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L INTRODUCTION 

T 
inS paper villi derive some formulas for obtaining the ruin function 
and the distribution of total claims of collective risk theory. These 
results will be illustrated by five examples, of which two show the 

use of the ruin function in studying retention levels, two relate to the size 
of "acceptable" adverse fluctuation, and one involves the calculations of 
net premiums for stop-loss reinsurance treaties. Although these results 
can be expressed simply, their derivations are based on the mathematical 
theory of stochastic processes, so a brief discussion of this subject is 
included. The derivations appear as an appendix. 

II. TIlE COLLECTIVE RISK STOCHASTIC PROCESS 

The subject of stochastic processes arose from the desire to build 
mathematical models for certain natural processes. The random move- 
ments of small particles (called "Brownian motion") were analyzed math- 
ematically by L. Bachelier [I] as early as 1900. The study of Brownian 
motion was greatly enhanced by the work of Norbert Wiener beginning 
in 1923 [16], and hence the stochastic model is usually called the "Wiener 
stochastic process." This process has played an important role in quantum 
physics and in some statistical problems. Actuaries can take pride in the 
early recognition (1903) by F. Lundberg [10] of the value of looking at 
the ensemble of risks. His papers began the study of the collective risk 
stochastic process. 

The subjects of probability and statistics consider one, two, and pos- 
sibly many random variables. The distribution functions for the random 
variables are prime areas of study. Functions of one or more random 
variables are new random variables, and their distributions are considered. 
For example, the distribution of the sample mean ~ = (Xt + )(2 + . . .  + 
X,)/n is discussed in Hoel [8] on pages 138-46. The distribution of the 
maximum of Xl and Xi could be evaluated as another example. The 
study of stochastic processes involves collections of infinitely many ran- 
dom variables. Sometimes these are indexed by the integers, that is, XI, 
X,, X s , . . . .  More frequently, they are indexed by a parameter in an in- 
terval of numbers. Thus {Xt, 0 < I < T} can be used to denote an in- 
finite collection of random variables, one for each point between 0 and 
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T, inclusive. The interval 0 < t < T may represent time. Prime attention 
is given to calculating distributions of new random variables defined as 
functions of all the random variables. For example, if 

{maximum X (~) } 
O~t<T 

denotes the largest value of the X(t) 's between 0 and T, an interesting 
question is the determination of the distribution of 

[maximum X (t) }. 
O<I<T 

Let us now consider the risk business of an insurance company from 
the collective risk viewpoint. By describing this as a stochastic process, 
it will be seen that  it has characteristics which are also common to stochas- 
tic processes used in the theory of queues, dams, storage, statistics, 
physics, and other fields. Therefore, results developed for these other 
fields may apply to collective risk problems. This description will be quite 
brief. The definitive work on the subject is by Harald Cram~r [7]. 

Let us consider an insurance operation in which a number of policy- 
holders have paid in premiums to provide certain benefits in the event 
certain things happen, such as death, sickness, fire, and so forth. 

Let P(z) be the distribution for a claim; that is, P(z) is the probability 
that, if a claim occurs, it will be less than or equal to z. We will assume 
that P(0) = 0, which rules out nonpositive claims. Such claims occur 
when a life annuity terminates and a reserve is released. We will let the 
variable t be operational time. This means, for example, that, if past 
records indicate 30 daims per year, then t = 30 will correspond to one 
calendar year. N(t) is the random number of claims in time t. We will 
assume that claims occur in such a way that  N(t) has a Poisson distribu- 
tion with mean I. The reader can consult Dr. Paul Kahn's  paper [9] 
relative to this assumption. 

If  p, = average claim amount, then in time t the insurance company 
would charge Pd as the aggregate net risk premium, plus an aggregate 
security loading of kt. We also assume that the insurance company begins 
with a risk reserve of size u. At time t, the risk reserve U(1) is given by 

N(t) 

U (1) = u +  (p,+X)t- ~X~, 

where the X~'s are independent random variables, representing the claims. 
Each Xi has the distribution P(z). The symbol 

N(t) 

i=I 
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represents the aggregate claims up to time t. Since the upper limit of sum- 
marion, N(t), is itself a random variable, this sum is a random number 
(number of claims) of random variables (claims). The expression 

{ minimum U (l)  } 
O~l<T 

will refer to the smallest value of U(t) over the time range 0 < t < T. 
We wish to calculate 

N(t) 

the distribution of total claims during time t, 

~b(u, T) = P [  {minimum U (t) } < 0 ], 
O S t < T  

the probability of ruin on or before time T, and ~b(u), the probability of 
eventual ruin. 

