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ABSTRACT 

One type of reinsurance contract which has attracted some attention 
recently is stop-loss reinsurance. In its simplest form, the reinsurer 
agrees to pay all losses of the insurer in excess of an agreed limit. This 
Note concerns itself with a simple upper bound on this premium. The 
bound depends only on the mean and variance of the distribution of 
total claims. After a proof that is strongly reminiscent of that of t h e  
Chebyshev inequality, tables are given comparing the upper bound with 
the net premium calculated under certain distribution assumptions and 
with net premiums calculated as part of the work of Bohman and Esscher. 
The Note is concluded with a very brief review of related inequalities 
which hold for stop-loss premiums where claim-limit maximums and 
coinsurance features are included. 

S 
~.V'm~AL recent papers [1-5] have discussed the approximation of the 

stop-loss net premium. This Note concerns itself with a simple up- 
per bound on this premium. The upper bound is expressed in the 

following theorem. We note that, if X is the random variable of total 
claims, then II(z) is the net premium for stop-loss reinsurance for losses 
in excess of an amount z. 

T m ~ o ~ r :  Let  X be a random variable with mean t~, variance o ~, and 
distribution function F(x). Then if z = t~ + Ka,  we have 

II (z )  = f ( x  - z ) d F ( x )  < ~ ~ 1 (1) 
• Z'K + v'l  + K 2 

Pgoo•: Let  
2 _ z =  x _ ~ _  Ke  

g ( x )  = x > z 

x < z  

and let h(x) = a[x - (# + b~)] 2. 
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Y 

gCx  

/Z-I- bo- /z-l- No- 

I f  a and b are chosen so that  g(x) ~_ h(x) for all x, as in the above diagram, 
then E[g(X)] ~ E [ h ( X ) ] . B u t  we observe that  

c o  

E[g(X)] = f (x -- z)dF(x)  = II(z) , 
$ 

while 

E[h(X)] = a f  (x -- u -- ba)2dF(x) = aa2(1 -b b2) , 
- - 0 3  

so tha t  II(z) < a~(1  + b2). Now, for g(x) < h(x) to hold for all x, it is 
sufficient to require tha t  (1) b < K and tha t  (2) g(x) = h(x) at exactly 
one x, where x > z, tha t  is, the graph of g(x) is tangent  to the graph of 
h(x) at one point, with x > z in addition t o  x = u q- ba. The equation 
g(x) = h(x) has a single solution if the discriminant of the quadratic 
h(x) -- g(x) is zero. This leads to the condition tha t  

1 
a - -  4o~(K-- b ) '  

so tha t  
~(z)  < ° ' l + b  2 

4 K -  b" (2) 

This inequality holds for  all b < K. To make the inequality as sharp 
as possible, we choose b to minimize the right side of formula (2). This 
turns out  to be equivalent to solving b ~ -- 2 b K -  1 -- 0, subject to 
b < K. The solution is 

b = K - -  , / 1  + K 2. •(3) 



AN UPPER BOUND ON TSE STOP-LOSS NET P R E ~  213 

Substituting this into formula (2) gives our result that  
, . 

O "  

n(z) <~ K + C i + / ~ "  

To show that  the inequality developed is the "best  possible" involving 
just the first two moments, we demonstrate a distribution of X for which 
equality holds. 

Consider a particular value of K. Assume X is a discrete random 
variable taking on just two values, the two values where g(x)  = h (x ) .  
From formula (3) we have tt + ba = tt + a ( K  - -  1Vq---+--~) as one of 
the two values of x, where g(x)  = I t(x) .  The other is the point where 
if(x) = 1. This can be shown to be x = tt + a(K + Vrl + KS). If  we 
assign probabilities as 

Pr  [X = g + ~(K -- ~/1 + K2)] = 

and 

Pr [X = ~ + ~(K + C1 + K2)I = 

(K -[- ~ q-- K2) 2 

1 +  ( K +  a/l+K') 2 

1 

1 + (K + ~ / i  + K~) 2' 

it can be verified that  E[X] = ~ and Var [X] = e2 as needed. Further 

n(z )  = f (x - z)dF(x)  
I t  

or, equivalently, in the discrete case 

n(~) = ~ E ( ~ , -  z ) P ( x  = x,) 
=i~>s 

([. + ~(K + ~/1 + Ks)] -- ( .  + ~K)} 

i + (K + ,,/i + K~)'- 

1 

2 K + V , 1  + K  ~ '  

as given in the theorem. Therefore for any value of K we can demon- 
strate a distribution of X for which equality holds, and thus the inequality 
as stated cannot be improved without additional information regarding 
the distribution of X. 

We now compare this upper bound with the net premium under cer- 
tain distribution assumptions on X, the amount of total claims (see 
Table 1). These distributions are illustrative of the effect of using dif- 
ferent distributions to evaluate stop-loss premiums. The normal distri- 
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but ion is a symmet r ic  d is t r ibut ion,  while the other  two are pos i t ive ly  
skewed. The  Pare to  d is t r ibut ion  chosen has  finite var iance  bu t  infinite 
th i rd  m o m e n t  [f(x) = 3x -~ for x > 1]. N o  suggestion t ha t  the Pa re to  
d is t r ibut ion ,  in par t icular ,  be used to  es t imate  stop-loss premiums is 
in tended.  

