

Article from
The Modeling Platform
November 2018
Issue 8

20 | NOVEMBER 2018 THE MODELING PLATFORM

What’s a Model?
A Framework for
Describing and
Managing Models
By Dodzi Attimu

The definition of a model is one of the first items addressed
in any model risk management program. Thankfully, the
Federal Reserve’s Office of the Comptroller of Currency’s

guidance in “SR Letter 11- 7” on model risk management1 pro-
vides a good benchmark (if not the standard) regarding what a
model is for the financial industry. In this article, we will address
some model- related questions that arise in operationalizing a
model risk management program. Some of these questions may
be philosophical while others are operational. One such philo-
sophical question is whether a model is a process or a unit that
transforms input via computational methods into useful output/
estimates. An example of an operational question is whether to
classify modeling functionality on a single platform (e.g., Prophet,
MoSeS, GGY AXIS, etc.) as a single model or as multiple models.

Regarding the operational situation, a typical scenario is the
following: An ALM projection functionality is built on a plat-
form like GGY AXIS for insurance products Product1 and
Product2 that generates cash flow (CF) projections that are
used for Actuarial Guideline (AG) 43 and C3- Phase 2 analysis
and reporting. The question becomes: Does this represent one
model or four models (the latter corresponding to a model each
for the two products times two business processes) or maybe
two or three models?

In this article, we outline a formal framework2 for describing models
that is inspired by the operational context of governance, man-
agement and use of models. This is a coherent and consistent
frame of reference to answer relevant questions related to mod-
els and their use. The framework also provides a sound and easy
mechanism and “language” to articulate and analyze different
design approaches for models that may have big impacts on the
efficiency of business processes relying on them.

Another helpful feature of this framework is that it leverages the
actual operational aspects of the use and maintenance of models.
Consequently, we expect the framework and related ideas pre-
sented here to be of interest to model developers, model testers

and model validators, individuals in model governance or model
audit functions, as well as business users of models.

OK, SO HOW DOES ONE DEFINE A MODEL AGAIN?
The Fed guidance in SR Letter 11- 7 on model risk management
states: “… a model refers to a quantitative method, system, or
approach that applies statistical, economic, financial, or math-
ematical theories, techniques, and assumptions to process input
data into quantitative estimates.”3

More pithily, a model is a means to transform input (data,
assumptions and other parameters) via a processing component
(throughput) into quantitative estimates (output).

Figure 1 provides a depiction of a model showing the constitu-
ent parts.

Figure 1
Depiction of a Model

Input Throughput Output

Typically, a model is defined in the appropriate policy (or pol-
icies) of a model risk management program and is usually the
exact definition in SR Letter 11- 7 noted previously or modified
based on the operational needs or priorities of the model risk
management program. For example, in some programs, any tool
that performs any sort of quantitative transformation is classified
as a model, whereas other programs add an extra requirement
that the transformations involve uncertainty or some element of
judgment/assumptions.

In some instances, too, a model is defined as an end- to- end
modeling process spanning the sourcing of inputs through
extraction, transformation and loading (ETL), model run, and
reporting based on the output. We would argue that this latter
definition is of a business process that utilizes a model(s) because
defining a model as a process provides both philosophical and
semantic challenges.4

In this formal framework (which is based on the earlier SR
Letter 11- 7 definition), a model is not a process but an opera-
tional unit and is different from business processes that utilize
it. Conversely, a business process would be one that may utilize
models as tools. Thus, a model validation may focus mainly (but
not exclusively) on this operational unit, whereas a business/

 NOVEMBER 2018 THE MODELING PLATFORM | 21

modeling process validation would include validation of all relevant
components of the process, including the model(s) used therein.

Formal Structural Definition of a Model
Conceptualizing a model as an operational unit consisting of an
input structure, processing component (throughput) and output
structure is fairly high level in the sense that we do not go into
details about what requirements the processing unit should per-
form to qualify as a model. That can be determined by a model
risk management program as needed. The use of operational unit
in this framework means that a model could use a collection of
software libraries, input file structures and so on. However, if
to use the model, the input structure (potentially a collection of
structures physically represented by different files) is operated
on collaboratively by these components, all these (potentially
stand- alone) components are part of a single model.

