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ABSTRACT 

This paper derives a formula for approximating the ruin function of 
collective risk theory. This formula is simple to calculate and is based on 
the distribution of claims and the security loading. I t  is partially based 
on several papers in the Transactions dealing with approximating the 
distribution of total claims in collective risk theory. The derivations for 
the formula are given in the Appendix. 

Use of the ruin function in setting retention limits is explained. The 
following questions are answered, for example. If the retention level is 
set at $X, what fund is needed in order that the adverse fluctuation will 
stay below its value with high probability, say, 0.99? Various retention 
levels and funds are compared for practical distributions. If the upper 
limit on adverse fluctuation is $Y, what is the corresponding retention 
level? 

Use of the ruin function in deciding the amount of initial capital for a 
new line of business is discussed. 

INTRODUCTION 

I 
N" COLLECTIVE risk theory the ruin function is of great importance. 

We will emphasize this briefly with several examples. But, if we 
grant its importance, it is necessary to know how to calculate it. 

My recent paper [3] contains some new ways in which to calculate it. 
These and earlier methods, however, are hard to perform in most cases 
and impossible to perform in many practical cases. I t  is therefore very 
worthwhile to study approximation methods. We will derive an approxi- 
mation to the ruin function, using some recent results of Mr. D. K. 
Bartlett [1] and Dr. Newton L. Bowers [4], We will then compare values 
obtained through the approximation method with the exact values in one 
well-known example and then give several values of the ruin function for 
a practical example. 

Let  us consider two examples in which the ruin function can be used. 
Assume that you work for a company that is contemplating entering a 
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new line of insurance, say, accident and health insurance. Your company 
would like to set aside some capital for this venture. How much is needed 
in order that there is a 99 per cent chance that you will not have to dip 
into your other funds? Provided you are willing to make several assump- 
tions, this question can be answered b y  using the ruin function. 

As a second example, assume that  you are involved in setting a reten- 
tion limit and are interested in the following questions. If  the retention 
level is set at SX, what fund is needed in order that  the adverse fluctuation 
will stay below its value with high probability, say, 0.99? Or, if the upper 
limit on adverse fluctuation is SY, what is the corresponding retention 
level? Again the fundamental tool for answering these questions is the 
ruin function. 

Let  us now describe the ruin function in words and symbols. The ruin 
function computes t h e  chance that the initial reserve plus premiums 
minus claims ever turns negative. 

I. THE RUIN ~FUNCTION 

We will repeat part  of the description in my recent paper [3]. Let P(z) 
be the distribution for a claim; that is, P(z) is the probability that, if a 
claim occurs, it will be less than or equal to z. We will assume that P(0) = 
0, which rules out nonpositive claims. Such claims occur when a life 
annuity terminates and a reserve is released. We will let the Variable t be 
operational time. This means, for example, that  if past records indicate 
thirty claims per year, then t = 30 will correspond to one calendar year. 
N(t) is the random number of claims in time t. We will assume that  claims 
occur in such a way that N(t) has a Poisson distribution with mean t. 
The reader can consult Dr. Paul Kahn's  paper [6] relative to this assump- 
tion. I f  pl is the average claim amount, then in time t the insurance com- 
pany would charge p~t as the aggregale net risk premium, plus an aggregate 
security loading of Xt. We also assume that  the insurance company begins 
with a risk reserve of size u. At time t, the risk reserve U(t) is given by 

N(t) 

u(t) = u + (p, + x ) t  - ~ x , ,  (1) 
i * 1  

where the X~'s are independent random variables, representing the claims. 
Each X~ has the distribution P(z). The symbol 

N(t) 

~x, 

represents the aggregate claims up to time t. The expression 

m , m m u m  U(t) 
o < ~ < r  
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will refer to the smallest value of U(t) over the time range 0 < t < T. 
The ruin function is 

#(u) = hm P[minimum U(t) < 0]. 
Z--* ® 0_< t_< T 

This represents the probability that the risk reserve eventually becomes 
negative. 

