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INTRODUCTION 

BASIC problem in risk theory is the calculation of expected losses 
in excess of some stated limit. This problem has its practical 
significance in experience rating of group policies and the calcula- 

tion of premiums for stop loss or nonproportional reinsurance and similar 
problems. The term "excess ratio" has been adopted in this paper because 
this problem has been studied at some length by casualty actuaries and 
this is the terminology commonly used by them. The concern of casualty 
actuaries for this subject is primarily in the experience rating of Work- 
men's Compensation risks. In studying this problem the casualty actu- 
aries have the benefit of a great many data which have been collected and 
can be used as the basis for determining the frequency distribution of the 
total losses for a particular risk in a given period of time. These data were 
used to construct a graduated frequency distribution called Table "M"  
some years ago and this table has been revised from time to time as more 
recent data have become available. 

Unfortunately, life actuaries concerned with this problem do not have 
available the equivalent kind of data relating to the kinds of coverages 
they are used to dealing with. Several papers in the Transactions have 
suggested the use of the Monte Carlo simulation as a means for generating 
this kind of information, particularly with relation to group life coverage. 
Also, the paper "Experience Rating" by Paul H. Jackson [5],' and the 
discussions of that paper give some of the mathematical development of 
excess ratios, as well as some actual tables of values of excess ratios for 
group life coverage, which are calculated on the basis of a number of 
assumptions. In a recent paper "An Introduction to Collective Risk 
Theory and Its Application to Stop Loss Reinsurance" by Paul M. Kahn 
[6], the author extends the mathematical development of the determina- 
tion of the frequency distribution of the aggregate losses for a group. 
Another fine reference in this general subject is the Society's Study Note 
on the subject of risk theory by John C. Wooddy [12], which summarizes 
the major developments in this field by life actuaries up to the present 
time. A study of these references will reveal the problems an actuary faces 
in the determination of excess ratios in practical situations in view of the 

1 N u m b e r s  in brackets refer to the bibliography at  the end of this  paper. 
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absence of worthwhile historical data. The purpose of this paper is to sug- 
gest methods for calculating excess ratios in the practical situation with- 
out the laborious calculations which the techniques of Dr. Kahn 's  
paper would seem to require, and as an alternative to the Monte Carlo 
simulation technique which would also seem to be impractical to use on a 
case by case basis in experience rating. I t  further attempts to give some 
insight into the errors implicit in assumingf(x) is one of the standard dis- 
tributions, as is sometimes done. 

I. CO]~POUND POISSON PROCESS 

The excess ratio function in mathematical terms is 

f° ~ ( n )  = ( x -- n )  f ( x ) d x  (for continuous distributions) 

or 

= ~.~ ( x -- n ) p ( x ) (for discrete distributions), 
x ~ n  

where f ( x )  is a frequency distribution of aggregate losses 2 and (x - n) is 
the aggregate losses in excess of a stated limit, n. In  this section we will 
examine the statistical nature of the distribution f ( x ) .  As pointed out in 
several of the previously mentioned references, f ( x )  is a compound dis- 
tribution resulting from the compounding of the probability distribution 
of the aggregate number of claims with the probability distribution of the 
size of a particular claim given that a claim has occurred, which we will 
also call hereafter the secondary distribution. In these references it has 
been assumed that the probability distribution of the number of claims is 
the result of a stochastic process which meets the conditions of a Poisson 
process and which can therefore be represented by the Poisson distri- 
bution. 

The conditions of the Poisson process are twofold. The first is  that in 
a small period of time, at, the probability of an event occurring is Xat and 
that  the probability of more than one event occurring is of such a small 
magnitude that  it may  be ignored in the mathematical analysis. The 
second condition for a Poisson process is that  the parameter X, which may 
be thought of as the rate at which events occur per unit of time, remain 
constant in the period of time in which the Poisson process is being stud- 
ied. In the kinds of practical problems to which collective risk theory is 
applied these conditions seem to be reasonably well met. By the choice of 
a sufficiently small a t  the first condition is met, since it is highly unlikely 

2 Hereafterf(x) is meant to symbolize the distribution of aggregate losses, regardless 
of whether the distribution is discrete or continuous. 
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that two claims would occur in exactly the same instance regardless of the 
number of claims expected in the policy year or calendar year under 
study. The second condition, the constancy of X, is apt to prove somewhat 
more troublesome since it is a well-accepted fact that the rate of claims is 
higher on both life and accident and health coverages in the winter months 
than in the summer months. In addition, other factors affecting the rate 
of claims may change such as the age distribution, sex distribution, num- 
ber of insured lives, etc. However, in the usual practical problem these 
variations do not appear large enough to invalidate the assumption of the 
second condition. There are a number of standard tests such as the chi- 
square test for the uniformity of events, and the Lexis Ratio test for the 
goodness of fit of the intervals between events to the negative exponential 
distribution, which may be used in testing the validity of this assumption. 
In only the most unusual circumstances do these tests indicate that the 
assumption of the constancy of X is significantly violated. Therefore, in 
the rest of this paper it will be assumed that the probability distribution 
of the number of claims can be represented by the Poisson distribution 
with an appropriately chosen X. However, it would be well to keep in 
mind the stated conditions for a Polsson process. 

In general, the probability distribution of the size of claims cannot be 
assumed to follow any known distribution and this is where the main 
difficulty lies in finding f(x). However, the moments of this distribution 
can usually be found in practical situations. This is all that need be known 
in order to find the moments off(x), as is demonstrated in the Appendix 
using the probability generating function technique. This is in general 
true for compound Poisson distributions. This allows us to  proceed, as is 
shown in the following section, without requiring us to make any simplify- 
ing assumptions as to the mathematical nature of the probability distri- 
bution of the size of the claims. 

I I .  J U S T I F I C A T I O N  :FOR T H ~  A P P R O X I M A T I O N  OF f(x) BY A GAMIMA 

VARIATE AND E X A M I N A T I O N  OF T H E  E R R O R S  TI:[EREIN 

We have shown in the Appendix that the moments of the compound 
Poisson distribution can be calculated from the moments of the secondary 
distribution (hereafter designated by u a) which in practical problems 
can usually be calculated. Although the complete set of moments of a 
distribution uniquely characterizes that distribution, it is unfortunately 
true that the distribution itself cannot be explicitly determined in general 
from the moments. The technique adopted here involves choosing a dis- 
tribution function which seems intuitively to have the general shape of 
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the compound Poisson distribution and then comparing the moments of 
the two distributions. 

Of all the probability distributions in common use, the one which 
would intuitively appear to represent reasonably the frequency distribu- 
tion of aggregate losses on small groups of insured lives is the gamma 
distribution. This function is 

(x>_o) 
1 f (x)  = x=e-~/~ ( - >  - 1 )  

a 1 3 "+l 

( 3 > 0 ) .  

