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ABSTRACT 

A simplified stochastic model of a casualty insurance company con- 
sists of two independent and unchanging probability distributions. The 
first of these is the distribution of intervals between successive claims, 
and the second is the distribution of individual claim amounts. Financial- 
ly the company may be pictured as accumulating a steady flow of risk- 
loaded premiums in its risk reserve and paying claims therefrom at in- 
tervals determined by the first probability distribution and in amounts 
determined by the second. Such a simplified model adapts very easily 
to simulation by a computer, and this is what the author has done with 
several selected pairs of probability distributions in order to calculate 
the probability of a casualty company's being ruined shortly after its 
establishment. 

In the second part of the paper the aggregate annual claim outgo of a 
casualty company is assumed to have a gamma distribution and various 
rate-making strategies are examined by computer simulation of ten ran- 
domly chosen companies over a forty-year period. All the companies 
commenced business with a fairly substantial risk reserve, but, surprising- 
ly, several failed during the period, even though they charged theoretically 
correct pure premiums. Standard experience-rating methods were found 
to be a poor protection against adverse chance fluctuations whose cumula- 
tive effects were often substantial. 

INTRODUCTION 

ENERATIONS of actuarial students here and in Great Britain were 
introduced to probability theory through Whitworth's Choice and 
Chance, the first edition of which appeared in 1867 and the fifth 

and last in 1901. Proposition LI  of this work reads: "If an event happen 
at random on an average once in time t, the chance of its not happening in 
a given period r is e--,/t.,, Expressed in modern terminology this could be 
rewritten thus: "If  events are occurring randomly and independently at a 
mean rate 1/t per unit time, the density function of the period r between 
events is t--' e -'/*, the negative exponential distribution." Filip Lundberg, 

563 



564 SIMULATION OF RLrI-N POTEI~TIAL OF NON'LIFE COMPANIES 

in his doctoral thesis of 1903, suggested that this concept might well apply 
to the distribution in time of successive claims made on an insurance com- 
pany. Coupling this with his further assumptions (a) that the size of an 
individual claim would be independent of the time since the previous 
claim and (b) that the (probability) distribution function P(.) of these 
claims would be time invariant, we have the first complete formulation of 
a stochastic process homogeneous in time and with independent incre- 
ments. 

In order to apply this model to the financial development of a growing 
insurance company, it was necessary to overcome the difficulty that the 
rate of claim occurrence is likely to be a function of the size of the business. 
Lundberg achieved this by deforming the time scale in such a way that a 
unit of time always corresponds to the (gradually decreasing) expected 
interval between two successive claims. Probability statements about 
events within a certain interval of "time" must then be interpreted in 
terms of the number of expected claims that will have occurred in that 
period. 

Two probability functions that are of immediate interest in the ap- 
plication of the Lundberg model are F(y,t), the distribution function of the 
aggregate claim outgo during a given time interval t, and u(x,t), the 
probability that an insurance company (risk business) commencing its 
operations with a capital and surplus (risk reserve) of x will survive the 
time interval t without having a negative risk reserve in the meantime. 
The mathematical and numerical development of F(y,t) has been reviewed 
by Paul M. Kahn in Volume XIV of TSA and by John C. Wooddy in 
his official Study Note on Risk Theory. On the other hand, the derivation 
of formulas for u(x,t) and the subsequent numerical calculations have 
proved elusive; readers may refer to John A. Beekman's papers in Volumes 
XX and XXI  of TSA to see some of the mathematical difficulties. This 
probability was first considered by Lundberg in a path-breaking paper 
presented to the 1909 International Actuarial Congress, and it turns out 
that it is almost exactly the same as the probability of a man's having to 
wait a time of less than x to be served if he joins a waiting line t time 
intervals after the server was free. The latter probability was first con- 
sidered by Erlang in 1909, and, although his assumption for P ( . )  (the 
distribution function of service times) was specialized to the uniform 
distribution, his asymptotic results for large t anticipated later actuarial 
formulas. 

THE LUNDBERG MODEL 

The present paper is essentially a contribution to the numerical 
evaluation of u(x,t) without resort to the complicated mathematics that 
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appear in the literature) The method used is simulation of the Lundberg 
model on an electronic computer. The nonlife insurance company under 
consideration is supposed to have a risk reserve of R(T) at time r, which 
has been accumulated from a given initial value R(0) by crediting risk- 
loaded premiums supposed to be received in a continuous stream and by 
debiting claims as they occur. Expense loadings in the premiums are sup- 
posed to meet expenses exactly. The chance of a claim's occurring in an 
infinitesimal interval of time (r,r + dr) and P(y) the probability dis- 
tribution function of the independent random variable Y representing 
the amount of any individual claim are supposed to be known. In the 
simulation experiments described below the distributions of the interval 
of time between two claims and of the individual claim sizes have been 
assumed to be either negative exponential (designated M) or Pareto 
(designated XI) ,  for reasons explained in Appendix I. These two dis- 
tributions are frequently utilized in the literature of risk theory, and 
there are a number of articles demonstrating their aptness in practice. 
Readers are referred to the author's recently published text for details. If  
interclahn intervals are distributed negative exponentially and claim 
sizes follow the Pareto distribution, we designate the model as M / X I / 1 ,  
the final unit being inserted to conform with a notation widely used in 
queueing theory. 