Let us explain the use of ~(u) in the two examples. In the first example, 
the capital set aside is u. I t  is determined by setting the expression for 
~k(u) = 0.01 and solving for u. In the second example, the retention level 
equals the upper limit of .P(z). The adverse fluctuation equals the excess 
of total claims over total gross premiums. I t  will exceed a level u with 
probability #(u). Holding u fixed, one can vary the retention level so 
that #(u) stays below an appropriate level, say, 0.01. 

#(u) is not a probability distribution function (see Hoel [5], pp. 23, 
37), but it is simply related to one, namely, 

t l - ~ ( u ) '  u>__0 ~'(u) 
o ,  u < 0 .  (2) 

As a distribution function, #'(u) involves the random variable Z defined 
by 

rN(0 " i  

= mammum[ ~_,X, -- t(p, + X)[ .  (3) Z 
0<t<~ L i . 1  J 

The proof of this is in the Appendix. 
Roughly speaking, Z is the maximum excess of claims over income ex- 

amined at each time point of very long time periods. We will now quote 
the formulas for the mean and variance of ~*(u). 

ii. ~om~NTs oF ~'(u) 
The introduction has revealed how ~b(u) depends on P(z) and ),. I t  is 

therefore to be expecte.d that the mean value of ~k'(u) does too. The 
proofs of the following theorems are in the Appendix. 

Theorem L- - I f  E(X 2) is the second moment about the origin of the 
claim distribution and X is the security loading, the mean of ~k*(u) is 
denoted and given by the formula 

E(Z) = E(X~) (4) 
2X 

One would expect the variance of Z to depend on higher moments of 
the claim distribution. This is the case. 
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Theorem 2 . - - I f  E(X") is the third moment  about  the origin of the 
claim dis t r ibut ion,  and X is the securi ty loading, 

E(x") 
Var  (Z) = 3k + [E(Z)]~" (5) 

As the first example of these calculations, assume tha t  P(z) = 1 -- e--', 
z _> 0. Then  E[X k] = k!. Assume k = 0.3. Then  E ( Z ) =  3.333, and 
Var (Z) = 17.778. (We are using $1,000 units.) 

As the second example,  assume tha t  

P(z) = 0 for z <  2 
= 0.3 for 2 < z < 5  
= 0.5 for 5 < z <  10 
= 0.8 for 10 < z < 20 
= 1.0 for 20 < z .  

Then  E(Z) = 22.4 and Var (Z) = 746.6. These figures are based on X = 
0.3E(X) = 2.6, E(X 2) = 116.2, and E(X  8) = 1927.4. 

As a third example,  assume tha t  

P(z)  = 0  for z <  2 
= 0.3 for 2 < z <  5 
= 0.5 for 5 < z  < 10 
= 0.8 for 10 < z < 20 
= 0.85 for 20 < z < 30 
= 0.90 for 30 _< z < 40 
= 0.95 for 40 < z < 5 0  
= 1.00 for 50 _< z .  

Here  )~ = 0.3E(X) = 3.5, E ( X  *) = 306.2, and E(X a) = 11,527.4. Using 
these figures, we obta in  E(Z)  = 43.7 and Var (Z) = 3,007.5. 

m.  A P OX ArION OF ¢,'(U) 
The  papers  b y  Bar t l e t t  and Bowers tell  how to approximate  a densi ty  

function in terms of gamma densities. We will now app ly  the preceding 
results to such an approximat ion.  Since Bowers '  paper  refers to the ap- 
proximat ion of any  dens i ty  (not jus t  to tha t  of aggregate losses, as 
Bar t l e t t ' s  paper  does), we will refer to Bowers '  paper  throughout .  We 
assume, as Bowers does [4, p. 127], t ha t  ~*(u) has a dens i ty  function. 

