
TRANSACTIONS OF SOCIETY OF ACTUARIES 
1967  VOL. 19 PT. 1 NO. 54 

B A Y E S I A N  G R A D U A T I O N  

GEORGE S. KIMELDORF* AND DONALD A. JONESt 

INTRODUCTION' 

GRADUATIO~ process is commonly justified on the basis of a statistical 
theory of random errors whereby each observed rate is the sum 
of the true rate and a random error (U, = V, + e,). On the other 

hand, there are very few ideas common to the statistics section and the 
graduation section of the syllabus for the actuarial examinations. We be- 
lieve that this isolation of the graduation problem from general statistical 
theory stems from the limited nature of statistical theories which are 
based upon a "relative frequency" concept of probability. In this paper 
we shall show how a graduation method may be developed as straight- 
forward statistical estimation within a statistical theory based upon per- 
sonal probability, that is, so-called Bayesian statistics. 

Familiar examples of statistical estimation are the estimation of the 
mean, the standard deviation, or the coefficients of the regression line, 
given a specific set of observations. Graduation as statistical estimation 
differs from these examples in two important respects. 

First, rather than estimating just one quantity or pair of quantities, 
graduation simultaneously estimates a large set of quantities such as a 
set of mortality rates for many different ages. The development of this 
multivariate estimation procedure requires certain more powerful tech- 
niques, such as the use of vectors, matrices, and the multivariate normal 
distribution, which are summarized in the appendixes to this paper. 

Second, graduation differs from some other statistical estimation prob- 
lems in its dependence upon information which is not contained in the 
observed data. Elphinstone, in discussing the logic of graduation, remarks, 
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"If we ignore relevant knowledge . . . ,  we get the wrong answer--we 
make a mistake" [3]. If the only information available to us were the ob- 
served data, then our estimate of the "true" rates, that is, the graduated 
rates, would equal the crude rates and we would not graduate at all. 

One element of information which actuaries have been using for many 
years is the fact (or perhaps, belief) that the "true" rates form a smooth 
sequence. Thus, graduation has traditionally been associated with 
smoothing. But there are other properties of the "true" rates which 
should be included in "relevant knowledge." 

For example, imagine the result of a graduation of mortality rates 
which yielded the smooth sequence 

q= -- 1 -- .001x for x = 10, 1 1 , . . . ,  90. 

You would probably reject such a result because it contradicts your belief 
that mortality rates, except at the juvenile ages, increase with age. Simi- 
larly, suppose a graduation yielded a set of mortality rates double those 
found in a similar population just a short time previously. Again, you 
might doubt such results and look for an error in your calculation. 

Our point is this: In order for the result of a graduation to be accept- 
able, it must be consistent not only with the ungraduated data and a 
concept of smoothness but also with other relevant knowledge possessed 
before observing the data. This totality of relevant knowledge, judgment, 
and belief possessed prior to observing the data is called "prior opinion" 
in Bayesian statistics. 

A good graduation method, therefore, is one which makes maximal 
use, in some sense, of all aspects of prior opinion as well as the observed 
data. We shall not be able to present such an ideal method in this paper, 
but we shall present one approach to the graduation process which allows 
the use of the graduator's prior opinion in a more objective way than 
existing methods and yet involves only tractable calculations. While the 
method discussed is applicable to a broader range of graduation situa- 
tions, we shall, when necessary, assume the more specific properties of the 
graduator's prior opinion regarding mortality rates. 

In Section I the theoretical foundation for the Bayesian method of 
graduation is developed. The graduation problem is stated in the context 
of multivariate statistical estimation and analyzed according to Bayesian 
procedures. The core of our Bayesian graduation is shown to be the adop- 
tion of an appropriate prior covariance matrix. The prior covariance 
matrix is discussed in Section II, where we present necessary conditions 
for a matrix to be admissible as a prior covariance matrix in a graduation 
problem and examine some simple classes of admissible matrices. In Sec- 
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tion I I I  we suggest procedures for selecting a prior covariance matrix from 
the class of admissible matrices and for selecting the other parameters of 
the graduator 's prior distribution. Section IV contains an example of a 
Bayesian graduation and some Whittaker graduations of the same data. 
Finally, we conclude with remarks on some extensions of the Bayesian 
graduation method. 

Much of the background material which is needed for a full under- 
standing of this paper is contained in the appendixes. Appendix I contains 
an introduction to the algebra of vectors and matrices. In  Appendix I I  
this algebra is generalized to include a study of random vectors and ran- 
dom matrices and their application to probability. Appendix I I I  defines 
the multivariate normal distribution and discusses some of its properties. 

I .  A BAYESIAN GRADUATION PROCESS 

We will consider the following general graduation problem. We are 
given n observed rates ul, u ~ , . . . ,  u~, one for each of n values of an 
indexing variable such as age, duration, and so forth, and want to derive 
a set ~, v ~ , . . . ,  v~ of graduated rates. 

We shall use the vector notation of Appendix I to denote the se- 
quences of observed rates and graduated rates by the column vectors 

r ] U2 

1 J =  

Lu~.J 
I 

?)l 

~'2 
and v = . 

respectively. In  order to construct the graduation process, that  is, the 
means of deriving the vector g from the vector u, we shall have to in- 
troduce some random variables and vectors. In particular, let the random 
variable U~ be the observed rate for the ith of the n index values and let 
U be the column vector whose transpose is [U1, U,, . . . , U~], or more 
succinctly U = [UI, U2, . . .  , U,] ' .  Thus, U is a random vector of ob- 
served rates and u is a particular observation of U. 

For i -- 1, 2 , . . . ,  n, let Wi be the " t r u e "  rate which prevails for the 
ith index value. In  classical statistics Wi is not a random variable at all 
but  rather a fixed parameter  whose value is unknown, while in Bayesian 
statistics Wi is a random variable. We define the random vector W of 
" t r u e "  rates by W = [W1, W2, . . . ,  Why. 

In  this context graduation is the estimation of the random vector W, 
given that  the random vector U has value u. We will define v, the vector 
of graduated rates, as the value of this estimate. Having defined the 
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graduation problem as a statistical estimation problem, we can divide the 
Bayesian analysis into the four steps suggested by Jones [7]: formulation 
of the prior distribution, determination of a model for the experiment, 
derivation of the posterior distribution, and analysis of this distribution 
in accordance with the objectives of the problem. 

The graduator's first step in this procedure is the formulation of his 
prior distribution for W, the vector of "true" rates. His prior opinion pre- 
scribes that certain sets of vectors are more probable than others, and, in 
theory, he can translate all the factors which constitute his prior opinion 
into a unique multivariate probability density function for the random 
vector IV. The practical problem of determining the probability distribu- 
tion which best expresses his prior opinion is a formidable one. To facili- 
tate the graduator's selection of a prior distribution and to make ensuing 
calculations tractable, we shall limit his choice to the class of multivariate 
normal distributions. We believe that this class of distributions is suffi- 
ciently broad and robust to accommodate the graduator's prior opinion. 

Once this restriction to the class of multivariate normal distributions 
has been accepted, the graduator's probability density function for the 
random vector W can be expressed, according to Appendix III, in the 
form 

pro(w) = kl.exp [ -  ½(w --  m ) ' A - 1 ( w  --  m)], (I) 

where m, the mean vector, and .4, the positive definite covariance matrix, 
are the parameters of the family and kl -- [(2~r)"lA []-1/2. This first of 
the four steps of the Bayesian analysis is then completed by the gradu- 
ator's assignment of values to these parameters, a process to be discussed 
in Section III. 

The second phase of the Bayesian analysis is the determination of a 
model for the experiment, that is, adoption of a conditional probability 
distribution for t] given a certain value for W. Often the "experiment" 
in graduation consists of obtaining rates from a certain sample by means 
of some process such as a mortality study. We are then asking: Giv- 
en that the vector of true rates is equal to some fixed vector, say, 
w = [wl, w2, . . . ,  w,]', what would be the graduator's conditional distri- 
bution of U, the vector of observed rates? In mortality studies and sim- 
ilar experiments most graduators assume that the U~'s are independent 
and that each U~ is "binomially" distributed with mean w~, the " t r u e "  
~th rate. As an approximation to such a multivariate conditional distribu- 
tion of U, given W =. w, we shall adopt a multivariate normal distribu- 
tion with mean w and covariance matrix, Says B, for the graduator's mod- 
el of the experiment. The independence of the U~'s, given IV = w, is ex- 
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pressed by taking B to be a diagonal matrix. Thus, the model for the 
experiment prescribes the density function of U, given W = w, to be 

pVlw(UlW) = kt exp [-- ½(u -- w)tB-l(u - -  W)], (2) 

where B is some positive definite diagonal matrix as yet undetermined and 
k,  = [ (2 ,0"]B[]  - ' n .  

In other applications of graduation where the observed variables are 
not rates, such as smoothing average weights against the independent 
variable height, the argument for an approximation by a normal distribu- 
tion may or may not be convincing. For the cases where a normal dis- 
tribution does not adequately describe the graduator's conditional dis- 
tribution for the observed data, the specific method of this paper is not 
applicable. 

The third phase of the Bayesian analysis is the computation of the 
graduator's posterior distribution by means of Bayes's theorem, that is, 
the derivation of the conditional density function for the " true" rates W 
given the observed rates U. 

For continuous random variables, Bayes's theorem takes the form 

Pwlv(wl u) = ks(u)Pw(w) pvIW(U[ W) , (3) 

where k3(u) is some function of u. If we view (3) as a function of w for 
some constant u and substitute into equation (3) the formulas for 
pw(w) and pvlw(ul  w) as given by equations (1) and (2), respectively, 
we obtain 

Pwlv(WlU) = k4 exp { -  ½[(w - m) 'A- l (w -- m) 
(4) 

+ ( u -  w ) ' B - * ( u -  w)]}, 

where k4 = kx. k2" k3 is a constant, that is, depends only on u. Using the 
results of matrix algebra contained in Appendix I, we can rewrite the right 
side of (4) as the density of a multivariate normal distribution as follows: 

k, exp {-- ½ [ w ' A - l w  + w ' B - J w  - -  w ' B - t u  - -  w 'A  - !  m 

- -  u ' B - t w  - -  m ' A  - l  to]} exp  { - -  ½[u'B -1 u + m ' A  -J m]} 
(5) 

= ki exp {-- ½[w'(A -1 + B-Ow -- w'(B --I u + A -1 m) 

- (u'B-1 + m ' A - i ) w ] } .  

Now let v = (A -1 + B-I) - t  (B -I u + A -I m) and C = (A -I + B-0  -1 
and "complete the square" in the exponent to write (5) as 
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ks exp {-- }[w'C "-1 w -- w'C"'v -- tdC-'-' w]} exp {-- }t,,'C-' v} 

= k~ ex~ { -  ½(w - v)'C--~(w - v)}, 

where ke is not a function of w. 
Thus, the distribution of the vector W of " true" rates, given that the 

vector U of observed rates is equal to some fixed vector u, is a multivariate 
normal distribution with mean v = (A -I  + B-0  -1 (B -x u + A -1 m) and 
covariance matrix C = (A -I + B-l) -1. 

Having obtained the posterior distribution, we are now in a position to 
perform the fourth step of the Bayesian analysis: the analysis of the 
posterior distribution in accordance with the objectives of the problem. 
If we wanted the "most probable" rates, as argued by G. King [9], we 
would take the mode of the posterior distribution. As usual in statistical 
theory good arguments could be put forth for taking the median or the 
mean of the graduator's posterior distribution as the graduated rates. In  
our present model, which uses normal distributions, the mean, median, 
and mode coincide. Hence, it is natural to define this common value, 
namely, 

V -----" (A -1 + B-t)-I(B-lu -[- A - t  rgt) (6) 

to be the vector of graduated rates. 
Equation (6) is a formula which defines the graduated rates v in terms 

of the ungraduated rates u; thus equation (6) defines a graduation meth- 
od, which we shall call the Bayesian method. But before we can use this 
method, we must assign values to the n components m~ of m, the n posi- 
tive elements b,  of the diagonal matrix B, and the entries which deter- 
mine the symmetric positive definite matrix A. The symmetry of A im- 
plies that A is determined by specifying the n(n + 1)/2 elements on and 
above (or on and below) the diagonal. The assignment of values to these 
n + n + (n)(n + 1)/2 -- (n ~ + 5n)/2 parameters of the Bayesian meth- 
od will be discussed below. Before doing so, however, we shall give some 
interpretations of equation (6) to provide insight into the roles of these 
parameters. 

Equation (6) has a natural interpretation in terms of statistical estima- 
tion. Recalling the formula for the weighted average of two quantities, 
say, x, y with respective weights a, b to be (xa + yb)/(a + b), we can 
analogously say that the vector v of graduated rates defined by formula 
(6) is a generalized weighted average of the vectors of prior means and 
observed rates, each weighted by the inverse of the appropriate covariance 
matrix. This weighted-average interpretation emphasizes the symmetric 
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roles of the prior means and the observed values in determining the gradu- 
ated rates, thus reinforcing the concept of blending two inputs. 

Since B is a diagonal matrix, its inverse is easily calculated; hence the 
solution for v by means of equation (6) involves two nontrivial matrix 
inversions. To derive a formula for v equivalent to equation (6) but 
simpler computationally, we can rewrite equation (6) in the form 

v = u -b (A-'  + B- ')- ' [(B -1 u -b A - '  m) --  (A  -1 -b B - ' ) u ] ,  

v = u -k (A -1 -t- B-1) - ' [ a - ' (m -- u)],  

v = u -k [(A -1 -k B-1)-M-1]( m -- u) ,  (7) 

v = u q- [A(A  - t  + B-1)l-t(m -- u) ,  

v = u + ( I  q- A B - t )  -~ ( m - -  u ) ,  

where I denotes the identity matrix of order n. Because formula (7) in- 
volves only one nontrivial matrix inversion, the solution for v by means 
of (7) is simpler computationally than by use of (6). Formula (7) also 
possesses an interesting interpretation in that  it expresses the tradi- 
tional view of graduation as a modification of observed data, where- 
by to the observed vector u is added the adjusted difference vector 
(I -k- AB--*) -1 ( m -- u) to yield the graduated vector v. 

A third way of writing formula (6) naturally suggests itself. If we follow 
the procedure used in deriving formula (7) from (6) but interchange the 
roles of A and B and of u and m, we derive the formula 

v = ra "k ( I  -'b B A - ' ) - I ( u  - -  m ) .  (8) 

While not as practical for computational purposes, equation (8) stresses 
the Bayesian view of graduation as a systematic revision of the gradua- 
tot's opinion in the light of new data. Prior to observing the data his 
estimate of the " true" rates is m, the mean of his prior distribution, while, 
after viewing the observed rates, his opinion is modified by the quantity 
(I  q- B A - 1 ) - ' ( u  --  m).  