To make these calculations, let 
N(,) 

Y ( t )  = ~ X ~  
i = 1  

for each time point t. Since for any fixed constant T there are an infinite 
number of points between 0 and T, the collection of random variables 
{ Y(t), 0 < t < T} is a stochastic process. This process is sometimes called 
the "compound Poisson process." If each X~ could assume only the values 
1 or 0, it would be called the "Poisson process." The name "Poisson" is 
appropriate because of the distribution of the random variable N(t). Be- 
cause the X~'s can be more arbitrary in value, the process is called the 
"compound Poisson process." This process has several special properties. 
First, it has independent increments. An increment is a difference 
Y(t + s) - Y(s), for s >__ 0, t > 0. I t  is a random variable. To say that 
the process has independent increments means that such jumps in total 
claims in different time spans are independent random variables. Further- 
more, the increments are stationary, which means that, for t > 0 and 
s >_ 0, the distribution of Y(t + s) - Y(s) depends on t but not on s. 

Let 
N(t) 

Z ( t )  = ( p , + X ) t -  ~ X ~ .  

Then Z(t) represents the random gain at time t. The stochastic process 
{Z(t), 0 < t < T} again has stationary, independent increments. 
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IIL RUIN FUNCTION APPROXIMATIONS 

John Wooddy's Study Note on Risk Theory [17] points out that ruin 
theory may be applied in determining retention limits and that u "may 
be an outside limit on the size of adverse fluctuation which management 
is willing to contemplate on a given line or block of business." This helps 
put "ruin" theory in a more constructive light. 

A complete knowledge of ~b(u) and $(u, T) would be ideal in examining 
these problems. Section IV will be devoted to new methods of obtaining 
these functions. When it is impossible to derive the complete functions, 
approximations can be very useful. Recently Mr. D. K. Bartlett [2] and 
Dr. Newton Bowers [6] approximated the density of F(x, t) by a sum of 
gamma densities. The author has now derived the mean and variance for 
the distribution function 

~*(u) ={1-~(u), u>_O 
O , u < O  

and will use these results in a future paper devoted to approximating the 
density of ~b*(u). As a distribution function, ~*(u) involves the random 
variable Z, defined by 

N(t) 

Z = l m a x i m u m [ ~ X , - - t ( p l + X ) ] t .  
( 0 < 1 < •  t .  i~l 

Roughly speaking, Z is the maximum excess of claims over income ex- 
amined at each time point of very long time periods. But the reason for 
mentioning these results is that it was my plan to use them in a generalized 
Chebyshev's inequality to derive a bound for ~(u). The reader may recall 
that Chebyshev's inequality says that, if X is a random variable with 
mean /~ and variance a s, then for k > 0, P(] X -- I~[ >_ k) < ~ / k  ~. A 
generalization of this inequality was used, but the results were not nearly 
as good as Lundberg's bound on the ruin function: 

~ ( u ) < e  - n u ,  (1)  

where R is the only positive root of the equation 
co 

1 +  ( p , + X ) s - - f 0  e ~ d P ( y ) = O  (2)  

(see ref. [7]). Here the Stieltjes integral, 

Jo '~e~,dP(y) ,  
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reduces to 

o°~e'up(y)dy 

if P(y) has a derivative p(y) for all y values and to 

£ e ' U i ~ P  ( y ~ ) 
i = 1  

if P(y) is a pure step function. 
To illustrate ruin function approximations, consider two distributions 

from reference [4], which show the effects of reinsurance. In  each case we 
want to know what initial reserve u would be needed to have ~b(u) < .01. 
The u's involved are now large enough to use the asymptotic formula on 
page 45 of reference [7]: 

~k(u),-.,Ce-R,,, 
where 

)' .~o "~ 
C=q,(R)_I_X,  q ( O ) =  e°~dP(y), 

and R is from equation (2). 

