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Stochastic modeling is on the rise in the life insurance in-
dustry due to a coalescence of regulations on the horizon 
and an increasing demand for stochastic analysis in many 

internal modeling exercises. While regulatory developments 
across the globe certainly have played a part in this increased in-
terest, there are plenty of other reasons why stochastic modeling 
proficiency is growing among both actuarial modelers and those 
who interpret stochastic results.

This topic continues to garner attention as the industry in-
creasingly relies upon stochastic models to value its business, 
design its products, and manage its portfolios. It appears that 
stochastic models gradually are becoming the industry norm 
for internal metrics since deterministic models often cannot 
adequately quantify the risk profile of the industry’s increas-
ingly complex business.

STOCHASTIC MODELING PROLIFERATION
As with many other industry trends, regulatory considerations 
will play a pivotal role in the increasing interest in stochastic 
modeling. Regulatory bodies in both the European Union (EU) 
and the United States continue to propose new stochastic model-
ing requirements, joining efforts from other nations worldwide. 
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The EU is internally aligning its capital requirements under 
Solvency II, and the National Association of Insurance Commis-
sioners (NAIC) has introduced VM-20 to address life insurance 
statutory reserve requirements. Each approach permits the use 
of internal stochastic models. VM-20 calls for stochastic model-
ing of economic risks, but does not require stochastic modeling 
of mortality risk (however, a company may elect to do so). Each 
of these regulations, when fully implemented, will significantly 
expand the use and importance of stochastic models.

Leaving aside these looming regulatory changes, however, com-
panies are discovering stochastic models’ value to an organi-
zation’s cash flow projections and risk management activities.  
Insurers are expanding their use of internal stochastic models as 
available tools and computing power make this modeling more 
feasible. Companies are implementing stochastic models not 
only to determine economic capital, but also to use in product de-
velopment areas. In reinsurance units, nonproportional reinsur-
ance programs such as stop-loss and catastrophic coverages may  
necessitate stochastic modeling for both pricing and valuation.

NEED FOR CONTINUED RESEARCH
Given these and other reasons for the ongoing proliferation 
of stochastic models, the life insurance industry still has room 
to expand its stochastic modeling knowledge and techniques. 
While the stochastic modeling of market and credit risks is 
fairly well established, stochastic modeling of mortality is not 
as fully developed. In fact, most published research regarding 
stochastic mortality modeling either has been across general 
population segments where there are no underwriting selection 
effects, or has been conducted on longevity risks covering pen-
sioners or annuitants.

Both of these approaches pose challenges. Research on general 
populations, pensioners and annuitants does not carry over well 
to the stochastic modeling requirements of fully underwritten 
life insurance. These insured populations have distinctly differ-
ent mortality characteristics that require partitioning by prod-
uct, underwriting class, distribution channel, policy issue year 
and policy duration. Similar to deterministic modeling, such 
partitioning should consider the level of credibility within the 
partitioned segments when determining stochastic distribution 
metrics such as means and variances. Adjoining segments may 
need to be combined when segmented credibility is low.

Another consideration that affects fully underwritten portfolios 
is policyholder lapsation. For example, lapse rates are typical-
ly very high at the end of level period for term life insurance 
products. These rates are difficult to model because they depend 
upon a number of factors, most of which are highly dependent 
upon post-level period premium increases and the insured’s 
health status. This is typically not a concern when stochastically 
modeling general population segments or annuitants.

Figure 1 
Uses of Internal Stochastic Models
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Risk-adjusted merger and acquisition (M&A) pricing

Evaluation of reinsurance programs

Risk structure optimization

Calculation of diversification effects

Corporate strategy development

Risk-adjusted performance measurements and targets

Management compensation strategy

Satisfying parent company requirements

The benefits of incorporating stochastic modeling enterprisewide expand well beyond 
simply preparing for possible regulatory changes. Though we mention a dozen in this list, 
we easily could have included many more.
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A good introductory resource addressing stochastic mortality 
for underwritten life portfolios is a document produced by Ernst 
& Young LLP titled, “Stochastic Analysis of Long-Term Mul-
tiple-Decrement Contracts,” published by the Society of Actu-
aries in 2008. This report evaluates stochastic modeling of life 
insurance nonmarket risks (i.e., mortality and lapse). It lays out 
the primary issues and describes potential modeling solutions. 
However, it also recognizes the need for an increased under-
standing of the sensitivities associated with stochastic mortal-
ity model design. Suggested areas of research are selection of 
stochastic variable probability distributions, stochastic variable 
correlations, and other relatively uncharted terrain for fully un-
derwritten life insurance.