Defining “Model”
A model is an operational unit consisting of an input structure and
a throughput (processing logic/functionality) that acts on the
input structure to produce an output structure. We will refer to
the input structure, throughput and output structure as opera-
tional components of a model.

Sometimes, confusion arises regarding the use of the term
“model” because it can mean a quantitative abstraction of reality
(i.e., in the phrase “asset/interest rate/mathematical models”)
on one hand or an operational unit (what the definition of SR
Letter 11- 7 addresses) on the other. Consequently, a model (an
operational unit) for valuing a portfolio of assets could consist
of many different asset/interest rate models (abstractions of the
value of these assets/risk factors). Examples include LIBOR
Market Model, Black Scholes model, SABR model and so on.

In other words, if a code base (logical specification) encom-
passes several de facto “mathematical/financial models” but
supports an input structure to generate an output structure, we
operationally have one model. Without a framework for defining
models from an operational standpoint, there could be (unnec-
essary) disagreement on what constitutes a single model or
multiple models.

In addition, we note that the processing logic of a model consists
of all logic that is accessible (reachable) through a unique logical
entry point. At a high level, consider this entry point to be syn-
onymous with a “RUN” button or a command that triggers the
calculations.5 The next sections expand on the three operational
components of a model.

Input Structure
The first operational component of a model is the input struc-
ture. This includes user interface, configuration files and an
input data structure that may reside in external files (which may
be referenced from the user interface).

First, in this formalism, input includes raw data, assumptions
and parameters. However, it is possible due to convincing
reasons or just bad design that certain aspects of these are “hard-
coded” in a given model’s implementation code or set- up, that
is, throughput.

Second, the use of input structure instead of input is because input
consists of structure and content/values leading to a distinction
between input structure and input content/values, which is a deliber-
ate and important distinction in this framework. Input structure
is the general “shape”/data structure of the inputs—for example,
what type of inputs are expected and how the various elements
are arranged—whereas input content refers to specific values
for these inputs in the structure. This (input) structure can be
represented abstractly as a collection of tables. Note that this
choice is for convenience.

One natural motivation for the distinction between content and
structure is for the purposes of defining what a model change is
in this framework (see “Defining ‘Model Change’ ”). In particu-
lar, we naturally have a situation where a unique model can have
different input content and hence generate different output. In
other words, changing an input value to a model does not result
in a different model; it would be the same model producing
different output.

Third, though our choice of tables as building blocks of input
structure is for convenience, it is also general enough to support
any form of input structure. This readily follows from the fact
that for any set of inputs, one can construct a one- field table
for each element of the input. One immediate outcome of this
observation is that the representation of an input structure is
not unique (e.g., one could organize the structure into two
or three or more tables). Hence for a given set of inputs, dif-
ferent input structures could be used to support them. These
structures could be different but capture the same informa-
tion. Physically, the input structure could consist solely of
one or multiple types of the following: relational database,
text files, Excel files, special file format native to system,6

and so on.

Sometimes, confusion arises
regarding the use of the term
“model” because it can mean
a quantitative abstraction
of reality on one hand or an
operational unit on the other.

22 | NOVEMBER 2018 THE MODELING PLATFORM

What’s a Model? A Framework for Describing and Managing Models

Finally, note that we consider the input structure as encom-
passing all that a collection of code, plus any other processing
component constituting the model, operationally supports to
process input values.

Throughput
The throughput is the second operational component of a
model and refers to logic that transforms the input to provide
estimates or output. In addition, we also consider as part of
the throughput any other component of the model that is not
considered as part of input or output structure. In other words,
we include parts of modeling system that are responsible for
generating and formatting output and performing modeling
housekeeping activities such as validation of inputs as well; not
just the business logic.

Output Structure
Similar to our highlighting of structure for inputs, we empha-
size the structural aspects of the output. The output depends
on the throughput. In addition, similar to the case of the input
(structure), we will assume without loss of generality that the
output has a structure of a collection of tables. Again, similar
to the input structure, we consider the output structure as the
union of all (table) structures supported by the code base via its
point of entry.