Example 1 

( 3 )  

q'(R) = ~  q(O)lo-a, 

Example 2 
P 2 ( z )  = O , z < 2 ,  

.3, 2 < z < 5  , 

.5, 5 < z <  10 , 

.8, l O < z <  2 0 ,  

.85,  20 < z  < 30 

= . 9 0 ,  30_<z < 40 , 

= . 9 5 ,  4 0 < z  < 5 0 ,  

= 1 .00 ,  5 0 <  z .  

Pl(z) = 0 ,  z < 2 ,  

= . 3 ,  2 < z < 5 ,  

= . 5 ,  5 < z <  10 , 

= . 8 ,  1 0 _ < z < 2 0 ,  

= 1 . 0 , 2 0 _ < z .  

Then p, = E(X) = 8.6 ($8,600, since we are using $1,000 units). If  we 
let ), = .3p~ - 2.6, then R - .035 from the equation 1 + 11.2s --  .3e ~° -- 
.2e 5° -- .3d °' -- .2e ~°' = 0. Here C = .2465, and ~k($91,429) - .01. 
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Here Pt = 11.6. If we let ), = .3pl -- 3.5, then R - .0175. The value of 
C = .2372, and #($180,857) - .01. 

IV. TRANSFORMS OF THE RUIN FUNCTIONS 

In statistics a function 

f eO~dp(z) 
ora 

of P(z) and a parameter 0 is used sometimes to capture the moments. 
This is called the "moment generating function" (see ref. [8], pp. 84, 96). 
Notice that our Stieltjes integral is a symbol which reduces to 

f :e°'p(z)dz 

ff P(z) has a derivative p(z) for all z values and to 

~ e°zlf(zi) 
i z O  

if P(s) is a pure step function. 
We "know from reference [8] (page 108) that P(z) is uniquely determined 

by its moment-generating function. This allows for instant inversion of the 
moment-generating function in known cases. For example, if the moment- 
generating function of some variable Z is found to be e o/2)°', then Z is a 
normal variable with mean 0 and variance 1. When the risks are all 
positive, 

f eO, dp(z) 
oo 

reduces to 

o ~eO, dP(z). 

If 0 = --a, for a > 0, the above would be the Laplace-Stieltjes transform 
of P(z). The process of inverting the transform yields P(z). See the Ap- 
pendix for a discussion of Laplace transforms. A readily available refer- 
ence to Laplace transforms (with tables) is Theory and Problems of 
Laplace Transforms [12]. A book describing approximate methods for 
inverting Laplace transforms has been written recently by Drs. R. 
Bellman, R. Kalaba, and J. Lockett [5]. 

In mY earlier paper [4], Laplace-Stieltjes transforms for ~k(u) and 
if(u, T) were given. These were obtained by using some results of 
G. Baxter and M. Donsker [3] which applied to stochastic processes with 
stationary independent increments. Some formulas for inverting the 
transforms to obtain tb(u) and ~k(u, 7') are now given. In each case, the 
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inversion can be with respect to ordinary Laplace transforms rather than 
Laplace-Stieltjes transforms. 

The purpose of the Baxter and Donsker paper [31 was to derive an ex- 
pression for the double Laplace transform of the distribution of the ex- 
pression 

{maximum Y(t) } 
0<t<:T 

for all stochastic processes which have stationary, independent incre- 
ments. This expression was rather complex but could be simplified if 
restricted to one specific process which had stationary, independent in- 
crements. Thus considering the collective risk process (which has sta- 
tionary, independent increments) gave a simpler expression for the trans- 
form which could be inverted, in some cases. 

I t  should be remarked that in stochastic processes it frequently happens 
that one can obtain the Laplace-Stieltjes or Laplace transform of the 
distribution more easily than the distribution itself. This was the case in 
the Baxter and Donsker paper. Nevertheless, obtaining the transforms is 
a significant step. 

We will use the notation I~{f(a)} for the inverse Laplace transform of 
f(a).  The following theorem gives an expression for ~k(u) in terms of the 
inverse Laplace transform of an expression involving X, pl, and the 
Laplace-Stieltjes transform of P(z), namely, 

o ~e - , , , dp ( z ) .  