The simulations of the Lundberg model all refer to an operational 
period of time t. Since the mean interval of time between claims has been 
chosen to be unity, this means that  we are calculating the probability of 
staying in business until at  least t claims are expected to have occurred. 
We have chosen the mean individual claim as the unit of money, so that, 
if R(O) = x, it means that the business commences its operations with a 
risk reserve of x times the mean individual claim. As a corollary, of these 
conventions the aggregate net premium for collection during the interval 
t is t, and, on increasing it by a risk loading of 100 n per cent, the aggregate 
risk-loaded premium, assumed payable uniformly throughout the inter- 
val, is (1 + ~)t. 

SIMULATION OF THE M/G/I MODEL 

The calculation of u(x,t) under the Lundberg model proceeds as follows. 
Having selected a suitable P ( . )  and chosen values for x, ~/, and t:  

1. Compute a (pseudorandom) negative exponential variate, tl, and a 
variate from P( . ) ,  Yr. 

t References to the works of authors mentioned herein are given at the ends of 
chapters 2-4 of Stochastic Theory of a Risk Business by H. L. Seal (New York: John 
Wiley, 1969). 
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2. Calculate the risk reserve at time tl, namely, 

R(t , )  = x + (1 + ~)t ,  - y l .  

If  the result is negative, ruin has occurred and we start  a new company. 
(We have now slightly changed the mathematical  model described in 
Appendix I by  allowing a company with zero risk reserve to continue 
in business.) 

3. I f  R(II) >_ O, we compute another pair of variates, t2 and y2, calculate 
R(f i  + t2) = x + (1 + ~)(6 + t2) --  (y~ + y~), and proceed as with 
R(tl ) .  

4. Continue to compute pairs of variates (ts,yi) for j = 3, 4, . . .  , and 
calculate the corresponding R(. ) .  If  r is the smallest integer such that  

~'.ti  <_ t < ti and R tj. > 0 ,  
i- t  i-1 

we say that  the risk business has not been ruined in the period (0,t). 

If  this procedure is repeated for n companies, of which l are ruined in 
the period (0,t), our estimate of v(x,t) = 1 -- u(x,t) ,  the probability of 
ruin, is ~(x,t) = l /n ,  with an estimated standard error [(//n)(1 --  l /n )~  
n]ll ~. 

T ~  CASE ~ / M / 1  

As a first experiment we took t = 20, assumed P(y )  = 1 -- e-~, and 
used nine combinations of x and 7 each with n = 60,000. ~ The resulting 
values of v(. ,20) with their estimated standard errors are shown in Table 
1. On an I B M  7094/7090 the aggregate computer execution time needed 
for the nine values of 6(.,20) was one hour and 45 minutes. 

We see from Table 1 the relatively small influence of an increase in the 
risk loading from zero to 10 per cent and the substantial decrease in ruin 
probability caused by increasing the risk reserve. These results conform 
with expectation: in the short run ruin is caused by  quick depletion of the 

s The author's own amateurish program in YOaTRAN appears as Appendix II. I am 
very grateful to David G. Halmstad for pointing out an error in the original version of 

0 it. The four pseudorandom subroutines used in that program were based on the formula 
R.+I = CR, (modulo 2 sS) for n ffi 1, 2, 3 , . . .  with, respectively, the following: 

[ C (Decimal) Ra (Octal Scale) 

1. I 186 ,277  127432147741 
2. :iii ii i 1 186,285 315457047615 
3. 186,293 120343014221 
4. 186,301 203514745101 
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risk reserve; it is only in the long run that a constant risk loading makes 

its presence felt. 

THE CASE M/XI/1 

I t  is well known that the negative exponential fails as a representation 
of the average individual's claim-slze distribution, because it underesti- 
mates the probability of claims that are several times the mean claim. 
Suppose, however, it is assumed that P ( . )  is a mixed negative exponen- 
tial, the parameter of mixing being the mean, namely, 

t l  e o  

P(y) = f dx f ae-"dF(a) , 
o 0 

TABLE 1 

ESTIMATES OF RUIN PROBABILITIES: v(x,20) 

Z 

s./ 

0 $ I0 

0.(30 ......... 0.875+0.001 0.372+0.002 0.120+0.001 
.0.5 .......... 853+ .001 .334+ .002 .098+ .001 

O. I0 ......... 0.831 -I-0.002 0.298+0.002 0.088 +0.001 

which reduces to 1 -- e-0L the negative exponential with mean fl-1, when 

JO, 0 < a  < fl ,  
F(a) 

Let us suppose that the mean claims of individuals whose claim size is 
distributed negative exponentially are themselves distributed in a gamma 
distribution with index m and scale c'-k Then 

era 
F'(~) = ~ , : - '~ - -  (~ > O) 

and 

( P ( y ) = l -  1 +  ( 0 < y <  co) 

with an infinite mean unless m > 1. When the over-all mean is finite, it 
equals c / ( m  - -  1), and, if this is chosen as unit, we have c = m -- 1. 

This Type X I  distribution for P ( . )  has a very long tail, as may be 
judged from the fact that, when m < 2 the variance of Y is infinite. In the 
actuarial literature it has been designated as a "dangerous" distribution 
and has been fitted successfully to claim distributions on several occa- 
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sions. We will utilize it with m = 1.5 so that c == 0.5. The computer 
program already used for the M/M/I model applies with only slight modi- 
fication, and we illustrate it on v(10,20). Table 2 shows how substantially 
the ruin probability is increased in comparison with the M/M/I model. 