The benefits of stochastic modeling cannot be overstated. We 
have touched on only a few of these benefits, but certainly could 
have extended the discussion into various areas of pricing, valu-
ation and stakeholder interest.

Last but not least, ratings agencies have been increasingly sup-
portive of the improved risk management metrics derived from 
stochastic modeling, making it even more vital that companies 
continue to develop their internal stochastic models to keep pace 
with what is rapidly becoming an industrywide best practice.

MONTE CARLO SIMULATION 
Having set the stage as to the “whys” of stochastic modeling let’s 
discuss some of the “hows,” presenting a practical example of 
designing a stochastic model of death benefits on fully under-
written life insurance.

Stochastic models typically incorporate Monte Carlo simulation 
to reflect complex stochastic variable interactions in which alter-
native analytic approaches would be either unworkable or unten-
able at best. For the illustrative projection discussed in this article, 
we developed a Monte Carlo simulation model to stochastically 
project 30 years of annual claims on a large, fully underwritten, 
term life insurance portfolio. The implemented modeling pro-
cess can be described in the following four high-level steps: 

1. Input variable analysis and specification 
2. Random sampling of input stochastic variables 
3. Computation of death benefit projections 
4. Aggregation and analysis of results 

INPUT VARIABLE SPECIFICATION 
We define input variables as either stochastic or deterministic. 
Deterministic variables are assigned a predetermined fixed value 
or may be the result of a fixed nonrandom formula. Stochastic 
input variables are assigned statistical distributions and may cor-
relate with other stochastic variables. 

In our model, we defined three stochastic input variables: base 
mortality rate, mortality improvement rate and catastrophic 

mortality rate. We also defined one deterministic variable: pol-
icy lapse rate. 

DETERMINISTIC POLICY LAPSE RATE VARIABLE 
We could have modeled policy lapse rates stochastically based 
upon some real-world model of policyholder behavior. However, 
determining appropriate statistical distributions and correlations 
for our particular project proved to be difficult: The policyhold-
er’s decision to lapse term insurance is typically not driven by 
external fluctuating forces such as interest rates or stock market 
indices, but by other less tractable criteria. We chose instead to 
use predetermined best estimate lapse rates in the Monte Carlo 
simulation to lapse individual policies randomly.1

STOCHASTIC BASE MORTALITY VARIABLE 
This stochastic variable reflects the uncertainty in determining 
an underlying best estimate mortality assumption for our port-
folio. For this exercise, we referenced a recent mortality experi-
ence study for the portfolio. We can think of a mortality study 
as one random sample from the portfolio’s “true” mortality. Just 
as with any random sample, uncertainty exists as to whether the 
sample is a good representation of the population (Figure 2). 
The left chart in Figure 2 shows the range of actual-to-expected 
(A/E) ratios that an experience study might produce for a port-
folio where we expect only 25 claims. The right chart shows the 
range for a portfolio with 1,250 expected claims. The uncertain-
ty about a particular study’s credible representation of the pop-
ulation is a function of the expected claim count, and decreases 
as the count increases. 

We can model this uncertainty stochastically. With mortality as 
a binomial process, the experience study’s overall mortality is 
our mean assumption and 1 / √(#claims) is an approximation to 
its standard deviation. Then, for a given stochastic iteration, we 
used the normal approximation to the binomial to randomly se-
lect a base mortality assumption for that iteration).2

STOCHASTIC MORTALITY IMPROVEMENT  
RATE VARIABLE
In our model, mortality improves as we project our portfolio 
into the future. However, just as with base mortality, uncertainty 
surrounds the rate at which this improvement will occur. We 
calculated long-term mean improvement rates, along with cor-
responding standard deviations, based upon an analysis of U.S. 
population mortality. We reviewed historical trends over the 
past 20–30 years to select appropriate periods for the analysis (  
3). A significant and seemingly permanent change in the pattern 
of mortality occurred around 1982, so we used data from only 
1982 to 2007 in our analysis. For this period, we determined 
that trended mortality had an annualized mean improvement 
rate of 0.8 percent with a standard deviation of approximately 
0.4 percent. 