In the applications this last quantity is 

f ~e-**p (z) dz 

or  

2.~ e-°-f (z~), 
i~0 

and one performs the inversion for the particular case involved (see 
Example 3, for instance). The proof of the theorem is in the Appendix. 
This theorem says that one way to find if(u) is to invert a certain Laplace 
transform. 

Theorem 1 

If u > 0, 

~ ( u )  = l - - X / ,  " e _ , , z d p ( z ) _ l + a ( p l + X )  . (4 )  
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Example 3 
P(z) = 1 - e --a', z > 0, A > 0. Then 

f °  J0 ° e--*'dP(z) = e--*'A e-a"dz =., +-------~, 

and Pl = 1/A. Hence 

[ ' ] 
~kCu) = l - X I .  A / ( a + A ) - - I + e C 1 / A + X )  " 

The quantity within brackets may be rearranged as 

which is in easy form to calculate the inverse transform. See the Appendix 
for the inversion of Laplace transforms, including this example. Such 
inversion produces the result 

1 
¢ , (u)  = 1 + X--------~ e-tXa'm+xA)r"' u > O .  

The parameter A allows one to approximate various realistic claim 
distributions. Graphical examples are given in Example 5. For now, let 
us compare the initial reserves needed to hold ~k(u) = .01, or .05, or .1 
when A equals 1 and .1, corresponding to mean claim amounts of $1,000 
and $I0,000. 

We repeat that  u may be regarded as an acceptable limit on adverse 
fluctuation on a given block of business. We will assume ~ = kp~. Since 
pl = 1/A, the above formula for ~b(u) may be rewritten as 

1 
= ~ e - - k A l ( l + k ) u .  

~ ( u )  l + k  

For A = 1, we have the following tabulation (in $1,000 units): 

¢~(u) = .01  ~(u) = .05  ~k(u) =.  1 

u k u k 

.23 11. 3 '32 
26.48.3  . 1 6 . 8 4 6  . 

8 . 8 3 1  . 3  
1 2 . 6 9 5  .2  

For A = .1, the u's are all 10 times larger. 
The following theorem utilizes another paper which refers to stochastic 

processes with stationary independent increments (Tak~ics [13], especially 
pp. 371,375). I t  gives an expression for ~b(u) in terms of the convolutions 
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of a distribution related to P(z). The proof of the theorem is in the Appen- 
dix. 

Theorem 2 
Le tH*(x )  = l i f x >  O a n d O i f x < O .  Let 

H * ( x ) =  [ 1 - P ( y ) ] d y f o r x > _ O a n d O f o r x < O ;  

H * ( x ) = t t * ( x ) ;  

H * ( x ) =  l ! I * ~ ( x - - z ) d H * ( z ) f o r x > O a n d O f o r x < O ; n >  l 
n - -  - -  " 

Then for u >_ 0, 

x g * ( u ) .  (s) 
q ~ ( u )  = 1 p l+- - - -x  = 

This is remarkably similar to the well-known formula for F(x, O: 

0o l,, e _ t - - p *  F(x , l ) .=  ~.]  n! n ( x ) ,  (6 )  
t l ~ 0  

where P~, (x) is the nth convolution of the claim distribution. Also note 
that the coefficients of the H*'s in equation (5) are the probabilities of a 
geometric distribution. 

The following properties of H* (u) are helpful: 

a) H* (u) is continuous for all u, n >_ 1. 
b) For fixed u, lim,-~= H* (u) = 0. 
c) For fixed n, limu-~= H* (u) = 1. 

If we assume ), = kpl, 0 < k < 1, and H* (u) = I, 1 <_ j <_ n(pt,u), 
~b(u) -- [1/(1 + k)] ~+I with' error _< [1/(1 + k)]~+k The integer n de- 
pends on Pt and u, so that the expression does depend on Pl as well as u. 
The above overstates the true probability of ruin. For small, but meaning- 
ful, values of ~b(u), this expression with Pt = 1 gives results which closely 
agree with the table in reference [4] for ~b(u) for P(z) = 0, z < 1, and 
Y ( z )  = 1 ,  z > 1 .  

Using pages 417 and 418 of reference [9] and formula (5), one can 
rederive the expression for ~b(u) in Example 3. 