Figure 1 shows the general shape of this distribution for/9 - 1 and var- 
ious values of a. This function has the virtue that as a increases it tends 

f(x) 
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FIG. 1 

to approach the normal distribution in the limit, which would seem 
reasonable as the assumed frequency distribution of aggregate claims on 
larger size groups. The moments of this function are as follows: 

ul = ~ ( ~ +  1 ) ,  

~,2 = ~ ( ~  + 1 ) ,  

~3 = 2~3(~ + 1 ) ,  

u, = 33'(a -4- 1)(a -]- 3), e t c .  

I t  is the position of this paper that the frequency distribution of the 
aggregate amount of claims, f(x), can be reasonably approximated by the 
gamma distribution in most practical cases if the parameters a and/9 are 
determined by setting the expressions for the first two moments of the 



EXCESS RATIO DISTRIBUTIONS IN RISK T1ZEORY 439 

gamma distribution equal to the first two moments  of the compound 
Poisson distribution as given in the Appendix. 

B(a + 1) -- XTr'(1) = Xpf, 

~2(~ + 1) = x(¢"(1) + ,r'(1)) = x ( .¢  + (~f)2) ,  

where #~ and v# are the mean and variance, respectively, of the secondary 
• distribution. 

To illustrate the suggestion and to give some insight into the kind of 
error that  it involves, let us assume that  the secondary distribution is a 
geometric distribution, P ( x  = k) = pq~ for k = 0, 1, 2 , . . . ,  with p.g.f. 
7r(s) = P / ( 1  --  qs). By differentiating with respect to s and letting s = 1, 
we find 

and 

Le t  

and 

,~'(1) = q / p ,  

7r"(1) = 2q~/p 2 , 

~r"'(1) = 6qa/p 8 , 

7r'"'(1) = 24q~/p ' . 

fl(~ + 1) = XTr'(1) -- Xq/p 

B~(a+ 1)=X(Tr"(1)-I--~"(1))=X(~--t-~). 
Solving for a and 8, we find 

f l =  ( l r " ( 1 )  + , r ' ( 1 ) ) / l r ' ( 1 )  =-~- - t -  i 

and 
Xq . +  1 = x (~-'( 1 ) ) V  ( ~ " (  1 ) + ~ ' (  1 ) ) = 2 ------~" 

If we now examine the third moments,  we find that  for the gamma 
function 

2 (~r"( 1 ) + ~ r ' (  1 ) )~X 
~ 3 - -  2 B s ( a - t  - 1 )  = 7 r ' ( 1 )  

(8q___~8~_Sq94_ 

However, using the results of the Appendix, we can show 

#3 = X ( I t" '  ( 1 ) + 37r" ( 1 ) + 7r' ( 1 ) ) 

= x ( 6 q ' _ v .  6q2 4_q_" ~ 
k p8 -- p2 - - p ]  

for the particular compound Poisson process. 
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If we take the ratio of the third moments, we have a ratio of the 
skewnesses of the two distributions, since the generally used measure of 
skewness is #,/#~/2. The ratio of the skewnesses of the gamma distribu- 
tion and the particular compound Poisson distribution necessarily lies 
between ~ and 2, depending on the value of q/p. Since the skewness of the 
gamma distribution is the larger of the two, it appears that it has a larger 
area under the right-hand tail and would therefore tend to overstate the 
excess ratio. However, it seems likely that the order of error is less than 
the ratio of the third moments, since the third moments involve x a, while 
the excess ratio involves x. 

Proceeding similarly with the fourth moments, we find for the gamma 
distribution that 

#4= 3/34(a+ 1) ( a +  3) 
6X(~r"(1)  + ~ r ' ( 1 ) ) 3  

= 3) '2(~r"(1) + C ( 1 )  ) 2-t [ l r , (1 )  ]2 

q2 q4 q3 q* 

Using the results of the Appendix, we find for the particular compound 
Poisson distribution 

#4 = 3X2(Tr"(1) + ~"(1)) ~ + X ( ~ " " ( 1 )  + 61r" (1 )  + 77r ' (1)  + ~"(1)) 

q* q" q~ q. 

The ratio of the fourth moments is the ratio of the kurtosis of the dis- 
tributions, since the generally used measure of kurtosis is #4/#~. I t  can be 
seen that, if ), is large so that the term in the kurtosis involving X 2 pre- 
dominates, the ratio will be close to 1. If X is small and q/p is large, the 
ratio will approach 2. If X and q/p are both small, the ratio will tend to 6. 
In most practical situations q/p would tend to be large if we think of p 
as the probability of the termination of a disability claim in a particular 
day or something similar. Therefore, the ratio will normally be in the 
range of 1 and 2. The exact significance of this is hard to assess, but it 
would seem to mean that there was relatively more area of the curve 
under the distance tails in the gamma function than in the particular 
compound Poisson function, which would again mean that the gamma 
function gives an overstatement of the excess ratio. 

The assumption that the frequency distribution of a particular claim is 
a geometric distribution would seem a worse possible situation, since it 
admits of a theoretically infinite size maximum claim. I t  is instructive to 
examine the situation when the secondary distribution has a maximum 
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claim more realistically related to the average size claim. To do this, let us 
assume that the secondary distribution is a uniform distribution with 
pC = a and with a range from 0 to 2a. The probability distribution is 
therefore 

1 B(x=k)  = 2a+---'----~ for k = 0 ,  1, 2 , . . . ,  2a. 

The probability generating function is 

1 
• " ( s )  = ( 2 a + l )  '(1 + s + s 2 + ' ' ' ' + s  ~)  

- 1 (1 - -  s2"+l~ 
2 a +  1 k, i-~-~ / "  

Therefore 

vd(s) = ~ n s " - ' / ( 2 a - I -  1) 
n~O 

~r'(1) = a  

2a 

r"(s)  = ~ n ( n - 1 ) s " - ~ / ( 2 a - k l )  

l r " (1 )  = ( 2 a - - 1 ) 2 a  
3 

2a 

~ " ( s ) = ~ . ~ n ( n - - 1 ) ( n - - 2 ) s " - 3 / ( 2 a + l )  
n u 0  

C"(1)=(2a--2)(2a--l)2a 
4 

Using the results of the Appendix, we determine therefore that 

#t = Xa 

Proceeding as with the geometric distribution, let 

u x = B ( a + l )  = X a  

p2=/~2(a-} - 1 ) = x ( 4 a - ' {  a-) 

4a + 1 3Xa 
" " / ~ =  3 " and a + l =  4 a +  1 " 
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The third moment for the gamma distribution will therefore be 

# . =  2 ~ ' ( ~ - 4 - 1 ) = X ~  3 2 a a +  1 6 a ' +  2 a )  
9 " " 

The third moment for the particular compound Poisson distribution is 

.~  = X(¢'"(1) + 3¢"(1) + ¢ '0 ) )  

= k(2a 3 + a s) . 

The ratio of the third moment, and therefore the ratio of the skew- 
nesses, will tend to ~ as a becomes large. Note that the third moment for 
the gamma distribution is larger than for the particular compound Poisson 
distribution, suggesting again that the use of the gamma distribution 
would tend to overstate the excess ratio. 