Let us now compare the general Bayesian method presented herein 
with the difference-equation method originated by Whittaker [14, p. 303] 
which could be considered a first Bayesian approach to graduation. We 
noted previously that the vector v as defined by formula (6), (7), or (8) 
is, at  the same time, the mean, median, and mode of the posterior dis- 
tribution. The definition of v as the mode implies that v is the unique 
value which maximizes the posterior density given by (4), or equivalently, 
which minimizes the quadratic form 

( u -  w) 'B-~(u - w) + (w --  m) 'A -~ (w  --  m ) .  (9) 
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If we denote the (i, j)th element of A-* by ~s; so th~'Lt A - t  = [z4i] and 
denote b~ 1 by es, equation (9) takes the form 

~ * s ( u s - w s ) ' +  ~ ~ (w4--m,)z4j (w,- -mi) .  ( 1 0 )  
4--1 i - - I  ¢~1 

Now, in the mixed difference type B method of graduation the graduated 
rates are those which minimize the quadratic form 

~ es(Ws- us) ~ 
4--1 

(11) 
n - - !  n - - 2  ~ - - k  

4--1 4--1 4--1 

where e~ is the weight ascribed to the ith obsemzed value and hi expresses 
the emphasis to be placed on the measure of roughness 1 defined by ] th 
differences. 

The striking similarity between expressions (10) and (11) is further 
justification for considering Whittaker's method a special case of the 
more general Bayesian method. The first summation of (10) 

~.d ei(w4--u4)'  ( 1 2 )  

is identical in appearance to the first summation, the measure of depar- 
ture, of the corresponding Whittaker formula (11). The only difference 
between the two is perhaps in the assignment of values to the set of e~'s. 
Of course, no general statement can be made about this assignment as it 
depends on the nature of the data; however, we can make the following 
comparison for the case of mortality data. 

In the Bayesian formula, each (es) -1 is the variance of the graduator's 
conditional distribution for the observed rate Us, given the true rates 
IV, = wx, W2 = w ~ , . . . ,  W, = w,. For a mortality study we think of 
Us as OdEs, where 04, the (random) number of deaths, and E~, the ex- 
posure, are measured in lives or amounts (here E4 is capitalized to con- 
form with the usual exposure notation of mortality studies and not to 
conform with our use of capital letters for random variables). If the unit 
of measurement is lives and if there is no migration then, for most 
graduators, Os would have a binomial distribution with parameters ms 
and Es. Hence the variance of Os would be g,av~(1 -- w~), and the variance 

* Since ~e~(g~ -- q~')~ and ~(A~q) s decrease with increases in fit and smoothness, re- 
spectively, we prefer to call such expressions "measures of departure" and "measures of 
roughness,': as suggested to us by  I'. N.  E. Greville. 
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of Ui -- OjE~ would be wi(1 -- w~)/Ei. If the unit of measurement is 
amounts and if there is no migration, then the graduator's variance of 
Ui = OdEi would be 

nl 2 nl 

where sq is the amount on the j th  life of the n; insured lives in the ith age 
group. Since the normal distribution model which we have adopted re- 
quires that the variance of the graduator's conditional distribution (13) be 
free of wl, we suggest using mi(1 -- ml)/Ei or mi(1 -- mi)/(Ei/s~), where 
m i  is the mean of the graduator's prior distribution for We--to be dis- 
cussed in Section I I I - - and  ~ is an approximation to 

For other discussions of work requiring similar approximations, see 
D. Cody [2] and I. Rosenthal [11]. We shall not suggest corrections for the 
case of nonnegligible migration. 

In Whittaker's method the e~'s have traditionally been taken equal to 
1 (in the type A graduation) or equal to the exposure Ei's (in the type B 
graduation). In 1955, Camp [1] suggested assigning to e¢ the value 

Ei 
v * ( t  - v * ) '  

where v~ is the ith rate obtained from a preliminary type A graduation. 
For a history of similar suggestions made in the context of other gradu- 
ation methods see reference [15], p. 96. 

The significant difference between expressions (10) and (11) lies in their 
second summations, 

~ ( w l -  mi)~.,i(wj- my) ( 1 4 )  

and 
k n--j  

/ = l  i = l  

respectively, both of which are quadratic functions of the wi. 
In the following section we shall investigate various covariance ma- 

trices A leading to corresponding quadratic forms (14). I t  will be shown 
that  (14) has a meaningful interpretation as a measure of the degree of 
disconformity of w with the graduator's prior opinion in much the same 
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sense as (15) is used as his measure of roughness in the Whittaker formula. 
We shall consider, in particular, a class of covariance matrices whose 
inverses generate quadratic forms similar to those of Whittaker's method. 

II. THE PRIOR COVARIANCE MATRIX 

Section I presented the theoretical foundations for a statistical method 
of graduation. The vector o of graduated rates was defined as v = 
(A -I  + B--l) -1 (B -1 u ~ A -1 m), where u is the vector of observed 
rates. The elements of the vector m and of the matrices A and B serve as 
parameters of the graduation. As in other graduation methods the gradu- 
ator must assign values to the parameters in order to derive a set of gradu- 
ated rates. But, unlike other graduation methods, Bayesian graduation 
has been placed within the framework of a statistical theory which guides 
the selection of the parameter values to the extent that the selection of 
any statistical procedure is guided. The interpretation of B as the 
covariance matrix of the conditional distribution of the vector U of ob- 
served rates given the vector W of true rates guided the selection of 
values for the n nonzero elements of the diagonal matrix B. In this section 
we shall study the graduator's prior distribution of W in order to get 
insight into a procedure for selecting values for the elements of the 
covariance matrix A of his prior normal distribution for W. 

The fundamental basis for graduation is the existence of a strong rela- 
tionship among the rates. R. Henderson thus requires that data suitable 
for graduation must constitute a "connected series in which e a c h . . .  
bears a special relation to the groups immediately preceding or following 
i t"  [5, p. 2]. M. D. W. Elphinstone [3, p. 18] expresses this same idea as 
follows: 

Unless we postulate that there are relations between neighboring rates, we 
are wrong to graduate---wrong in the sense that we make a mistake, for the crude 
rates are the only right answer. The theory of graduation is then the theory of 
relations between neighboring rates, and it is in the power we have to choose 
between different relations that our minds have room to differ, to give effect to 
individual judgments. 

The corresponding statement in the context of the Bayesian statistical 
view of graduation is the assertion of a prior opinion in which the random 
variables W1, W 2 , . . . ,  W, are not independent or- -what  is equivalent 
for normally distributed random variables--are not uncorrelated. Thus, 
the "special relation" to which Henderson refers and the "relations be- 
tween neighboring rates" to which Elphinstone refers are summarized by 
the correlation coefficients in the graduator's prior distribution for W, 
called his prior correlations. 

Intuitively, the correlation coefficient ¢~ between the normally dis- 
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tributed random variables Wi and Wj has two significant properties 
which make it an important concept in graduation. First, the correlation 
is a measure of the degree and "direction" of stochastic dependence be- 
tween two normally distributed random variables, a positive correlation 
meaning that large values of one random variable are generally associated 
with large values of the second random variable. For example, when we 
say that our prior opinion prescribes a positive and large (i.e., only slightly 
less than 1) correlation coefficient between the true mortality rates (as 
distinguished from the observed mortality rates) at ages 30 and 31, we 
mean that for any population in which the true mortality rate prevailing 
at age 30 is large we should expect the true mortality rate at age 31 also 
to be large, and conversely. 

Second, the correlation coefficient--or, more precisely, the absolute 
value of the correlation coefficient--is a measure of the extent to which 
knowledge of one normally distributed random variable improves the 
ability to estimate the second. In particular, if cCj is the correlation coef- 
ficient between normal random variables W~ and Wj and the (marginal) 
standard deviation of Ws is p, then the standard deviation of the condi- 
tional distribution of Wi given W~ is px/1 -- cli (see Appendix III).  
For example, on the basis of existing knowledge and belief, a graduator 
is able to make an educated guess about the true mortality rate prevailing 
at age 30 in a certain population. If, however, he actually knew the true 
rate prevailing at age 31, he could predict the true rate at age 30 with 
more certainty. 

These two intuitive properties of the correlation coefficient--stochastic 
dependence and reduction of uncertainty--wiU be made more precise in 
the next section when we discuss some procedures for determining the 
prior correlation coefficients defined by a person's prior opinion. 

A functional relationship exists between the elements of the prior 
covariance matrix A and the prior correlation coefficients. The correla- 
tion c~- between the random variables W~ and W~ is defined by 

coy(W,, Wj) 
o'~cr t 

where ~r, is the standard deviation of W~. Since the covariance matrix 
A = [aq] is defined by ao = coy (W~, Wi) for i # j and ai~ ~ , t ,  we 
have the formula 

aq 
c ° =  n / ~ '  ( 16 )  

which relates the prior correlation coefficients with the elements of the 
matrix A. 
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An important goal of this section and the next is the development of a 
procedure whereby a graduator, on the basis of his own prior opinion, can 
select a matrix A to use in the graduation procedure. A first step in this 
direction would be to abstract certain features common to every gradua- 
tor's prior opinion and then to restrict our attention to classes of matrices 
which at least reflect these common features. 

First, any prior opinion in a graduation problem would prescribe that 
nearby rates, that  is, rates for nearby values of the independent variable, 
are more highly correlated than are more distant rates. Stated more pre- 
cisely, if j is between i and k in the sense that i < j _< k or i _> j ~ k, 
then c~ >__ c~. Using formula (16), we can restate this condition in terms 
of the elements of the matrix A as follows: 

i < j _< k or i _> j _> k implies a o / ~ j ~  > ai~/'v/'~k~. (1 7) 

Second, we would probably agree that in most graduation problems we 
would want c~ to be positive (or at least nonnegafive) for all i and j .  By 
formula (16) it is clear that the condition co >_ 0 for all i a n d j  is equiva- 
lent to the condition 

a~j> 0 for all i a n d j  (18) 

for the entries a~ of the matrix A. 
Properties (17) and (18) are two conditions which a matrix A =- [ao'] 

must satisfy in order to be admissible as a covariance matrix of one's prior 
distribution of the " true" rates in a graduation problem. In addition, any 
covariance matrix A has the property: 

A is symmetric (19) 

and, by the definition of the multivariate normal distribution, 

A is positive definite. (20) 

Hereafter, any nth order matrix (where n is the number of values of the 
independent variable in our graduation problem) which has all of the 
properties (17), (18), (19), and (20) will be called admissible, and we shall 
restrict our attention to admissible matrices. 

Let us now study a simple class of admissible matrices which possess 
certain interesting properties. Consider the class, which we shall call ax, 
of all nth order matrices of the form A = [aq], where ai~ = p~rl ~-il for 
p > 0 and 0 < r < 1. The general matrix in class ax for, say, n - 4, is 

p~r ~ p~r 
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The numbers p and r serve as parameters which index the class al in the 
sense that  each pair of p and r determines one, and only one, matrix of 
the class. I t  follows from formula (16) that  if a graduator selects a matrix 
A = [a~;] = [p2rt~il] as a covariance matrix for his prior distribution of 
W, then his prior correlation c~,~+t between the rate W~ and its immediate 
neighbor W;+I is r, while his prior standard deviation of any rate is p. 
Thus, the two parameters p and r have meaning in terms of familiar sta- 
tistical concepts to guide their evaluation. 

We now prove that  every matrix in class al is admissible. Let  A = 
[als] = [p~rl~-il] be any matrix in class at. To verify condition (17), it is 
sufficient to note that  if j is between i and k, then l i - j [  < l i - k [  ; 
hence rl~il  > rli-kl, since 0 <_ r < 1. I t i s  obvious that  a~; > 0 for all i 
and j ,  since r is nonnegafive. A is symmetric since a~s = p~rl~-il = 
p~rl i-il =a i i .  To prove that  A is positive definite, it is sufficient to prove 
that  A - t  is positive definite. Consider the matrix Z = [z~;], where 

I ]  + r  2 

P 2 ( 1 - - r ~ ) z ~ J = l l  r 

for i = j = 1 
for 1 < i = j < n 
for i ==J , "  = n 
for  i--jj=l 
otherwise; 

that  is, the elements on the principal diagonal of Z are (1 + ri)/p~(1 -- r ~) 
except for the elements in the upper-left and lower-right corner, which 
are 1/p~(1 --  r~); the elements on the diagonals immediately above and 
below the principal diagonal are all --r/p2(1 -- r2); and all the other ele- 
ments of Z are zero. If  we multiply Z by A,  we get I . ,  the nth order iden- 
t i ty matrix; hence Z = A -1. Now, if y = [yl, y2, • • • ,  y.]' is any vec- 
tor, then y 'Zy  = 

£ ~ y i z i j y i  
i=1 i=1 

,,(1 , , ) y ;+y : -2 ,  y,y,+,+(l+r') y', ( 2 1 )  

1 r 1 .-1 
= -~[1-'-Z'-fi ~ ( Y, -- r Y,+I ) '  + y~] . 

But  (21), a sum of squares, is positive for all y # 0. Therefore Z and 
hence A are positive definite. 

We showed previously that  the vector v of graduated rates defined by  
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the Bayesian method is that particular w which minimizes the quadratic 
f o r m  

( u  - -  w ) ' B - x ( u  - -  w )  ~t. ( w  - -  m ) ' A - l ( w  - -  m ) .  ( 2  2 )  

The first term of (22) was shown to correspond to the measure of depar- 
ture of Whittaker's method. In order to gain some insight into the sig- 
nificance of adopting a matrix A in the class ax as an approximation to 
one's true prior covariance matrix, let us now examine the second quad- 
ratic form, 

(w-  m)'A-'(w- m), (23) 

as a generalization of the roughness term of Whittaker's method. 
According to formula (21), quadratic form (23) is 

1 [ ( w l _  m l ) 2 +  (w _ m,)2 
p2( 1 - r ~) 

n-- I  s--1 

i - -1  i - - 2  

and this can be written in the form 

II r . - 1  "2 • 1 - - r ~  

( 2 4 )  

+ l - - ~ [  ( wl--  ml )' + ( w . -  m . ) '  ] t • 

The first summation of (24), 
n - - |  

r [ ~ ( w , -  m,)  ], (2S) 
p ~ (  1 - -  r 2)  

is never negative; and is zero for r ~ 0 if, and only if, there exists a con- 
stant ¢ such that w~ = m~ q- ¢; that is, if, and only if, the distance be- 
tween the graphs of the sequences m~ and wi is constant. Thus (25) can 
be interpreted as a measure of the disparity between the shapes in the 
graphs of the wl and the graAuator's prior means m~. The remainder 

r r)[(~ol--ral)2+(w.--ra.)~] ( 2 6 )  1 - - r  (w~_mi)~+ p2(l.~. 
p ' ~ - f ~ - r )  ,-x 

of (24) is a weighted sum of squares of the deviations of we from me and 
can be interpreted as a measure of the departure of w from the vector m 
of prior means. Thus expression (24), which is the sum of (25) and (26), 
serves as a measure of the disconformity of a vector w to the graduator's 
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prior opinion, the measure consisting of two components: a measure of 
the incongruity of w and m and a measure of the departure of w from m. 
Hence the graduated rates minimize a sum of a measure of the departure 
of the rates from the observed rates and a measure of the disconformity of 
the rates with prior opinion. This is a direct generalization of Whittaker's 
method, in which the only measure of disconformity with prior opinion is 
roughness. 

