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INTRODUCTION 

I 
N OldER to explain the title and purpose of this paper, let us first 

consider some examples. Suppose tables of values are calculated at 
3 per cent and 3{ per cent, and an approximation at 4 per cent is 

desired. Many actuaries would use a formula that is tantamount to 

f(4%) -- 2f(3½%) -- J(3°-/o). (1) 

Others might use the formula 

/ ( 4 % ) -  [ / ( 3 ½ % ) ] 5  
f ( 3 % )  (2)  

The question arises as to which one gives the better approximation. 
This paper will show that, for most of the values desired by actuaries, the 
latter is superior. 

Similarly, the approximation given by 

f(4°'/o) - (1 + A)'/(2½e/*o) -- 31(3½% ) -- 3./(3°7o) +f(2½%) (3) 

is usually not so good as that given by 

f ( 4 % )  = e I°g "¢ (4%) ~ e(l+ A) t log l (2~r%) ~ [ f ( 3 ½%) [I(3%) ].'X I(2½%) • 
1 

(4) 

For the purposes of this paper, formulas with the characteristics of 
(1) and (3) are designated as "arithmetic formulas," and those compa- 
rable with (2) and (4) are called "geometric formulas," because of their 
analogies with the general terms of arithmetic and geometric series. 

I t  will be noted that geometric formulas can be obtained from arith- 
metic formulas by changing the coefficients to exponents and addition to 
multiplication. 

I t  will be further noted that the use of geometric formulas for a par- 
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ticular function is identical to the use of arithmetic formulas for the 
logarithm of that function whenever the function is positive for the range 

considered. 
This device should serve as an aid in extending the investigation of 

geometric formulas into the areas of osculatory interpolation and gradua- 
tion. The scope of this paper is limited to the application of Newton's 
formula. 

THEORY 

Let us define the terms R,+l(X), S~l(x), U~, and V~ as follows: 

d.+ 1 1 
l ~ + l ( x ) = [ ( x - - a ' ( x - - b ) ' ' ' ( x - - 1 )  d- -~u~]  [ ( n + l ) , ]  

[ ] [  1 ] 
d"+1 ( n +  1 )! S.+x(x) = ( x - - a ) ( x - - b ) . . . ( x - - l )  ~ l o g u o  

U , = u ~ +  ( : r - a )  ~ u . +  ( x - a ) ( x -  b )  ,¢,2 u ~ + .  . . 
b be 

+ ( x - - a ) ( x - - b ) . . . ( x - - k )  /k" uo, 
bc . . .l 

and 

V , = l o g  u ~+  ( x - a )  &log ua+ ( x - a ) ( x -  b ) / k  S log ua 
b bc 

+ ( x - - a ) ( x - - b ) . . . ( x - - k )  z~" log u~, 
bc... I 

where ~ and 0 are values in the interval including all the arguments in- 
volved, as defined on page 57 of Harry Freeman's Finite Differences for 
Actuarial Students (Cambridge University Press, 1962). 

I t  is proved on pages 56 and 57 of the book by Freeman that 

R~+i(x) = u~ - u z .  ( 5 )  
Similarly, 

S,,+,(x) = log u~ -- V~. (6) 

We will state the following nine theorems for instances when u~ is 
positive; the proofs of which are given in the Appendix: 

Tm~om~M I: If S~l(X) is positive and if 

u~[1 - e--s.+,(~)] < R.+I (x), 
then 

l u : -  eV:l < lu:-- U:I. 
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TEEORE~ II: If S.+I(X) is positive and if 

R.+~(x) < u . [  e -s"+'('> - 1 ], 
then 

lu:-eV'l  < lu , -U,I .  
TaEORE~ III :  If S.+1 (x) is negative and if 

R,+I(x) < u , [ 1  - e-S"+'('~], 
then 

l u , -  eV'l < lu~-U,I. 
Trr~.Ol~M 1¥: If Sn+l(x) is negative and if 

u~[ e - s " + ' ( ' ) -  1 ] <R,+l(x) ,  
then 

l u . -  eV'l < lu , , -  U.I. 

Trr~oRE~t V: If 0 < S,,,+x(x) and 

u . [1  - e -s"+'( ')] < [ R . + x ( z ) I ,  
then 

l u , -  eV'[ < l u , -  U,I. 

Tm~oP.~ VI: If S,,,+l(x) < 0 and 

u,[  e -s"+'(')- 1 ] < IR +1( x ) l, 
then 

[ u . -  eV'l < l u . -  U.I. 
TrrEOl~_E~r VII: If 

I u ,  [ 1 - -  e - s " + / ' )  ] I < I P~+x ( x )  I, 
then 

l u , -  eV'l < l u g -  U,I .  

Tm~or.~r VIII:  If 0 < S.+I(x) and 

u. [s.+~(x)l < le~.+~(x) l ,  
then 

T r m o P ~  IX:  If 

and 

then 

lug- eV'l < lug-  U,I. 