SIMULATION OF THE XI/XI/1 MODEL 

AS a final example of the simulation of the classic ruin theory model 
we use formula (6) of Appendix I for the distribution function (d.f.) of 
interclaim periods and the foregoing P ( . )  with c -- m - 1 for that  of 
individual claims. We choose k = 20 in formula (6), noting that when 
k ~ co the d.f. becomes the negative exponential, and retain 1.5 for the 

TABLE 2 

ESTIMATES OF RUIN PROBABILITIES: v(10,20) 

n M/MII M / X I / I  

0 . 0 0  . . . . . . . . .  0 . 1 2 0  + 0 . 0 0 1  0 .178: t :0 .002  
.05 . . . . . . . . . . .  0984- .001 . 1 6 6 +  .002 

0 . 1 0  . . . . . . . . . .  0 . 0 8 3 + 0 . 0 0 1  0 . 1 6 3 + 0 . 0 0 2  

TABLE 3 

ESTIMATES OF RUIN PROBABILITIES: v(10,20) 
Model Estimate 

M/M/I .................. 0. 1204"0.001 
M/XI/1 .................. 178 4- . 002 
XI/XI/I ................. 0.2454-0.002 

value of m above. We made only lengthy calculations (43 minutes on the 
IBM 7094) for the no-loading case T/= 0, and the result is shown in the 
last line of Table 3. It is observed that the longer tail distributions of 
interclairn periods and claims amounts, respectively, each add about 0.06 
to the probability of ruin before twenty expected claims' occur. 

A natural distribution to assume for U(. ), the d.f. of individual claim 
propensities underlying formula (6), would be the negative exponential, 
and this implies that k = 1. The negative binomial (formula [7] of Ap- 
pendix I) has been fitted on a number of occasions to the distribution of 
the claims of individual automobile drivers (or policyholders) and k- 
values in the neighborhood 0f unity have resulted. Now for values of 
k < 1, the expected time to the first claim is infinite when formula (6) is 
employed, while for 1 < k _< 2 the mean time to the first claim is finite 
but the variance of the distribution is infinite. Thus the direct Monte 
Carlo calculation of v(10,20) is impossible for k < I and can prove very 
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Costly if 1 < k __< 2. We have therefore contented ourselves with an ap- 
proximate two-decimal accuracy (N = 600 instead of 60,000) for a set of 
smaller k-values. The results are shown in Table 4 and demonstrate, we 
think, how "dangerous" automobile insurance can be. 

RUIN IN AN EXPERIENCE-RATED BUSINESS 

There have been a number of criticisms of the theory that has been 
adumbrated in Appendix I and simulated in the foregoing pages. Some of 
them are based on the "fact" that the failure of a risk business is almost 
certainly caused by poor administration and not by a run of heavy claim 
years. The answer here is that even a perfectly run risk business can find 
itself forced into ruin through no fault of its own; this will be illustrated 
below. 

A more serious criticism in our view is that the theory assumes that the 

TABLE 4 

ESTIMATES OF RUIN PROBABILITIES: ~(I0,20) 

(Model XI/XI/I) 

/~ Estimate Time inutes) 

20 . . . . . .  -- . . . . . . . .  0 .25+0 .02~  
10 . . . . . . . . . . . . . . . .  3 4 +  .02~ 

0 .85+0 .01  
2 : : : : : : : : : : : : : : : [  .51+ .021 

actual mean of the distribution of aggregate claims in a real-time period, 
namely, of F(.  ,l) in relation (10) of Appendix I, is known and invariant. 
This is certainly not true in practice, particularly since the importance of 
risk theory is for the brand new risk business with modest capital and 
without any of its own claim experience on which to base its premiums. 

Another criticism of ruin theory is that the probability of ruin within 
a given period of "time" is only one of a number of factors the risk man- 
ager must bear in mind. Ruin seldom occurs as the result of a single bad 
year. I t  is a run of poor years that depletes the risk reserve to a point 
where ruin threatens. The commonest reaction under such circumstances 
would be to look for unprofitable contracts within the. portfolio and 
eliminate or rerate them. But it should not be overlooked that runs of 
"bad luck" can occur in the purest of atmospheres. 

In what follows we will abandon the theoretical superstructure of ruin 
theory and simulate the behavior of ten companies' risk reserves over 
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forty-year periods under a number of hypotheses about management 's  
policies for the sequential estimation of premiums. 

A convenient basic model is to assume that  the aggregate annual 
claim distribution is given by  chi-square with 6 degrees of freedom 
(i.e., with a mean of 6). This distribution is summarized in Table 5, 
and it is observed that  a company with a risk reserve of 16.81 and a net 
premium income of between 5 and 6 has about one chance in a thousand 
of being ruined within a year. We accordingly use 16.81 as the initial risk 
reserve for each of the ten hypothetical companies and note that  in the 
literature the desirability and amount of stop-loss insurance are frequent- 
ly determined by requiring a one-year probability of ruin not in excess of 
1 in 1,000. 