As a further illustration of the interpretation, let us regard (24) as a 
function of r, the prior correlation coefficient between neighboring rates. 
If, as is often the case, the graduator's prior opinion about the level of the 
rates is vague, although his opinion with regard to the "shape" of the 
rates is relatively strong, then his prior standard deviation p for W~ may 
be large, although his conditional standard deviation px/1 -- r ~ for Wi, 
given W~+I, would be small. Hence his prior opinion would dictate a value 
of r close to 1. As r approaches 1, expression (25) increases relative to (26), 
thus reflecting this emphasis on the shape rather than the general level of 
the rates in the graduator's prior opinion. 

Conversely, for r small, the measure (26) of the departure rather than 
the measure of incongruity dominates (24), the total measure of discon- 
formity with the prior opinion. If r were actually zero corresponding to 
independence of the rates, then (25) would vanish and the ith graduated 
rate ~ would merely be a weighted average of the ith prior mean m~ and 
the ith observed rate ui. 

If the prior means m~ were equal (which they normally would not be) 
and if r were increased toward 1 while p increases without bound in such 
a manner that r /p~(1  - -  r ~) approached some positive constant, say, h, 
then expression (24), the expansion of (w - m)' A -1 (w -- m) would ap- 
proach 

h E (Aw~) ~ 

Hence, expression (22), the quantity minimized by the graduated rates in 
the Bayesian method, would approach 

e ~ ( u ~ - w l ) ~ q - h  (Aw~) ~ , 
i~l ~ I  

which is the quadratic form minimized by the graduated rates in a type B 
Whittaker graduation which uses a first-difference measure of roughness. 
If, in addition, the set of e~ for both methods was assigned the same set 
of values, then the two methods would define the same set of graduated 
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rates. Thus, class al produces a graduation method which is a generaliza- 
tion of a type B first-difference Whittaker method. 

By restricting his search for a covariance matrix to matrices belonging 
to class al, a graduator achieves the economy of having to assign values to 
only two parameters, r and p, but perhaps sacrifices fidelity to his true 
prior opinion, for it is possible that  no matrix in this class is an adequate 
approximation to his true prior covariance matrix for W. Matrices of class 
ax would be appropriate only if he felt that the correlation coefficient be- 
tween any rate W~ and its immediate successor W~x were the same for 
all i. While this condition may be a good approximation in the case of 
equally spaced data, it might not be appropriate for unequally spaced 
data. For example, suppose it were required to graduate a vector u of 5 
observed mortality rates, say u = [qx0, q20, q~, q30, qsoY. A graduator 
would then define random variables W1, W2, Ws, W4, W6 to be the true 
mortality rates at ages 10, 20, 25, 30, and 50, respectively. In his prior 
distribution for the random vector W--  [ W 1 , . . . ,  W6Y, it would be 
unrealistic to have the correlation between W2 and W3, the true rates at 
ages 20 and 25, equal to the correlation between W4 and Ws, the true 
mortality rates at ages 30 and 50. 

For graduation of unequally spaced data or any data in which the se- 
quence of prior correlation coefficients between W~ and W~-x is not con- 
stant for different values of i, a matrix from the class al would not be 
appropriate for expressing prior opinion. Let us therefore consider a 
larger class a~ of nth order matrices of the form A -- [a~s] defined by the 
rule 

~'--1 

P~ r [  rk for i < j 

a~j= p2 for i = 3  (27 )  

P~ H r~ for ~ > 3 , 

where p is any positive number and rl, r ~ , . . . ,  r~-i are each nonnegative 
numbers less than 1. For example, the general matrix in class a~ for 
n -- 4is 

[ p' g,x g,x,, p',x,,,,] 
p~ra p~ p~r z p2r 2r 8 

A = ]p~rxr2 p~r2 p~ p~rs " 
[ pirxr~r~ p~r~r~ p~rs p~ 

Clearly, any matrix which is a member of class ax is also a member of class 
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If a matrix A as defined by (27) is adopted as the covariance matrix in 
a prior distribution of W, then by formula (16), the prior standard devia- 
tion of W~ is p for all i, and the correlation coefficient between Wi and 
W~+, is r~. Hence an adoption of the common standard deviation of each 
of the rates and the correlation between every pair of adjacent rates in 
the prior distribution determine a unique matrix from the class a~. I t  can 
be proved that every matrix in class a~ is admissible. We omit the proof 
but  instead refer the interested reader to reference [8]. 

All the elements a ,  on the principal diagonal of any matrix A in class 
at or a2 are equal to p~. Therefore, if A is the graduator's prior covariance 
matrix for a random vector IV, his prior standard deviations of all the 
W~ are equal to p. But this may not be a good approximation to his true 
prior opinion. For example, for him it may be more probable that q,0 lies 
in a certain interval centered at m30 than that q~o lies in an interval of 
equal length centered at roT0. Hence his prior standard deviation for the 
true rate at age 30 would be smaller than his prior standard deviation for 
the true rate at age 70, and no matrix in class a2 would be an adequate 
approximation to his covariance matrix. 

Fortunately, we can further enlarge our classes of admissible matrices 
to include some matrices with varying prior standard deviations. We 
omit the proof of the following theorem. 

Theorem.--If an nth order matrix of the form A = [c~i] is admissible 
and if p,, p , , . . . ,  p, are any set of positive constants, then the matrix 
A* = [P~Pic~A is also admissible. 

The import of this theorem is the ability to construct an admissible 
matrix from a matrix of correlation coefficients and a set of standard 
deviations. In particular, a graduator may be able to find a matrix among 
those in the class at with p = 1 which expresses his prior correlation coef- 
ficients adequately. Next, he may determine the set of n standard devia- 
tions pl, p,, • • • ,  p, of his prior distribution. Then, by (16), his covariance 
matrix is A = [a~j] = [p~p/~-/I], which is admissible by the theorem. We 
shall denote by a the class of all matrices generated in this manner. 

In. ELICITING THE PRIOR DISTRIBUTION 

Section I presented the theoretical foundations for a graduation meth- 
od in which the graduated rates depend not only on the observed data but  
also on prior information available to the graduator. This prior informa- 
tion or "prior opinion" is represented by the graduator's prior probability 
distribution for the random vector W of true rates. Because of the adop- 
tion of a multivariate normal model, his prior distribution can be uniquely 
specified by the mean vector ra and the covariance matrix A. Section I I  
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presented various classes of matrices from which a graduator might choose 
an approximation to his covariance matrix. In this section we discuss pro- 
cedures by which a graduator can elicit (approximately) m and A from 
his prior opinion. 

The Vector m of Prior Means 

The ith element ml of m is the mean of the graduator's prior distribu- 
tion for the ith true rate W~. In a normal distribution, the mean is also the 
median and the mode; hence ml is the value which has probability .5 above 
it and .5 below it and which is the "most probable" value in the gradua- 
tot 's opinion for the true rate W~. 

Suppose there were no observed data at all. Then the prior and pos- 
terior distributions would be identical, and mi would be the ith "gradu- 
ated" rate. Therefore, ml can be further characterized as being that value 
which, based on his prior information, the graduator would use for the 
ith rate if there were no observed data. 

Tke Diagonal Enlrles of A 

The graduator's prior distribution of the ith rate Wi by itself (i.e., his 
prior marginal distribution of W~) is a univariate normal distribution with 
mean ml and variance a~ = a~i. Having elicited ml, the graduator can 

2 determine ¢i -- aii by specifying the length of the interval symmetric 
about ml, in which a given fraction a of his probability lies. Then, after 
determining by introspection the value of b for which 

P r { m ,  - 5 < w ,  < m, + b} = ~ ,  (28)  

he can use a table of the standardized normal distribution to solve for ¢i. 
In general, if he chooses a different a, determines the corresponding b 
which satisfies equation (28), and again solves for ¢i, he would obtain the 
same result only if his prior distribution were precisely a normal distribu- 
tion. We therefore suggest that in practice the results for several pairs of 
a and b be averaged. 

As an example, let us suppose that for a -- .50, a --- .90, and a = .999, 
the graduator's values of b which satisfy (28) are b -- .0007, b = .0015, 
and b = .0025, respectively. According to the table for the normal dis- 
tribution, 

Pr{t~ -- .674¢ < X < ~ + .674~} = .5 ; 

hence .674ai -- .0007. Similarly, 1.645cr~ = .0015, and 2.574~ri = .0025. 
/ 

The average of the three solutions for vi is a~ = .00097. 
A calculation in this detail for each ai in the graduation of a large table 

would probably not be justified. In such a case, the graduator might 
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adopt a functional form for cry; for example, for all i, ¢~ = c, ¢~ = cx/mo 
or .~ = cx/m~(1 -- ms). Probability statements such as (28) may then 
be made for several values of i and a and solved for c. These solutions 
would then be averaged. 

The Remaining Elements of A 

Having determined each ml and a , ,  the graduator has specified his 
prior marginal distribution for each W~. But, in order to specify com- 
pletely his prior joint distribution for the random vector W, he must, in 
addition, specify how the W/s  are stochastically related; that is, he must 
specify the set of covariances ao" between each pair W~ and Wj for i # j .  
Rather than work with covariances directly, it is often simpler to work 
with the set of correlations c~; and then to compute the covariances by 
the relation a~ = c ~ i ~ .  Thus the determination of the graduator's 
covariance matrix is reduced to the selection of an appropriate set of cor- 
relation coefficients. 

To aid the graduator in eliciting his correlations, we choose to interpret 
them as his expression of smoothness. A graduator has opinions regarding 
the value of the true rate at each value of the independent variable, which 
are summarized by his prior marginal distribution for each rate. Thus for 
each i his prior density for W~ will be distributed along a line segment at i 
as in Figure A. If he were given the true values of the neighboring rates 

I I I t 
i i - - 1  i i + 1  

Fxo. A FIG. B 

at i -- 1 and at i + 1, then he would sharply contract the dispersion of 
his opinion for the value of the unknown rate at i, as indicated in Figure 
B. In concepts of traditional graduation this contraction is an expres- 
sion of his requirement that the rates W¢-1, W~, and W~+I be part of a 
smooth sequence. In the concepts of Bayesian statistics it is the charac- 
teristic of W/s  being highly correlated with W~-I and W~+I, that is, the 
greater the contraction the greater is the correlation. 

Now we want a procedure which translates the magnitude of this con- 
traction of his prior distribution to his conditional distribution into values 
(or equations) for his correlations. In general, the contraction may be 
measured by using equation (28) to compare the lengths of intervals sym- 
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metric about his prior mean m~ and containing prior probability a, 
that  is, 2t(a) in (29), 

Pr{m, - t ( . )  < w ,  < m, + t(~)} = ~ ,  (29) 

and the lengths of intervals symmetric about his conditional mean m* 
and containing conditional probability ¢t, that  is, 2t*(a) in (30), 

P ,  lm* - t*(~) < w ,  < m* + t* (~ ) lw+ , ,  w + , }  = ~ ,  (3o)  

for a set of selected values for a. In particular, with our restriction to 
normal distributions, this reduces to comparing the standard deviation of 
the graduator's prior distribution for W~ and the standard deviation of 
his conditional distribution for W,, given W,-x and W~+x, which we will 

~tenote by ~*. Now 
(~*)' = crl(1 - -  d' D--'  d ) ,  ( 3 1 )  

~here  

Ci, i + l  Ci--1, i + 1  l J 

so, after determining a~ and a* by the method described earlier using 
equation (28), the graduator has an equation for the three correlation 
coefficients. 

Repetition of this procedure for (~) suitably chosen sets of three rates 
(some would necessarily not be adjacent) would guide an idealized gradu- 
ator to a determination of his matrix of correlation coefficients from the 
class of positive definite matrices with ones on the principal diagonal. 
But due to the unwieldy system of (;) nonlinear equations which result 
and, more especially, to the imprecise structure of a real graduator's prior 
opinion, use of the procedure without some previous restriction of the 
covariance matrix to a smaller class of matrices is not practical. In Section 
I I  we discussed some classes of positive definite matrices which may serve 
as covariance matrices. We will now use one of these classes in an example. 

Let us assume that the graduator will select a matrix from the class a 
(defined on p. 82) as the covariance matrix of his prior distribution. Then 
his correlation matrix will be in the class of nth order matrices [ci~'] ffi 
IriS-ill for 0 < r < 1. Selection of his correlation matrix from this class is 
equivalent to the selection of a number r between 0 and 1 (0 included) 
such that r is his prior correlation between every pair of rates W~ and 
W~+x with subscripts one unit apart, r g is his prior correlation with sub- 
scripts two units apart, and so forth. Thus, substituting into (32) and 
then (31), we have 

d-.ffi [ ; ]  and Dffi,[ 1 ;"] 
V2 ~' 
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and 
( I  - 

( ~ * ) ~ =  ~ \ t  + r2/" 

Now, to determine r, the graduator can determine his conditional stand- 
ard deviation =,-v/(1 -- rg / (1  + r25 by the method used to determine 
his marginal standard deviation ~ and then solve the resulting equa- 
tions for r. In particular, suppose for a = .50, ~ = .90, and a = .999, his 
values of b which satisfy (28), given the true values of W~-I and 
W~+I, are b = .00008, b = .0002, and b = .0003, respectively. Hence 
.674=~x/(1 -- r ' ) / (1 + r9 = .00008, 1.645a,x/(1 -- rg / (1  + r9  = .0002, 
and 2.574=,~/(1 -- rg / (1  + r9  = .0003. The average of the solutions for 
=,-~/(1 -- rg / (1  + r9 in the above equations is =i~/(1 -- r g / ( !  + r9 
= .00012;if¢~ = .00097, then x/(1 -- rg / (1  + r ~) = .00012/.00097 -- 
.1237, and hence r = .985. 

Conclusions 

The methods that  we have suggested for eliciting the graduator's prior 
distribution may appear vague and imprecise. However, we do not feel 
that this vagueness or imprecision invalidates the use of the Bayesian 
method. I. J. Good, in his book The Estimation of Probabilities [4, p. 11], 
remarks: "Consider any statistical technique with which you have some 
sympathy. Find out whether it is equivalent to the use of an initial 
[prior] probability distribution by using Bayes' theorem in reverse. Then 
replace this initial distribution by a better one" (italics his). Whittaker's 
graduation method is a technique with which actuaries have sympathy. 
From Whittaker's exposition [14, p. 303] we know that the method is 
equivalent to the use of an incompletely specified prior probability dis- 
tribution. Here, while our model and suggestions have been toward ap- 
proximations to the graduator's prior distribution, we are confident that 
the replacement will be a "better prior" than the incomplete one first 
suggested by Whittaker. We subscribe to the comparison, attributed to 
the probabilist and actuary B. de Finetti, of those who are deterred from 
using Bayesian methods because of the availability of only vague deter- 
minations of prior distributions to the man who refuses to build his house 
on sand and attempts to build it instead on a void. 

IV.  EXAMPLES 

In this section examples will be presented of graduations effected by the 
Whittaker and Bayesian methods. The same data will be graduated by 
each method in order to facilitate a comparative analysis of the results. 