IS.+l<x) l < x 

u=[Ia.+l(x) l + 0.72) s.'+x(x)] < IR.+l(x) l ,  

l u . -  ev'l < l u . -  U•I. 
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The theorems might be paraphrased by saying that, for geometric 
interpolation or extrapolation to give a greater degree of accuracy than 
arithmetic interpolation or extrapolation, it is sufficient that u~ be positive 
throughout the range of arguments and that the premises in any one of the 
nine theorems be true. 

ExaxMnation of the first four theorems reveals that additional con- 
clusions which may be derived are that R~l(x) is positive in Theorems 
I and IV and is negative in Theorems I I  and III.  If this additional con- 
clusion in each of these theorems is made a premise and combined with the 
converse of the second premise in each theorem, we deduce conclusions 
which are converse to those in the first four theorems. Additionally, we 
can also see that the first premises of the theorems are now additional 
conclusions. 

This analysis reveals not only that the second premise in each of the 
first four theorems is sufficient but that it is necessary, if we ignore the 
trivial cases when either R,~-l(x) or S~x(x)  is zero. This means, of course, 
that, if the second premise in any one of the first six theorems is not true, 
then arithmetic interpolation or extrapolation would be more accurate 
than geometric interpolation or extrapolation. 

The premise in Theorem VII is also both necessary and sufficient; 
however, the second premise in each of Theorems VIII  and IX is sufficient 
but not necessary, the purpose of these latter theorems being to set forth 
conditions not involving the exponential functions. 

To determine that a geometrical formula gives a higher degree of ac- 
curacy than an arithmetical formula, it is sufficient for practical purposes 
when second and higher differences are ignored to show that 

(u') 2 < 

When this expression is true, when the range of arguments is sufficiently 
small that ~ can be deemed to equal 0, and when the difference intervals 
are sufficiently small that 

1 -  e-S"+ '~*)- S.+l ( x ) , 

then the premises of either Theorem I or Theorem I I I  are satisfied. 
I t  can be shown without too much difficulty that the premises in at 

least one of the theorems are satisfied for the functions 

( l + i ) " ,  v",  a ~ ,  s ~ ,  a , A . ,  and P~ 

whenever first differences only are used, differences are taken with respect 
to the interest rate, and the function is assumed to be a polynomial of 
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degree higher than 2. Except for the functions (1 -t-/)" and v ", the algebra 
becomes involved when second and higher differences are used. 

I t  is not surprising that geometric methods give exact values when 
differences are taken with respect to n for the functions (1 -t- i)" and v". 
I t  is more interesting that arithmetic methods give better values for 
s~ and a~ when differences are taken with respect to n except for Sgl when 
n is such that (1 -}-/)* is greater than or approximately equal to 2. The 

TABLE 1 

ILLUSTRATIONS OF ACTUAL AND EXTRAPOLATED VALUES 

(Differences with Respect to the Interest Rate) 

J (4%) 

I I + i )  8 . . . . . .  
Cl+i) ~ . . . . .  
I I+i )  t°° . . . .  

plO0 . . . . . . . . .  

~8"1 . . . . . . . . . .  

~ z ' f ~  . . . . . . . .  
~ . . . . . . . . .  

~a-g] . . . . . . . . .  
• ~ . . . . . . . .  

~10 . . . . . . . . .  

~5§ . . . . . . . . .  

AIO . . . . . . . . .  

/IS5 . . . . . . . . .  
/lgo . . . . . . . . .  
Pro . . . . . . . . .  
P~5 . . . . . . . . .  
P~. 

ACTUAL 

1.12486 
3.64838 

50.50495 
.88900 
.27409 
.01980 

3.12160 
66.20953 

1237.62370 
2.77509 

18.14765 
24.50500 
22.8855 
13.1156 
3.3747 

.11979 

.49555 

.87020 

.00523 

.03778 

.25786 

EXTRAPOLATED ~ O M  

3 % ~  3½%VALUZS 

Geometric Arithmetic 

1.12494 1.12471 
3.65119 3.57155 

50.62295 43.16418 
.88893 .88874 
.27388 .26566 
.01975 .01209 

3.12163 3.12155 
66.10756 65.60458 

1225.28223 1117.93558 
2.77492 2.77466 

18.10575 18.01462 
24.20408 23.71195 
22.7319 22.4851 
13.0939 13.0637 
3.3741 3.3737 

.11860 .10964 

.49429 .49078 

.87000 .86975 

.00521 .00509 

.03775 .03770 

.25786 .25785 

EXT~J~POLATED ~ROM 

2½%, 3%, ~ 3½% v^Lws 

Geometric Arithmetic 

1.12486 1.12486 
3.64835 3.63767 

50.50380 47.73204 
.88900 i .88900 
.27410 .27565 
.01980 .02473 

3.12160 3.12160 
66.21335 66.14414 

1239.64521 1198.52043 
2.77509 2.77510 

18.14883 18.16513 
24.54558 24.78367 
22.8986 2 2 . 9 8 2 0  
13.1166 1 3 . 1 2 1 5  

.33747 3.3?47 

.11975 .12344 

.49559 .49624 

.87020 .87021 

.00523 .00526 

.03778 .03779 

.25789 .25789 

reason for the latter is that when (1 -}- i)" exceeds 2, the function s~ tends 
to behave more like an exponential function than a linear one. 