Example 4 
Consider the following two distributions: 

P l ( z ) = O , z <  10, P M ( z ) = O , z < I O M ,  

= 1 , z >  10  ; = 1 , z > _ _ l O M .  
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(The risk amounts are measured in $1,000 units.) For Pl(z) , / /7  (u) = 1 
fo r j  < .lu. For Pu(z), B~ (u) = 1 for j  < u/lOM. 

Assume that ~ = .3p~. Then for P~(Z) and the sample value u = 100, 
~(100) = (1/1.3) u =  .0556 with error ~ .0556, whereas for P•(z), 
~(M X 10D = .0556 with error < .0556. Thus increasing the average 
claim by a factor of M only requires a like multiplication of the initial 
capital to preserve the same probability of ruin. 

The following theorem obtains ~(u, T) by an iterated inversion of a 
two-dimensional Laplace transform involving X, Pl, P(z), and a root of an 
equation. The proof of the theorem is in the Appendix. This theorem says 
that one way to find ~(u, T) is to perform two inversions of Laplace 
transforms. Inversion with respect to w gives a function of T, and inver- 
sion with respect to z gives ~(u, T). 

Theorem 3 

Assume that u > 0 and T > 0. Then 

g , ( u , T ) =  l - - I ,  I~ + 1 - -  e _ = d P ( x ) _ z ( p l + X )  , (7 )  

where y(w) is the only nonnegative solution of 
c o  

w--- ( p I + X ) y ( w ) + [  e-U('~>'dP(x)--l ,  w>_O. (8 )  
d o  

V. THE DISTRIBUTION OF TOTAL CLAIMS AND A STOP-LOSS PREMIUM 

This section will give a formula which in some cases yields the exact 
distribution of total claims. In these cases one can obtain the exact value 
for the net premium for a stop-loss reinsurance treaty. Other risk situa- 
tions may be approximated by these methods. However, when approxima- 
tions are needed, as is usually the case, the method of Bar re t t  [2] and 
Bowers [6] probably is superior. 

Theorem 4 says that one way to obtain F(x, T) is to invert the Laplace 
transform of an inverse Laplace transform involving P(z) and a root of 
an equation. One also has to allow a variable ~ to approach 0 through 
positive values (limbo+). The proof is in the Appendix. 

Theorem 4 

Assume that x > 0, T > 0. Then 

F( x, T) = lim I ,  I,~ ~ (9 )  
v-,o+ w +  1 -- e- '=dP(x) ' 
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where y(w) is the only nonnegative solution of 

f° w = ~ y ( w ) - t -  e--U('~)=dP(x) - - 1 ,  w>_O. ( 1 0 )  

Example 5 
P(z) = 1 - e -a*, z >_ 0, A > 0. This is the exponential distribution. 

Here px = 1/A ($1,000). By choosing A properly, one can approximate 
various distributions. For example, Chart I shows the distribution of 
Example 2 and the approximating curves P(z) = 1 - e - 'm'6  and P(z) = 
1 - e -'t9"375. The value 9.375 was computed by forcing P(15) to equal .8. 
A better fit could be achieved by appropriately choosing A, B, C, and D 
in P(z) = 1 -- Ae -n" -- Ce "-D'. With some patience, one could extend the 
following results to this case. 

1.0 

.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

.I 

P(x)  

' ' I I I I I I I I > 

2 4 6 8 I0 15 2 0  30 4 0  50 x 

Ca.~x I 

As explained in the Appendix, 

F ( x , t ) = e - t [ 1 . q _  f o = e - ~ a t A ~  ( t A u ) Y  ] u=o ( y q - 1 ) ! y l d U  . (ii) 

For the case A = 1, an alternate derivation of formula (11) appears in 
formulas (2.1) and (10.6) of Kahn's paper [9], where one sets 

P ° * ( x ) = 0 ,  x < 0  

= l , x > O ,  
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as Cram~r does in reference [71 (page 21). When A # 1, one can use a 
scale change. That is, 

F ( x , t ) = P [ Y ( t ) < x ]  

= P [  V ( t ) A  < xA  l. 
Now 

N( t )  

Y (t) A = ~ . ~ X i A .  
i - - I  

Let Wi = X.,A. Then each Wi will have the exponential distribution with 
unit mean. Substituting Ax for x in formula (10.6) of reference [9] will 
give, after some simplification, formula (11). 