Interrelationship Between the Three “Puts”:
Input Structure, Throughput and Output Structure
We first note that in this framework, software code that imple-
ments some logic, but has no functionality to provide output,
does not qualify as a model. All three operational components
must be present for a classification as a model.

Another aspect of the interrelationship between the operational
components of a model is related to whether an assumption is
part of the input or part of the methodology (throughput) of a
model. For example, consider a (toy) model that projects stock
prices under the Geometric Brownian Motion (GBM). The
functional specification of this model is an assumption.7 It is also
correct to say that the volatility parameter is an assumption.

The challenge when talking about assumptions related to a
model (e.g., appropriateness for a given modeling use) is to
determine whether one considers the GBM specification as an
assumption or only the volatility parameter. This is the motiva-
tion for the following two definitions.

Defining “Assumption Input”
An assumption that can be captured via the input structure is
called an assumption input. Since input consists of both structure
and content as noted earlier, we consider an assumption input as

consisting of an assumption input structure as well as assumption
input content.

Defining “Assumption Throughput/Implementation”
An assumption that is part of the implementation software
code (processing logic/throughput) is called an assumption
implementation.

Let us revisit the point earlier about different input contents to
the same model in the light of our GBM asset projection system.
Assume our input structure consists of four entries per stock: the
number of time steps, length of time step, number of paths, and
the volatility. Changing any of these input values does not result
in a different model. An equivalent deduction is that the input
content, while necessary to produce output content of a model,
is not a component of the model. This makes the definition of a
model in the framework an operational abstraction.

SOME APPLICATIONS OF FRAMEWORK
In this section we outline some applications of this framework.
First, we answer the question of whether an assumption is part
of a model or not. Next, we tackle the problem of determining
if a component is part of a model. We then address the issue of
determining the number of models represented under a given
modeling setup for different products supporting different
business processes/metrics. Finally, we consider in general some
model management concepts of model design, change manage-
ment and related activities.

When is an Assumption an Input or Part of a Model?
For example, consider the earlier simple model that projects
stock prices under the GBM. Assume that the input structure
supports a single (constant volatility) parameter (ignoring other
input values supported by the input structure) per stock. Are the
volatility parameters and GBM assumptions part of the model?

 NOVEMBER 2018 THE MODELING PLATFORM | 23

To answer this question, note that the volatility parameter value
is an assumption input content and hence is not part of the
model. In addition, recalling that input consists of input struc-
ture and input content, and that it is the input structure that
is a constituent operational component of a model, we will say
the assumption input structure is part of the model (though the
assumption input content is not, as noted earlier). For readers who
might struggle with the latter point, note that intuitively, one
can change the content of the volatility input structure with-
out creating a different model as a result (more on this in the
upcoming formal definition of a model change). On the other
hand, as the formulaic implementation of the GBM is fixed in
the model processing code/logic, it is an assumption implementa-
tion; and since the throughput is an operational component of
the model, it is part of the model.

However, another design could involve an input structure
that captures the type of stock price evolution assumption
specification as well as the parameters for the specification.
For example, the user can specify either GBM or GBM with
Jumps as input content/values in addition to the assumed input
content/values of the parameters. In this case, the assumed
functional specifications as well as parameters are part of the
input, and we would conclude that the actual choice of volatility
input and model specification used for the model is not part of the
model—they are mere inputs into the model. This last design
illustrates an important consideration for designing models that
are flexible and operationally efficient. We hope to follow up
with an article on elegant, efficient and flexible model designs
with emphasis on user configuration of third-party projection
platforms.

Determining Constituent Parts of a Model
Consider a vendor modeling platform8 that has an operational
unit used for ALM projection and has:

• Input structure supporting inputs like economic scenario
input (projected yield curve for Treasurys and spreads over
Treasurys) for all fixed income assets in the portfolio of
assets backing general account liabilities, equity and div-
idend growth rates of indices mapped to separate account
values (AV), liability policy data (AV, guarantee bases, age of
policyholder, etc.), assumptions input (parameters for lapse
formulae; GA reinvestment strategy, e.g., target allocation,
reinvestment frequency, etc.) among others.