Stochastic Modeling …
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Mortality improvement rates vary significantly by attained age, 
so we created a vector of improvement assumptions by age 
group. Recognizing that mortality improvement is correlated 
among age groups, we also determined a correlation matrix re-
flecting historical correlations in improvement rates. 

Using the U.S. population data, we determined that a normal 
distribution best represented the fluctuation of improvement 
rates around the long-term mean. Given the mean and standard 
deviation parameters, we stochastically generated 10,000 mor-
tality improvement rate scenarios by attained-age group across 
the projection horizon. We then randomly selected a single sce-
nario from these 10,000 scenarios for application in a single sto-
chastic projection iteration of the portfolio. 

STOCHASTIC CATASTROPHIC MORTALITY VARIABLE 
Unlike the property/casualty sector, we are concerned only 
about catastrophes that result in significant loss of life. Nat-
ural disasters were less impactful than pandemics and other 
disasters, which have the potential for loss of life in far greater 
numbers. Our model includes a stochastic variable represent-
ing additional lives lost in a given calendar year from three 
types of disasters: pandemics, earthquakes and terrorist attacks. 
From third-party data sources, we developed frequency and se-
verity distributions for each of these three types of disasters 
and randomly sampled these distributions for each projection 
year (Figure 4). 

For each projection year, we randomly sampled the addition-
al catastrophic mortality rate that was then added to the base 
mortality of each individual life. Having identified our ap-
proach and variables, we can now apply the stochastic process 
and analyze results.
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Figure 2
Distribution of Experience Study A/E Ratios

The uncertainty surrounding a particular study’s credibility in representing the population is a function of the expected claim count. The lower the count (left), the 
greater the uncertainty.
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Figure 3
U.S. Population Mortality Improvement, Male 45-49

Mortality among males age 45-49 improved noticeably 1970-1982, but since 
has flattened out.
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Stochastic Modeling …

DEATH BENEFIT COMPUTATION VIA BERNOULLI 
PROCESSING
In our model, we use a Bernoulli process to randomly decre-
ment (via death or lapse) each life in the portfolio. To achieve 
this, we first stochastically generate base mortality rates, mor-
tality improvement factors and catastrophic mortality rates. 
These stochastically generated rates we then combine into a 
composite set of projection year mortality rates for each in-
sured life. Along with the deterministic lapse rates, these sto-
chastically generated composite mortality rates are applied us-
ing a Bernoulli process.

A simplified explanation of our Bernoulli policy decrement pro-
cess begins by sampling a uniformly distributed random variable 
for each insured life. These sampled random variables are then 
compared against the previously determined composite mortali-
ty rates for a given projection year as described in the following 
“if-then” process:

• If the random variable is less than the composite mortality 
rate, then a death results in the given projection year.

• Otherwise, the life survives and we generate a second uni-
formly distributed random variable. If this sampled value is 
less than the deterministic lapse rate, then a policy lapse oc-
curs in the given projection year.

• Otherwise, the policy remains in force and continues into the 
next projection year where we repeat the process.

ANALYSIS OF MODEL RESULTS
After the model generates an adequate number of iterations—
typically 10,000 or more depending on the portfolio size and 
modeling objective—we then validate and analyze model re-
sults. One of the first steps is to validate the output against 
other modeling sources and conduct a high-level evaluation of 
results given the model’s input assumptions. After the model 
has passed these initial validations, we then conduct sensitivity 
analyses to further validate the model and to better under-
stand how changes in input assumptions affect model results. 
Once the model is satisfactorily validated, we can then evalu-
ate various value at risk (VaRs), and conditional tail expecta-
tion (CTE) measures. 

Model validation and sensitivity analysis. Some stochastic 
model validation criteria can be obtained from corresponding 
deterministic modeling results. For example, the average sto-
chastic results of a given stochastic variable can often be validat-
ed against the corresponding best estimate result of a determin-
istic model. If the stochastic mean differs from the deterministic 
best estimate, this may raise a red flag. If the model is newly 
constructed, we should activate stochastic variables individually 
to assess their impact as they flow through the model. When 
considering the effect of catastrophes in our stochastic model, 
the resulting overall mean mortality rate should increase by the 
summed products of the respective frequencies and severities of 
each catastrophe variable. Numerous additional validation exer-
cises can also be a part of the modeling process, including vali-
dation of interim calculations. 