IlL EXA~flNATION 0~" TIIE ERRORS IN APPROXIMATION OF 

f ( X )  BY A SIMPLE POISSON' DISTRIBUTION 

If it is assumed that f(x) can be represented by a simple Poisson dis- 
tribution (i.e., the secondary distribution is a "spike" distribution with 
/~¢ = 0), it can be seen from the preceding results that the errors can be 
very substantial. For example, if the secondary distribution is really a 
geometric, we have seen that ~, for the compound Poisson distribution is 

x ' , , 7 -  

However, for the simple Poisson #1 = #~, and consequently if the mean 
number of claims is X, the variance in the amount of claims is X(q/p) 2 
under this assumption. If q/p is large, the error in the variance will ap- 
proach 100 per cent. 

Similarly we have seen that ~, for the uniform distribution is 

 C7o) 
Using the simple Poisson would give a variance in amount of claims of 
ka 2. Therefore the error in the variance, in this case, would approach 
33] per cent as a became large. 

IV.  T H E  APPROXIMATION OF f(X) BY T H E  NORMAL DISTRIBUTION 

Examination of the skewness of the compound Poisson distribution 
gives insight into whenf(x) can reasonably be approximated by a normal 
distribution. The skewness of the general compound Poisson distribution, 
using the results of the Appendix, is seen to be 

us X ( ~r'" ( 1 ) + 37r" ( 1 ) + ~" ( 1 ) ) 
itt~)s/~ = Xs/~ (,r' ( 1 ) + ~r" ( 1 ) )st 2 ' 



EXCESS RATIO DISTRIBUTIONS IN RISK THEORY 443 

but the moments of the secondary distribution are as follows: 

~," = ~ ' (1 )  

~ = ~ " ( 1 )  + ~ ' (1 )  - [~'(1)]~ 

~ ----- 7r'"(1) n a [1 -- 7r'(1)][3~r"(1) -]- ~r'(1) -- 20r'(1))2]. 

By successive substitutions we find 

~ " ( 1 )  = ~¢  - ~,~ + ( ~ f ) ~  

~'"(1) = M - (1 - M)[3M - 2M + (M)~]. 

Substitution in (1) gives 

(~ , ) " / "=  x ' / ~ [ ~ # +  ( ~ ) " ] " / "  " 

If we assume that  the secondary distribution is "standardized" so that 

u~ = 0  and #¢ = 1 ,  

then 
A 

~z3 ~3 
(~2) 8n = )W~" 

In a standardized asymmetrical distribution #~ might typically be of the 
order of 1 to 2. The skewness of the normal distribution is 0, since it is 
symmetrical. By the time ~ has reached 100, the skewness of the compound 
Poisson distribution would be of the order of .1 to .2, which would seem 
small enough to make the assumption thatf(x)  was a normal distribution 
reasonable. In any case resort to the normal distribution will have to be 
made at some point since tables of the incomplete gamma function, which 
are required, as will be seen later, if f(x) is assumed to be a gamma distri- 
bution, simply do not exist beyond a certain size of the parameters. 

When the normal approximation is used, the suggested procedure is 
the same as for the gamma, that is, setting the first two moments of the 
particular compound Poisson distribution equal to the first two moments 
of the normal distribution. This will give the parameters for the normal 
distribution, since the parameters of the normal distribution are the first 
two moments 

~f  = x~f 

and 
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V. THE SOLUTION OF TIlE EXCESS RATIO FUNCTION 

FOR STANDARD DISTRIBUTIONS 

One of the fortuitous characteristics of the excess ratio function 

f° ¢ ( n )  = (x  - n ) f ( x ) d x  

is that  it has a solution which permits the use of generally available tables, 
if f(x) is one of the common frequency or probability distributions. This 
section will demonstrate the solution for a number of the distributions 
commonly used in computing excess ratios. 

We will solve the excess ratio function for the Poisson distribution first. 

e _ X ( X )  ~ 
4 , ( n )  = ( x - n )  x l  

x ~ n  

~ e-X(X)~-~ 
=X ( x - 1 ) t  

x ~ n  

Let 

~ e-xX~ 
P ( n ,  k)  = x! ' 

x ~ 0  

the cumulative distribution. Then 

n ~  e-X(X)x 
x! x ~ n  

oO n~ e-X(X)" 
xl 

x n 

Let 

, ( n )  = x 0  - P ( n  - 2, x))  - n(1 - P ( n  - 1, x ) ) .  

The solution of q~(n) for the gamma distribution is as follows: 

¢ ( n )  = (x  - n ) ~  x~e-~lOdx 

at 8 "+x n a! y'+~ 

f o 1 = 8 ( c t + l )  (a+l ) IS .+2x"+le -~ /Odx  

f, " 1 
F(n;  a, 8)  = .,I 8 "+1 

the cumulative distribution 

- -  x* e-~: lad x 

x" e - z l a d  x ,  

$(n) = 8(a + 1)[1 -- F(n; a +  1, 8)] -- n[l -- F(n; a; 8)] • 

f o~ 1 
- -  n a! 8 "+------'~ x~'e-~/Odx" 
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The solution of ~(n) for the normal distribution is as follows: 

~ ( n )  = (21rcr2)l/~ ( x - - n ) e x p  ~ ./dx 

445 

.-- (2~.~2)1/2 ~ ( x - - z ) e x p  2~r2 / 

( n - g )  ~ - )~-)dx 

_ ~ f~ i  ° ( x - z ) 2  d (x - z)______ ~ 
( 2 ~)  1/2 ~exp 2 or2 2 ¢r 2 

(n-z) Z ~ (x-z)2dx 

= ~  exp ~ 2  _[¢o (2r0"2)1/2 exp--  2v 2 dx 

( ( n - z ) 2 )  
= ~  exp ~-fi - - ( n - - z ) ( 1 - - F ( n ; z , ~ ) )  

where 

1 f _ "  (x  -- u )_________ 2 F(n;  z, ~) = (2~r~2)1/2 e x p  2~ 2 d x .  

The binomial and other distributions can similarly be solved. 
In Table i are set forth actual values of ~(n) for the gamma distribution 

TABLE 1 

.4 A VALUES OF ~S(n)-~,,/b,, + 0,~)21 

( r /x )  

o.! 