ILLUSTRATIONS 

I t  is likely that most people are more interested in practice than in 
theory. Practical demonstrations are not only easier to follow but also 
give a visual indication of the magnitude of the superior degree of ac- 
curacy of geometric methods over arithmetic methods in various in- 
stances. 

The middle two columns of Table 1 show values of various functions at 
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4 per  cent interest  as ex t rapola ted  f rom3 per  cent and 3½ per cent tables.  
The  last  two columns of the table give values ext rapola ted  from 2½ per  
cent, 3 per  cent, and 3½ per  cent values.  (The functions using life contin- 
gencies were based on "Uni ted  States  Whi te  Males :  1959-61.") 

Table  2 presents  values of various functions a t  4 per  cent  interest  as 
ex t rapola ted  from values five and ten years  less than the dura t ion  or age 
associated with the function. 

TABLE 2 

ILLUSTRATIONS OF ACTUAL AND EXTRAPOLATED VALUES 

(Differences with Respect to the Duration or Age) 

/ (4 %) Actual Geometric Ar/thrnetlc 

(1+01°° . . . . . . .  
s~-'~] . . . . . . . . . . .  
s3-~ . . . . . . . . . . .  
a3o-¢l . . . . . . . . . .  
~r~ . . . . . . . . . .  
ag0 . . . . . . . . . .  
As5 . . . . . . . . . .  
A~o . . . . . . . . . .  
-~65 . . . . . . . . . .  

P g 0  . . . . . . . . . .  
N~+ 10,000.. 
N,o+ 100 . . . . .  

50.50495 
20.02359 
56.08494 
17.29203 
13.1156 
3.3747 

.49555 

.87020 

.03778 

.25786 
12.2927 
4.5585 

50. 50495 
26. 61337 
58. 24357 
17.95758 
13.2927 
3.4244 

• 50320 
• 88052 
• 03784 
•25713 

12. 7643 
6. 5447 

48. 90344 
18. 59589 
53. 51374 
17. 65383 
13.1508 
3.1741 

• 49420 
.87792 
.03610 
• 24034 

10. 7863 
negative 

CONCLUSION 

Obviously, best results arise from the choice of an interpolation formula 

producing a curve that most closely follows that of the actual curve of 

the  function being in terpola ted  or ext rapola ted .  
M a n y  actuaries m a y  find this paper  useful for pract ical  applications.  

Others m a y  find i t  a st imulus for fur ther  investigation.  There  are m a n y  
opportuni t ies  for fur ther  invest igat ion of the subject  and related aspects, 
and i t  is hoped there will be subs tant ia l  discussion and further  papers  b y  
those with more  t ime and mathemat ica l  abi l i ty  than  the author.  

APPENDIX 

Whenever  S,v.,(x) is positive, we have, using formula (6), 

evx = elo~ ~=-s.+,(=) = u.e-s.+,(.) < u. . ( 7 ) 

Similarly,  whenever S,,+1(x) is negative,  

u = <  e vx . ( 8 )  
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Theorem I is easily proved by applying formulas (5) and (6) to 

u,[ 1 - e -s"+'c~] < g . + l ( x ) ,  
which gives 

resulting in 

Uz - -  U x e  v z - l ° g  u~ ¢~ '/~r - -  U z  , 

U,-- e v x < u z -  Ux. 

This expression and (7) give 

U .  < ev* < u~ . 

Hence, 

and 
U z -  Uz < e v x -  U. < 0 

165 

l u , -  er'l < lug-  U.I. 
Theorem II  is similarly proved by deriving that 

0 < u , - -  e V ~ <  U , - u ,  . 

Theorem I I I  is proved by using (8) to derive 

u , <  ev~< U , .  

Theorem IV is proved by deriving that 0 < eV~ - u~ < u ,  - Ux. 

Theorem V is a corollary of Theorems I and II. 
Theorem VI is a corollary of Theorems I I I  and IV. 
Similarly, Theorem VII is a corollary of Theorems V and 3/'1. 
Theorem VIII  is derived from Theorem V by using the general relation- 

ship, 
1 -- e-~ < y ,  

if y is not zero. 
Theorem IX is obviously true for the case when S,,+l(x) is positive by 

reference to Theorem VIII. It  is proved from Theorem VI for the case 
when S,+l(x) is negative by showing that 

u.[  e Is'+'~)l - 1 ] < u.[  I S,,+l(x) l + 0 . 7 2 S ~ + 1 ( x ) ] ,  

when 
IS,,+~(x) l < 1. 