Fo r  a final comparison,  we show results  for pa r t  of the s tudy  by  Boh- 
man  and Esscher [3] (see Table  2). Stop-loss ne t  p remiums are compared  
with the  corresponding bound  developed above.  The  par t icu lar  case 
used is for 100 expected claims where the number  of claims follows a 
par t i cu la r  (k = 20) member  of the negat ive  binomial  fami ly  of d is t r ibu-  
tions. The  indiv idual  claim-size d is t r ibut ion  is wha t  the authors  labeled 
as Life Insurance  B, being based on d a t a  from a Swedish life c ompa ny  
between 1957 and 1961. The  claim amounts  were scaled so tha t  the ex- 
pec ted  size of a single claim would be one. Thus,  for this  example,  E ( X )  = 

100. The  authors  indicate  tha t  Var (X) = (67.947) 5. 
The  d ispar i ty  between the upper  bound  and the stop-loss p remium 

given b y  Bohman and  Esscher is not  too excessive for stop-loss l imits  not  
more than  3 s t anda rd  devia t ions  above  the mean.  

TABLE 1 

STOP-LOSS NET P R E M I U M  

(As Proportion of Standard Deviation) 

Stop-Loss Upper N o r m a l  Pearson I I I  Pareto 
Level  (K) Bound Distribution ~8 m o~ Distribution 

0.0 
0.5 
1.0 
115 
2 .0  
2.5 
3.0 

O. 5000 
.3090 
•2071 
• 1514 
.1180 
• 0963 

0.0811 

0.3989 
.1978 
• 0833 
• 0293 
• 0085 
.0020 

0.0004 

0.3907 
.2184 
•1165 
.0598 
•0297 
.0144 

0.0068 

O. 2566 
• 1545 
• 1031 
•0737 
• 0553 
.0430 

0.0344 

TABLE 2 

Stop-Loss K 
L i m i t  

tO0 . . . . . . . . . . . . . . .  0 
t67.9 . . . . . . . . . . . .  1 
.~35.9 . . . . . . . . . . . .  2 
;03,8 . . . . . . . . . . . .  3 
;71.8 . . . . . . . . . . . .  4 
i07.7 . . . . . . . . . . . .  6 

Stop-Loss Pre-  I 
m ium,  Bobmsn-[ Upper 

' Bound Esscber [ 

20.99 33.97 
8.42 14.07 
4. 680 8.020 
3.035 5.513 
1.740 4• 182 
0.1741 I 2.812 
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The usual stop-loss reinsurance contract covers total claims in excess 
of a lower limit but has a claim-limit maximum. Often a coinsurance 
feature is also included--that is, the reinsurer pays only a percentage 
of claims in excess of the lower limit up to the maximum. Let us study 
what changes result in the inequality presented above when maximum- 
limit and coinsurance features are included. We will indicate what the 
statement of the inequality becomes with these changes and hint at 
the proof of these new statements. For this purpose, let K be the lower 
limit in standard measure, that is, the lower limit is g -4- Kg; let g + 
K'~ be the upper limit beyond which no additional reinsurance payments 
are made; and let 100 c be the percentage of claims paid in excess of 
the lower limit. 

CASE 1. Coinsurance, but no maximum claim limit. In this case it is 
easy to see that 

ca 
n(z) < 

2(K + %/1 -4- K 2) 

This benefit is just c times the benefit with no coinsurance, so that the 
upper bound is c times the upper bound established in the theorem. 
Further, the example following the theorem can be adjusted to show this 
result is "best possible." 

For the two other cases we shall assume that coinsurance is included. 
When coinsurance is not present, c is replaced by 1. 

CASE 2. Maximum claim limit with K'  > K + v ' l  + K S, The bound 
developed in Case 1, ca/2(K + ~ + KS), is clearly an upper bound 
for the modified benefit since a benefit with a maximum claim limit is 
less expensive than one with no maximum. Again the example following 
the proof of the theorem shows that this bound is "best possible," in- 
volving only the mean and variance when the upper limit, ;t + K'a,  is 
greater than g + (K + ~ K9 ~. 

CASE 3. Maximum claim limit with K '  _< K + ~/1 + K 2. The in- 
equality can in this case be improved to be 

n(z )  < c~(K' -- K )  
i + (K')  2 " 

The proof for this result follows lines similar to that of the main theorem. 
However, the condition the parabola h(x) must satisfy is that it go 
through the point [g + K'o',c,;(K' -- K)] rather than be tangent to the 
graph of g(x) at one point x > z. This leads to the changed form of the 
inequality. 

The author would like to thank the reviewer of the paper for the sug- 
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gestion t o  include a discussion of coinsurance and maximum benefit limits 
and to indicate more refined bounds in these cases. 
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ADDENDUM 

I have received a considerably more elegant proof of the theorem of 
this note from Hilary Seal, and I would like to present it as a very inter- 
esting addition to the paper. 

Le t  
¢ o  ¢ o  

I = f ( x -  z ) d F ( x )  = g f ( y -  K ) d F o ( y )  
z K 

and 

K 

J = f ( x  --  z ) d F ( x )  = cr f ( y  --  K ) d F o ( y )  , 
0 - ~ 1 ¢  

where Fo(y) is the equiwdent of F ( x )  when y = (x --  #)/or and where 
z = ~ -t- Kcr. Then 

I -b J = ~ f ( y  --  K ) d F o ( y )  = - - ~ K ,  
-~/~ 

while 
¢o K 

I - -  J = ~ f ( y  --  K ) d F o ( y )  --  ~ f ( y  - -  K ) d F o ( y )  
K --~/~ 

= f l y  - K[dFo(y) .  
-~/~ 
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L--~/a J 

< ~ f d F o ( y )  f ( y  -- K)*dFo(y) 

o o  

= ~2 f ( /  _ 2yK + K2)dFo(y) 

= ~ ( 1  + K 9  • 

The above inequality is an application of the well-known Cauch) 
Schwarz inequality. 

Thus I -- J < ¢rx/1 -b K 2, and since I -b J = --~rK, we have 

K2 ~ (  1 ) 
i<~(vq+ --K)=~ vq+K~+K 