100%. 0.075 
110.. 0.074 
120.. 0.072 
130.. 0.071 
140.. 0.069 
150.. 0.068 
160.. 0.066 
170.. 0.065 
180., 0.064 
190.. 0.062 
200.. 0.061 

G^M~ (X) 

0.3 

O. 172 
O, 165 
0,157 
O. 15C 
O. 143 
O. 137 
O. 131 
O. 125 
O. 120 
0.115 
0,110 

0.5 

O. 242 
O. 22d 
0.212 
O. 199 
0.187 
0.175 
O. 165 
0.155 
O, 146 
0.137 
0.129 

1.o 

O. 368 
O. 333 
01301 
0.273 
O. 247 
0.223 
O. 202 
O. 183 
O. 16d 
O. 15C 
0.13~ 

2.5 

0.61C 
0.513 
0.431 
O. 36C 
O. 30C 
O, 24f 
O. 207 
0.171 
0,15~ 
0.11~ 
O. 095 

5.0 

O, 87~ 
O. 677 
0.51~ 
O. 392 
O. 292 
0.21~ 
O.15g 
0.117 
0.084 
O. 06C 
O. 042 

10.0 

1.25( 
0.852 
0 .5~  
0.362 
0.22t 
O. 1M 
0.081 
0,047 
0.027 
0.01~ 
0.00~ 

25.0 

1.988 
1.042 
O. 495 
0.215 
O. 086 
0.032 
0.011 
O. 003 
0.001 
O. 000+ i 
O. O00+i  

50.0 

2.814 
1.057 
0.313 
O. 075 
0.015 
O. 002 
0.000+ 
O. 000+ 
0.000+ 
0.000+ 
O. 000+ 

NORMAL 
(X) 

50.0 

2.  821 
O. 999 
0.251 
0.042 
0.005 
0.000+ 
0.000+ 
0.000+ 
0.000+ 
0.000+ 
O. 000+ 
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or, more accurately speaking, 

~(-) .p? 
~ +  (p,~)~" 

Setting forth the table in this form permits its reduction to two dimen- 
sions. Recall that for the gamma function 

~= x"+Ie-'l~ f =  x'e -~1~ 
i f (n )  = f l ( ~ + l )  ( a + l ) l { j , + 2 d x - - n  cdfl,+-------idx 

---/~(~-{-1) B \ 7 /  (a-{-1)i .  /~ n ~ ~ d - . / ~  

Let 

,(~ o+ , ) : r - "G)  -+' ~-.,, . ' --o (a-t- 1 ) - - - - - I  d/3" 

Therefore 

[ ( ° ) ] [  ( )] ~ ( n ) = / 3 ( a - } - l )  1 - - I  ~ ,  a-t-1 - -n  1 - - I  ~,  a . 

Recall from Section II  that 

~r"(1) -}-~r'(1) = p~-{- (p~)2 

and 

a - F 1  = 

X ( ~ ' ( 1 ) )  ~ ~,(p~)* 
Ir " ( 1 )  -b Tr ' ( 1 )  # ~ --b ( p ~ ) 2 " 

Then 

A 

#. + (#~)~' /z~ "~- (/zlA) 2 J J  

A 
D ~ I  A. ~,~ + (#~)* '  

x(~,f)" , : +  (,~)~ 1)]. 

, ( . ) .~# x(vf) ~ ( nvf /z#-I- (/~#) 2=/~#+ (/z~) 2 [1 - I  p#~_ (p~)2, x(~f)' D1 U¥-T-~7)?J 

I A ~,#)~, p ~ +  t,.~)2 l - -  Ps + (  

x ( ~ )  ~ 
p~_l.. (#~) 2 1)] .  
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x =  x(M)~ 
2 

,4 
n/~l n 

= = ( x ) .  v vA+~ (v#)~ ×v# 

¢(n)v# = X [ 1 - I ( Y , ~ X )  ] -  y[ I - I ( Y ,  X - 1 )  ]. 

The table is set forth with the entries X and Y as thus determined and 
Y, the "stop-loss" level, expressed as a percentage of X. The percentage 
can be also thought of as the ratio of the stop-loss level to the pure risk 
premium. Since 

,4 

##+ (~,~)~ ~,,.' 

the ratio of the first and second moments off(x), the table can also be used 
if the moments off(x) are known without reference to the moments of the 
secondary distribution. In this case 

where 0 is the pure risk premium. 
To show the small difference in $(n) if f(x) is a normal or a gamma 

distribution with the same first two moments, $(n) is tabulated on both 
assumptions for X = 50. Note that the gamma distribution gives larger 
values of $(n) due to its positive skewness. 

VI. RISK CHARGES 

In the experience rating of group insurance, it is usual to "forgive" 
losses in any year in excess of some limit and not to charge these excess 
claims against the dividend rating of subsequent years. The excess ratio 
function tells us on the average how much in claims has to be forgiven. 
However, how this "forgiveness" is to be funded is another problem. Mr. 
Jackson, in his paper previously referred to [5], suggests two possible 
methods. The first is to charge the expected excess as a level charge 
against each policy without reference to its particular claim experience. 
The other, which he calls the "J" method is to charge each case with a 
fixed percentage of its claim profit, that is, the amount available to pay 
claims less the actual cost of claims. 
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In  the nota t ion of this paper  the claim profit  function would be:  

f_" o ' ( m )  = ( m - - x ) f ( x ) d x .  
o o  

The function, a(m), can be solved in a ve ry  similar manner  to the solution 
of ¢(n).  Table  2 tabulates  a(m) in the same general way  as Table  1 
tabula tes  $(n).  The  "stop-loss level" in this case is the total  premium 
available to p a y  claims as a percentage of the pure risk premium. The  two 

TABLE 2 

VALUES OF o '(m)-p.~/[ ,u a -[- (U¢)']  

( Y / X )  

0.1 

100%.. 0.075 
t l0 . . .  0.084 
120... 0.092 
130... 0.101 
140... 0.109 
150... 0.118 
160... 0.126 
170... 0.135 
1 8 0 . . .  0 . 1 4 4  
190... 0.152 
200... 0.161 

0.3 

0.172 
0.195 
0.217 
0.240 
0.263 
0.287 
0.311 
0.335 
0.360 
0.385 
0.410 

G^~(X) 

0.5 

0.242 
0.276 
0.312 
0.349 
0.387 
0.425 
0.465 
0.505 
0.54~ 
0.58~ 
0.629 

1.0 

0.368 
0.433 
0.501 
0.573 
0.647 
0.723 
0.802 
0.883 
0.966 
1.050 
1.136 

2.5 

0.610 
0.763 
0.931 
1.110 
1. 300 
1.499 
1. 707 
1.921 
2.158 
2.366 
2.595 

5.0 

0.876 
1.177 
1.518 
1. 892 
2. 292 
2.716 
3.159 
3.617 
4. 084 
4. 560 
5.043 

10.0 

1.250 
1.852 
2.564 
3.362 
4.225 
5.136 
6.081 
7.047 
8.027 
9.015 

10.008 

25.0 

1.988 
3.542 
5.495 
7.715 

10.086 
12.532 
15.011 
17.503 
20.001 
22.50G 
25.00C 

50.0 

2.814 
6.057 

10.313 
15.075 
20.015 
25.002 
30.000 
35.000 
40. 000 
45. 000 
50.000 

NORMAL 
(x) 

50.0 

2.821 
5.99~ 

10.25( 
15.04( 
20.00( 
25. 002 
30. 013( 
35.00( 
40.00( 
45.00( 
50.00( 

levels, m and n, for a par t icular  experience rat ing formula, m a y  or m a y  
not  be the same. 

The  risk charge, if me thod  "J" is used, is the rat io  of the appropr ia te  
Table  1 value divided by  the appropr ia te  Table  2 value t imes the claim 
profi t  on the par t icular  group policy. 