We will now use formula (4.1) of Kahn's paper to compute the net 
premium for a stop-loss reinsurance treaty. The total net risk premium 
is tpx = t / A  for the calendar period for which t is the expected number of 
claim.*. Let  u be a percentage of t[A. Then 

= ( ° j ) : r :  < . -  ' ]. 

" D _ ( j - . . l _ - i ~ . y ! d x  (12) 

_te-'"+~'~-~-t'r (,,t)'+' t-(l Ut "~X~,C,a) ~] 

This uses the fact that 

L ° 
1 w u e ~ d w =  1- -F(u t ,  y +  1) = e ~ t  ( k 

(Y)! k-o • 

r(ut, k -t- 1) is the incomplete gamma function (see ref. [6]). 
Table 1 gives r(ut/A) for various values of the parameters. 7r(ut/A) 

equals the net premium charged to cover aggregate claims above $(ut/A) 
X l0 s. Table 1 was computed from equation (12) using an IBM 1620 
computer. The mathematical error analysis of the series is difficult, but  
partial sums using thirty-one, thirty-two, thirty-three, thirty-four, and 
thirty-five terms indicated that the remaining terms of the series were 
dominated b y  geometric series with various common ratios. The trunca- 
tion errors were then less than 

co 
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and several are indicated in parentheses under the premiums. The factor 
[1 -- ut/(y -t- 1)] in formula (12) is negative for the preliminary terms, 
but convergence is quite rapid after it turns positive. For these t values, 
it is believed that  partial sums using forty-five terms would have reduced 
each error to less than $1, but  present facilities made this difficult. Of 
greater importance than decreasing the error bounds is enlarging the 
tables to include greater values of t. Perhaps some reader will do this. The 
decreasing pattern (as a function of t) for u = 1.30 and 1.40 is consistent 
with Bart let t ' s  Table 1 (see ref. [2], p. 445). 

TABLE 1 

NET STOP-LOSS PREMIUMS 

U 

# 

1.00 I 1.10 I 1.20 I 1.30 1.40 

A =.4 (Average Claim=S2,500) 

16 . . . . . . . . . .  $5,620 $3,978 $2,734 $1,827 $1,187 
18 . . . . . . . . . .  5,962 4,120 2,753 1,779 1,114 
20 . . . . . . . . . .  6,278 4,240 2,754 1,722 1,038 

A =. I  (Average Claim =$I0,000) 

1 6  . . . . . . . . . .  

18 . . . . . . . . . .  

20 . . . . . . . . . .  

$22,478 
23,847 

(6)* 
25,111 

(53)* 

$15,910 
16,482 

16,958 
(47)* 

$10,936 
11,010 

11,015 

$7,306 
7,116 

6,888 

$4,750 
4,455 

4,151 

* Truncation error. 

From equation (12), we see that  ~r(ut/A) varies with 1/A. Therefore a 
table for A -- 1 can be derived from the table for A = 10 by multiplying 
each entry by .1. 
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APPENDIX 

LAPLACE TRANSFORMS 

Laplace transforms are similar to moment-generating functions. If one knows 
the transform of a function F(I), one knows a great deal about F(0. In fact, for 
the functions considered in most cases, there is a unique correspondence between 
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the functions and their transforms. The process of "undoing" the transform to 
obtain F(t) is called "inverting the transform." Reference [12] contains tables of 
functions and their transforms. Such tables can be read either way. That is, given 
a function, one can read its transform, or, given a transform, one can deduce 
what function produced it. This is visual inversion. 

If F(t) is a function of t for t > O, its Laplace transform is the integral 
co 

fo e -" tF( l )d t '  

for a a real number. I t  is denoted by.t'(a). For example, if F(t) = t, t > 0, then 
f(a) = 1/a ~, a > 0. The process of inversion consists of finding F(t) from f(a). 
For example, if ](a) = l/(a - A), a > 0, we see from a table of transforms 
that F(t) = e at. 