The data to be graduated for this example consist of a sequence of 
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thirteen weighted observed mortality rates. The rates summarize the 
experience between the 1961 and 1962 anniversaries of policies issued in 
1955 on standard medically examined female Hves as published in the 
1963 Reports [13, p. 29]. Each of the first twelve rates is the mortality rate 
for a five-year age group from ages 10-14 through 65-69, while the 
thirteenth is the rate for ages 70 and over. 

The results of graduating the data by second-difference Whittaker type 
B formulas are presented in Table 1. The set v, of graduated rates is that 
sequence w, which minimizes the function 

18 II 

X; h X; 
~--1 t:--I 

where u, is the ith observed rate, e, is the total of the face amounts in units 
of $1,000,000 for the ith age group, and h is an arbitrary parameter which 

TABLE 1 

WHITTAKER GRADUATIONS FOR FIVE VALUES OF It 

1.. 
2.. 
3.. 
4.. 
5.. 
6.. 
7.. 
8.. 
9.. 

10.. 
11.. 
12.. 
13.. 

AOE 
GRout, 

10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
4O-44 
45-49 
50-54 
55-59 
6O-64 
65-69 
70 and 

over 

I1.64 
13.19 
23.80 
34.94 
51.62 
65.83 
73.22 
60.67 
33,60 
18.12 
6.98 
1.85 
0.31 

~XlOa 

0.00 
0.00 
0.04 
0.80 
1.32 
I.II 
3.41 
4.70 
6.01 
7.72 
4.15 
5.93 
9.74 

k ~ .1 

0.00 
0.00 
0.05 
0.80 
1.31 
1.12 
3.40 
4.70 
6.03 
7.64 
4.33 
5.86 
9.16 

G]t&UVAZ'ZD RA'rZS vi XIOm 

k--1 k - - lO k-- tO0 

- 0 . 0 1  - 0 . 1 0  --0.40 
- 0 . 0 2  0.00 - 0 . 1 3  

0.09 0.22 0.17 
0.78 0.69 0.59 
1.26 1.09 1.16 
I. 20 I. 52 I. 96 
3.36 3.22 3.21 
4.72 4.75 4.51 
6.09 6.0g 5.64 
7.24 6.70 6.51 
5.18 6.24 7.11 
5.57 6.00 7.69 
6.85 5.88 8.28 

h-- 1,000 

--1.28 
!-o.64 

0.02 
0.71 

i 1.47 
2.32 

1 3.28 
4.28 
5.29 
6.26 
7.21 
8.15 
9.09 

represents the relative emphasis to be placed on the measures of rough- 
hess and departure. For h small the graduated rates are close to the ob- 
served rates, while for h large the graduated rates tend to lie on a straight 
line. Results for five values of h between these two extremes are presented 
in Table 1. 

For  none of the five values does the Whittaker method produce an 
acceptable (to us) sequence of rates. For h -- .1, 1, or 10, the sequence is 
not always increasing, as our opinion demands. For  h = 100 or 1,000, 
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each sequence is always increasing, but  each possesses significant negative 
values which are, of course, impossible for mortality rates. Furthermore, 
none of the five sequences displays the increasing rate of increment which 
is characteristic of human mortality at the higher age groups. 

The most plausible explanation for such unsatisfactory results is the 
unusually small observed rates at the three highest age groups. For appli- 
cation of the Whittaker method to such scant data, an artful user of the 
method would make certain adjustments either to the observed rates or to 
the graduated rates to bring them into conformity with his opinion. We 
submit that a more objective and theoretically correct insertion of his 
opinion may be effected by use of personal probability and Bayesian sta- 
tistics, as outlined in the previous sections and as now illustrated for this 
example. 

Table 2 presents a Bayesian graduation of the same data that were 
graduated by the Whittaker method. The Bayesian method defines the 
vector v of graduated rates to be the mean of the graduator's posterior 
distribution, which is 

v = (A -~ + B-~)-I(B -1 u + A-~ra) ,  

where u is the vector of observed rates, rn the vector of his prior means, 
A the covariance matrix for his prior distribution of the rates, and B 
the covariance matrix for his conditional distribution of the observed 
rates given the true rates. The parameters of the method are the n prior 
means ms, the n positive elements b~ of the diagonal matrix B, and the 
n(n + 1)/2 elements a~. which determine the positive definite, symmetric 
matrix A. 

For this example the vector m of our prior means consists of a sequence 
of thirteen weighted graduated mortality rates taken from the 1955-60 
Select Basic Tables [12, p. 46]. These rates were derived from crude mor- 
tality rates in the seventh policy year among female lives on which stand- 
ard ordinary life insurance policies had been issued in the years 1949-54. 
The policies had been issued on the basis of a medical examination, except 
that the data for lives aged below 25 years at the issue date included 
policies issued without a medical examination. The tabulated rates were 
the result of graduating the crude rates as part  of a larger collection of 
data. These graduated rates from the 1955-60 Select Basic Tables, which 
we take for our prior means, represent the same age groups as do the 
observed data of our example and are similarly weighted by the face 
amount of the policies. 

Our prior standard deviations p~ of the random variables W~ were 
derived by the method of Section III ;  that is, if ms is our prior mean of 
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W/, then our prior probability of the event ] W/-- m/l _< p/is approxi- 
mately .683. Hence, once we determine the symmetric interval about m/ 
in which 68.3 per cent of our prior probability lies, we can then determine 
p+ Rather than perform this procedure for each 4 it was decided to take 
our prior standard deviations approximately proportional to ~/~. The 
values for ps given in Table 2 imply, for example, that to each of the 
events 0.07 < 1,000 W1 < 0.59 and 29.84 < 1,000 Wla < 34.94 we assign 
prior probability .683. 

In this example the correlation coefficients of our prior distribution 
of W were derived by a somewhat different method from that suggested 
in Section III.  Rather than examine the reduction in uncertainty about 
a rate W~ caused by knowledge of both neighboring rates W~-x and W~+I, 
we considered the reduction of uncertainty about W/caused by knowledge 
only of W~+I. Then, if p~ is our prior standard deviation of W¢, our prior 
standard deviation of W/, given the value of Wi+x, is p,~/1 -- r~, where 
r~ is our correlation between W/and  Wi+l. Thus the ratio 

PC 
p , v ' l  - , I  

of our prior standard deviation of W / t o  our standard deviation of W/, 
given W~+I, is a measure of the extent to which knowledge of W~+x de- 
creases our uncertainty regarding W/. In this example the above ratio is 
taken to be 3 for all i; that  is, our standard deviation for W/, given 
W~+I, is one-third of our prior standard deviation for W/. Thus, we have 
r~ -- r -- 2~/2-/3 = .942809. Our prior correlation coefficient between W/ 
and W~+~ for k > 1 is taken to be r ~, so that  our prior covariance matrix 
is A -- [a/i] = [i~p~¢l+-~'l], where the sequence p / i s  given by Table 2 
and r -- .942809. The matrix A is a member of the class g defined at 
the end of Section II.  

The diagonal elements bi/-- e~ "1 of the covariance matrix for our con- 
ditional distribution of the observed rates given the true rates were de- 
rived according to the method discussed in Section II. We assumed an 
"equivalent average amount" of $7,500 and derived each b//by the for- 
mula b ,  = 7,500 m~(1 -- mi)/Ni, where Ni is the exposure (in dollars) 
for the ith age group. 

The results of the Bayesian graduation are presented in Table 2. The 
shape of the sequence of our graduated rates generally follows that  of our 
prior means, although the influence of the observed rates is apparent. For 
the larger values of i, where the conditional variance of Ui is large because 
of small exposures, our graduated rates are more strongly influenced by 
our prior means. 
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The actual calculation of the graduated rates (including calculation of 
the b~ from the exposures) was executed on an IBM model 7090 digital 
computer in well under one minute. The calculation was performed on the 
basis of formula (7) by  solving thirteen linear equations in thirteen un- 
knowns. We shall be happy to supply upon request a ~ORTP.AN II version 
of the program, which can easily be adapted to run on many  medium- 
and large-scale computers. 

TABLE 2 

A BAYESIAN GRADUATION 

1..  
2 . .  
3 . .  
4 . .  
5 . .  
6 . .  
7 . .  
8 . .  
9 . .  

10.. 
11.. 
12.. 
13.. 

Age Ni XIO-I ~ XlOI r~i XIOa Pl X104 tl XlOa 
Group 

. . . . . .  0.33 2.57 10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
4O-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70 and 

over 

11.64 
13.19 
23.80 
34.94 
51.62 
65.83 
73.22 
60.67 
33.60 
18.12 
6.98 
1.85 
0.31 

0.00 
0.00 
0.04 
0.80 
1.32 
1.11 
3.41 
4.70 
6.01 
7.72 
4.15 
5.93 
9.74 

0.41 
0.58 
0.67 
1.18 
1.91 
2.81 
3.95 
5.33 
7.27 

12.80 
20.50 
32.39 

2.86 
3.41 
3.66 
4.86 
6.18 
7.50 
8.88 

10.32 
12.06 
15.99 
20.25 
25.50 

0.22 
0.29 
0.46 
0.59 
1.10 
1.81 
2.87 
4.08 
5.41 
7.21 

12.49 
20.03 
31.81 

V. IFURTH~;R DEVELOPMENTS 

We conclude with a brief report on some further developments of the 
Bayesian graduation method and some indications of other problems to 
which an extension of the method may  be applicable, 

In  Section I I  we demonstrated that  matrices in class a,  that  is, of the 
form A = [p~rl~tl], produce generalizations of Whittaker graduations 
with first-difference measures of roughness. Similarly, there exist classes 
of admissible matrices which generalize measures of roughness involving 
higher-order differences (see reference [8]). As actuaries gain experience 
in using the Bayesian method, we anticipate the discovery of still other 
interesting classes of matrices which will prove useful for approximating 
the true covariance matrix of one's prior distribution of the rates. 

The Bayesian method is also applicable to the problem of combining 
graduation with interpolation. For example, we may  have crude rates 
available at intervals of five years of age and want to produce graduated 
rates for every year. To apply the Bayesian method to this problem, we 
take n equal to the number of graduated rates we want to produce; for 
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each i for which we have no observation, we take the corresponding re- 
ciprocals of the variances to be zero. Furthermore, if for each value of i 
for which there is an observation, the conditional variance b ,  of Us is 
small compared with the prior variance p~ of W~, then the graduated 
sequence r~ will yield interpolated values for the remaining values of i. 
Thus, the Bayesian method may also produce a near nomodified inter- 
polation formula. The ideas of this paragraph apply equally well to 
extrapolation or projection. 

A common actuarial problem for which no generally acceptable solution 
yet exists is the graduation of select data and multiple decrement data. 
The method as herein presented is not directly applicable, because our 
definition of admissibility assumed the rates arranged in a natural se- 
quence. Some research has been conducted on expanding the notion o[ 
admissibility and on generating classes of matrices necessary for Bayesian 
graduation of select data, but there is need for more research in this area 
(see reference [8]). 

APPENDIX I 

The purpose of these appendixes is to make the paper self-contained 
without including explanations of unfamiliar ideas which are not germane 
to the graduation theory being developed, This first appendix contains 
an introduction to the algebra of matrices of real numbers and functions. 
The second appendix contains the applications of matrices to probability. 

Definition 1 . - -An m X n matrix is a rectangular array of ran scalars, 
the array having m rows and n columns. The ran scalars, which are called 
the dements of the matrix, are members of a set of things for which we 
have addition, subtraction, multiplication, and division. In our applica- 
tions the scalars will be real numbers, functions, or random variables. 
For example, 

0 ~ 1/x  ~ . 
+ 5 sin x 2x 

Definition 2.--The dimension (we shall abbreviate it "dim") of an m X n 
matrix is the ordered pair m X n; m is the row dimension and n is the 
column dimension. 

The dims of the two matrices above are 2 X 3 and 3 X 3, respectively. 
Definition 3 . ~ A  square matrix is an n X n matrix and is said to be of 

order n. 
Definition 4 . ~ A  row vector (or row matrix) is a 1 × n matrix. 
Definition 5 . - -A  column vector (or column matrix) is an n × 1 matrix. 
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I n  our discussion of the algebra of matrices some abbreviations will be 
helpful. An m X n matrix of arbi t rary scalars is writ ten 

I 
GII a12 ~13 • • • al. ] 
~21 G22 0"23 • • • 0"2n I 

0"31 G 3 2  0 , 3 3  • • • 0 " 3 n [  

f 
L 0 " m l  0 " m 2  0 " m 3  • • • 0 " r a n _ ]  

or, more compactly,  as 

[aii] m X , ~  • 

I f  the dim is clear from the context, we m a y  suppress the m X n. For  a 
vector we m a y  write 

[adl×. or [a,l.xa . 

The sentence "A is the m X n matrix whose element in the i th row and 
j t h  column will be denoted by  ao"' is abbreviated to 

a = [a,;].×.. 
Definition & - - T w o  matrices are equal, written [bo'] = [ao'], if they have 

the same dim, and b~i = ao', for all i and j .  

3 = 3 ' 

1 2 

,3j [i i] 3 ~ ~ 

Jus t  as the operations of addition and multiplication for numbers  and 
functions give rise to "ord inary"  algebra, there are operations performed 
on matrices tha t  give rise to the algebra of matrices. 

Definition 7 . - -The  transpose of the m X n matrix A is the n X m 
matrix, denoted b y  A' ,  whose i th column is the i th row of A, i = 1, 2, 
• . . ,  m (and hence the i th row of A '  is the i th column of A, i = 1, 2, 
• • . ~ n ) .  

[i i] 
[ex, 31/x ~] '  [-exx X~l/x ~.+5] = L3 sxn x / , 
x q- 5 sm x 2xJ 0 2x .I 
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X X 2 X a X']' = [lx ] 

[ ] $32 
X 3 X 4 

Rule 1. (A') '  = A .  

93 

[_: ,q ÷[_: ::]° [o o]. 
Rule 3. For all matrices A, B, and C (of equal dim) and scalars b and c, 

(i) (A + B) + C -- A + (B + C-0, 

(iJ) A + B =  B + A ,  

(iii) c(A + B) = cA + cB , 

(iv) (c + b)A = cA + h a ,  

(v) (A + B ) '  = A ' + B ' .  

Definition 8: Scalar multiplication.--Let b be a scalar and A = [a~i]=x~. 
Then bA -- [c~j],.×, and Ab = [do],~xn, where cij = ba~j and d~j = a~ib, for 
all i and j .  

Ix x ~ x ~] -- x[1 x x~], 

[2 3 ~] = [4 6 " 

Rule 2. For all scalars b and c and matrices .4, 

(i) cA = Ac,  

(ii) (bc)a = b(ca) = (boa) ,  

(iii) ( c A ) ' =  cA ' .  

Definition 9: Matrix addition.-- 

[a,A.×. + [b,A.×. = k,A-×. ,  

where c o - - a o + b ~ i ,  i =  1, 2 , . . . m ,  and j =  1, 2 , . . . n .  Note that 
addition of matrices is defined only for matrices of the same dim. 
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Definition 10: Matr ix  subtraction.-- 

A -- B = A + (- -1)  B . 

Definition l l . - - T h e  inner product x . y  of the vectors x = [xlx2 • • • x.] 
and y = [yly2 • • • y.] is the scalar 

~_~ x l y l .  