V I I .  P R A C T I C A L  I L L U S T R A T I O N  

As has previously been shown, the techniques suggested by  this paper  
require the calculation of the first two moments  of the secondary d is t r ibu-  
tion, the dis t r ibut ion of claims by  size. This  can be done for life insurance 
by  the following formula:  

± U a = q~A~ q~ 

± ± )/2 t z a = (  q < ( A i )  2 ( u ( )  2 
2 - -  qi qi ,  
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where q~ and A~ are the rate of mortality and amount of life insurance at 
risk on the ith life. 

This can be done for health coverages by sampling daims. If con- 
tinuation tables for the coverage in question exist, however, they can be 
used to calculate the moments. To illustrate, let us use the continuation 
table for group weekly disability income insurance in Morton D. Miller's 
paper, "Group Weekly Indemnity Continuation Table," TSA, HI,  48- 
49. Let  us assume the coverage in question has a seven-day waiting period 
with a thirteen-week benefit and that all insured lives are covered for a 
benefit of $1.00 a day for each day of disability. The probability of a claim 
lasting exactly t days beyond the waiting period is 

~l~+7 day~ 1 day < _ t<- 28 days 
p t  days  -~- 18 days  ' 

Alt+x wook 5 weeks <- t<- 13 weeks pt weeks = 18 days  ' 

/15 weeks 

P~I  days  ~ ~8 days 

Since the continuation table is given only for weeks after 35 days, beyond 
that point the probabilities are for a claim ending in a particular week. I t  
is assumed in Table 3 that claims ending in a particular week end at the 
close of the third day of that week of disability. Therefore a claim ending 
in the fifth week is assumed to end after 31 days. For this plan 

91 

= ~ t p , = 3 1 . 3 5 3  days 

91 

#a2 = ~.~t2Pt--  (#~)~  = 8 7 8 . 6 9  
t = l  

~ +  ( ~ ) * =  59 .379 .  

The X entry needed for using Tables 1 and 2 is 

x= x(uf)~ u(+ (u~) ~" 

The value of ~ per life insured can be determined by dividing the pure 
risk premium, X~,  for the coverage by the value of #~. Table XI  of Mr. 
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Mi l l e r ' s  p a p e r  ind ica tes  t h a t  the  va lue  is 

k pe r  life pe r  y e a r  = 7(cg - -  c7) = .1453 per  life i n s u r e d .  

The re fo re  X = •07725 t imes  the  ave rage  n u m b e r  of lives insured  dur ing  

the  year .  I f  we h a v e  100 lives w i th  a s top- loss  level of 120 per  cen t  of t he  

p u r e  r isk  p r e m i u m ,  T a b l e  1 shows  t h a t  ¢ (120  per  cen t )  = (.543)(59•379) 

= 32.24. 

TABLE 3 

PROBABILITY DISTRIBUTION OF GROUP WEEKLY 
DISABILITY INCOME CLAIMS BY LENGTH OF CLAIM 

(Thirteen-Week Maximum Benefit, Seven-Day 
Waiting Period, No Maternity Benefit) 

Length of Length of 
Claim Pt Claim Pt 

( i n  Days) (in Days) 

1 .  

2. 
3. 
4. 
5. 
6. 
7. 
8 .  

9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

.03500 

.03474 

.03349 

.03318 

.03195 

.03160 

.03040 

.03002 

.02885 

.02701 

.02530 

.02370 

.02222 

.02083 

.01953 

.01831 

.01772 

.01662 

.01611 

2 0  . . . .  
21 . . . .  
22 . . . .  
23 . . . .  
24 . . . .  
25 . . . .  
26 . . . .  
27 . . . .  
28 . . . .  
31 . . . .  
38 . . . .  
45 . . . .  
52 . . . .  
59 . . . .  
66 . . . .  
73 . . . .  
80 . . . .  
87 . . . .  
91 . . . .  

• .01510 
• .01465 
. .01374 
. .01334 
• .01295 
. .01214 
. •01180 
• •01105 
• .01076 
• .06361 
• .04832 
. .03753 
• .02980 
• .02399 
.i .01939 
.' .01586 
• .01300 
• •01077 
• •12561 

1.00000 

I f  the  c la im prof i t  is m e a s u r e d  aga ins t  110 per  cen t  of the  pu re  r isk  

p r e m i u m ,  Tab le  2 shows  t h a t  ~(110 per  cen t )  = (1.545)(59.379) = 91.74. 

I f  the  " J "  t y p e  of r isk charge  fo rmu la  is used  the  r isk charge  as a pe r -  

cen tage  of c la ims  prof i t  would  be ( . 5 4 3 ) / ( 1 . 5 4 5 )  = 35.1. 

CONCLUSION 

T h e  p a p e r  has  e x a m i n e d  excess  r a t io  d i s t r i bu t i ons  in the  raref ied 

a t m o s p h e r e  of pu re ly  m a t h e m a t i c a l  analysis• T h e  a u t h o r  recognizes  the  

l imi ta t ions  of such  an  analys is  wh ich  have  been  p o i n t e d  ou t  in o t h e r  
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references on the subject. The analysis assumes that deviations from ex- 
pected experience are purely a result of random fluctuations in experi- 
ence. I t  does not take into consideration unusual influences affecting the 
expected claim experiences such as epidemics, wars and natural catastro- 
phes. 

The paper assumes that the expected experience is known. In the 
experience rating of group policies this assumption is not necessarily 
valid, particularly in the early policy years before the premium rates 
have had an opportunity to reflect the actual experience of the group. 

Another problem the paper has not examined is the situation in which 
several different coverages are being experience rated as a single entity. 
I t  is common, for example, in group dividend formulae to experience rate 
for dividend purposes the life, weekly disability income, and medical care 
coverages in a combined package. If the profit under one particular group 
coverage is available to absorb the possible losses under another coverage, 
the risk charge should obviously be less than the sum of the risk charges 
calculated separately for the individual coverages. 

In any case, the author would reiterate the advantage of having fre- 
quency distributions of aggregate losses determined from actual experi- 
ence. However, the mathematical analysis of the paper can be useful in 
the absence of such distributions. 

The author wishes to thank his staff for their help in the preparation 
of this paper and, in particular, the preparation of the tables. 

APPENDIX 

The mathematical expression of the Poisson distribution is 

p(k', X) = e-XXk/k!, X > 0 and k = 0, 1, 2 , . . . .  

The probability generating function of the Poisson distribution is 

G(s) = p(0; X) + p(1; X)s + p(2; X)s 2 + . . . .  + p(n; X)s ~ + . . . .  

- e-x0-e) . 

The probability generating function of a compound distribution is 
found simply by substituting for s the probability generating function of 
the secondary distribution. Let  us call the p.g.f, of the secondary distribu- 
tion ~r(s). Therefore, the p.g.f, of the compound Poisson distribution is 

G ( . ( s ) )  = e - x c ~ - . ~ . ~  . 