TABLE 5 

Probability of 
Claims in Excess 

x of x 
5.35 . . . . . . . . . . . . . . .  0.5 

10.64 . . . . . . . . . . . . . . . .  1 
12.59 . . . . . . . . . . . . . . . .  05 
16.81 . . . . . . . . . . . . . . . .  O1 
22.46 . . . . . . . . . . . . . . . .  OO1 
27.86 . . . . . . . . . . . . . . .  O. 0001 

Twelve hundred pseudorandom numbers were generated by means of 
the relation (n = 1 ,2 ,3 , . . . )  R,+I = 186,309 R,  (modulo 235), with 
R1 = 4131062271 (octal scale), and, after transformation to negative 
exponential variates, were added in triplets and multiplied by 2 to 
produce 400 variates from a chi-square distribution with 6 degrees of 
freedom. Successive sets of forty variates were then supposed to rep- 
resent the forty years of experience of ten insurance companies. 

We now suppose that management of such a new company has to de- 
cide on what terms it will seek business. I t  believes its capital of 16.81 to 
be more than adequate, and it considers that its collective experience and 
know-how is equivalent to ten years of presumptive claim experience with 
the new company. I t  estimates that an aggregate risk-loaded premium of 
6 will be adequate and competitive. (We ignore any expense loading by 
assuming that  it exactly covers the expenses of the year.) Management 
decides to allow for any upward or downward trend in aggregate claims 
by experience rating the aggregate premium in such a way that after t 
years'  experience it will be (t --- 1, 2 . . . .  ). 

t 

10 7r(1) - p  1 ~ - '~ .Xj ,  (1) 
~(t  -{- 1) = 10 +----t 10 + t ~.~ 
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where ?r(1) = 6 and X s is the aggregate claims of the j th  business year. 
This type of Bayesian experience rating has been suggested by Franckx, 
and we note that, if there is no trend in the claims of successive years, 

1 
E~r(t + 1) = 10 -I- t [10rr(1) + tKt]  (where K1 = E X i )  

• - ~ K t  a s  t - - ~  ¢o 

The results of this experience-rating policy are shown in Table 6, which 
required one second of computer execution time (and about half a minute 
for compilation). Although the managements of these ten companies had 
correctly estimated the net, or pure, risk premium, six of them were ruined 
in the forty-year period, one of them in the first year. At the foot of Table 
6 we have shown the range of premiums produced by relation (1) for the 
ten companies during their years in business. While it is difficult to say 
how long a contractholder in a mutual company would be prepared to 
continue his policy during a period of rising premiums, the ranges experi- 
enced by these ten companies do not appear unreasonable. Oddly enough, 
a fairly small loading in the premium would have changed the picture 
substantially. If every premium had been arbitrarily increased by 0.6, 
namely, 10 per cent-of ~r(1), five of the six failing companies would have 
been saved from ruin, the sole company to be ruined under these circum- 
stances being Company 6, which would have succumbed at the end of the 
fifteenth (instead of the first) year. 

Table 6 is also interesting in that it shows that ruin may occur as the 
result of a longish run of aggregate claims not very seriously in excess of 
the expected (e.g., Companies 9 and 10) or because of one or two years of 
unusually large claims (e.g., Companies 4, 6, and 7). 

Let us now suppose that these ten companies had been run by manage- 
ments which had only had experience with a better class of risks. These 
managements estimated just as confidently as the first set that the ag- 
gregate annual premium 7r(1) = 5. The results of this assumption are 
shown in Table 7, where seven of the companies are ruined before the end 
of the forty-year period. 

As would be anticipated, ruin in Table 7 tends to occur earlier than it 
did in Table 6, and the fortieth-year risk reserves are lower. And, not 
unexpectedly, the ruin of Company 8 occurred at a time when, in Table 6, 
it narrowly escaped this fate. In fact, the earlier appearance of ruin in 
Table 7 is caused in several instances by single, large claim totals which 
only succeeded in sharply reducing the corresponding risk reserves of 
Table 6. 

An interesting feature of the premium ranges shown at the foot of 



T A B L E  6 

RISK RESERVES OF TEN BUSINESSES THAT CONFIDENTLY ESTIMATED 
THE MEAN ANNUAL CLAIM OUTGO (CORRECTLY) AT 6.0 AND USED 

FORMULA (1) TO RECALCULATE THEIR PREMIUMS 

OF 
Yzaa 

1 . . . . . . . . .  18.43 18.21 119.48 14.09 17.06 
2 . . . . . . . .  20.86 19.59 ~20.79 19.00 15.66 
3 . . . . . . . .  24.03 23.19 115.87 10.31 18.15 
4 . . . . . . . .  13.09 25.68 i19.75 13.05 19.88 
5 . . . . .  17.01 21.81 !22.44 11.58 17.35 

CoMe~Y 

1 2 [ 3 4 ! 5 6 7 8 9 10 

18.43 14.09 17.06 Ruin  18.65 11.23 16.97 22.64 

18.05 24.08 22.73 16.47 19.43 
19.32 25.46 26.57 18.31 19.73 
16.60 27.69 30.34 20.25 21.27 
18.39 21.32 19.28 23.78 19.74 
24.21 19.25 13.06 26.00 22.74 

19.08 11.30 i11.43 24.55 25.46 
13.86 11.63 12 .93  18.44 2 2 . 0 4  
14.88 14.09 18.42 23.42 22.61 
16.85 15.03 16.10 24.67 21.95 
15.63 10.20 18.41 19.83 23.33 