• Suppose also that this model projects the assets and liabilities
and produces (via the throughput component) an output
structure housing cash flows (assets and liability cash flows)
and financials on a STAT basis by scenario and for each
monthly time step for 40 years.

• The output structure consisting of at least one table with a
field that captures scenario number and houses the monthly
income statement output for 40 years.

 - At least one table because there may be other, lower- level
information that constitutes the output structure, for
example, debugging information that has intermediate
calculations or calculation results at a lower level of gran-
ularity. These may be optional output that is supported by
the throughput and hence is part of the output structure.
For our purposes, it is the financial statement component
of the output structure that is important in this example.

• After the results are generated in the output structure, an
Excel Analytics tool calculates a conditional tail expectation
(CTE) number among other analytics and graphs.

In this scenario, is the Excel Analytics tool part of the model?

The framework gives a natural answer, which is it depends on
whether that analytics functionality is part of the platform’s pro-
cessing logic (i.e., throughput). The reasoning follows naturally
from throughput consisting of all logic that is reachable from
the model run entry point. Consequently, in this example, if the
analytics tool is a stand- alone tool that can only be activated by
manually opening and using it without it being driven by the
model throughput (via its entry point), it is not part of the model.

The natural follow- up is whether the Excel- based analytics tool
can be made a de facto part of the model in this formal frame-
work, and it can. (So fans of “model- as- a- process” paradigm can
still operationally design a single model that touches all applica-
ble processes.) To do that, it suffices to incorporate the analytics
tool as part of the throughput. Operationally, one option is to
add to the throughput some logic/functionality that triggers the
working of the analytics tool directly in a way that is reachable
from the entry point.

In other words, hitting the proverbial “RUN” button would run
the model and trigger the analytics tool functionality. This does
not have to involve removing the option to use the analytics
tool independently on a stand- alone basis. The formal principle
that is applicable is the so- called enclosing/encompassing property
of throughput. This property posits that any customized (poten-
tially independent/stand- alone) functionality (code, .dll, .exe,
etc.) that is reachable (e.g., called) from the entry point of the
throughput is a de facto part of the throughput.

This property is not just a purely abstract algebraic concept
for its own sake.9 Its importance derives from the fact that
the operational model component of throughput usually con-
sists of various (potentially independent, multi- technological)

24 | NOVEMBER 2018 THE MODELING PLATFORM

What’s a Model? A Framework for Describing and Managing Models

operational components. In addition, many customizations by
users may involve adding .dlls, executables or scripts that add
various functionality, including input validation, and analytics to
the throughput.

Determining “Number of Models”
In this example we consider the case of a projection system
that supports the projection of variable annuity liabilities for
n products Product1,...,Productn. These products are all mod-
eled on the same platform, say PlatformX. In addition, using
this platform, m business processes (or metrics) BusinessPro-
cess1,...,BusinessProcessm are supported.10 How many models
are represented in this scenario? On one extreme, we have n × m
models (one model for each product, business process (metric)
combination). On the other extreme, we have one model that
supports all products and metrics.

But what is the right answer? We show how to make this deter-
mination naturally (without resorting to subjective “judgment”)
using this formal model description framework. Indeed, the
number of models in this case is determined by how many
stand- alone operational units are represented in the modeling
setup. In other words, it is determined by the design/configuration
of the model(s) on the platform.

Let’s delve deeper and show how to make the determination.
Based on the formal definition, if there are n × m different

operational units (consisting input structure, throughput and
output structure) then there are n × m models. Without loss of
generality, let’s consider that there are two products, Product1

and Product2, and business purposes, BusinessProcess1 and
BusinessProcess2. In one extreme, we could have four models
(operational units) with the following model representation for
each combination:

• A model for Product1 and BusinessProcess1

• A model for Product1 and BusinessProcess2

• A model for Product2 and BusinessProcess1

• A model for Product2 and BusinessProcess2

Diagrammatically, we illustrate any one of the four models in
Figure 2. (We have shown the first and fourth models.)