The moments of a distribution can be found in general from the 
derivatives of the p.g.f, valued for s = 1 as follows: 
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Ul = G ' ( 1 )  

u ,  = G " ( 1 )  -t- G' (1 )  - -  [ a ' ( 1 ) ] '  

u3 = G ' " ( 1 )  + (1 - -  G ' ( 1 ) ) [ 3 G " ( 1 )  + G ' ( 1 )  - -  2 ( G ' ( 1 ) )  ~] 

u4 = G' " ' ( 1 )  - (4ux - 6)#3  - (6ux ~ - 8 u ,  n t- l l ) u ,  

- -  (u~ - -  6Ul n c l l u ~  - -  6Ux) .  

T h e  d e r i v a t i v e s  of  G(~r(s)) - -  e-X(1"-'(')) are as  f o l l o w s :  

a'(~-(s)  ) = a( , , . ( s )  )X,~'(s) , 

.'. a ' ( , O ) )  = a ( , ( t ) ) x ~ ' ( 1 )  = x ~ ' ( t ) ,  

since a ( , ( 1 ) )  = 1. Likewise 

a"(~(s))  = a(~(s))(X~'(s)) ~ + a(~(~))X~"(s) 

.'. a"(,~(~)) = (X~'(i))'  + X,~"O) 

G"'(,~(~)) = a'(~(s))[(x~'(~)),  + x~"(~)] 

+ a(~(~))[zx2~'(s)~"(~) + ~'"(s)l 

a '"( ,~0))  = x,~'0)[(x,~'(1))~ + x , e '0 ) l  + zx,,~'(1),~"0) + x,~'"0) °°. 

and 

a ' " ' ( , , ' ( s ) )  = G,, ( . (s ) ) t (x . ' ( , ) )  2 + x~"(s)] 

+ 2G'(~r(s))[2X27r'(s)Tr"(s) + XTr"'(s)] 

+ a(.(s)[2v(,~"(s)) ~ + 2v~ ' ( s ) . ' " ( s )  + x~ '" ' ( s ) ] .  

... a ' " ' (~(1) )  = [(x,~'O)) ~ + x,~"(t)p 

+ 2XTr'(1)t2VTr'(1)~r"(1) + XTr'"(1)] 

-t- [2V(rr"(1))' -t- 2VTr'~r'"(1) -t- Xrr""(1)]. 

• Substituting these relationships in the equations for the moments, we get 

ul = X~r'(1) 

u~ = x(~-'(1) + ~"'0)) 
us = X0r"'(1) -t- 3~r"(1) -b ~r'(1)) 

u* = 3X*[(Tr"(1) -t- 7r'(1))~l + X(Tr'"'(1) -t- 6~r"'(1) + 77r"(1) -t- rr'(l)). 

Thus we see, as stated in Section I of the paper, that the moments of 
the compound Poisson distribution can be computed directly from the 
moments of the secondary distribution. 
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DISCUSSION OF PRECEDING PAPER 

R O B E R T  C. TOOKEY: 

Hats off to Mr. Bartlett for writing a splendid paper! The logical order 
of presentation made for continuity, and his slick substitutions and tricky 
transformations should provide a stimulating experience to most readers. 
Of further comfort was the fact that we were treated, to functions and 
notations considerably more familiar to actuaries in this country than 
those found in the European actuarial publications. He has indeed come 
up with an approach that circumvents the laborious calculations inherent 
with some of the awesome European techniques which often involve 
working with slowly converging series and endlessly taking numerical 
results out to many places to the right of the decimal point. 

The author's analysis of the errors indicates that the use of the gamma 
distribution would usually tend to overstate the excess ratio. While this 
is laudable from the standpoint of conservatism, its use in computing 
"excess-risk" charges in the highly competitive field of group insurance 
might be contraindicated if more accurate results could be obtained from 
a different approach. In his conclusion the author mentions the limita- 
tions "inherent in the rarefied atmosphere of the mathematical analysis," 
an observation I rather plaintively made several years ago. Therefore, 
I would like to propose a "voyage to the center of the earth" and con- 
sideration of perhaps the most brute force approach presently available 
for determination of excess-risk measurement in specific cases--namely, 
the simulation of experience through Monte Carlo techniques. 

Although the author suggests this Monte Carlo approach is impractical 
on a case-by-case basis for small groups, my own limited experience in 
this area indicates otherwise. As actuaries become more familiar with 
the short cuts possible, the computer time for a given Monte Carlo 
project, say, simulation of one thousand years of experience, can be 
greatly reduced. The use of Monte Carlo techniques on an almost case- 
by-case basis for groups of over one hundred lives might be made eco- 
nomically feasible through the use of (1) ingenious programming, (2) 
adoption of approximation techniques that eliminate taking account of 
situations of relatively infinitesimal likelihood which thus greatly reduces 
the machine time required, and (3) the rounding-off of basic probability 
functions (e.g., mortality rate q, and disability rate r,) to as few signifi- 
cant digits as possible, in recognition of the fact that we are dealing with 

454 
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approximations rather than exactitudes. Step (3) allows much greater 
use to be made of pseudorandom numbers as they are generated, since it 
minimizes the number of digits required per simulated life year of expo- 
sure. The savings in computer time is directly proportional to this reduc- 
tion in required digits. In the group disability indemnity situation, r ,  
might be taken to the nearest one hundredth. If the early durations of 
disability were handled as in Mr. Bartlett 's example (under his thirteen- 
week plan) with durations following the twenty-sixth week of disability 
recorded to the nearest two weeks, the experience under a plan offering 
a maximum of two years of benefits could be simulated as soon as the 
exposure characteristics of the group (age, sex, and amount of weekly 
indemnity) had been recorded on cards or tape. Not more than five min- 
utes of IBM 1620 computer time should be needed, since only four random 
digits would be required for each life year of exposure (two for r~ and two 
for duration). In the case of a one hundred life group life policy, the 
death rates would be rounded to the nearest one thousandth. One thou- 
sand exposure years for the entire group might be simulated in about 
one minute. 

Using the frequency distribution resulting from the foregoing simu- 
lated experience, the "extra-risk" charge as a percentage of expected 
claims could be computed by approximate integration. These results 
could then be compared to those produced by Mr. Bartlett 's approach 
of utilizing a gamma distribution that incorporates the first and the 
second moments of the secondary distribution. Very possibly these results 
could be reconciled, and an appropriate mathematical model (confirmed 
by the Monte Carlo tests), with an available set of tables, could be utilized 
in determining excess-risk charges for various groups classified in accord- 
ance with specific characteristics. 

DONALD A. JONES: 

The purpose of this discussion is to relate Mr. Bartlett 's ideas to those 
of Robert H. Taylor as published in The Proceedings of the Conference of 
Actuaries in Public Practice, I I  (1952), 100-150. Roughly speaking, both 
men approximated the probability distribution of an aggregate loss 
random variable, say, Z, by use of a gamma distribution. 