20.13 5.48 16 .67  13.87 24.56 
17.62 10.95 15.12 11.92 20.76 
23.13 3.91 i16.14" 14.07 25.04 

Ruin  118.36 5 .20  27.40 
20.99 Ruin  26.46 

24.90 22.43 
17.04 24.64 
118.58 29.98 
24.27 24.42 
28.86 27.01 

~32.94 2 7 . 0 5  
29.30 ~ 29.54 
30.20 27.09 
33.51 2 1 . 4 4  
33.79 22.61 

37.34 25.07 
39.34 24.56 
~ .  77 27.13 
39.94 [ 30.53 
35.24 ii32.00 
I 
:25.57 33.83 
~27.59 34.44 
26.47 38.90 
27 ..81 42.13 
27.79 44.73 

5.14-- 5 .21-  5 . 12 -  5 .59 -  5 .18 -  
6 .19 6.631 6.09 6.51 6.09 

6 . . . . . . . .  
7 . . . . . . . .  

8 . . . . . . . .  
9 . . . . . . . .  

10 . . . . . . . .  

11 . . . . . . . .  
12 . . . . . . . .  
13 . . . . . . . .  
14 . . . . . . . .  
15 . . . . . . . .  

16 . . . . . . . .  
17 . . . . . . . .  
18 . . . . . . . .  
19 . . . . . . . .  25.43 
20 . . . . . . . .  25.90 

21 . . . . . . . .  29.73 
22 . . . . . . . .  29.23 
23 . . . . . . . .  26.44 
24 . . . . . . . .  30.02 
25 . . . . . . . .  30.43 

26 . . . . . . . .  ]32.40 
27 . . . . . . . .  36.74 
28 . . . . . . . .  34.75 
29 . . . . . . . .  33.28 
30 . . . . . . . .  34.51 

31 . . . . . . . .  30.40 
32 . . . . . . . .  33 .33  
33 . . . . . . . . .  36.85 
34 . . . . . . . .  32.98 
35 . . . . . . . .  35.04 

36 . . . . . . . .  35 .68 
37 . . . . . . . .  40 .33  
38 . . . . . . . .  43 .86 
39 . . . . . . . .  41.65 
40 . . . . . . . .  ~44.54 

P remium 
r a n g e . . .  

18.66 14 .34  21,13 27.81 
2 0 . 3 6  119.92 25,20 26.26 
24.47 24.94 27,60 2 5 . 6 8  
24.81 118.81 2 6 , 2 0  18.31 

26.16 9 .36  30,31 22.21 
25.84 13.09 21.35 26.73 
20.34 14.67 11,27 29.68 
16.99 18.86 8,23 31.47 
18.06 20.34 11,59 27.82 

12.72 20.97 11,31 20.97 
15.21 2 3 . 4 8 ~ 1 3 , 7 5  21 .89  
5.72 27.84 1 7 , 5 6  4 .19  
6.52 30.14 i16.75 7.97 

11.33 3 4 . 1 6 i  8 ,24 9.82 
I 
I 

11.70 12.04 110.64 13.22 
12.02 13.98 12,92 16.98 
13.95 6.12 12,17 18.88 
0.21 3 .01  16,23 20.57 
4 .70  4 .99  ~ 7,93 18.14 

6.17 5.87 10.39 20.69 
9.17 10.28 5.18 15.45 
5.31 12.98 5.82 13.94 

10.30 13.19 4 .83  6.92 
13.25 9.57 8 .08  2.40 

14 .48  10.44 4 .52  4 .98  
12.40 15.76 Ruin  Ruin  

5.57 16.73 
Ruin  11.55 

16.55 

14.87 
18.71 
12.13 
17.45 
20.25 

22.89 
23.04 
22.62 
25.74 
29.01 

5 .30-  5 . 27 -  4 .99-  4 . 9 2 -  
6.46 6.46 6.54 6.19 

572 
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RISK RESERVE OF THE SAME TEN BusINEssEs WHEN THE MEAN ANNUAL CLAIM 
OUTGO WAS CONFIDENTLY ESTIMATED TO BE 5.0 (INSTEAD OF THE TRUE 

6.0) AND RELATION (1) USED TO RECALCULATE THE PREMIUMS 

COMPANY 
OF 

YEAR I 

I 2 3 4 $ 6 7 8 9 10 

1 . . . . . . . .  17.43 17.21 18.48 1 3 . 0 9 : 1 6 . 0 6  Ruin  17.65 10.23 15.97 21.64 

20 . . . . . .  

2 . . . . . . . .  18.96 17.68 18.88 17.09 13.75 
3 . . . . . . . . .  21.29 20.45 13.13 7.57 15.41 
4 . . . . . . . .  9.58 22.17 16.24 9.54 16.37 
5 . . . . . . . .  12.78 !17.59 18.21 7.35 13.12 

6 . . . . . . . .  13.16 19.19 17.83 11.58 14.54 
7 . . . . . . . .  13.80 19.94 21.05 12.79 14.22 
8 . . . . . . . .  10.50 21.59 24.23 14.15 15.16 
9 . . . . . . . .  11.73 14.65 12 .62  17.12 13.07 