Transforms and their inverses have the linearity property, which is most 
convenient. That is, 

fo ~e-~t[ aFl(t)  + bF~(t) ]dt = + a f l ( a )  bf~(a) ,  

and, using Ia[f(a)] for the inverse Laplace transform off(a),/o[afl(a) + bf2(a)] = 
aFl(t) + bFi(t). Motivated by Example 3, we record the example 

1 

Laplace-Stieltjes transforms are of the form 

o~'e-"dO(t)  = f ( a ) .  

Knowing/3(t), one can computer(a), and theoretically one can find O(t) fromf(a). 
However, such tables are hard to find; hence this paper has reduced all the 
transforms to regular Laplace transforms. This was done by the integration by 
parts formula for Stielt~es integrals (see ref. [15], page 160). This relates Laplace- 
Stieltjes and Laplace transforms by the formula: 

I fo ° fo ~ e - . t d C t ( t ) = l i m e - ~ t ~ ( t )  r + a  e ~ ' ~ ( t ) d t .  
T--*m 0 

In the applications of this paper, 

lim e - ' r ~  ( T )  = 0 • 
T---~m 

Theorems 1, 3, and 4 contain the symbol 

fo ~e--. ,dp(z),  

but in the applications this is merely 

fo ~e- , ,p (z )dz  
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o r  

and one performs the operations of the theorems for the particular case involved 
(see Example 5, for instance). 

Proof of Theorem 1.--By integration by parts 
o~ oa 

fo 
where 

¢,,(,,) = LmP[lmax mumr X,--t(p,+ X)]f 
O _ ~ I < T  k 

Since the quant i ty  in brackets equals 0 for t = 0, the maximum is > 0; hence 
~*(0) = 0. Dividing by a, we have from Corollary 3 (see ref. [4]), that  

fo ~ e - ~ " ~  * ( u )  d u  = X 

J[ ~ e - " d P ( z )  -- 1 + a ( p l + ) , )  

Inversion gives ~*(u), and then for u > 0, ~(u) = 1 - ~*(u). Since ~(u) is 
continuous for u > 0 and continuous from the right at u = 0, the conclusion 
holds for u = 0 also. (It gives the usual pl/(Pt + X) value.) 

The function ¢*(u) of reference [4] does not agree with 1 - ~(u) a t  u = 0 
because references [3] and [4] applied to distributions continuous from the left 
rather than from the right. Since ~(u) is continuous for u > 0, there is no dif- 
ference in results for u > 0. 

The Fix, t) of Theorem 4 refers to 

p iN , t )  x] ~ a X i  < 

rather than to the usual 

These two expressions are identical if the F(x, t) is continuous bu t  will differ at  
discontinuity points. This should cause no practical difficulty. For example, the 
F(x, t) of equation (11) is continuous for x > 0, 

Proof of Theorem 2.--It*(x) is a distribution function, and 

o [ f0 ° ] apjf e - '=d t t* (x )  = 1-- e - " d P ( x )  , a > O .  
ao 



COLLECTIVE RISK RESULTS 197 

Substituting this in equation (4) gives 

~ ( u )  = I - - X l ,  a ( p l + X )  1 Pl e _ , ~ d H . ( x  ) • 
P l +  X 

We now use the power series for (1 - z) -1, Iz[ < 1, which is (1 -- z) -I = 1 + 
s + ~ a + s s +  . . . .  

By properties of the Laplace transform of a convolution, we have 

] k  e 

Combining these two facts, we obtain 

X i , t [ l +  p~ f o ~  H* ~,(u) = 1 p x W X  P----l~So e -=a  ( x )  

+0: 0'fo - . . :  + ]/oI 
By integration by parts, and the fact that H*(0) --- 0 for k > 1, 

~k(u) = 1 h Pl e _ ~ t t . ( x ) d  x p I + X I *  q ' p l + X  

Pl 2 co 

Term-by-term inversion gives equation (5), since 

I , [  fo ~e-~" H :  ( x ) dx  ] = H :  ( x ) . 

Proof of Theorem 3.----One begins with Corollary 2 of reference [4], inverts 
with respect to w, uses integration by parts, inverts with respect to z, and then 
uses the fact that ~b*(0, T) = 0. 

