpreted as having a zero on each side. 

The four properties (i), (ii), (iii), and (iv) describe, mathematically, 
both the personalistic probability and the statistical probability. All the 
familiar identities that we learned for statistical probabilities hold for the 
personalistic probabilities. Thus, if the assignment of both kinds of prob- 
abilities "is the same" in an application, then any derived probabilities 
will be the same. For example, suppose that a personalistic probabilist and 
a statistical probabilist are observing a crap game. If they both assign the 
probability of 1/36 to each of the 36 possible throws with a pair of dice, 
then they would follow the same calculating rules, as outlined in Table 2, 
to reach 244/495 as the probability of winning (i.e., throwing a 7, an 11, 
or "making the point"). The personalistic probabilist would say: "Since I 
am prepared to bet 1 to 35 on any one of the 36 outcomes for a single roll 
of the dice, I must be prepared to bet 244 to 251 on winning in a single 
crap game." The statistical probabilist would say: "If  these dice were 
rolled a large number of times, about 1/36 of the outcomes would be of 
each type; therefore, if the dice were rolled for a large number of crap 
games, then the shooter would win about 244/495 of them." 

Bayes' theorem is one of the identities which is a consequence of prop- 
erties (i)-(iv); therefore, it is a theorem in both theories of probability. 
For two given events, say, A and B, we have from (iv) 

P ( A  I B )P(B)  = P ( A B )  = P ( B I A ) P ( A  ) . 

If P ( A )  > O, we may write 
P ( A  I B ) P ( B )  

(v)  P ( B I A )  = 
, P ( A )  ' 

which is the fundamental form of Bayes' theorem. 
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In frequent applications of (v), B is one event in an exhaustive set of 
mutually exclusive events, say, BI, B 2 , . . .  ; hence 

P( A ) = ~ P (  ABj) = ~ P (  A IBDP(B~) 
i i 

may be substituted in the denominator of (v) to have 

P ( A  [B,)P(B,) 
P(B,  IA)  = 

( v a )  Z P ( A  [ B~)P(B~.) 

For those of us who pride our Hall and Knight training, we may change 
notation by P(B, IA) = Q,, P(A ]B,) = p,, P(B,) = P, to have the form 
given on page 393 of Hall and Knight's Higher Algebra; 

(vb )  Q,= P'P" 
Ig( pP) " 

If B is one of a family of events for which one may calculate P(BIA), the 
form 

(v c) P(BIA ) o:. P(A [B)P(B), 

where you should read "is proportional to (with respect to the variable 
B)" for the symbol oc, may be sufficient. For example, in some applica- 
tions one looks for the maximum (over a set of B's) of P(B]A). All these 
forms of Bayes' theorem assume positive probabilities to give meaningful 
results. After notation is given for continuous probability distributions, 
we can give the continuous analogues of (v) and (v c). 

The essence of (v) first appeared in 1763 in a paper written by Thomas 
Bayes [3] and published • posthumously by Richard Price, who is famous to 
actuaries for the construction of the Northampton Tables. During the 
nineteenth century, Bayes' theorem was at the center of many fiery con- 
troversies concerning inverse probability. One such discussion, upon the 
occasion of E. T. Whittaker's address to the Faculty of Actuaries in 1920, 
is given in the Transactions of the Faculty of Actuaries [19]. Statistical 
analysis in the period from 1920 to 1960 was dominated by the work of 
R. A. Fisher, E. S. Pearson, J. Neyman, and others who could not find a 
place for Bayes' theorem in their analysis. Thus, when I looked in the 
Syllabi (1950-54) of the Society for a convenient reference to Bayes' 
theorem, the only books which gave the theorem were Cram6r's book [5], 
which is mentioned as a secondary text, and the third edition of Hoel's 
book [10], which was first placed on the 1963 Fall Syllabus. As documen- 
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tation of statisticians' increasing interest in Bayes'  theorem, we may  
observe that  the first two editions of Hoel 's book did not mention Bayes'  
theorem--bu t  the third edition devotes seven pages to it. 

For the benefit of those who followed the Syllabus too closely and are 
in contact  with Bayes '  theorem for the first time, we may  calculate 
P(BklW) for k = 2, 3, . . . , 12, in the crap-game example given above. 
P(B, I W) is the conditional probability that  a k was rolled on the first roll, 
given that  the dice roller won the game. These probabilities are in column 
(4) of Table 2. Formulas (v a) and (v c) are illustrated by  the relationships 
between column (4) and columns (1), (2), and (3). 