10 . . . . . . . .  ,17.03 12.06 5.88 18.82 15.55 

11 . . . . . . . .  11.39 3.61 3 .74  1 6 . 8 6 : 1 7 . 7 8  
12 . . . . . . . .  5.69 3.47 4 .76  10.28 '13.87 
13 . . . . . . . .  6 .26 5.47 9.80 14.80 1 4 . 0 0  
14 . . . . . . . .  7.80 5.98 7.04 15.61 12.89 
15 . . . . . . . .  6 .16 0.73 8.99 10.36 13.86 

16 . . . . . . . .  10.26 Ruin  6.80 4 .00  14.69 
17 . . . . . . . .  7.37 4 .86  1.66 10.51 
18 . . . . . . . .  12.51 5.52 3 .44  14.41 
19 . . . . . . . .  14.45 7.38 Ruin  16.42 

14.57 9.67 15.13 

21 . . . . . . . .  18.06 13.24 10.77 
22 . . . . . . . .  17.25 5.05 12.66 
23 . . . . . . . .  14.15 6.28 17.69 
24 . . . . . . . .  17.42 11.67 11.82 
25 . . . . . . . .  17.54 15.97 14.12 

26 . . . . . . . .  19 .23  19.76 13.87 
27 . . . . . . . .  23.29 15.84 16.08 
28 . . . . . . . .  21 .02  16.47 13.37 
29 . . . . . . . .  19.29 19.52 7.46 
30 . . . . . . . .  20.26 19.55 8.36 

31 . . . . . . . .  15.91 22.85 10.57 
32 . . . . . . . .  18.59 24.60 [ 9.82 
33 . . . . . . . .  21.87 28.79 I 12 .15  
34 . . . . . . . .  17.77 24.73 15 .32  
35 . . . . . . . .  19.60 19.81 16.56 

36 . . . . . . . .  20.02 9.91 18.17 
37 . . . . . . . .  24.46 11.71 18.57 
38 . . . . . . . .  27.77 10.38 22.81 
39 . . . . . . . .  25.35 l l . 5 2  25.83 
40 . . . . . . . .  28.04 11.29 28.22 

Premium 4 . 6 4 -  4.59-[  4 . 5 6 -  5 .00-  4 . 9 8 -  
r a n g e . . .  5.58 5.661 5.61 5.7~ 5.38 

16.75 12.43 19.22 25.90 
17.62 17.18 22.45 23.52 
20.96 21.43 24.09 22.17 
20.58 14.59 21.97 14.08 

21.27 4.47 25.42 17.31 
20.32 7.57 15.84 21.21 
14.23 8.56 5.17 23.58 
10.33 1 2 . 2 0  1.57 24.81 
10.87 13.15 4 .40  20.63 

5.03 13.28 3.63 13.28 
7.04 15.31 5.59 13.73 
Ruin 19.22 8.94 Ruin  

21.09 7.70 
24.69 Ruin 

2.17 
3.73 
Ruin 

4 .68 -  4 . 7 5 -  4 .37-  4 . 2 1 -  
6.60 5.68 6.33 5 .98  

573 
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Table 7 is that  none of the three companies that  remained in business at 
the end of forty years had ever charged a premium as large as the " t rue"  
premium of 6.00. Only two of the seven failing companies made premium 
charges in excess of the true mean claim outgo, but this did not save them 
from ruin. 

Table 7 has shown the effect of an initial premium estimated with great 
confidence. In Table 8 we have supposed that management had very little 
idea of the true net premium and estimated it as 7r(1) = 5 without giving 
it any weight once experience started to accumulate. We thus have to 
substitute zero for 10 throughout relation (1), with the result that early 
experience will have a strong effect on the size of the premium. Ruin now 
occurs earlier than it does in Table 7 on three occasions, at the same time 
on two occasions, one year later on one occasion, and not at all in Com- 
pany 8, which manages to accumulate substantial reserves. These are 
surprising results when we consider that  in Table 7 management perse- 
vered in its erroneous estimate of 5.0 by giving it a "weight" of ten 
years'  observations. They emphasize the relatively small influence of 
minor premium changes in comparison with the violent fluctuations of 
chance. 

The rating formula (1) treats all experience, actual and hypothetical, 
as of equal weight. If  it is suspected that  diverse factors may influence the 
claims so that  real upward trends may be followed by a leveling-out or 
even by downward movements, it may  be desired to give much more 
weight to the most recent experience. Consider, therefore, a special case 
of a formula suggested by Simberg, namely, (t = 1, 2, 3, . . .). 

~(t + 1) = 0.SX, + 0.5~(t) 

, - t  (2) 
= o . s ~ 0 . s ; x , _ ;  + o.s,~-(1), 

jr0 

where the latest year 's experience is regarded as being as important as all 
previous information. 