For example, 

[1 2 3 4 ] . [ 5  7 9 1 1 ] = 5 + 1 4 + 2 7 + 4 4 = 9 0 ,  

[x~x~x~... x.] .  [x~x~x~... x.] = ~ x , ' .  
1 

Definition 12: Matr ix  mult ipl ication.--The product A B  of A = 
[a,'i],,x, and B -- [b#],xp is the m X p matrix C whose element c~ in the 
ith row and j th  column is the inner product of the ith row vector of A 
and the j t h  column vector of B; compactly, 

[a,A.×. [b,;].x~ = [c,A.x~, 
where 

Cij~ ~ alkbki. 
k--I 

Observe that, for A B  to be defined, the column dimension of A must  
equal the row dimension of B, and then the row dimension of A B  equals 
the row dimension of A, and the column dimension of A B  equals the col- 
umn dimension of B. For example, 

1 

2 X 3  3 X 2  2 X 2  

cn = (3) (3) -t- (2) (6) -t- (5) (7) = 56, 

c12 = (3) (8) q- (2) (1) -I- (5) (1) = 31, 

c2t = (4) (3) + (1) (6) + (1) (7) = 25, 

c22 = (4) (8) -I- (1) (1) fl- (1) (1) = 34.  

Rule 4. For all matrices A,  B,  and C (of dims such that  the indicated 
products are defined) and scalars a, 
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(i) a(BC) = (aB)C, 

(ii) A(BC) -- (AB)C, 

(iii) A(B --}- C) = A B  "-I" A C  , 

(iv) (B + C)A ffi BA + CA,  

(v) (AB)' ffi B' A'.  

But, in general, lAB ~ BA[. 
The algebra of matrices differs from real number algebra in two impor- 

tant  ways. The first of these is the failure of the commutative law for 
matrix multiplication, which we illustrate. 

but  

a) 
- 1~ 

°1 [i i] 
is not defined. 

1 

but 

4 1 -- 22 13 
25 15 

but 
[o ° 

23] 
31 . 
36 

These examples illustrate the three ways for AB --- BA to fail. In (a) 
only one product was defined, in (b) both products were defined but  the 
dim of AB does not equal the dim of BA, and in (c) both products were 
defined and had equal dims but  the products were not equal. 

Definition 13.--The zero matrix of dim m X n, denoted [O]mx, or just 
[0], is the m X n matrix with zero for every element. 

Rule 5. 
[a,~] + [0] = [a,;], 
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[a,A - [a,A = [o],  

[a,i]o×. [o]n×, - -  [o].,×,. 

In the algebra of real numbers, if ab = 0, then a = 0 or b = 0. The 
failure of this implication in matrix algebra is the other important differ- 
ence between the algebras. 

For example, 

[3 , ] [ - - ~  _ 4 ] _  [0 

1 231[ i]=Io°l • 

0] 

We will restrict our consideration of the corresponding matrix implica- 
tion to the product of two square matrices and the product of a square 
matrix and a vector. In fact, all the rules and definitions henceforth will 
be for square matrices and vectors. 

Definition 14.--A square matrix [au].x,, is nonsingular if 

[a,A,x.  [%~]n>~ = [ohx~ 
implies 

[b,~]nX, = [ o h > ~  • 

If a matrix fails to be nonsingular, it is called singular. 
Thus, from above 

2'] 
is singular. 

Rule 6. If [a~j],x. is nonsingular and [aiA,x~ [bij]nx, = [0]nx,, then 
[bis],x, = [0]~×,. (Look at the n products [a~A,x, [bo']~×1, j = 1, 2 , . . .  , n 
one at a time.) 

There are two more formulations of nonsingularity for square matrices, 
each of which has its direct application. The first that we give will be the 
analogue of the reciprocal 1/a, and the second will be in terms of deter- 
minants to serve as a computational check for nonsingularity. First we 
need a unit, that is, a multiplicative identity. 

Definition 15.--The principal diagonal of the square matrix [ao'] is the 
set of elements a~i, i = 1, 2 , . . .  n, which are called diagonal elements. A 
diagonal matrix is a square matrix with nonzero elements appearing only 
on the principal diagonal. For example, 
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Oo 
i s  a diagonal matrix. 

Definition 16.--The identity matrix  of order n, denoted by I ,  or just I 
if the order is clear from the context, is the diagonal matrix whose prin- 
cipal diagonal consists only of i 's. 

1 3 =  1 . 
0 

Rule 7. 

and 
/ . [ a d . x ,  = [ad .× ,  

[ b d - x d .  = [bo'],,,x,, • 

From this rule we can see that I~ is nonsingular and that  it commutes 
with every n X n matrix. 

Rule 8. For each nonsingular matrix A there exists a unique matrix B 
such that  A B  = B A  = I .  

Definition 1 7 . - - T h e  inverse of the nonsingular matrix A is the unique 
matrix B of Rule 8. B is denoted by A -t.  For example, 

A =  [ t  01]' A_ t = [ _ ~  0 ] ;  

A[i 
I ; t  = I ,  ; 

"dl 0 . . .  1 / d 2  

~. 1/& 

A -- 1 , A -1 does not exist. 
--1 

Rule 9. 

, d ~ #  0 ;  

(A-O' = (A9 -1 , 

( A B )  -1 = B- -1A-I .  

A system of linear equations can be expressed as a matrix equation 
whose solution involves finding the inverse of the matrix whose elements 
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are the coefficients in the system of equations. For example, let 

A = 1 and w - -  w~ ; 
- -  1 w3 

The matrix equation 

then -~- 2Y3 __ [ 4 ~ ÷ o ,  1 
Am [Tw~ -- w: -]- w3J 

Ao[ ] 
is equivalent to the system 

4wl W 0w, W lw: -- 3 ,  

lwt + lw~ + 0w3 = 3 ,  

7wl --  lw2 -t- lw3 -- 3 .  

If  we solve the system by substitution, we have wl = ] ,  w2 -- 2], and 
w3 -- 0. For the matrix equation we may  multiply both sides by  A-I :  

where 

Now 

and 

SO 

A - I ( A w )  = A - 1  

[_; ! 
A - l _ -  ~ z • 

[w,] 
A - I ( A w )  = ( A - : A ) w  -~ l a w  --- w ,  

W3 

[!] [-i ilIil A-~ = t  3 = i  , 
- 4  Z I.OJ 

W3 

as before. 
For the other formulation of nonsingulaxity we need the following 

definition. 
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Definition 18 . - -The  ~terminant  of A ffi [a,/]~x,, deuoted by I AI, is 
the scalar 

I A [ = a n  f i n - -  1,  

= ~ 61j [ A 1.i [ ( - -  1 ) i+1 if n > 1, 
i--1 

where Au is the n -- 1 × n -- 1 matrix obtained by deleting the first row 
and the j th  column of A. 

For example, [/~ l -- 1, 

: 0 I d t  0 . . 

d2 
= dtd~. • • d , ,  

"& 

i ° i  l: l I' t 11 :t ! = 4 .  + 0 (--1) + (--1) 2 
- 1  - 7 7 - 

= 4 .  1 + 0 + 1 ( - - 8 )  = - - 4 .  

Rule 10. The determinant as herein defined is the same as the "deter- 
minant" studied for the General Mathematics Examination, so you may 
recall your own rules of calculation here. For example, 

J ai l  ~12 
~21 a22 ~ ~11~$2 ~ al2a~.l. 

Rule 11. A square matrix A is nonsingular if and only if [ A I ~ 0. 
Summary of nonsingularity: For a square matrix A the following are 

equivalent: 

1. A is nonsingular. 
2. A[bj].x~ = [0].x~ implies [b~] = [0]. 
3. IAI 0. 
4. There exists a matrix A -1 such that  A - t  A = A A -x = -/',. 

A principal application of matrices was indicated above in the relation- 
ship between matrix equations and systems of linear equations. The other 
important application of matrices in this paper is the manipulation of 
sums of squares or, more generally, quadratic forms (sums of squares with 
cross-product terms). Following Definition 11, we saw that the sum of the 
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squares of n quantifies may be represented as the inner product of a 
vector and itself where the n quantifies are the elements of the vector; 
for example, 

Formally we may also view the inner product of two vectors as the 
matrix product of a row matrix and a column matrix by treating I X I 
matrices as scalars. (I X 1 matrices act like scalars among themselves, 
and we have no other need for I X I matrices.) For example, 

I"] [x~x~x3] y~ = [x~y~ + x2y2 + x3y~], 
LY3J 

which we shall identify as 

x~y~ + x~y~ + xsy8 • 

For  example, if we introduce vectors  as column matrices,  tha t  is, x ~ = 
[ x l x 2 . . .  x,], then we m a y  write 

X2 ~ ~ Xi • X'X = [XlX~. • . X,,] : 

L;nJ 1 

As a prel iminary to Definitions 19 and 20, let us examine the general 
"quadra t ic  f o rm"  in three variables, t ha t  is, the sum of a weighted sum 
of squares and second-degree cross-products.  Le t  # = Ix1, x~, xs] and A = 
[ai~]3xa, and consider the product  xrA x; tha t  is, 

[x,x,X~lla~a a2, a2~ / x ,  
l a31 a~2 azaJ x3 

= a,lx ~, + a~x~ + a~3x] 

+ (al~ + a~Oxlx, + (a~ + a~)x~x~ + (a~ + a~)x~x~. 

We should observe tha t  (1) if A is a diagonal matr ix,  the product  is the 
weighted sum of squares anx~ + a~2x] + a88x~; (2) if A = [3, the product  
is the "unweighted"  sum of squares ~ + x, ~ + x]; and (3) if A is re- 
placed b y  0 o] 

B = / ( a ~  + a12) a ~  
[(aax -t- axa) (a2a -k- aa2) a,3 

the same quadrat ic  form is obtained;  tha t  is, 
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xtA x = xtBx 
for all x. 

Par t  (3) of this example raises questions like the following one: Given 
the quadratic form xl 4- 3 ~  .+. 7x] 4- 8xlx~ + x~x8 -- 2xlx, to be written 
in the form xtA x, what matrix should be chosen for A? The natural 
choice is to require that  A be "symmetric ."  

A - -  3 . 
- ½ 

The reason for calling this the natural choice will be clear after some 
examples. 

Definition 19 .~A  symmetric matrix is a square matrix with the property 
ao' = aj~ for all i and j ,  that  is, symmetry  about the principal diagonal. 

Rule 12. 

(i) Diagonal matrices are symmetric. 
(ii) A is symmetric if and only if A '  = A. 

(iii) For any matrix B, B~B is symmetric. 
(iv) A nonsingular matrix B is symmetric if and only if B -1 is symmetric. 

For example, par t  (iii) of Rule 12 is related to the reason for choosing sym- 
metric matrices to support quadratic forms. To emphasize the rule, we 
shaU use a nonsquare matrix which will serve us again in another ex- 
ample. Let  

B =  1 --2 1 ; 
0 1 --2 

then BtB is 

--2 5 - -4  1 
1 - -4  6 - -4  . 
0 1 - -4  5 -- 
0 0 1 --2 

Definition 20.--A quadratic form (Q.F.) in the n variables xl, x2, . . . ,  x,  
is xtA x, where x ~ = [xxx~.. .  x,] and A is a symmetric matrix. For ex- 
ample, 
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v) the sum of the squares of the second differences of xl, x,, xs, x4, and x~ 
can be written as v'v, where v is the vector of second differences, that 
is, v' = [A~x~, A~x2, A2x~]. 

3 

v ' v -  ~ (h~x,) 2 t 

1 

Now the three second differences are three linear combinations of the 
x/s,  so we can construct a 3 × 5 matrix to multiply by x' = [x~x~xsx~xd 
to obtain these second differences. The matrix B of the example preceding 
Definition 20 is the necessary 3 × 5 matrix. Thus, 

i -2 x o OlFxll Ia'x11 
B x =  a - 2  a o / I x 2 / =  la2 ,/ 

o , - 2  1A/: : /  L='=,J 
/ = ' /  
LXsJ 

Substituting for v, we have 

v'v = (Bx) ' (Bx)  

= ( x ' B ' ) ( B x )  

= x ' (B 'B)x .  
(by Rules 1 and 4) 

= I t .  

In words, the sum of the squares of linear combinations of several vari- 
ables is a quadratic form (sum of squares with cross-product terms) in the 
several variables. The matrix of the quadratic form is the product of the 
transpose of the matrix of the linear combinations and itself, that is, a 
symmetric matrix. 

Quadratic forms are classified by the range of their values. Thus the 
Q.F. x~ -4- x], which is positive for all [xxx2] # [0], is said to be positive 
definite. The Q.F. x~ + 2xxx2 + x ~, = (xx + x~) 2, which is nonnegative 
for all [xlx2] # [0], is said to be positive semidefinite. The ideas of negative 
definite and negative semidefinite are defined as one would expect. There 
are Q.F.'s which are neither positive semidefinite nor negative semi- 
definite; for example, x~ + 2xlx2 = (xl + x2) 2 -- xl may assume positive 
values and negative values. 

A symmetric matrix is classified according to the classification of the 
Q.F. defined by the matrix. 

Definition 21.- -x 'A x (or the symmetric matrix A) is positive definite in 
case x 'Ax  > 0 for all x # [0]. If we change " > 0 "  to " > 0 , "  then x 'Ax  
(or A) is positive semidefinite. 
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Rule 13. 

(i) A positive definite Q.F. (or symmetric matrix) is positive semidefi- 
nite. 

(ii) The sum of positive semidefinlte Q.F.'s (or symmetric matrices) is 
positive semidefinite. If at  least one of the Q.F.'s (or symmetric 
matrices) is positive definite, then the sum is positive definite. 

(iii) A positive definite symmetric matrix is nonsingular. (If A were singu- 
lar, there would exist a nonzero vector x' -- [x :x2. . .  x,] such that  
x'A = [0]. I t  follows that  x'Ax = 0, a contradiction to A's being 
positive definite.) 

(iv) [a~i],x, is positive definite if and only if all of the n determinants 

a ~  a2ffi ' a21 a~ffi a2s , e t c . ,  
O, al Gas Gss 

are positive. 

APPENDIX II 

Appendix I describes some of the elements of matrix algebra which may 
be used to facilitate the manipulation of several variables--indeed, we 
shall use them to manipulate the many variables of graduation. In this 
appendix we shall summarize the definitions and rules for the use of 
matrices in the manipulation of several random variables. 

Our random variables will be real valued--the usual kind. In general, 
a random variable is a mathematical construct which enables one to make 
statements about the outcome of a random situation. To use real valued 
random variables means to describe the outcome by a numerical charac- 
teristic. Instead of asking, "What  is the probability that this scale will 
indicate a number which exceeds 200 when I step on it?" we just write 
P (X > 200) -- ?, where the X stands for the verbal description of the 
outcome. Since the outcomes are described by real numbers, we may 
treat random variables as real valued functions with respect to addition, 
subtraction, multiplication, and division. 

Definition 2g.--A random rector is a vector whose elements (i.e., scalars) 
are random variables. 