Once we have determined that the model is producing results 
in line with the input assumptions and other validation criteria, 
further sensitivity testing of model parameters can add value to 
the current project and enhance understanding of the model for 
future uses. 

Cumulative distribution of results. Once we constructed our 
model we ran 10,000 simulations. Each simulation produced a 
net present value (NPV) of death benefits that we collective-
ly ordered from lowest to highest. We graphed these ordered 
y-axis values with corresponding x-axis values set equal to the 
ordered rank divided by 10,000, producing values from 0 to 100 
percent as shown in Figure 5. We then used the resulting cumu-
lative distribution of NPV of death benefits to evaluate suitable 
measures for this variable. 

VaR and CTE. Two well-utilized measures obtained from sto-
chastically generated cumulative distributions are the VaR and 
CTE. Each of these measures has its own strengths and weak-
nesses, but both can be easily ascertained once a modeler has 
produced an adequate number of stochastic iterations.    

Figure 4 
Frequency and Severity of Pandemics

The graph shows the annual probability that an influenza pandemic will cause 
mortality greater than the X-axis values shown. (Influenza pandemics: Time for a 
reality check? Swiss Re, March 2007.)
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CONCLUSION
Whether due to external requirements (i.e., principle-based ap-
proach (PBA), Solvency II) or internal needs, the importance 
of stochastic modeling is growing in the life insurance industry. 
Models should be built using an approach that will result in the 
most realistic simulation, incorporating the critical variables that 
affect the solvency of a block of business. 

The basic model we described is only one of many possible de-
signs that actuaries could use to stochastically model mortality 
and lapsation. While we did not touch on the increasing avail-
ability of stochastic modeling software, we covered some funda-
mental aspects that can be modeled independently of commer-
cial applications. More importantly, our intention was to share a 
high-level illustration of some basic modeling components and 
how they can be assembled into a practical solution. 

VaR is specified with a confidence level α (typically α is selected 
≥ 95%) and is the point on the cumulative distribution curve at 
x = α. Generally, α-VaR is defined as the loss amount that will 
not be exceeded with probability α. For example, maintaining 
capital at a 99.5% VaR on next year’s projected cash flows should 
sustain all but a 1-in-200-year scenario, or a 0.5 percent risk of 
insolvency. Note that some call this particular scenario tail a 
1-in-200-year event; however, the tail may contain the culmina-
tion of different compounded events in the Monte Carlo process. 
VaR is typically measured over short time periods—for example, 
Solvency II incorporates a 99.5% VaR over a one-year period.

While VaR is a useful measure, we often want to know more 
about potential tail losses. For example, what is the expected size 
of a tail loss? The answer to this question is CTE α, which mea-
sures the expected loss given that the loss falls within the (1- α) 
quantile tail. For example, CTE 90 is the average of the worst 10 
percent of modeled outcomes—which is easily calculated from 
the cumulative distribution. 

Figure 6 shows the tail of our cumulative distribution of NPV of 
death benefits, along with illustrative CTE 90 and 90% VaR points 
on the curve. The plotted values in the blue shaded area each 
equally contribute to the CTE 90 calculation of $368 million in 
NPV of death benefits. In contrast, the 90% VaR of $357 million 
is the point in which only 10 percent of simulated NPVs exceed.

CTE measures may be more sensitive to severe low-frequency 
loss scenarios, whereas VaR measures may stop short of recog-
nizing such rare loss events. However, even though the CTE 
may include extreme losses, their impact upon the CTE measure 
may be significantly tempered by the remaining tail. Further-
more, any comparison between CTE and VaR measures, and 
their sensitivities to rare events, will invariably depend on their 
respective quantiles (i.e., CTE 90 vs. 99.5% VaR). 

ENDNOTES
1  See “Lapse Rates in a Principles-Based World,” The Messenger, June 2007.

2 “Credibility Analysis for Mortality Experience Studies—Part 1,” The Messenger, 
March 2008
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Figure 5
Distribution of NPV of Death Benefits

The 10,000 stochastic simulations yielded a fairly smooth cumulative 
distribution of net present value of death benefits.
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Figure 6
Tail Distribution of NPV of Death Benefits

For clarification of the two measures, the above graph shows the CTE and VaR 
each evaluated at α = 90.