TABLE 2 

Bk is the event that a k is rolled on the first roll. 
W is the event that the shooter wins the crap game. 

2 . . . . . . .  

3 . . . . . . .  

4 . . . . . . .  

5 . . . . . . .  

6 . . . . . . .  

*7 . . . . . . .  

9 . . . . . . .  

10 . . . . . . .  
11 . . . . . . .  
12 . . . . . . .  

P(BD 
(t) 

1/36 
2/36 
3/36 
4/36 
5/36 
6/36 
5/36 
4/36 
3/36 
2/36 
1/36 

P(WiBk)* 
(2) 

0 
0 

1/3 
2/5 
5/11 

1 
5/11 
2/5 
1/3 

1 
0 

P(WBI~) 
(3) 

O)x(2) 

0 
0 

1/36 
2/4S 

25/396 
1/6 

25/396 
2/45 
1/36 
1/18 
0 

P(Bk [ w) 
(4) 

(3) + (244/495) 

0 
0 

55/976 
88/976 

125/976 
330/976 
125/976 
88/976 
55/976 

110/976 
0 

Total.. [ 1 P(W) -- 244/49,5 1 

* P ( W  I BI~) equals the probability of rolling a/~ before a 7. Therefore P(W [Bk) 
P(Bk) +IX--P(Bk)--P(BT)]  P(W[Bk) ,  or, P ( W [ B D  ffi Pt~k) trtDk) -l- 

P(BO]. 

We have observed that  Bayes '  theorem is true for both probabilities 
defined in this section. I t  seems reasonable to ask why Bayes'  theorem is 
so useful in a statistical theory based on personalistic probability that  
such is called Bayesian statistics and yet  classical statisticians have found 
so few applications for Bayes'  theorem that  it is not  discussed in their 
basic textbooks. The purpose of statistical analysis is to transform knowl- 
edge on the basis of observed data (usually experimental)--and hence tO 
guide action. According to personalistic probability, one's knowledge is 
described by his probabilities, so a statistical analysis based on personalis- 
tic probability must  transform probabilities on the basis of observed data. 
The postulated consistent behavior requires that  these transformed prob- 
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abilities be the conditional probabilities that were held before observing 
the data. Tha t  is, if P(BIA ) to 1 -- P(B[A) are your odds for B with bets 
canceled if A does not obtain--then, after learning that A obtains, your 
odds must be P(B[A) to 1 -- P(BIA ). The importance of Bayes' the- 
orem then is to provide the algorithm to calculate the conditional prob- 
abilities. This will be more clearly illustrated by the two examples dis- 
cussed in Section IV. 

Notation 
Usually the events in an application of probability are conveniently 

defined in terms of "random variables," that is, the A's and the B's of our 
previous equations are given by statements of the form x = 2, y < 3, 
v < V < v + dr, etc. For a discrete random variable we usually say, 
"Let p(x) be the probability function for X,"  which means p(x) = 
P(X  = x) for all numbers x. Thus you must remember that p is the 
probability function for X when you see p(5), say. Since personalistic 
probability produces more random variables (the classical statistician's 
parameters have personalistic probability distributions), I prefer to show 
this probability function "ownership" by a subscript. Thus, for discrete 
random variables 

px(a) = P ( X  = a) 
and 

Pxlo (alt) = P ( X  = a[O = t) . 

and for continuous random variables 

P ( a < X < _  b) = p x ( x ) d x  

and 
b 

P ( a  < X<_ b l 0 = t) = f .  p x l o ( x l t ) d x .  

In this notation Bayes' theorem may take the forms 

( v a ' )  p o l x ( t l x ) =  p x t o ( x T t ) ' p o ( t )  

pxlo( x ] i)po(i)  
i 

(vc') polx ( t l  x )  ,,= px to (x  It)po(t). 

III. CRITICISMS OF CLASSICAL STATISTICS 

While there has never been a single methodology of statistics acceptable 
to all statisticians, there has been a general set of ideas, based on the sta- 
tistical definition of probability, which has dominated the classrooms of 
this continent, and to a slightly lesser degree those of the rest of the world, 
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for the past thirty years. These ideas will be called "classical statistics"; 
however, the reader is warned that they pertain to a heterogeneous group 
of thinkers who show sharp disagreement on some points. 