At the risk of laboring this definition, let us illustrate it with some 
simple, familiar, finite situations. If a ball is to be placed in one of three 
numbered urns, we may define three random variables, Y1, Y2, Ya, where 
Fx -- 1 or 0 according to whether the ball is in urn 1 or not, and Y2 and 
Ya are defined correspondingly for urns 2 and 3. Thus Yx -- 0, Y2 = 1, 
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Y, = 0 is the outcome with the ball placed in the number 2 urn. Now 
we may  define the random vector 

Lr~J 

which will have three possible outcomes: 

If  the urns are "equally likely," we would write 

P Y = = ½, etc. 

When a red die and a green die are rolled, we may  describe the outcome 
with a two-dimensional random vector X, whose first element is the ran- 
dom variable for the red die and the second element is for the green die. 
The sample space for X is the familiar set of 36 outcome pairs. 

In a mortali ty study we have the random vector O, whose ith element 
is the number of deaths to be observed in the ith age group. There is also 
the vector E of the corresponding exposures, which is usually considered 
to be nonrandom. There is the random vector of observed death rates, 
O' = [O, /E10~/E~ . . . O,/F_~]. (Here we display O' only to avoid print- 
ing the long vertical vector, O.) In  our analysis by personal probability 
there is also the random vector of " t rue"  death rates. 

Definition 2 3 . - - A  random matrix is a matrix whose elements (i.e., the 
scalars) are random variables. Since vectors are special matrices, this 
definition includes Definition 22, but  we shall only make technical use of 
random matrices which are not vectors, so we set these definitions apart.  

For example, if 2" -- [X1X~X3] is a random vector, then X ' X  is the 
random variable XI q- X] + X], and XX'  is the 3 X 3 random matrix 

[ X~ XIX, XIXs] 
X~Y, X~ X2Xa[ . 
X s X ,  X~X~ X~J 

Definition 24.--For  an m X n random matrix, say, 

x , .  
X ~  X ~ 2  . . . 

X ~ .  X , . ~  • . . X m ~ J  
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the expected value of X, written E[X], is the m X n matrix of real numbers 
(if such exist) 

p.[x] = 

E [ x ~ ]  E[x, , ]  . . .  E [ x ~ ] ]  
E[x~]  E[x , , ]  . . .  E [ x , . ] [ ,  

! 
E [ x . . ] J  

where E is the expectation operator, 

E[ X]  = ] _ : x f ( x ) d x  

or ZxP(X = x) (see reference [6], p. 133). 
For example, rderfing to the random vector Y of the ball and urns 

example and assuming equal chances for each urn, we have 

v . [ r ]  = / E W ~ I /  = • 

L . g [ r ' ~ ] J  

For example, in graduation theory it has usually been assumed that 
g.[O~] -- q~g~ (see reference [10], p. 26). Thus, for the random vectors O' 
and Q', we have 

E[Oq = [ q , ~ , . . . ,  q.E.] 
and 

F.[0'] = (ql, q,, . . . ,  q ,] .  

Rule 14. Let X and Y be random matrices, and let A and B be real 
matrices such that  the following sums and products are defined. Then 

(i) g[X + It] = E[X] + g [ r ] ,  

(~) g[AXBI = AgIX]B. 

(Any element of AXB is of the form Y~c~sXq and E[~coXij]  = 
$Zc~E[X~]. Thus we may obtain E[AXB] by replacing X in AXB by 
E[X].) 

Definition 25.--The comriance matrix of an n-dimensional random 
vector X is the n X n matrix [~o'], where ~o -- E[(Xs -- E[Xd)(Xj - 
E[XA)], the covariance of X~ and Xi, if i ~ j ,  and the variance of X~ 
when i = j .  

Rule 15. [~o'] is symmetric. 

~,,- = E [ x ~ ; I  - E[X,I E [ x A .  

For example, consider the random vector Y in the example of the ball 
and (equally likely) urns. 
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E [ r ' ]  = [-~ ] ]1 ;  

E[Y,Y;] = 0 ,  

if i ~ j ,  since at  most one Y~ can be different from zero; 

. '. ~,i = o - (~)(~) = -  ~ ,  i ~ j .  

Since Y~ is 0 or 1, 

= } ' ,  and Z [ ~ I = E [ V , ] = ~ ;  

• ~,, = E [ ~ ]  - E [ Y , p  = ~ - ~ = 9 .  

Thus, the covariance matrix for Y is 

~ - t  

Rule 16. The covariance matrix of any random vector X is the matrix 

E [ ( x -  E [ z ] ) ( x -  E [ x ] ) q .  

For example, consider this rule for n -- 2: 

F(x ,  - E tx l ] ) '  ( x ,  - E[x , ] )  ( x ,  - E [ x , ] )  ] 
= L ( x ,  - E [ x , ] )  ( x ,  - ~ [ x , ] )  ( x ,  F.[x,])~ j • 

The expected value of this matrix is the covariance matrix of X. 
Rule 17. If  Y = AX, Cx and Cv are, respectively, the covariance 

matrices of X and I7, then Cy = ACxA'. (This is the n-dimensional gen- 
eralization of the following one-dimension rule: I f  Y = aX, then a~, = 
aa~:.  a = a*a~:.) To prove the rule: 

c,, = E l ( I , -  ELY]) ( ¥ -  E[F])'] 

= E [ ( A X -  E[AX]) ( A x -  E[XX])'] 

= E [ ( a x -  AE[x])  ( A X -  A P.[X])'] 

= E[A (X --  E[X]) { X (X --  E[X]) }'] 

= E[A ( X -  E[X]) ( X -  E[X])'A'] 

= x ~ [ ( x -  E[x]) ( x -  ~ [ x ] ) ] a '  

= ACxA' .  
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For example, let X' = [Xt, X,], 

~__ [o ~ o], 
and 

Then 

and 

[~:-~:] r =  A X =  + 
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~= I~ _~][~ o][_~ ~]_ I0 ~ o 1 
The covariance of a pair of random variables X and Y is readily calcu- 

lated, but  it is not as informative as the scge-free correlation (coefficient) 
of X and Y ;  that is, 

( ~ 5 )  coy ( X, Y ) = coy 
P X Y =  O.XCry 

If, in the covariance matrix of X, we divide every element in the ith row 
by x / ~  = ~ and every element in the j th  column by V/v-ar--X~ -- ~ ,  
the resulting matrix will have a principal diagonal of ones and correla- 
tions as the off-diagonal elements. 

D e f i n i t i o n  26.--The corrda t ion  m a t r i x  of the n-dimensional random 
vector X, denoted by R x ,  is 

[i i] Ii i1 0 ~ 1  . . .  ~ l  . . .  

R x  = • C z  " " • 

0 • • • ~ k 0 . . . . ~  

Note that left (right) multiplication of a given matrix by a diagonal 
matrix multiplies each element of the ith row (col.) of the given matrix 
by the scalar in the ith row (col.) of the diagonal matrix. 

APPENDIX III 

In this appendix we shall discuss the multivariate normal distribution. 
D e f i n i t i o n  2 7 . - - T h e  n-dimensional random vector X has a (mul t i var ia te )  

n o r m a l  d i s t r ibu t ion  i f  there is a positive definite (hence nonsingular), sym- 
metric, n X n matrix C and an n-dimensional vector m such that the 
probability density for X at  the outcome vector x is given by 

( 2 , r ) - ~ / s l C l - U s  e x p  [ -½(x  - m ) ' C - X ( x  - m)] 

for all n-dimensional vectors x. 
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For example, if this is a good definition of the normal distribution for 
an n-dimensional random vector, then for n = 1 and 2 the definition 
should yield the familiar univariate and bivariate normal distributions, 
respectively (see reference [6], pp. 99, 198). 

For  n = 1, (x --  m) = (x -- m), and the positive definite matrix C is 
a positive number, say, c. Thus,  the density is 

( 2 r r ) - l / 2 c - ' l ' e x p [ - - ½ ( x - - m ) l ( x - - m ) ]  
C 

- x/2~--c exp } c " 

For  n = 1, we see that  m is the expected value of X and C is the variance 
of 2". For n dimensions this generalizes as shown in Rule 18. 

Rule 18. I n  Definition 27, m = E[X] and C - - E [ ( X -  E [ X ] ) ( X -  
E[X])'], the  covariance matrix of X. 

For example, for n = 2 in Definition 27, we have 

( x  - ) '  = m ( X l  - m l ,  x ,  - 

c _ -  Lc= c22/' 

where c12 = c~, so that  C is symmetric,  and Cn > 0 and cnc=~ - -  Cl~C21 
> O, so tha t  C is positive definite. 

]C[ = Eric22 - -  E12C~l 

and 

- -  C12 E l l J  

Thus,  the density at  x is 

, 1  - -  c 2 1 ] ( x _ ) m  f (2 r ) -1 (ONE22- -C~2)  -I/2 e x p { - - ½ (  x - -  ) r n - ~ - [  c22 
- -  El2 El l  A 

= 21rV,  c n c 2 2 _  c~2 exp t C22(Xl-- ~nl) 2 

- -  2Cl~( Xl - -  ml)(X2 --  m2)  + El l (X2 - -  m2) 2 ] I " 

According to Rule 18, we m a y  write 

El2 



and the density as 
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2 ( 1 - - p ~ )  o'1 / 

2p 
\ ~I I\ a2 / \ ~2" " /J  

which is the formula in reference [6] on page 198. Thus the one-dimen- 
sional and two-dimensional normal distributions are the univariate and 
bivariate normal distributions (familiar from the Part  I I  Syllabus). 

The symmetry of the bivariate normal density implies that the mar- 
ginal distributions and conditional distributions are univariate normal 
distributions (see reference [6], p. 199). This "hereditary" property is also 
possessed by the ~<limensional normal distribution; that is, the marginal 
distribution of any k of n normally distributed random variables is a 
b-dimensional normal distribution, and the conditional distribution of 
any k of n normally distributed random variables, given the other n -- k 
variables, is a k-d~mensional normal distribution. The formulas to make 
this statement more precise are given in the next paragraph. 

Let Y be an n-dimensional random vector with a normal distribution, 
and let m and C denote the expected value vector and covariance matrix 
for this distribution. Now, let Y, m, and C be partitioned; that is, 

V l  
Y~ 

Yk 
~ g v  ~ . . . . . .  

Y~+ 

Y~ 

--1Y 

-- ~y 

/r/ ---~ 

m l  
m 2  

m k  

I O n  i C12 ]}k rows  

c = L-C;:- i -c;T / - -  k rows 
~ ~ r  --~ 

k cols. n -- k cols. 

-----IW/ 

In this notation, x m and Cn (2 m and C,~) axe the expected value and the 
covariance matrix, respectively, of 1Y(,Y). 
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Rule 19. The marginal distribution of ,Y is the k-dimensional normal 
distribution with expected value vec to r ,  m and covariance matrix Cn. 

Rule 20. The conditional distribution of 11, given that  2Y = 2y, is the 
k-dimensional normal distribution with expected value vector 

,m + G~C~(2v - ~ m) 

and covariance matrix 

C,, - C12C~,iC2, . 

For example, to apply Rule 20 to the bivariate distribution, we may 
s e t n = 2 ,  k =  1, and 

\P0-10-2 0-2 / 

Then I/'1(= 1¥), given Y2 = y2, has a univariate normal distribution with 
expected value 

0" 1 
ml-I- (P0-10-2)(0-~2)-l(y2 -- ms) = ml-]- P - - ( y 2  -- m2), 

Or2 

the familiar linear regression equation, and variance 0-dimensional 
covariance matrix) 

0-~. -- (p0-,0-,) (o-[)-* (p0-x0-2) = 0-I (1 --  p2). 

For example, let Z1, Z2, Za, Z4, and Z5 be five random variables with 
expected values/a ,  pg, p3,/*4, and p3; variances 1, 1, 1, 1, and 1; covari- 
ances O"19 = 0"23 ~ 0"34 ~-- 0-45 ~--" P ,  0"13 = 0-94 ~ 0-36 ~ p 2 ,  0-14 ~ 0"35 = p 3 ,  

and 0-13 = p4; and a 5-dimensional normal distribution. Let  us calculate 
the conditional distribution of Z3, given Z1 = zl, Z2 = z2, Z4 = % and 
Z6 ----- Zs. 

To put our problem into the formulas of Rule 20, we let n = 5, k = |, 

Y =  m =  p, C = 
/z2 
/.L4 

L z~ J u~ 

We may compute as follows: 

p~ 1 p p3 p~| 
p p 1 p~ p3/" 
p p8 p2 1 P / 
p2 p4 p3 p 1 J 

I 1 p 2 -- p ( 1 -'1-- p") 0 0 
1 - -  p (~ - I -  p 2 ) 1 -'1- p* -I" p 4 --  p~ 0 

C ~ 1 = 1  -p4 0 --p* 1 + o 2 + o  4 - - o ( 1 + o  2) 
0 0 - - p ( 1 - I - p  ~) l + p  ~ 
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P C12C~ ~ = p [ p  1 l p ] C ~  ~ 1 +  i I 0]; 

[!] Pp2[O 1 1 0 ]  2P---~2 C~2C~C21 = 1 + = 1 + p~" 
2 

Thus, the conditional distribution of Zs, given Z~ = z+, i -- 1, 2, 4, 5, is 
the univariate normal distribution with expected value 

# 3 + 1 - - ~ p 2 [ 0  1 1 0 ]  z2--p2 z4-- t~4 = # a q -  (~.2-- p2 q-z4-- #4) 

Z5 --  ~r. 

and variance 
2 p2 1 - -  p2 

1 l_l_p~=l+p2. 
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DISCUSSION OF PRECEDING PAPER 

~'RANK S, IRISH: 

The work of these authors, in bringing the newer statistical methods to 
bear on the problem of dealing with "prior data," is, of course, closely 
related to the credibility methods that have been developed over the 
years, particularly by casualty actuaries. I note in particular that equa- 
tion (8) of the paper sets forth the graduation equation in the form of a 
credibility relationship. 

The similarity becomes even dearer if we modify equation (8) by 
eliminating the nondiagonal elements of the matrix A; that is to say, 
eliminating, for the moment, the factor of smoothness from consideration. 
The equation then reduces to a form that is reminiscent of the most 
frequently used credibility formula. There is, however, one important 
difference--the formula derived in this way has the exposure in the posi- 
tion that is usually occupied by expected deaths: 

mq-(u-m)(l b~-1 v = +~/ , 

where a = p2 = 0.0002 m; b = m(1 -- m)/n; n = lives exposed; there- 
fore 

) n 
v - m - t - ( u - - m  (5,000 q- n)"  

This suggests that the definition of the matrix elements might possibly 
be changed to create a greater consistency with credibility methods. The 
difficulty can be seen better by examining the results of the actual gradua- 
tion example in the paper, where the methods used give much greater 
credibility to Groups 1 and 2 (although there is less than one expected 
death in each group) than to Group 12 (where there are five expected 
deaths). I think that the results could be improved if p were made 
proportional to rn rather than x/m; this would also make equation (8) 
consistent with the traditional credibility formula. 

This sort of modification of equation (8) also suggests that the general 
methods of the authors might well be used to combine the credibility 
approach with a less complex method of measuring smoothness (a simple 
example would be combining the credibility approach with a linear com- 
pound formula), the goal being a method that would be as suitable for a 
desk calculator as for a large-scale computer. 