Another possible design would be a two- model design:

• A model for Product1 & Product2 and BusinessProcess1

• A model for Product1 & Product2 and BusinessProcess2

These are illustrated in Figure 3.

One the other hand, we could also design a single model to
cover the products and business processes. To do that, it suffices
to combine the processing components and hence the input
(and output) structures. Without loss of generality, one need

Figure 2
Determining Number of Models

Input Structure
[Supports Product1
& BusinessProcess1]

Output Structure
[Product1 &
BusinessProcess1]

RUN

Product1 &
BusinessProcess1
Logic

Input Structure
[Supports Product2
& BusinessProcess2]

Output Structure
[Product2 &
BusinessProcess2]

RUN

Product2 &
BusinessProcess2
Logic

 NOVEMBER 2018 THE MODELING PLATFORM | 25

only consider addition of fields that specify the product type and
business process as part of the input structure. Naturally, this
leads to a combined input structure that supports both products
and business processes.

Note that this naturally satisfies the conditions for having a
single model:

1. There is a single input structure that supports both products.11

2. There is a single processing unit that acts on the same input
structure (that supports input contents representing both
products and business processes).12 Another way of saying
this is that there is one processing code base for both prod-
ucts and business processes (metrics).

3. Typically, once the first two are satisfied, we have the same
output structure for both products.13 In other words, the
input structure plus the throughput determines the output
structure as well.

Figure 4 illustrates such a design.

A similar scenario is this: Given an asset modeling platform that
supports the modeling of different asset classes A1,...,Am, does
this represent m models or some n < m models? Using similar
reasoning as before, if the underlying code framework supports

all the different asset classes, then this constitutes one model. If,
on the other hand, there are stand- alone code (base) units that
support the individual assets and these units are not reachable
via a single entry point, then they can only be run as individual
units and each such individual unit is a separate model.

Finally, a top- down mechanism for determining if the setup rep-
resents a single model consists of answering the question: “Can
one utilize the same input structure and singular entry point
(“RUN” command) to generate results for both products and
business processes?”

Model Design Implications for Model Governance
and Control
For a better appreciation of the implications for model design
and controls, we propose the following definition of what a
model change is using this framework.

Defining “Model Change”
A model change is defined as a change in either the input struc-
ture or throughput.

Now let’s proceed by considering the example in the previous
subsection. There would be one model that supports multiple
processes if the model is designed such that its throughput can
interact with an input structure that:

Figure 3
Two- Model Design

Input Structure
[Supports both products
& BusinessProcess1]

Output Structure
[Both products &
BusinessProcess1]

RUN

Both products &
BusinessProcess1
Logic

Output Structure
[Both products &
BusinessProcess2]

RUN

Both products &
BusinessProcess2
Logic

Input Structure
[Supports both products
& BusinessProcess2]

26 | NOVEMBER 2018 THE MODELING PLATFORM

What’s a Model? A Framework for Describing and Managing Models

• Supports the modeling of different products; that is, the
input structure supports different products

• Supports different types of business processes; that is, the
input structure supports different business processes (e.g.,
AG43 output, C3- Phase 1 output)

In addition, as more assumptions and parameters are supported
by the input structure (as assumption inputs), we have a situa-
tion where such assumption updates do not go through model
change processes since they are input (content) changes, not

model changes. This is a natural corollary of the definition and
is consistent with one’s intuition regarding “inputs.”

The alternative is to make a determination of what consti-
tutes a model change based on (subjective) judgment sans
a framework. Interestingly, changing an input structure (as
minor as that may be) is a model change, whereas changing
an assumption such as the target allocation of a reinvestment
strategy that could have major impacts on model results is not
a model change if it is solely effected through the same input
structure.

Figure 4
Single- Model Design

Output Structure
[Union of two
business process
output structures]

Product1 &
BusinessProcess1
Logic

Product1 &
BusinessProcess2
Logic

Product2 &
BusinessProcess1
Logic

Product2 &
BusinessProcess2
Logic

What
Product?

What
Process?

What
Process?