The basic chi-square annual claim distribution used hitherto is now 
assumed to shift to the right by 0.05 each year, the first year having a 
mean 6.00 and the fortieth year having a mean 7.95. The 1,200 pseudoran- 
dora variates described above were used once again and relation (2) was 
applied with ~'(1) = 5.0. The risk reserves of Table 9 resulted. Although 
seven of the ten companies were ruined, the general picture is quite similar 
to Table 8, where the mean aggregate claims were constant throughout 
the forty-year period. The use of relation (2) in this case where a com- 
pany's  experience is always below the upward trend is intuitively better 



TABLE 8 

RISK RESERVES OF THE SAME TEN BUSINESSES WHEN THE MEAN ANNUAL 
CLAIM OUTGO WAS INITIALLY GUESSED TO BE 5.0 (INSTEAD OF THE TRUE 6.0) 

AND A RELATION SIMILAR TO (1) USED TO RECALCULATE THE PREMIUMS 

END OF 
YEAR 

CO.ANY 

I i 2 3 4 $ 6 7 $ 9 [ 10 

1 . . . . . . . .  17.43 17.21 18.48 13.09 16.06 
2 . . . . . . . .  18.39 17.31 17.37 20.47 14.43 
3 . . . . . . . .  19.81 19.71 10.69 10.98 17.40 
4 . . . . . . . .  6.88 20.47 14.66 15.40 18 80 
5 . . . . . . . .  11.28 14.86 16.72 14.71 15.72 

6 . . . . . . . .  12.17 16.25 16.15 20.42 [17.69 
7 . . . . . . . .  13.21 16.66 19.25 22.43 17.69 
8. 10.19 17.94 22.05 24.37 18.94 
9 . . . . . . . .  11.90 10.59 9.89 27.76 17.05 

10 . . . . . . . .  17.55 8.02 3 .34  29.65 19.83 

22 20 11 . . . . . . . .  11.96 i Ruin  1.72 27.78 . 
12 . . . . . . . .  6 . 5 6 i  3 .29  21.37 18.33 
13 . . . . . . . .  7.61 8.80 26.30 18.63 
14 . . . . . . . .  9 .58 6.31 27.32 17.69 
15 . . . . . . . .  8.29 8.53 22.25 18.84 

16 . . . . . . . .  12.76 6.65 16.20 19.82 
17 . . . . . . . .  10.12 5.01 14.31 15.75 
18 . . . . . . . .  15.55 5.98 16.55 19.86 
19 . . . . . . . .  17.67 8.12 7.74 7-1.98 
20 . . . . . . . .  17.93 10.65 Ruin  7-0.76 

21 . . . . . . . .  21.55 14.42 16.48 
22 . . . . . . . .  20.80 6.35 18.53 
23 . . . . . . . .  17.77 7.81 23.67 
24 . . . . . . . .  21.16 13.41 17.85 
25 . . . . . . . .  21.35 17.84 20.27 

I 
26 . . . . . . . .  23.10 121.71 20.10 
27 . . . . . . . .  27.20 17.83 22.40 
28 . . . . . . . .  24.94 18.53 19.74 
29 . . . . . . . .  23.22 21.65 13.91 
30 . . . . . . . .  24.23 21.71 14.95 

31 . . . . . . . .  19.91 25.04 17.28 
32 . . . . . . . .  22.65 26.80 16.63 
33 . . . . . . . .  25.97 30.98 119.06 
34 . . . . . . . .  21.88 26.89 22.30 
35 . . . . . . . .  23.75 21.96 23.61 

36 . . . . . . . .  24.21 12.08 125.26 
37 . . . . . . . .  28.66 13.97 25.70 
38 . . . . . . . .  31.97 12.71 29.97 
39 . . . . . . . .  29.54 13.92 33.00 
40 . . . . . . . .  32.22 13.77 35.39 

Premium 3 .43-  3 . 5 6 -  3 . 8 9 -  5 .03-  4 . 9 7 -  
r a n g e . . .  6 . 6 6  6.79 6.17 8.20 i 6.57 

Ruin 17.65 10.23 15.97 ]21.64 
15.99 18.41 19.99 21.51 
16.85 25.24 22.25 15.16 
19.96 29.65 22.41 11 77 
18.82 22.17 18.89 2.40 

18.94 12.46 21.50 5.68 
17.45 16.95 10.86 9.28 
10.98 18.88 0 .09  11.07 

7.17 23.26 Ruin i l . 6 3  
8.01 24.66 6.78 

2.42 25.15 
4.91 27.50 
Ruin  31.63 

33.57 
37.17 

14.57 
16.58 
8.74 
5.82 
8.03 

9.10 
13.66 
16.46 
16.72 
13.15 

14.11 
19.50 
20.48 
15.31 
20.37 

1 8 . 7 0  
22.56 
15.97 
21.34 
24.15 

26.77 
26.89 
26.44 
29.53 
32.76 

Ruin 

3 . 9 3 -  4 .11-  3 .04 -  2.35- 
6 .00 7.4~ 6.67 6.24 



TABLE 9 

RISK RESERVES OF THE SAME TEN BUSINESSES WHEN SUBJECTED TO AN 
UPWARD DRIYT OF 0.05 IN THE MEAN AGGREGATE CLAIM AND WHEN 

PREMIUMS ARE RECALCULATED BY RELATION (2) WITH ~r(1) ---- 5.0 

COMPANY 
END OF 
YEAR 

1 2 3 i 4 5 6 7 8 9 10 
I 

• i 6  i 9  1 . . . . . . . .  17.43 17.21 18.48 13.09 16.06 Ruin 7. 5 10.23 5. 7 21.64 
2 . . . . . . . .  18.65 17.46 18.15 18.56 14.00 
3 . . . . . . . .  20.15 !19.88 11.81 8.06 16.71 
4 . . . . . . . .  6 .98 20.21 17.02 13.51 17.43 
5 . . . . . . . .  14.43 14 .14  18.65 12.18 13.61 