113 
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JAMES C. HICKMAN: 

This is an extraordinary paper. The potential applicability of Bayesian 
statistics to actuarial science was established by Professor Jones's earlier 
paper. What  had been a stimulating possibility has now become a reality, 
for the authors have provided us with a delightful blend of a new and 
novel approach to a classical actuarial problem, a primer on the mathe- 
matics needed to use the new approach, and a convincing numerical 
example. 

In  equation (2) the authors exhibit a density function for the vector of 
observed rates, u. They have assumed that  the U / s  ( i  = 1, 2, . . . , n )  

are each normally, but not identically, distributed and that  they are 
mutually statistically independent. This assumption is certainly in ac- 
cordance with actuarial tradition. For example, Miller's ( E l e m e n t s  o f  

G r a d u a t i o n )  exposition on adjusted average graduation methods makes 
use of an independence assumption. This model would certainly be 
appropriate for the usual snapshot look at  mortali ty experience used in 
estimating survival functions. However, it is interesting to determine the 
impact on the new method of a longer period of study in which a cohort 
of lives might be used to estimate several successive conditional mortali ty 
probabilities. In this case, it appears that  the matrix B would no longer 
be a diagonal matrix. The elements of B in a belt along the principal 
diagonal would no longer be zero but would reflect the correlation between 
the observed rates for successive ages. Fortunately, the development 
leading to equation (6), the equation that  defines the vector of graduated 
values, does not depend on B ' s  being diagonal. Therefore, although the 
computation would be more laborious since an additional nontrivial 
matrix inversion would be involved, equation (6) stands as a satisfactory 
definition of the vector of graduated values even for the more complicated 
model, where observed values are not assumed to be statistically inde- 
pendent. 

I t  seems of interest to carry the notion of dependence among the com- 
ponents of the vector u still further. For example, suppose that  the ex- 
perimental model involves observing a cohort of lives from birth to death. 
The objective of the study is to produce a generation-type mortali ty 
table. For such an experiment, a multinomial distribution is the appropri- 
ate model for the distribution of the number of deaths at  each age. We 
let D'  ---- (D1, D.% . . .  , Dn) be a random vector, where each Di, i = 1, 
2, . . .  , n, is a random variable associated with the number of deaths, 
from an initial group of k lives, that  takes place in age group i. Note that  
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D,  = k -- D1 - . . .  -- D,_I and thus is in fact determined by the other 
n - 1 variables. 

For this type of "marching through life" experiment, the muhinomial 
distribution, appropriate for the distribution of the vector D, has a mass 
function given by 

[ pDIw(dlw) = L k !  d i !  i 0 < d l  i =  1,  2 ,  n , - -  , " ° ° ,  , 

± ± d~ = k,  0 < w~, and w~ = 1. 
i ~ l  1 

We now quantify our prior knowledge about the distribution of W, the 
vector of mortality probabilities, in the form of a Dirichlet distribution. 
The mass function for the prior distribution is given by 

3" 1 1 

O < v i ,  ~ w ~ =  1, O < a ~ .  
1 

This distribution was chosen because it is conjugate to the multinomial in 
the sense that the posterior distribution of W is once again a Dirichlet 
distribution. In fixing the prior distribution, we make use of the fact that 

Ew(Wi) ---a~/ £a~, 
1 

i = l , 2 , . . . , n .  

Thus a graduator might initially fix T, where 

T ~ ~ a i .  

The parameter T measures the strength of the prior knowledge about the 
distribution of W. This interpretation of T will become more apparent 
later in the development. Large values of T are associated with compact 
prior distributions, and small values of T are associated with diffused 
distributions. Then the graduator may determine the parameters of the 
prior distribution by setting mi = a't/T, i = 1, 2 , . . . ,  n. The m's are, 
as in the paper, the prior means of the w's. 

The posterior distribution of W, after the k lives have been followed 
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from their birth until they enter age group n, will have a mass function 
given by 

± ± d~ = k ,  0 < w~ , and w~ -- 1. 
1 1 

If we follow the authors and use the vector of mean of the posterior dis- 
tribution as our vector of graduated values, we have 

vi = EWla(  W~ l d )  = ( ai + dl ) / ( T + k ) 

= ( d , / k ) [ k / ( r + k ) ] +  (a,/T)tT/(r+k) j .  

Note that d d k  is the estimate of mortality probability in age group i ob- 
tained from the experiment and that a~/T is the estimate (in the expected 
value sense) obtained from the prior distribution. The graduated value 
is a weighted average of these experimental and prior values with the 
weight shifting to the experimental value as k increases. The blending of 
prior opinion and experimental results is rather obvious. This result, 
when n -- 2, appeared in the estimation example (Example E) in Jones's 
earlier paper. 

In their discussion of equations (11), (14), and (15), the authors ob- 
serve that the Whittaker method of graduation involves finding a vector 
v that minimizes a particular quadratic form. Table 1 of their paper 
exhibits several such solutions for a particular set of data and various 
values of the parameter h. 

I t  occurred to Mr. Brian Harvey, a graduate student in the Depart- 
ment of Statistics, University of Iowa, that the problem of minimizing a 
positive definite quadratic form is a common problem in operations re- 
search. In fact, he was acquainted with a computer program that em- 
ployed the Shetty algorithm and which would find a vector n such that 
the positive definite quadratic form u'Bu is a minimum subject to the 
restriction that  A v  > b, where B is a positive definite n by n matrix, u 
and v are column vectors with n components, A is an m by n matrix, and 
b is an m row vector. Harvey took B to be the matrix of the quadratic 
form associated with the Whittaker Type B graduation formula found in 
Section IV of the paper, A -- I,  where I is the 13 by 13 identity matrix, 
and b = 0, the 13 row zero vector. In a word, he sought to perform a 
traditional Whittaker graduation, with the additional restriction that  the 
graduated values be nonnegative, by using a quadratic programming 



DISCUSSION 1 17 

computer routine that permitted the imposition of linear restrictions. The 
parameter h was taken as 100, and it was hoped to overcome the distress- 
ing negative values found for the same h in Table 1. The numerical re- 
suits are shown in the accompanying tabulation. 

In this example prior opinion influenced the choice of the Whittaker 
type quadratic loss function that was to be minimized and the linear 
restrictions imposed on the solution vector. Other plausible linear restric- 
tions could have been imposed equally well. 

THE QUADRATIC PROGRAMMING, WITH LIN- 
EAR RESTRICTION, SOLUTION OF A GRADUA- 
TION EXAMPLE FOUND IN THE KIMELDORF- 
JONES PAPER 

(vl X l0 s Is Recorded) 

1.° 
2 . .  
3 . .  
4 . .  
5 . .  
6 . .  
7 . .  
8 . .  
9 . .  

10.. 
11.. 
12.. 
13.. 

Quadratic 
Program 
(h- too) 

0.00 
0.09 
0.27 
0.61 
1.15 
1.95 
3.20 
4.50 
5.64 
6.51 
7.11 
7.70 
8.28 

Whittaker Bayesian 
Table ! 
(h = 100) Table 2 

0.22 
0.29 
0.46 
0.59 
1.10 
1.81 
2.87 
4.08 
5.41 
7.21 

12.49 
20.03 
31.81 

--0.40 
--0.13 

0.17 
0.59 
1.16 
1.96 
3.21 
4.51 
5.64 
6.51 
7.11 
7.69 
8.28 

T. N. E. GREVILLE : 

I regard this paper as a most  impor tan t  contr ibut ion to the s tudy of 
graduation. I t  has long and often been asserted by  statist ically minded 
people tha t  graduat ion ought to be based on probabilistic considerations; 
here a t  last is a paper tha t  does this, not  in a half-hearted way, as in the 
original derivation of the Whittaker method, but in a thoroughgoing 
fashion. The proposed method deserves careful study and analysis, as 
well as testing in practical situations. 

My chief criticism of the paper is that the authors, in their under- 
standable zeal to promote their own method, seem to sell the Whittaker 
method very short. When they say, "For application of the Whittaker 
method to such scant data, an artful user of the method would make 
certain adjustments either to the observed rates or to the graduated 



118 B A Y E S I A N  G R A D U A T I O N  

rates to bring them into conformity with his opinion," it seems to me that 
they greatly underestimate the remarkable versatility of the Whittaker 
method. 

Camp showed in 1950, in his privately printed manual, The Whittaker- 
Henderson Graduation Processes, how to constrain a specified order of 
differences of the graduated values toward a geometric trend. Using the 
observed data of the numerical example in the paper, I have tried using a 
Whittaker method that constrains the values themselves toward a ge- 
ometric trend, as this leads to a second-order difference equation, like 
the Whittaker method applied in the paper. This is accomplished by 
taking as the measure of roughness 

n--1 

iE1  

where r is a suitably chosen constant. The resulting graduated values, 
taking r = 1.5 and h = 10 and 100, are shown in the accompanying 
tabulation. Except for the fact that the total expected mortality is 
somewhat below the actual (which could easily be remedied by adding 
an appropriate constant to the rates of mortality at all ages), I think that 
most actuaries would regard either of these as a better graduation of the 
observed data than the Bayesian graduation in the paper. Taking into 

VARIOUS G R A D U A T I O N S  OF I L L U S T R A T I V E  DATA 

1 . .  
2 . .  
3 . .  
4 . ,  
5 . .  
6 . .  
7 . .  
8 . ,  
9 . .  

tO.. .  
[ 1 . . .  
12. . .  
13.. .  

AGE GROL~ 

10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70 and 

over 

ui×lO ~ 

0.00 
0.00 
0.04 
0.80 
1.32 
1.11 
3.41 
4.70 
6.01 
7.72 
4.15 
5.93 

9.74 

GRADUATED RATES ~i)<10 3 

Whittaker Method* 

k=t0 k=100 

0.04 0.16 
0.09 0.26 
0.24 0.42 
0.73 0.71 
1.19 1.07 
1.41 1.53 
3.20 2.42 
4.46 3.24 
5.51 4.00 
6.36 4.97 
6.64 6.45 
9.17 9.58 

13.64 14.36 

Bayesia: 
Methoc 

0.22 
0.29 
0.46 
0.59 
1.10 
1.81 
2.87 
4.08 
5.41 
7.21 

12.49 
20.03 

31.81 

PRIOR 

MEANS 
L , 

0.33 
0.41 
0.58 
0.67 
1.18 
1.91 
2.81 
3.95 
5.33 
7.27 

12.80 
20.50 

32.39 

* Constrained toward geometric trend with • = 1.5. 
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account the offhand manner in which I chose the value of r and the values 
of h, I think that  both graduations are remarkably successful. In both 
cases, the values are always positive, and the sequence is always increas- 
ing. 

Though they do not actually say so, the authors leave the impression 
with the reader that  their method is, in some sense, a generalization of the 
Whittaker method. I t  is my opinion that, from one point of view, the 
reverse is true. In 1957 (Journal of the Soclety for Industrial and Applied 
Mathematics, V, 150), I showed that  a fairly general form of the Whittaker 
graduation method is expressed by the matrix equation 

v = (I  + W-~3) - lu ,  

where W is a positive definite matrix and G a positive semidefinite matrix. 
This equation was obtained by minimizing the quadratic form 

(v - u ) 'W(v  - u) + v ' G v .  

If a Whittaker graduation were performed, not on the observed values 
themselves but  on their deviations from those of a standard table (rep- 
resented by the dements of the vector m), and if W were replaced by 
B --1 and G by A -1, the above equation would become identical with equa- 
tion (8) of the paper. In fact, W is usually a diagonal matrix whose diago- 
nal elements are weights assigned to the respective deviations of gradu- 
ated from observed values and bears a strong resemblance to the matrix 
B -~ of the paper. G, however, is permitted to be singular, and, when it is, 
it could not be written as A-k 

As the class of positive semidefinite matrices includes the positive 
definite matrices, the matrix G of the above equation can be chosen from 
a broader class of matrices than the matrix A -~ of the paper. In this sense 
the Whittaker method is more general than the Bayesian method. Every 
Bayesian graduation could be regarded as a Whittaker graduation (for 
some choice of the above matrices W and G), but  the converse is not true. 

The option of choosing G as a singular matrix (not available in the 
Bayesian method) is an important property of the Whittaker method, as 
it permits a class of vectors u to be left unchanged by the graduation. 
The vectors left unchanged are precisely the vectors annihilated by G. 
In the usual (third-difference) formulation, these are the vectors whose 
elements are the corresponding ordinates of some second-degree poly- 
nomial. However, as Camp has shown, they could also be, for example, 
vectors such that  the second differences of successive elements are in 
geometric progression with common ratio ¢, or, in other words, vectors 
whose ith element is A .-[- Hi  "b Bc ~ for some constants A, H, and B. In 
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the Bayesian method the vector u of observed values is left unchanged 
by the graduation only if it is identical with the vector m of prior means. 

I t  would seem offhand that in the Bayesian method the user has more 
difficulty in exercising control over the graduation process than in the 
usual Whittaker method. Neither term of the quadratic form (9) that  is 
minimized by the Bayesian graduation directly measures the roughness 
of the graduated values, and it would appear from examination of this 
quadratic form that the only way to ensure smoothness is to take w close 
to m. This is borne out by the numerical example in the paper, in which 
the results of the Bayesian graduation look more like a graduation of the 
prior means than of the observed values. 

One wonders if a similar method could be devised that would permit 
the user to express his prior opinion as to the general form and shape of 
the curve representing the data, without having to commit himself to a 
specific set of numerical values. As a practical matter, the Whittaker 
method (in its broadest interpretation) seems to do this very successfully 
indeed, and perhaps all that is needed is to furnish it with a probabilistic 
justification. 

H A R W O O D  R O S S E R  : 

A number of years ago the Education and Examination Committee, 
aided by a syllabus change and by the T.N.E.C. investigation, gave me 
a lifelong inferiority complex on the subject of statistics. Not  long there- 
after, probability and statistics became so intermingled in the syllabus 
that whenever an actuarial student had a question on a Par t  2 problem, 
I always ducked, although I regarded probability as an easy subject. 
Now come Messrs. Kimeldorf and Jones to extend my self-doubt to 
mathematical graduation--a subject about which I had regarded myself 
as reasonably knowledgeable. 

Despite the damage to my ego and although, at first reading, there is 
much that I do not completely follow, I find this a very interesting paper. 
The main thesis is that whatever "prior opinion" the graduator has should 
be systematically applied. They suggest a fairly elaborate scheme for 
doing this, which would have been completely impractical in precomputer 
days. I t  is a very sophisticated cousin of graduation by reference. 

This reviewer suspects that it will be quite some time before Bayesian 
graduation is widely used by actuaries, regardless of its theoretical justi- 
fication and in spite of the offer of a Fortran II  program. This is not a 
detraction of the expository powers of the authors, although there are 
some of us who would have preferred to see some of the intermediate fig- 
ures in the numerical example. Rather, this suspicion is based on the fact 
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that, although nearly twenty years have passed since the appearance of 
Greville's excellent papers, with tables, in RAIA, Volumes XXXVI and 
XXXVII,  giving a method of graduation using the linear-compound, or 
multiplier, approach, I have yet  to see it utilized by anyone other than me. 
Yet an understanding of Tchebycheff polynomials is not required in order 
to use Greville's tables; the computations can be done easily on either 
desk or electronic computer. 