Theorem 3 . - - T h e  dis t r ibut ion function ~ ' (u )  has a jump  of 1 -  
t)1/(l)1 n t- k) a t  u = 0, and for u > 0 has the approximate  form 

Bu 2va_le_ w 

V ( - )  = = o f  r(.---T- dw, (6) 

where/3 -- E(Z)/Var (Z) a n d ,  = [E(Z)]VVar (Z), 
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We will now illustrate this with Example 1. There /3 = 0.187, a = 
0.625. To  compare with the known values of 0.99, 0.95, and 0.90 from 
reference [3], we will let u = 18.800, 11.833, and 8.831 thousand dollar 
units, respectively. To find #*(18.8) = 1"(3.516, 0.625), one can use the 
references to incomplete gamma functions cited by Bowers. We used 
reference [8]. Some explanation of that table is appropriate. By the use of 
the letters of that  reference, several transformations reveal that the 
"areas" are values of 

r(~ +2t,±'~ 
Since 4~as ~ will always be too large for us, we repeatedly used a recursion 
relation of Bowers: 

r (x ,  a - 3) = r (x ,  ~ + 1) 

:~ae--= xa--le--z 

+ r ( .  + 1) + r (~)  

Xa-2e-¢ :g.a-se-a: 

- -  + r ( ~  - i) + F~(= - 2)  • 

Thus, setting 4 /a ,  * = 4.625, we obtained a8 = 0.93, and, setting 4/an 2 + 
(2/a3)t = 3.516, we obtained l = -0.5157. Using these values of an and t 
produced r(3.516, 4.625) = 0.3428. We next computed (3.516)8.n25¢-t.516/ 
r(4.625), using the fact that  r(4.625) = 3.625(2.625)(1.625)D(1.625) 
and that F(1.625) = 0.897 (reference [7]). The quotient value obtained 
was 0.2042. The other terms had values of 0.2105, 0.1572, and 0.0727 and 
were easy to calculate. Thus (3.516)2.n"se'-3.516/I'(3.625) = 3.625/3.516 
(0.2042) = 0.2105. Adding these five numbers gave #*(18.8) = 1"(3.516, 
0.625) = 0.9874, remarkably close to the exact value. Similarly, 
#°(11.833) = 0.9505, and #*(8.831) = 0.9039. This provides a rough 
check on the accuracy of the approximation and implies that this method 
is probably quite accurate. 

We will now compare the initial capitals needed to hold #(u) - 0.01 
in Examples 2 ~/nd 3. This will illustrate the effect of raising the retention 
limit. For Example 2, /~ = 0.03, a = 0.67, and #*(125)= 0.989. For 
Example 3,/~ = 0.015, a = 0.635, and #*(250) = 0.989. Thus, increasing 
the retention level from $20,000 to $50,000 requires $125,000 additional 
initial capital to hold the probability of ruin to 0.01. The approach to 0.99 
probability becomes quite slow. For example, with a fund of $200,000, one 
already has a probability of 0.98. 

If  we felt that  $200,000 was an appropriate upper bound on adverse 
fluctuation, we could have solved for the retention level, by  trying dis- 

tribufions with upper limits varying from $20,000 to $50,000, until we 
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found one such that ~k(200) ~ 0.01. By using the previous distributions 
as guides, we are led to the following distribution: 

P(z) = 0  for z < 2  

= 0.3 for 2 _ < z < 5  

= 0.5 for 5 _ < z <  10 

= 0.8 for 10_< z < 20 

= 0.87 for 20 < z < 30 

= 0.94 for 30 _< z < 40 

= 1.00 for 40 _< z .  