BARTLETT TAYLOR 

Aggregate Loss Random Variable 

Z = Total claims under a group Z = Total discounted value of future 
insurance contract in a fixed payments due to a fixed number of 
time period, life annuitants. 
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Collective risk model 

ttl = X,~ 

Distribution Theory Axioms 
Individual risk model 

Moment Formulas 
N 

,1 = ~ l ( j )  
1 

- - - -k  ~A 
~2  /z2 

N 

# 2 = ~ 2 ( j )  
1 

= )~. ,A  
# 3  ~ a  

). is the expected number of 
PA claims and , i  is the ith 

moment about the origin 
for the secondary distri- 
bution 

$ ( n )  = ( z - - n ) f ( z ) d z  

N 

1 

N is the number of annuitants and gi(j) 
is the ith central moment of the distri- 
bution of the discounted value of future 
payments due the j t h  annuitants. "(See 
W. O. Menge, R.A.I.A., XXVI [1937]. 
65-88.) 

Objective 

Approximation Method 
Fit a gamma distribution by equat- Fit a "translated gamma" distri- 

ing first and second moments, bution by equating first, second, 
and third moments. 

A translated gamma distribution (abb. T-gamma in what follows) is 
one with the density function: 

a >  --I 

1 
g(z: a,/~, z~) = a!fl~+l (z-~A)ae-(*-~)/~; ~ > o  

z > A  
that is, a gamma distribution translated A units to the right. 

Taylor's approximation by fitting a T-gamma distribution has three 
advantages: (i) the T-gamma family has three parameters, hence "closer 
fits" should prevail; (ii) if the fit is by equating moments, the third mo- 
ment is exact; and (iii) it is consistent with Bartlett 's fit of a gamma 
distribution in the following sense: if . i ,  .~, and .3 satisfy the condition 
of gamma moments, that is, 

2.]  - . l m ,  
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then the fitted T-gamma will coincide with the gamma distribution fitted 
by equating the first moments and the second moments. 

Taylor's approximation has two disadvantages: (i) p, must be calcu- 
lated and (ii) if A > 0, then the probability of aggregate claims being in 
the interval from 0 to A is zero; if A < 0, then the probability of aggre- 
gate claims being in the interval from A to 0 (hence negative) is positive. 

Since the interesting values of the excess ratio function do not depend 
upon the details of the left tail of the distribution of the aggregate loss 
variable, this second disadvantage is not serious, and hence Taylor's 
T-gamma distributions would seem to deserve consideration in the cal- 
culation of the excess ratio function. 

Let  ~r(n) be the excess ratio function as defined by a T-gamma dis- 
tribution, that is, 

f° 4'T(n)  ----- ( z - - n ) g ( z :  a t ,  fT,,5)dz, 
where 

f T ( a r  "J W 1) -I- A .~.l.l, 1 

2f~,(ar + 1) = pa  

o r  

BT = PJ2m 

a T + l = 4  a. 2 

Substitute x = z -- A in the integral to obtain 

4~T(n) = [ x - - ( n - - A ) ] g ( x - t - A : a m f T ,  A)dx  
A ( 1 )  

- - ¢ ( n - ~ )  

for the aT, f r  gamma distribution. This equation indicates that the only 
extra calculation required to use a T-gamma distribution is the calcula- 
tion of pa and A. 

We may use equation (1) to find er(n)  from Bartlett 's Table 1 as 
follows. First, putting parameter values in place of the moments we have 

q~(n)"~-- q,(n) 1 
p2 f 

(~,~)~ 
X = ~ =  a"l-1 

tz2 

y=nx=n___  

Since we want ~b(n -- A) for ar  and BIT, we enter Table 1 at 
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and 

to read 

EXCESS RATIO DISTRIBUTIONS IN RISK THEORY 

Y n - - A  = # 3 ( n - - m )  
X / ~ r ( a r +  1) 2#2 

1 2/z, 
~ ( n - - A )  ~ - ~ = ~ r ( n )  ~, • 

These formulas were applied to Bartlett 's  example in Section VII.  

#1 = (14.63) (31.353) = 458.6944 

/*2-- (14.63) (1861.70) 

#, = (14.63) (139, 531.07571) 

X = 19.387 

Y/X = 1.12622 

~r(1.2#1) = 31.98 by linear interpolation in Table 1. One may also write 

#2 

where Z = Y - X and S(t:8) is the distribution function for a standard- 
ized gamma distribution with skewness ~. The function S was tabled by 
L. R. Salvosa in Annals of Mathematical Statistics (1930), 191-98 and 
Appendix (pp. 1-187). By use of Salvosa's tables and this formula, 
~r(1.2#l) = 31.98 is also obtained. 

Bartlett  obtained ~(1 .2#i )=  32.24. One would expect this larger 
value, since Bartlett 's  directly fitted gamma distribution overstates the 
skewness. 

One point, not related to Taylor 's  work, might be worth mentioning. 
Each value in Table 2 is the sum of the corresponding value in Table 1, 
and Y -- X, that is, 

~ ( n ) ~ = ~ ( n ) ~ + Y - X .  

This may be verified as follows: 

Now multiply each side by #1/#2. 
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PAUL H. ~ACKSON: 

Mr. Bartlett 's paper is a valuable addition indeed to the papers pre- 
viously published in the Transaclions on this subject. In general, the 
methods suggested appear eminently practical for most group insurance 
problems. The paper sparkles with classical statistical techniques, and 
the author also covers, albeit in capsule form, many of the practical 
limitations contained in my own written discussion of Kahn's paper. 

The practical problem in experience rating is to determine an appro- 
priate function f(x) which closely approximates the frequency distribu- 
tion of observed loss ratios. Both Bartlett and Kahn break this problem 
down into two pieces by considering the frequency distribution of loss 
ratios to be a compound distribution (i.e., a combination of the frequency 
distribution of the number of claims and the frequency distribution of 
claim amount). While this approach seems artificial, it has been found 
useful by European actuaries in their treatment of risk problems for 
various casualty coverages, notably fire insurance. Given that an event 
(a fire) has occurred, the amount of loss is variable even when one possesses 
the further information as to the value of the structure or, going still 
further, the particular structure involved. Group medical expense and 
disability income claims have this same characteristic, but group life 
claims do not. If one's knowledge is limited to the fact that exactly one 
death has occurred, the frequency distribution for claim amount has in- 
herently different characteristics than for medical expense coverages 
(except where the insurance schedule is based on some multiple of annual 
earnings rounded to the nearest dollar) because only a small number of 
separate claim amounts are possible. Further, when the identity of the 
claimant is given, the amount of loss is determined completely. This 
qualitative difference permits more powerful statistical methods such as 
those suggested by Feay. With the development of survivors' income 
plans and more extensive group life disability benefits, this distinction, 
however, becomes less important. 

Treating f(x) as a compound distribution doubles the curve-fitting 
problem, but both Kahn and Bartlett as well as most other authorities 
agree on the Poisson distribution for the number of claims. This distri- 
bution is valid only where the probability of claim is small and where 
the independence of the events leading to claim can be assumed. Further, 
the Poisson distribution is a theoretical one which has no upper bound 
as to the number of possible claims, whereas in most practical applica- 
tions an upper bound does exist. 