The procedures of classical statistics which receive criticism from many 
statisticians, including Bayesians, might be termed "averaging proce- 
dures." These procedures, such as confidence intervals, unbiased estima- 
tion, significance tests, and randomization, promise to do well ion the 
average) in a long run of identical inference situations, but they some- 
times produce anomalous results on the way. A confidence interval ex- 
ample and an estimation example will be given to illustrate these.anoma- 
lies and criticisms. These examples will be analyzed again by the methods 
of Bayesian statistics following the description of those methods in the 
next section. 

Example C f  (Confidence Interval) . - -An interval estimate for a parame- 
ter, O, is an interval in which 0 is asserted to lie and a percentage which 
describes the quality of the assertion. The most common answer given by 
classical Statisticians for an interval estimate is a confidence interval. 
(Some statisticians would use the late R. A. Fisher's fiducial interval, 
which may or may not coincide with the confidence interval.) A confidence 
interval is defined as follows: Let X denote the outcome of the random experi- 
ment to be performed, with the understanding that X may be a vector of 
observations, say, X = ('X1, X2, . . . , Xn). I l L ( X )  and R(X) are two func- 
tions such that 

P[L(X) < 0 < R(X) [0 is the true value] = p 

for all e, then [L(X), R(X)] defines a set of 100 p per cent confidence in- 
tervals for O. The classical statistician asserts that if he uses L and R to 
compute confidence intervals, then the proportion of times that his in- 
tervals will contain 0 in a long run of such inference problems is p. One 
of the most familiar confidence intervals is for the unknown mean, e, of a 
normally distributed population with an unknown variance (see [10], pp. 
275-76). X is the vector of n(n > 1) independent observations on the 
population, and 

L(X)=2-t  (x'-2)' 
n ( n - - 1 )  

and 
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where t is chosen to obtain a desired p. While the probability assertion of 
the confidence-interval construction is correct, it is sometimes obtained 
by assigning long intervals almost certain to contain the parameter to 
some data points and by assigning short intervals with little chance of 
containing the parameter to other data points. The anomalies produced 
by such a construction are not present for the normal distributions, which 
possess certain symmetries, but they are vivid for the uniform distribu- 
tions of the following example. 

Suppose that there exists a population uniformly distributed over an 
interval of length 2, with the center of the interval (the mean), 0, un- 
known. Graphically, the probability density function for a random ob- 
servation on this population is shown in Figure 1. Let X (an n-dimensional 

0 - - 1  0 0- t -1  

FIG. 1 

vector) denote the outcome of obtaining n independent observations on 
this population. A confidence interval for 0 is given by defining L(X) and 
R(X) to be, respectively, the smallest and the largest of the n observa- 
tions. We must calculate the confidence level, P[L(X) < 0 < R(X)], to 
complete the description of the intervals produced. 

P[L(X) < 0 < R(X)] = 1 --P[L(X) < R(X) < O] --P[O <L(X)  <R(X)]  

P[L(X) < R(X) < 0] = _P (all n observations will be left of 0) = (~)" 

P[O < L(X) <. R(X)] = P (all n observations will be right of 0) = (½)". 

Therefore 
P[L(X) < 0 < R(X)] = 1 -- (½)"-', 

and [L(X), R(X)] will produce 10011 - (½),-1] per cent confidence intervals 
for 0. To see the promised anomalies, suppose that the smallest observa- 
.tion is 1.5 and file largest is 3.0, so the 100[1 -- (½),-1] per cent confidence 
interval is [1.5, 3.0]. This interval certainly contains 0, since these two 
extreme observations cannot be on the same side of 0. Again, if the smallest 
is 1.4 and the largest is 1.5, the 100[1 -- (~)"-q per cent confidence in- 
terval is [1.4, 1.5], yet it should, in fact, instill little confidence. This ex- 
ample is not known to have any immediate practical value, but it illus- 
trates the lesson well. The percentage for a confidence interval is the prob- 
ability of a "successful" experiment and is not the probability that this 
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experiment was successful. In short, the classical statistician's security in 
his long-run average is little consolation for his client with [1.4, 1.5]. 