Proof of Theorem 4.----One begins with equation (12) of reference [4], inverts 
with respect to w, uses integration by parts, inverts with respect to s, and then 
uses the fact that 

N( t )  

l i m o ( - - 8  T, ~ / T ) =  limP[I" l m a x i m u m [  ~ X , - - T ]  t < - - ' ] = 0 .  
~-po+ ~ ~,o+ tk [ o<t<T k i--i 

Calculations of Example 5.--As explained earlier, a short derivation of equa- 
tion (I1) can be obtained by using several formulas from Kahn's paper and a 
scale change. However, it is desirable to illustrate obtaining F(x, 23 through 
formulas (9) and (10), and the following derivation does this: P(s) = 1 - e -a*, 
n > 0. Here 
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Note that  
lira y (w)  = + 

,~-,o + 

Hence a justifiable interchange of the limit and inversion operators gives 

1 

(mainly by formulas [83] and [13] of ref. [12]) 

= e - r  l e-xAlo( 2 x/T-A'xx ) + A / ~ e ~ a l o (  2 X/T--A-uu)dut , 

where Jo(z) and Io(z) are Bessel functions (see ref. [14]). If we use the series for 
lo (see ref. [14], page 372), 

~ ( T A x ) "  
I 0 ( 2 x / ~ )  = r!r! ' 

r ~ 0  

an integration by  parts,  and the uniform convergence of the series, 

F( x, T) = e - T [  l + / ~ e - ~ a d u I o (  2 X/~--uu) ] 

= e - r  1 + e'-~ATA (TAu)~  du . 
~-o ( y +  l )y!y! 

This last simplification was motivated by formula (52) of Tak~.cs [13]. 
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DISCUSSION OF P R E C E D I N G  PAPER 

IIA.RRY ]k[. SA.R.ASON: 

Mathematics is an aid to thinking. As Professor Beekinan indicated, 
the mathematics of collective risk theory is an aid to thinking in many  
practical fields--and that word "practical" reminds us that thinking is 
an aid to action or to a decision to abstain from action. 

The mathematics of "statistics" is shortest when we are dealing with 
just one statistical class. The simplest statistical mathematics to under- 
stand is the mathematics of the statistical class subdivided into so many  
subclasses that there is only one individual per subclass--the mathematics 
of "probability." The paper by Louis Levinson (see References) is perti- 
nent here. 

There are many underlying causes to consider in forecasting mortality 
ranges and possibilities--shortage of skilled health workers in this coun- 
try; pollution of our air, water, food, and soil; depletion of our food 
nutrients and soil; cigarette and liquor advertising; discoveries of and 
improvements in health practices; and so on. Max Weinstein recently re- 
ported on a worsening of mortality for male retirees, in contrast to pre- 

vious trends. 
In our "predictions" we also recognize "acts of God"--catastrophes 

and epidemics--and some of us, at least, recognize acts of God for individ- 
ual lives. We also realize our own ignorance: all probability calculations 
and all forecasts of foreseeable possibilities are based upon partial igno- 
rance. We are too ignorant even to evaluate our own ignorance, but the 
wider and deeper we search for facts, the more we reduce our ignorance. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

JOHN A. BEEKM.AN.* 

The author thanks Mr. Sarason for his interesting and useful dis- 
cussion. His references bring various thoughts to mind. 

For example, the paper by Mr. Green reminds one that the collective 
risk model we used assumes a Poisson distribution of claims which as- 
sumes that the probability of more than one claim in a small time inter- 
val is approximately zero. 

Some results have been obtained allowing multiple claims in the model. 
(See [I1].) Also see the references to the Polya model in H. Bohman and 
F. Esscher, "Studies in Risk Theory with Numerical Illustrations con- 
cerning Distribution Functions and Stop Loss Premiums. I ,"  Skandina- 
~sk Aktuarietidskrift, 1963, pp. 173-225. 

However, without the Poisson distribution of claims, the resulting 
stochastic process would no longer have independent increments. (See 
H. Hurwitz and Mark Kac, "Statistical Analysis of Certain Types of 
Random Functions," Annals of Math. Statistics, XV [1944], 175--81.) That  
means that the results of Baxter and Donsker and of Tak~ics could not be 
applied. 

The paper by Mr. Boermeester reminds one that it is possible to 
approximate stochastic processes by Monte Carlo techniques; this may 
provide future results. 