If his paper were required reading, the method he gives would be 
better known. But the questions that  could be asked thereon would be 
either too easy or too difficult for examination purposes; that is, it would 
be almost impossible for the Part 5 committee to ascertain whether or not 
a candidate had sufficient knowledge of this method. To a lesser extent, 
this is true of the paper under discussion; but there would be fewer ques- 
tions that were too easy. This is so, despite segregation into three ap- 
pendixes of some of the more technical aspects of the subject. 

For skimmers, I would recommend reading first Section IV, entitled 
"Examples." One could wish, however, that more examples had been 
given, especially in view of the statement that  less than one minute of 
computer time was required for the single example shown. The Whittaker- 
Henderson graduations in Table 1, with five different values of k, are all 
deemed unsatisfactory. The implication is then strong that the one 
Bayesian graduation in Table 2 is the answer to an actuary's prayer. But 
surely there must be occasions when a graduator would have a "sub- 
sequent opinion" as well as a "prior opinion," that is, when he would 
wish to revise the latter, after testing the results of the graduation. I t  is 
standard advice to the student not to accept a first graduation blindly. Is 
Bayesian graduation to be exempted? 

Nonetheless, this is an excellent addition to the lengthening series, 
from the University of Michigan, of adaptations of doctoral dissertations 
to an actuarial audience. (When I was of college age, it seemed inevitable 
that candidates for advanced degrees would run out of worthwhile thesis 
subjects. This contingency now seems more remote.) If, even after 
adaptation, the results impress us as highly technical, we may be looking 
in a mirror that shows us how we appear to the average citizen. 

DONALD C. BAILLIE : 

I have been very much impressed with the work that  Dr. Jones has 
been doing, because it has long been my conviction that there is something 
about the so-called classical statistics of this century that just does not 
seem to fit with actuaries. I think that we are all familiar with that, and 
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I think that  Jones has been very polite about it in his reference, in the 
early part  of his paper, to the curriculum. 

I did try to make up a little story that  might be of some value to some 
of us here as to what the distinctions are all abou t - -why  the actuaries 
often do not like statistics as ordinarily taught. I think that  the main 
reason is that  actuaries are all basically Bayesian, whether they know it  
or not. 

Now I imagined a situation the other evening with which I think most 
of us are familiar. An actuary has hired a bright young man who has 
been taught a good deal of statistics in a conventional statistics course. 
One of the first tasks he assigns to this young man is to have him make a 
mortali ty investigation; let us assume that  something on the order of 
twenty thousand lives of mixed ages are involved over perhaps a matter  
of five years. The young man finally comes in with the data, and the 
actuary asks, "Well, how is the mortali ty?" The young statistician says, 
"Sir, the mortali ty is zero." The actuary asks, "How is that?"  to which 
the student replies, "There are no death cards." 

Now, what is the actuary's reaction? The statistician has taken his 
observations and he did not find any deaths. The actuary then replies, 
"Don ' t  be silly; go back and find them." And that, I believe, is the Bayes- 
ian notion. 

The actuary explains: "Look, you have 100,000 years of exposure, and, 
even at the rates that  people are experiencing in some of our well-known 
insurance companies, you must have at least ten deaths, probably even 
two or three hundred or more, somewhere." He then adds that  one of 
two things has happened--ei ther the deaths have been left out of the 
program or, if those old-fashioned "square" packets of two or three 
hundred cards in a bunch were being used, one of them may have fallen 
off the table. 

Tha t  is the contrast between Bayesian and the classically trained 
twentieth-century statistician who says, " I  have observed 20,000 vari- 
ates--X1, X2, and X s - - I  have added them all up, and it comes to zero." 

I t  may  very well be that  this is the first set of observations from the 
real world that  the young man has actually made. I t  is even possible 
that  he has studied statistics in the university without observing any- 
thing, not even an artificial experiment. 

Well, some deaths are eventually located, and a graduation is to be 
performed. The young man does not know much about graduation, but  
he is given certain ideas associated with Gompertz and Makeham and 
goes off and graduates his data. When he comes back, the actuary asks, 
"Well, what have you got this time?" to which the young man replies, 



DISCUSSION 123 

"Sir, I've got a dandy graduation." The actuary says, "Good, what do 
you get for v?" When the young man replies, "1.55," the actuary says, 
"That's crazy. Are you sure these are humans? You have found mortality 
rates that are going up 50 per cent a year." The actuary then sends him 
back to reconsider the situation. As he leaves, the actuary adds, "Don't 
look at any c that is less than 1; in fact, don't let the machine waste any 
time on ¢'s that are larger than 1.12 or less than 1.06." Let me say that 
the actuary is expressing the Bayesian point of view right there. 

The weakness in connection with any ordinary mathematical statistics 
course is that you may be formally taught to put up blinders and forget 
almost everything known about the material being studied. 

In conclusion, I would like to say that the sort of approach presented 
by Jones and Kimeldoff is long overdue, especially if actuaries are seri- 
ously going to make use of multivariate statistical techniques. I t  is also 
long overdue for some statisticians to realize that everything does not 
happen in a controlled laboratory. 

Again, I extend my heartiest congratulations to the authors of this 
paper. 

(AUTHORS' REVIEW OF DISCUSSION) 

GEORGE S. Kr~F~LDORF AND DONALD A. JONES : 

We would like to thank Messrs. Irish, Hickman, Greville, Rosser, and 
Baillie for their thoughtful discussions of our paper. While BaiUie's 
parable is somewhat extreme, it does focus attention on the interaction 
between prior knowledge and new data, which is the essence of statistical 
inference. 

Irish outlines the close relationship provided by Bayesian statistics 
between graduation theory and credibility methods. While we have 
looked forward to utilizing this relationship in order to further the de- 
velopment of credibility theory, Irish uses it to apply credibility ideas to 
graduation. In particular, he shows that greater consistency between 
existing credibility ideas and Bayesian graduation would be achieved if 
the graduator used the relation p~ -- cm~ to approximate his actual prior 
standard deviations rather than the relation p~ = eV'-~ which we used 
in our example in Section IV. In theory, of course, there exists no func- 
tional relationship whatever between the prior means m~ and the prior 
standard deviations p~, and each prior standard deviation should be 
elicited by honest introspection (perhaps with the aid of equation [28] of 
our paper). Because this procedure is tedious, it is often worthwhile to 
seek some formula for the p~ which would serve as a good approximation. 
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I n  this context, Ir ish's  suggestion for the use of the formula p~ = cm~ is 
based on the observation that  m a n y  actuaries using credibility methods 
have found it  to be an adequate approximation in the sense tha t  they have 
been willing to accept its consequences. Column 8 of the accompanying 
tabula t ion  presents the result of graduat ing our data  of Section IV using 
Ir ish 's  suggestion with c = 0.6. 

Hickman ' s  discussion presents two valuable ideas. The first, an ex- 
tension of the Bayesian method in which the observed rates are not  as- 
sumed to be independent ,  is applied to graduat ing morta l i ty  rates among 

SEVERAL GRADUATIONS OF ILLUSTRATIVE DATA 

AGE 
GRotres 

it)  (2) 

1 . . . . .  10-14 
2 . . . . .  15-19 
3 . . . . .  20-24 
4 . . . . .  25-29 
5 . . . . .  30-34 
6 . . . . .  35-39 
7 . . . . .  40-44 
8 . . . . .  45-49 
9 . . . . .  50-54 

10 . . . . .  55-59 
11 . . . . .  60-64 
12 . . . . .  65-69 
13 . . . . .  70 and 

over 

EXPECTEE 
DEATAS 

(3) 

3.84 
5.41 

13.80 
23.41 
60.91 

125.74 
205.75 
239.65 
179.09 
131.73 
89.34 
37.92 

10,04 

Ex- C R ~ E  
POS[:RES RATES 
E i X l O - t l u i X l O  s 

(4) (s) 

11.64 0.00 
13.19 0.00 
23.80 0.04 
34.94 0.80 
51.62 1.32 
65.83 1.11 
73.22 3.41 
60.67 4.70 
33.60 6.01 
18.12 7.72 
6.98 4,15 
1.85 5,93 

0.31 9.74 

GRADUATED R A ~ S  ~i X10a 

Grevil le 

h = l O  h ~ l O 0  
(6) (7) 

0.04 0.16 
0.09 0.26 
0.24 0.41 
0.73 0.71 
1.19 1.07 
1.41  1 .53  
3.20 2.42 
4.46 3.24 
5.51 4.00 
6.36 4.97 
6.64 6.45 
9.17 9.58 

13.64 14.36 

Ir ish 

(s) 

0.25 
0.32 
0.46 
0.59 
1 .08  
1.70 
3.04 
4.41 
5.62 
6.68 
8.65 

12.54 

19.97 

Kirael-  
doff-  
Jones 

(9) 

0.22 
0.29 
0.46 
0.59 
1.10 
1.81 
2.87 
4.08 
5.41 
7.21 

12.49 
20.03 

31.81 

BASIC 
TABLE 

m¢ X lOS 

(to) 

0.33 
0.41 
0.58 
O. 67 
1.18 
1.91 
2.81 
3.95 
5.33 
7.27 

12.80 
20.50 

32.39 

a cohort of lives observed from bir th to death. His second idea generalizes 
Whi t taker ' s  method by  minimizing a positive definite quadrat ic  form 
subject  to certain linear inequal i ty  constraints. Both of Hickman ' s  ideas 
offer exciting possibilities for further development  and application to 
actuarial  problems. 

An interesting and very practical question is the one raised by  Rosser: 
How does the Bayesian theory provide for testing a graduation? I n  reply, 
we would advise the graduator  to test his prior opinion before graduat ing 
the crude data. A graduation can be unacceptable only when the results 
conflict with some aspect of the graduator 's  opinion. Hence, if all aspects 
of opinion were actually expressed as input  to the graduat ion process, 
the result would in fact represent the graduator 's  true posterior opinion, 
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and no subsequent testing would be necessary. As a practical matter, 
however, an inexperienced graduator or one who is using a new method 
may experience some difficulty in quantifying his prior opinion precisely. 
In such cases, we would suggest that the graduator, prior to graduating 
the given data, test his prior opinion by examining the results of graduat- 
ing several sets of hypothetical data. 

Greville's chief criticism, that  we "sell the Whittaker method very 
short," and his quarrel with our "impression of Bayesian graduation as a 
generalization of Whittaker's method" are based upon a difference be- 
tween his definition of the Whittaker method and ours. Greville defines 
the Whittaker method as one which derives the graduated rates v from 
the ungraduated rates u by minimizing the quadratic form 

( v  - u ) ' W ( v  - u) + (v  - m ) ' G ( v  - m), 

where W is a positive definite matrix and G is a positive semidefinite 
matrix, while in our paper we are thinking of Whittaker's method in 
terms of the general mixed difference Type B method. We should have 
pointed out in our paper the similarity between our equation (8) and 
an equation previously published by Greville. 

We did not intend to leave the reader with the impression that "in 
the Bayesian method the user has more difficulty in exercising control 
over the graduation process than in the usual Whittaker method [in that] 
the only way to ensure smoothness is to take w close to m." The gradu- 
ated rates will be smooth but not necessarily close to the prior means m 
if the following conditions hold: (1) the prior means are smooth; (2) the 
prior correlation coefficients are large (i.e., close to 1); and (3) the prior 
standard deviations are large as compared with the standard deviations 
of the observations. In graduations of extensive data, these conditions 
will usually prevail. 

Greville's assertion that "the option of choosing G as a singular matrix 
. . .  is an important property of the Whittaker method" demonstrates 
one essential difference between Bayesian and classical procedures. He 
bases the importance of G's singularity on the existence of a nontrivial 
set of vectors which are left unchanged by such a graduation process. 
We recognize this as a mathematically elegant property but not one 
particularly relevant for a graduation process. From the Bayesian view- 
point the singularity of G reflects a prior distribution which is uniform 
on this set of vectors and on each of its translates. We believe that in the 
majority of applications of graduation the graduator's prior density 
function is unimodal rather than constant on such sets and hence the only 
vectors which should be left invariant under a graduation process are 
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those sufficiently close (in the sense of numerical accuracy) to his modal 
vector. 

As an example Greville chooses as his measure of "roughness" the 
expression 

12 

~_~ (v~+l-- rv,)  2, 
i m l  

which is zero if and only if the rates v~ satisfy a relation of the form vi = 
ar ~ for i = 1, 2, . . . ,  13. This measure is derived from his prior belief 
that  mortali ty rates exhibit a geometric trend. Moreover, he is willing 
to commit himself to the value r = 1.5 to describe the "shape" of the 
mortali ty curve. With this measure of "roughness," which corresponds 
to a matrix G which is singular, every vector of the form v = [Vl, v 2 , . . . ,  
v13]', where v~ = a(1.5) ~ is left invariant by  Greville's graduation re- 
gardless of the value of a. From the Bayesian point of view the adoption 
of this singular "roughness" matrix, which corresponds to a degenerate 
prior probability distribution, would imply that  every such vector was 
equally probable in his prior opinion regardless of the value of a, thus 
ignoring the facts that  a must  certainly be restricted to the narrow range 
0 < a < (1.5) -18 ~ 0.0051 (so that  the mortali ty rates are between 0 and 
1), that  a almost certainly satisfies 0 < a < (0.1)(1.5) -13 ~ 0.00051, 
and that  ~ probably (based on previous mortality studies for similar 
lives) satisfies 0.0001 < a < 0.0003. 

I t  seems unrealistic to us to graduate under the assumption that  the 
value of r can be stated precisely while denying any knowledge whatever 
about the value of a. Hence we do not share Greville's interest in gradua- 
tion methods in which prior opinion determines the shape of the curve 
but  is completely silent about the level of the curve, as would be implied 
by a singular "roughness" matrix. 

The tabulation shown on page 124 displays several graduations of the 
data presented in Section IV. The crude rates in column 5 are the seventh 
policy-year experience of policies issued in the single year 1955 on stand- 
ard medically examined female lives, while the prior means given in 
column 10 are the graduated rates for the seventh policy-year experi- 
ence for like issues for the years 1949 through 1954. We view graduation 
not merely as smoothing but  as the more general process of estimating 
the true rates which actually prevail in the population, these estimates 
to be consistent both with the observed data and the graduator's ex- 
perience, judgment, and knowledge. Hence we believe that  a graduation 
should be judged not only on the basis of columns 4 and 5 but  also 
(especially for such scant data as these) on the basis of column 10, as 
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well as all other relevant information. In this context we cannot agree 
that  either of Greville's graduations is preferable to our Bayesian gradua- 
tion. For h -- 10, his initial values are too low; for h -- 100, his graduated 
rates are significantly below both the crude rates and the Basic Table 
rates for age groups 7-10, which constitute 67 per cent of the expected 
deaths (Basic Table) and 47 per cent of the exposures. The ability of the 
Bayesian method to make explicit and maximal use of prior information 
is one of its chief advantages over the Whittaker method as defined by 
Greville. 