Example E (Estimation).--The problem of giving a point estimate for a 
parameter, 0, is analyzed in classical statistics by the concept of estima- 
tors. A n estimator is a function defined over the set of possible outcomes of the 
contemplated random experiment; the value of the function at a particular 
outcome is to be the estimate of 0 should that outcome obtain. Each estimator, 
as a function of the possible outcome, is a random variable which derives 
its probability distribution for each O, from the corresponding probability 
distribution over the possible outcomes. The statistician chooses his esti- 
mator in a given problem by requiring the chosen estimator (or its prob- 
ability distribution) to satisfy one or more arbitrary conditions. Much of 
the classical theory of estimation used to be based on the "unbiased" con- 
dition. An estimator, g(X), is unbiased if, and only if, E[g(X)] = 0, for 
all O, where 0 is the parameter value of the probability distribution of X 
used to calculate the expected value. Figuratively, the probability dis- 
tribution of g(X) is always "centered" on the parameter to be estimated. 
Today, the justifications for using an unbiased estimator are not forceful 
nor often taken seriously; however, use of the condition persists among 
classical statisticians because the mathematics of finding an unbiased esti- 
mator which satisfies certain other conditions is often simple. Unbiased 
estimators which are also "functions of the existing sufficient statistic" 
and which have "minimum variance among such estimators" will be used 
in the example in the next paragraph. Those readers interested in the tech- 
nical development of the estimators will find a general development in the 
Syllabus textbook ([8], pp. 221-22). 

Suppose two actuaries wish to estimate the one-year survival rate, O, 
following surgical treatment of a certain disease by observing a sequence 
of treated patients. Actuary A instructs the clinic to send him the follow- 
ups on the first n patients treated. Actuary B instructs the clinic to send 
him the follow-ups on all cases up through the yth death. Assuming inde- 
pendence and no "withdrawals," both actuaries are observing a Bernoulli 
sequence with parameter, O, but each is observing a different random ex- 
periment. In A's experiment each outcome consists of n follow-ups, and 
the number of deaths is a random variable. In B's experiment each out- 
come contains exactly y deaths, the last follow-up being a death, and the 
number of follow-ups is a random variable. In statistical language, A and 
B are using different "stopping rules." If each of A and B decides to use 
the minimum-variance, unbiased, and sufficient estimator for his experi- 
ment, then A's estimator would be the observed survival rate and B's 
estimator would be the number of observed survivals divided by the hum- 
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ber of follow-ups minus one. Thus, if thc nth patient is also the yth death, 
A and B will receive the same n follow-ups, but A's estimate would be 
(n - y)/n and B's estimate would be (n -- y)/(n -- l). Critics view this 
discrepancy betwccn the estimates as a defect in the classical theory be- 
cause it is not due to a difference in information received but  rather to a 
difference in what information might have been rcccivcd. 

A familiar, alternative, and competing theory of estimation which does 
not exhibit the above discrepancy is maximum likelihood estimation. To 
examine the maximum likelihood estimates for this example, let X and Z 
denote .the number of survivors in A's and B's experiments, respectively. 
Thcn, for 0 = t, 

pxto( x , t) = ( n )  t~(1-- t) ~-* x = O ,  1 , . . . , n  (5) 

and 

P z l ° ( Z i l ) = ( z + Y - - 1 )  l * ( 1 - l ) u  z z = O ,  1 , . . . .  ( 6 )  

Let 

La(  t, x) = ( n )  t ' ( 1 - - t ) " - "  O < t < l ,  

and 

L.(,, + Y -  1) t . (1-  0 < , < 1  
2: 

where x and z are considered fixed. This duplication of notation for these 
two pairs of functions of two variables is solely to emphasize the fixed 
variable. The definition of A's (or B's) maximum likelihood estimate of 0, 
when x (or z) survivors obtain, is the value of t which maximizes La(t, x) 
[or Lz(t, z)], the likelihood function for the observed data of the experi- 
ment. Now in the case when the nth patient is also the yth death, 

( n ) , . _ u ( l _ t )  . L a ( t , n - - y ) =  n - - y  

= n ( n - - y  --yl)  t " - v ( 1 - - t ) ~ = Y L " ( t ' n - - Y ) '  

that is, when these two experiments produce the same data, their likeli- 
hood functions are proportional. I t  follows that, in this case, their maxi- 
mum likelihood estimates are equal. 