Again, we assume X = 0.3p~, or 3.15. 
If the reader consults the author's earlier paper [3], the asymptotic 

formula (3) for if(u) produced much lower values for the u's necessary to 
hold ~k(u) - 0.01 in Examples 2 and 3, namely, $91,429 and $180,857. 
One reason for these differences will now be given. The u's probably were 
not large enough to use the asymptotic formula with great accuracy, and 
the results were too low. This statement is based on a study of Table VII 
on page 45 of Harald Cram~r's paper "Collective Risk Theory," the 
1955 Jubilee Volume of F~rs~krlngsaktiebolaget Skandia. That  table shows 
98 per cent accuracy for the asymptotic formula only for a u value 40 
times pt. This emphasizes the advantage of this paper's approximation 
method, since it applies for all u >_ 0. 

APPENDIX 

We will now give the proofs of the three theorems and of equation (3). 

PROOP O~ EQUATION 3 

Assume t h a t u  >_ 0: 

~ ' ( u )  = 1 - ~ ( u )  

= 1 - -  lim P[minimum U(t) < 0].  

But 

1 = lira P[minlmum U(t) < 0] +r l im P[mimmum U(t) > 0].  
T - ~ , -  0_<t_< r 0 < t <  T - -  

Hence 

~k*(u) = lira P[minlmum U(t) > 0] 
T--* =0 0_<I_<T - -  

N ( O  -~ 

= l i ra  P t m i n i m u m  [u  + (p , '+  k)t- )-~.xil > 0 l 
O<J_<T i = t  a -- 

by the definition of U(t) 
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rN(O 

= rl~m P lmaximum / )-'~X, -- t(pt + X)] < u t 
t O < J < r  ,- i = t  

by inspection of the sample graphs 
rN(0 

= .Plmaximum I ) ' ~ X , -  t(px + k)] < u t 
| O<It < m L. i--1 

by the monotonicity of the sets. 

(See Wilks [10], p. 13.) 

PROOF OF THEORE~ i 

Since Z > O, 

E(Z) = ud,,Pz(u) = f ud,,~k'(u). 
0 0 

(As in reference [3], the Stieltjes integral 

f ud~ez(u) 
0 

reduces to 

.~up(u) du , 
0 

ff Pz(u) has a derivative p(u) for all u values, and to 

~, ,xPz(u3 , 

if Pz(u) is a pure step function.) 
By corollary 3 of reference [2], 

of e-"ud~*(u) = a X / [ / e - * ~ d P ( x ) - - 1  + a(pt + k) ] .  

Using the Stieltjes version of Theorem 14 of Widder [9], p. 358, 

_ A  E[Z] = da ~ e-:'d'+*(u) la-° 

47 

(7)  

= f e - ' : - d : ¢ ( - )  I . . o  • 
0 

Differentiating the right-hand side of equation (7) produces the form 0/0 
when a --- 0. We then apply L'H6pital's rule (see reference [9], p. 250) 
twice to obtain equation (4). 
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PROOF O]~ THEOREM 2 

Car ( z )  = E ( z 0  - [ ~ ( z ) ]  2 . 

E ( z  2) = a~, ,2d~'(u)  
o 

d 2 ,~ 
= --d~2 fe-'"d.+'(u). [o.0. 

Differentiating the right-hand side of equation (7) twice produces the 
form 0/0 when a = 0. We then apply L'H6pital 's rule three times and do 
much elementary algebra to obtain equation (5). 

PaooF o~ ~ o ~  3 

The first part is well known since ~b(0)= pt/(p, + X). Following 
Bowers [4, p. 127], if X = flZ, with E(X)  = Var (X), then BE(Z) = 
/~2 Var (Z) or B = E(Z)/Var  (Z). 

In Bowers' notation, a = E(X)  = fiE(Z) = [E(Z)]2/Var (Z). 
We also have 

#u 

P [ z  < u] = 2 ~ [ ~ z  < t~u] = f / ( x ) d x ,  
o 

where we assume ~b*(u) has a densityf(x). Using the first term of series (2) 
in reference [4], f(x) = x~-Xe--*/F(a), for a as above. This completes the 
proof. 
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