Product1 Product2

BusinessProcess2BusinessProcess1 BusinessProcess2BusinessProcess1

Input Structure
[Supports both
products & both
business processes]

RUN

 NOVEMBER 2018 THE MODELING PLATFORM | 27

This does not imply that business users should not test and assess the
validity of results coming from the model before putting the new
assumptions into “production.” It only means this is work that is
outside model change control and is rather an assumptions change
control process that can happen without triggering model change
protocols.

There is a higher initial cost in setting up and testing mod-
els in this way, however. For example, test strategies should
cover different input choice combinations to ensure that the
abstraction(s) inherent in the model design are valid.14 On the
other hand, the advantages in flexibility, maintainability and
efficiency of this input- driven approach can be huge. Users
have more flexibility to perform analysis or assumptions
updates that conform to input structure on the (official, vali-
dated and tested) model without triggering a model change
process.

In certain cases, models are designed with inadequate consid-
eration for what should be hard- coded vs. what should be part
of input structure. This leads to duplication of models that are
logically the same except for a few differences in the through-
put. Over time, because these “similar” models develop a life of
their own, they tend to diverge in unintended ways leading to
potential problems and inconsistencies down the line.

In fact, the considerations for good model design are enough for
an entire article, and we end this subsection by noting that a lot
of efficiencies can be derived by shifting stuff that is traditionally
considered as throughput into the input structure. Finally, using
this framework to design elegant and efficient models is not
only possible with home- grown systems but also with models
built on vendor- supported software platforms like GGY AXIS,
MoSeS and Prophet. As noted earlier, we hope to pursue this in
a follow- up article.

CONCLUSION

In this article we introduced a formal framework for represent-
ing a model that is consistent with the financial industry standard
definition of a model as seen in SR Letter 11- 7. This framework
operationalizes the definition of a model and naturally answers
questions such as what functionality constitutes a model or how
many models are represented by different projection capabilities

or business processes. Finally, this framework also provides a
natural and succinct way of communicating model design and
hence improvements in existing designs or entirely new ones for
modeling capabilities. ■

Dodzi Attimu, FSA, CERA, CFA, MAAA, Ph.D.,
heads the model validation program at
MassMutual. He can be reached at
dattimu06@massmutual.com.

ENDNOTES

1 Board of Governors of the Federal Reserve System O� ice of the Comptroller of
the Currency, Supervisory Guidance on Model Risk Management (SR Letter 11- 7),
April 2011, https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf.

 2 The exposition in this article is a synthesis of concepts from the rigorous (alge-
braic) development of the framework by the author.

 3 Supra, note 1.

 4 The main philosophical/semantic challenge is that a model and a process are
not necessarily interchangeable. For instance, consider that a model is a tangible
thing (operationally), whereas a process is not; it is a sequence of operational
steps, some of which may involve running the (tangible) model(s).

 5 This concept is easier to grasp in models developed on programming
platforms but requires more work to formalize in purely spreadsheet- calculation-
based models.

 6 We strongly believe that third-party platforms should be able to communicate
with well- known file formats. They could convert data to some underlying native
file formats as needed, but forcing the user to convert to native file formats is a
bad use of users’ time.

 7 In other words, the stock price will evolve under the specification

S
t+ t

= S
t
e

μ
1
2

2 t+ tN 0,1()
.

 8 For example, GGY AXIS, Prophet, MoSeS.

 9 The technical (algebraic) development of framework provides more rigor and
insight into this and other concepts introduced in this article.

10 For example, AG43, C3- Phase 2.

11 The input structure could be two di� erent tables, one for each product, for exam-
ple. The key is the structure (no matter the number of constituent parts) is acted
upon by the same throughput via unique entry points.

12 Obviously, the throughput would have di� erent logic than would be the case if it
were to support only a single product.

13 Similar to the input structure, nothing requires the output structure to be one
“integral” unit (i.e., one table).

14 Attimu, Dodzi, and Bryon Robidoux. 2016. Abstractions and Working E� ectively
Alongside Artificial Intellects. Predictive Analytics and Futurism 14:18–23, www
.soa .org /sections /pred -analytics -futurism /pred -analytics -futurism -newsletter
(accessed Sept. 19, 2018).