In general, the maximum likelihood estimate for 0 will depend only on 
the relative shape of the likelihood function. This principle for the estima- 
tion problem may be generalized to all statistical inference by replacing 
"the maximum likelihood estimate for" in the preceding sentence with 
"any inference about." More precisely, this general principle, the likeli- 
hood principle, is: When two experiments, indexed by the parameter O, 
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result in outcomes such that their respective likelihood functions are pro- 
portional, then they yield the same information about 0. Thus, those who 
adopt the principle work and talk in terms of the likelihood, the class of 
all proportional likelihood functions. The likelihood principle is a "theo- 
rem" in those theories of statistics which use Bayes' theorem, Polx(tlx) ~ 
pxlo(x I t)po(t), because two proportional likelihood functions will yield 
the same posterior distribution, psix(t[x). This includes those theories 
based on a personalistic definition of probability which provides a mean- 
ing for po(t). Some other statisticians--R. A. Fisher [7], G. A. Bamard 
[2], and A. Birnbaum [4]--find the likelihood principle compelling for 
other reasons and thus are among the critics of the averaging procedures 
of classical statistics. 

Bayesian statisticians disagree with classical statisticians on one more 
fundamental point. Classical methods treat experimental data as if they 
were isolated from other relevant experience of the experimenter. For ex- 
ample, if one wishes to estimate a probability of survival, classical stat- 
isticians consider it legitimate to use prior experience and information to 
'form the opinion that a Bernoulli model is appropriate for the experiment 
but is illegitimate to use prior experience and information to form a prior 
opinion about the probability of survival. This is the dictum regardless of 
the size of the experiment relative to the experience and information. 
Bayesian statistics goes two steps beyond the classical dictum above, not 
only holding it legitimate to form an opinion based upon the prior experi- 
ence and information, but mandatory to do so. The Bayesian statistician 
views the experimenta} data as evidence to be assimilated into the experi- 
ence an d knowledge of the experimenter. 

IV.  ANALYSIS BY BAYESIAN STATISTICS 

Bayesian analysis of a statistics problem may usually be divided into 
four steps. This is not a universal pattern, but one that is applicable to 
many.problems. Step 1 : Formulate the prior distribution for the parame- 
ters of the problem. Step 2: Define the model for the experiment. Step 3: 
Perform the computations according to Bayes' theorem to determine the 
posterior distribution. Step 4: Analyze this posterior distribution in ac- 
cordance with the objectives of the .problem. 

The prior distribution for  the parameters forms a measure of the 
information and  experience available prior to the anticipated data. 
I t  is interpreted by means of the personalisfic definition of probability 
as discussed earlier. Thus, when one has formed his prior distribution, 
he is prepared, in principle, to enter wagers about events defined by the 
parameters. Conversely, by considering a family of such hypothetical 
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wagers, he can determine his prior distribution.' More practically, by con- 
sidering a sufficient number of such wagers, he can determine efiough char- 
acterisfic~" of his prior distribution to enable him to reach a satisfactory 
approximation to it! One common approximation is the usual analytical 
procedure of Setting bounds for the prior distributi6n which are trans- 
formed by the analysis of Bayes' theorem to bounds for the p6sterior dis- 
trlbutlon. Another approximation is to adopt some member of some corL- 
venlent family of probability distributions which reasonably closely fits 
the characteristics determined above. 

The model/or the experiment is the probability distribution of the data, 
given the parameter values. For Bayesian statisticians the problems that 
enter into these "model distributions" are personal problems, no different 
in kind from the problems to which prior distributions pertain. However, 
in usual statistical problems most observers will, as a first approximation, 
adopt the same distribution for the experimental model. This does not 
mean that there are no differences in opinion about the stochastic mecha- 
nism of the experiment but rather that the differences are negligible rela- 
tive to other variations. The generality of personal probability may be 
seen in this context. One's personal probability for an event may be based 
upon a long-run frequency which is common to the experiences of his 
associates, and hence his personal probability will be "public" in the sense 
that it is held by everyone involved in the problem. Similarly, symmetry 
may make a personal probability public. 

The posterior distribution is readily defined by Bayes' theorem and has 
the same personali~tic interpretation as the prior distribution. Some ex- 
periments may be overwhelming in their effects on the divergence of prior 
opinions and thus the posterior distribution ,will be a "public" distribu- 
tion. This is discussed in detail in Edwards, Lindman, and Savage [6]. 