I cannot agree that the assumption of independence of the events 



460 EXCESS RATIO DISTRIBUTIONS I:N RISK THEORY 

leading to individual claims rules out only epidemics, wars, and natural 
catastrophes. No matter  how small the group, the multiple exposure 
resulting from air travel, commuting to and from work by train or car, 
working in a common location, etc., is significant in relation to the total 
exposure. Thus, I have more trouble with Mr. Bartlett 's  first condition 
for a Poisson process than with his second. 

General considerations, as well as intuition, have led me to the con- 
clusion that f(x) can be closely approximated by a Pearson Class I I I  
curve in most practical applications. In particular, the incomplete gamma 
function seems eminently suitable for group insurance applications. By 
arriving at the gamma variate directly, without assuming the Poisson 
distribution for number of claims, I am led to a different interpretation 
of the errors discussed in Part  I I  of Mr. Bartlett 's  paper. 

The compound Poisson process can be accepted as a practical tool 
which enables us to determine the parameters for the gamma distribu- 
tion from the moments of the secondary distribution of claim amount. 
The skewness of the resulting gamma distribution is larger than that of 
the particular compound Poisson distribution and has a larger area 
under the right-hand tail which produces larger values for the excess 
ratio function. The differences do not, for me at least, represent the degree 
of overstatement of excess ratio computed from the gamma distribution 
over the "true" ratio computed from the corresponding compound 
Poisson distribution, but rather the degree of understatement of excess 
ratio computed from the compound Poisson distribution as compared 
with the " t rue"  ratio computed from the gamma distribution. 

This slightly different approach has two important implications. First, 
it means that the actuary employing Mr. Bartlett 's  method will not 
view the "errors" and "overstatements" as an indirect loading for con- 
servatism. Second, in the case of a group life plan with uniform amounts, 
the actuary would still use the gamma variate rather than the simple 
Poisson distribution. I t  can be shown, for example, using Mr. Bartlett 's  
method, that in this instance the secondary distribution is a "spike" 
distribution and the gamma v'ariate has parameters fl = 1 and ~ = k -- 1 
so that f(x) reduces to 

X x-1 e - ~  

(x-i)t 
rather than 

the simple Poisson distribution. 

X!  " 
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I t  might be noted that the ratio of this gamma probability density to 
Poisson is less than unity near the mean and greater than unity for 
sufficiently large X, since the ratio is dominated by X! as X increases 
without bound. Where X is an integer greater than one and X = X -b 1, 
the ratio is always less than unity, since (n -b 1)~'n -~ approaches a limit 
with increasing n that is less than or equal to e. At any rate, if the com- 
pound Poisson distribution is'considered to be the true underlying fre- 
quency distribution, then the actuary must use the simple Poisson dis- 
tribution for cases with Uniform amounts and shift gears' to gamma when 
the first minor difference in insurance amounts appears, and this discon- 
tinuity can be avoided by simple shift of the " t rue" label over to the 
gamma variate. 

In group life insurance applications, insurance amounts are usually 
related to salary, thus suggesting possible use of the logarithmico-normal 
distribution as the secondary distribution for claim amount. For large 
amounts of coverage which are related to higher incomes and which are 
frequently "pooled" on a company-wide basis, the Pareto distribution 
appears appropriate (see K. C. Hagstroem, "Inkomstatjamningen i 
Sverige," Skand. Bankens Kvart.-Skr., April, 1944). 

For stop-loss computations at high limits, the assumption of claim in- 
dependence and normal distribution of claim amount appear unjusti- 
fiable. The entire process of fitting f(x) to actual data involves normal 
data and the subsequent use of f(x) only in the area of abnormal losses 
is best characterized as "non-Bayesian." The group writing companies 
are understandably disinterested in offering true stop-loss insurance for 
seif-insured plans, and it is likely that there will never be sufficient data 
accumulated to enable the actuary to rely solely on classical statistical 
techniques to determine high-limit stop-loss premiums. In fact, it appears 
that the common practice of group writing companies is to restrict cov- 
erage in such a way that they limit their bet to the sure thing and, thus, 
have no exposure at all in this area. This is unfortunate since their knowl- 
edge in this area and their ability to provide true catastrophe insurance 
is perhaps their greatest defense against the further encroachment of 
self-insurance. 

Mr. Bartlett 's masterly work has eminently practical applications for 
experience rating and I hope that the reservations expressed herein in no 
way imply anything short of profound admiration on my part. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

DWIGHT K. BARTLETT~ I I I : ,  

I would like to thank Messrs. Tookey, Jones, and Jackson. They do 
me a great honor by their thoughtful discussions of my paper. 

Mr. Tookey's plea for a "voyage to the center of the earth" is a per- 
suasive one. I t  is worthwhile for actuaries concerned with experience 
rating problems but who have a limited exposure to computers to know 
that Monte Carlo simulations of mortality and morbidity experience on 
insure~d groups can be done so quickly and efficiently. Perhaps someone 
will feel moved to include in our literature as an actuarial note the Fortran 
based on the most et~cient techniques of the Monte Carlo simulation. 
However, actuaries who do not have access to large-scale computers will 
still have to rely on classical statistical techniques such as those used in 
my paper. 

Mr. Jones's discussion bringing the ideas of Mr. Taylor to our atten- 
tion is particularly valuable. Mr. Taylor's method of fitting a "trans- 
lated gamma" distribution appears to be a significant improvement over 
that proposed in my paper. While the practical effect was very small 
in the example included in Section VII of my paper, it would perhaps 
be much more significant in examples with a smaller claim frequency or 
a higher stop-loss claim level. 

Mr. Jackson has stressed the weaknesses in the assumptions of the 
Poisson process as applied to claims on insured groups. He particularly 
brings out the exposure to multiple-claim situations involved in mass 
transportation, common working location, etc. This same criticism can 
be made, of course, of the Monte Carlo technique, which also assumes 
independence of the probability of occurrence of individual claims. I t  is 
not clear exactly how great a weakness this is. I t  intuitively seems to 
me to be a greater weakness in life insurance coverages than in health 
insurance. Perhaps companies that have been writing group accidental 
death catastrophe reinsurance can contribute to the literature their ex- 
perience and their methods of premium rating which will shed some 
light to the profession in general on this problem. 

After stating his position in favor of using the gamma distribution 
rather than the compound Poisson distribution as being the " t rue" dis- 
tribution, Mr. Jackson then apparently resorts to the compound Poisson 
distribution as a basis for determining the parameters for the gamma 
distribution, just as I have done in the paper. This would appear to be 

little lik.e wanting your cake and eating it too. 
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Mr. Jackson's comments about the techniques of the paper being 
"non-Bayesian" are certainly correct. I hesitate to comment further on 
this point in view of my lack of education in this newly developing field 
of statistics. However, while I stand ready to be corrected on this point, 
let me say that it would seem to me that the more strongly a Bayesian 
feels about the prior distribution the more confidence he will have in his 
posterior distribution. If this is true, the techniques of the paper might 
still be of value to the Bayesian by giving him a prior distribution in 
which he might have a fairly strong degree of confidence. 