Analysis of the posterior distribution i s gu{ded by the probability inter- 
pretation of the distribution. If a point estimate is desired for a parameter, 
the mean, median, or mode of the distribution-would be appropriate. If 
an interval estimate is desired, it may be calculated directly fi~om the pos- 
terior distribution. In general, the way one uses the:posterior distributions 
is not unlike the use of a probability distribution in games of chance. (The 
reader can find information in [6], [9], [15], and [18]:) 

• The rest Of this secfipn will give Bayesia n analyses tO Examples' CIand  
• E of the previous section. , 

:Example CI (see above, Sec. I l l )  . " l  

1. Prior distribution. This example will give an opportunity to illus- 
trate the extent of the dependence of the posterior distrlbution on the 
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prior distribfition. For this purpose let 'po(t) be an arbitrary prior dis- 
tribution for 8. 

2. M o d e l / o r  the e x p e r i m e n t .  The  experiment in this example is to obtain 
n independent observations on the population. Le t  X = (X1,  X2 ,  . . . ,  

X~) be the vector  of independent observations and let x = (xl ,  xz ,  . . . , x , )  

be a generic outcome. The  density of probabil i ty for X at  x, given # --- t, 
is the product  of n copies of the function graphed in Figure 1; if all the 
coordinates of x are between t --  1 and t q- 1, the density is (½)", and, if 
a t  least one coordinate is not between t -- 1 and t q- 1, the density is 0. 
Thus,  

pxlo (xlt) = (½)" t - 1 < x~ < t + 1 i = 1, 2 , . . . ,  n ,  

(7) 
= 0 elsewhere. 

3. P o s t e r i o r  d i s t r i b u t i o n .  Application of Bayes '  theorem to the above 
Components will yield the density function of the posterior distribution 
for O, given the data  X = x. In  the calculation x is fixed a t  the observed 

ou tcome,  and Pxlo  (x] t) enters as a function of t. The  inequalities of (7) 
are more helpful if rewritten. The  set of inequalities t --  1 < xl < t + 1, 
i =  1, 2, . . . ,  n is equivalent to the set x ~ - - I  < t < x ~ + l ,  i =  1, 
2, . . . ,  n, which is equivalent to the one inequality R ( x )  - -  1 < t < 

L ( x )  + 1, where L ( x )  and R ( x )  denote the smallest and the largest obser- 
vations among x b  x2 . . . .  , x~, respectively. Therefore 

pxto (xlt) po(t) = po(t)(½) ~ R(x) - 1 < t < L(x) + 1 

( 8 )  

= 0 for other values of t .  

Bayes '  theorem says tha t  the conditional density function for O, given 
X = x, is proportional to (8); therefore, 

po~x ( f ix)  ~ Po(t) R(z )  - 1 < t < L(x) + 1 

: = 0 for other t values. 

In  words, an individual 's posterior densi ty function is obtained by  
truncating his p r io r  density function to the interval of values of ~ tha t  
are possible given the data,  and then normalizing it so its integral over 
this interval is unity.  For the first set of observations given in the classical 
discussion of this example (see above, p. 45), L ( x )  = 1.5 and R ( x )  = 3.0, 
so pe(t)  is t runcated to the interval [2.0, 2.5]. If an individual 's prior 
density is represented by  the dotted line in Figure 2, then his posterior 
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density function would be proportional to the solid portion. For the sec- 
ond set of observations given, L(x) = 1.4 and R(x) = 1.5, so po(t) is 
truncated to the interval [0.5, 2.4]. The effect of these data on the p0(t) 
of Figure 2 is shown in Figure 3. 

4. Analysis of the posterior distribution. If the Bayesian statistician 
were now asked for an interval for 8 upon which he would place 100 p per 
cent confidence, he could choose some l and r such that 

f zpolx(tl x)dt= p. 

His interpretation of this interval is: "After seeing the data of the experi- 
ment, p is the probability, for me, that 0 lies between l and r." Savage [17] 

/ 

/ psO) 

0 2.0 2.5 
Fro. 2 

f 

0 0.5 2.4 f 
FIo. 3 

calls this a credible interval to distinguish it from the classical confidence 
intervals. 

The anomalous behavior of the confidence interval in this example is 
vivid. As the span of the n observations R(x) --L(x) increases, the 
length of the confidence interval R(x) -- L(x) increases, but the length of 
the credible interval [for continuous p0(t)] decreases as it should. 

Example E (see above, Sec. III) 
The conditional probability function for the number of survivals in a 

sequence of independent trials is perhaps one of the best examples of a 

LIgI AI Y 



52 BAYESIAN STATISTICS 

"public" probability (i.e., one agreed upon by all concerned). In this 
spirit let us assume that actuaries A and B will continue to use equations 
(5) and (6), respectively, for their probabilities, given the survival rate t. 
With that assumption, then the Bayesian analysis of actuaries A and B 
will coincide by virtue of the likelihood principle. Precisely, recall that, if 
the nth patient is the yth death, then 

p x l o ( x l  t) = n---A-- p z l o ( x l  t ) ,  
n - - x  

and the factor n/(n - x) will be absorbed into the constant of proportion- 
ality when Bayes' theorem is applied. In other words, it will suffice to 
know only that the model distribution for the experiment is proportional 
to •(1 -- t) v. 

Step 1. Sometimes it is possible to choose a prior distribution from a 
family of so-called conjugate distributions which makes the calculation of 
the posterior distribution by Bayes' theorem very tractable. Precisely, a 
set of probability distributions is conjugate for a given experiment with the 
parameter O; if, when the prior distribution po(t) is in the set, then, for 
every outcome x of the experiment, the posterior distribution Polx (t Ix) 
is in the set. For this example a conjugate set is the set of all probability 
distributions with a density function of the form 

f ( t )  = K(p ,  q) t ,  (1 - t)~ 0 < t < 1 
( 9 )  

= 0 elsewhere, 

where p and q are non-negative integers and K(p, q) is the constant such 
that the integral of f(t) is 1. If po(t) is in this set, then 

p0~x(tlx)=t ~(1- t )~t , (1- t )~  0 < t < l  
(10)  

= 0 elsewhere, 
that is, 

polx (t Ix) = K(x + p, y + q) t ~+~' (1 -- t) u+q 0 < t < 1, 

and is in the set. The larger set of distributions with density fuflctions of 
the form (9), for any numbers p > --1 and q > --1, is also conjugate for 
the experiment of this example and allows more choice for the prior dis- 
tribution. 

In formulating his prior distribution for the survival rate, the actuary 
will look to his experience, information, and opinions. As an illustration he 
may find his opinion about the survival rate for nonsurgically treated 
cases, say, 0', is firm; for example, suppose that, for him, P(0.55 < 0' < 
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0.65) = 0.99. From a meeting with medical people he may learn that the 
surgical treatment cannot be detrimental to survival, but the treatment 
is new and its positive effects unknown. The actuary might summarize to 
himself thusly: "I'm virtually certain 0 lies between 0.55 and 1.0, and I 
doubt that the treatment has no effect or that it's perfect--but it's even 
money between these extremes for me." A graph of his prior opinion might 
be like Figure 4. If the number of observed cases is large (e.g., 400) and if 
the sample survival rate falls within the actuary's "indifference interval," 

"[ 
.5 .65 ,90 I~00 

FIG. 4 

f 

x/@ (x/t) 

.5 .65 .90 1.00 

FIo. 5 

his posterior distribution will not be unlike that derived by use of a uni- 
form prior distribution (that member of the conjugate set with p = q = 
0). This interaction of a sharp likelihood and a gentle prior distribution 
may be seen in Figure 5, where one can visualize the product of the two 
functions defining the graphs. 

Bayesians conjecture that, when there is quantitative concurrence of 
opinion following any statistical analysis, it is due to this phenomenon of 
adequate data producing a sharp likelihood which washes out rather 
gentle differences in prior opinions. Sufficient conditions for a prior dis- 
tribution to produce a posterior distribution reasonably close to the pos- 
terior produced by a uniform prior distribution are given in Edwards, 
Lindman, and Savage [6]. 

The actuary's experience, information, and opinion may not lead to the 
generally flat prior density of the situation above. If this surgical treat- 



54 BAYESIAN STATISTICS 

ment has been applied to cure a similar disease in the past, he may expect 
similar results to obtain in this application. If a smooth unimodal density 
function is appropriate for his prior distribution, then he may search in the 
conjugate set of distributions for one that "fits" his cumulative probabili- 
ties at three or four points. (The distributions of the conjugate set are 
beta distributions, which were tabled by Karl Pearson [14].) As an ex- 
ample, for q = 7.5 and p = 28, 

t .50 .60 .70 .80 .90 .95 

P(O < t) .000 .011 .142 .628 .985 1.000 

and the density function has its mode at 0.789. As p/(p + q) increases 
with q fixed, the distribution shifts to the right and becomes more skewed. 
As p increases with p/(p -t- q) fixed, the distribution is more peaked and 
symmetric. Within this two-parameter family the actuary may find a dis- 
tribution suitably close to his prior opinion. 

Step 3. If the prior distribution was adequately described by a beta 
function, the posterior distribution is the one given in (10). If it were 
necessary to go outside the conjugate distributions to find a realistic 
prior, then this step would be accomplished by numerical procedures. 

Step 4. The object of the experiment of this example was to estimate the 
survival rate. The actuary may choose the mean, median, or mode of his 
posterior density, whichever seems appropriate. In an economic situation 
with a loss function available, he would choose his estimate to minimize 
his expected loss (calculated with respect to the posterior distribution). 

V. IMPLICATIONS fOR ACTUARIES 

In summary I would liken statistical analysis to the black box of sys- 
tems engineering (i.e., one feeds certain inputs into a black box in return 
for an output). The classical statistician has many black boxes, each bear- 
ing some of the labels "unbiased," "sufficient," "consistent," "efficient," 
"stringent," "uniformly most powerful," "asymptotically unbiased," ad 
infinitum. Each of his boxes has an intake hole at the top for the experi- 
mental data and an output hole at the right end. There is a warning on 
each box which says: "Use seriously only with k units or more of input." 
He would then offer you any of his boxes, counseling you that your choice 
should be based on the labels. The Bayesian has only one black box--but 
it has three holes: an additional intake hole on the left for experience, 
information, and prior opinion. 

I think actuaries should be among the most ardent welcomers and users 
of the Bayesians' one black box. In all their work and training actuaries 
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emphasize that decisions are based on the data and judgment, but classical 
theories of statistics have never offered a place for, or required, a well- 
defined judgment factor. This has led actuaries to develop other methods 
of analysis, allowing input of judgment, in several areas of their work. 

Credibility theory, including experience rating, is the actuaries' solu- 
tion to a statistical estimation problem which was not amenable to clas- 
sical methods. These rate-making problems are characterized by the exist- 
ence of a small amount of data which has direct bearing on the rate class 
in question, a large amount of data for many similar rate classes com- 
bined, and the actuary's judgment. Arthur Bailey's search for a theory to 

" explain the casualty actuaries' empirical methods of combining these 
sources of information for rate-making led him to Bayes' theorem and 
statistical procedures like those of the Bayesians. Although he was not a 
Bayesian statistician in the sense of expounding personalistic probability, 
his 1950 paper [1] is an excellent introduction to the application of 
Bayesian statistics to actuarial problems. Allen Mayerson recast much of 
Bailey's credibility work in a Bayesian statistical setting in a paper 
recently presented to the Casualty Actuarial Society [12]. 

The theory of graduation is a good example of special procedures devel- 
oped by actuaries to solve a statistics problem that would not fit into the 
classical statisticians' mold where there is no room for judgment and ex- 
perience. Graduation problems arise when the actuary wishes to estimate 
several values of an unknown function, say, g(x),  on the basis of observed 
data. The first step of classical procedures is to define a family of ad- 
missible functions indexed by a few parameters; for example, the two- 
parameter family of lines g(x) = A -t- xB .  With the assumptions that no 
information, except the observed data, about the parameters is at hand 
and that any function outside the defined family is not admissible, then 
classical procedures define estimators of the parameters based only on the 
observed data. These two assumptions are not realistic for the actuary 
when he uses graduation theory. On the other hand, E. T. Whittaker's 
justification of difference-equation method of graduation as we discussed 
it in Section I is close to the actuary's state of mind. If we now compare 
Whittaker's justification with the four-step Bayesian analysis outlined in 
Section IV, we can see that Whittaker-Henderson graduation is a 
Bayesian solution to the graduation problem. 

In addition to the rather poetic developments which may obtain when 
actuaries are converted to Bayesian statistics, there is an awkward one for 
the Society to face. We are in the early years of a ponderous change in 
statistical theory and practice. In the next five to ten years the diversity of 
training received by actuarial students preparing for the Society exam- 
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inations will increase considerably. These will be difficult years to give 
an "achievement examinat ion . . ,  based on the material usually covered 
in undergraduate mathematics courses in probability and statistics" (Syl- 
labus, Fall, 1963). 

Professors J. C. Hickman, A. L. Mayerson, C. J. Nesbitt, and L. J. 
Savage each read at least one draft of this paper in detail and gave me. 
many helpful comments. I would take this opportunity to thank them. 
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