6 . . . . . . . .  15.49 16.94 17.20 17.73 16.10 
7 . . . . . . . .  16.26. 17.53 20.00 17.71 15.64 
8 . . . . . . . .  12.68 18.71 21.50 17 .86  16.61 
9 . . . . . . . .  15.20 10.77 7.58 19.58 14.06 

10 . . . . . . . .  120.53 10.73 4.83 19.26 17.20 

11 . . . . . . . .  12.48 4.67 7.'68 15.49 18.58 
12 . . . . . . . .  8 .08 9.49 12.10 8.84 13.21 
13 . . . . . . . .  11.84 13.99 18.33 16.27 14.32 
14 . . . . . . . .  14.66 14.78 13.82 16.41 13.60 
15 . . . . . . . .  12.91 9.39 16.05 10.40 15.21 

16 . . . . . . . .  17.65 6.57 13.16 6.04 15.88 
17 . . . . . . . .  13.14 15.12 11.78 7.58 11.17 
18 . . . . . . . .  18.76 7.03 13.56 12.33 16.71 
19 . . . . . . . .  18.50 5.51 15.63 3 . 7 2  17.66 
20 . . . . . . . .  i16.57 14.11 17.11 Ruin 14.87 

21 . . . . . . . .  18.94 5.52 19.16 
22 . . . . . . . .  15.87 11.41 8.49 
23 . . . . . . . .  11.97 Ruin  12.26 
24 . . . . . . . .  16.26 18.30 
25 . . . . . . . .  15.29 20.33 

26 . . . . . . . .  16.33 20.92 
27 . . . . . . . .  19.22 13.56 
28 . . . . . . . .  14.40 14.27 
29 . . . . . . . .  12.41 17.01 
30 . . . . . . . .  14.03 15.38 

31 . . . . . . . .  9 .48 17.79 
32 . . . . . . . .  14.09 17.48 
33 . . . . . . . .  17.01 19.76 
34 . . . . . . . .  11.11 12.70 
35 . . . . . . . .  13.95 8.15 

36 . . . . . . . .  13.96 0.75 
37 . . . . . . . .  17.93 8.49 
38 . . . . . . . .  18.83 9.21 
39 . . . . . . . .  13.58 11.95 
40 . . . . . . . .  15.96 11.94 

Premium 3 .14-  3.30-- 2 .66  
r a n g e . . .  9.92 11.45 13.~ 

16.36 15.07 19.52 23.87 
17.35 20.18 21.49 18.66 
20.34 22.54 21.08 16.84 
18.31 12.89 17.19 9.06 

18.27 4 .28  20.61 15.89 
16.62 12.51 9.47 20.12 
10.55 14.65 2.19 20.89 
9.31 18.37 4 .98  i20.22 

12.87 17.68 12.57 14.49 

8.26 16.52 12.84 8.20 
13.47 17.80 15.63 12.45 
4.17 20.35 18.46 Ruin 
9.34 19.71 15.37 

15.92 21.15 6.04 

14.91 Ruin 11.90 
14.32 14.75 
15.59 13.17 
0.59 17.12 

10.78 6.83 

10.30 12.96 12.11 
14.08 15.58 7.11 
19.12 10.07 10.25 
10.84 16.00 10.16 
14.65 17.02 14.27 

14.02 i 15.85 9.57 
16.11 11.93 1.75 
12.23 5.12 5.52 
6.98 Ruin 12.79 

10.97 9.42 
I 
!14.25 7.25 
12.92 9.78 
15.27 11.05 
17.29 11.87 
16.40 12.38 

16.29 
15.02 
18.18 
18.58 
18.16 

2.66-1 3 .62 -  4 .11 -  
. 0 3 : 1 1 . 5 5  9.92 

,15.56 
12 .44  
I Ruin  

3 . 2 4 -  2.14-i  2 .66-  1 .47-  
16.96 11.261 12.53 9 .46  
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than the rating procedure used in Table 8 (namely, relation [1] with l0 
replaced by zero). Table 10 verifies this, but shows that certain chance 
configurations may produce a better result for relation (1) rating (e.g., 
Company 8). Note how much narrower the premium ranges are in Table 
l0 than in Table 9. I t  may be doubted whether the policyholders of 
Company 7 would have remained to see their premiums range from 3.24 
to 16.96 in twenty-eight years. 

An unrealistic feature of the foregoing illustrations is that we have 
ignored the "1 in 1,000" rule for stop-loss reinsurance after the first year. 
If management had been asked to "guess" the amount of the annual claim 
outgo that would be exceeded once in a thousand years--a much harder 
task than estimating the mean of the dlstribution--the resulting stop-loss 
reinsurance would possibly have saved some of the companies that were 
shown to fail. Lack of space prevents the simulation of this type of man- 
agement policy with its difficult decisions about reinsurance premium 
estimation and loading. An interesting question would be whether a run of 
bad luck might result in the reinsurance of the whole portfolio. Neverthe- 
less the foregoing set of tables clearly demonstrates the importance of 
chance in the operation of a risk business. 

APPENDIX I 

MATHEMATICAL REVIEW 

The Erlang model for an orderly waiting line (queue) with a single 
server assumes that customers arrive randomly with independent inter- 
arrival times distributed negative exponentially and that customers' 
service times are independent positive random variables Y with distribu- 
tion function P ( . )  independent of the arrival times. I t  is convenient to 
measure time in units equal to the expected interarrival time in real time 
units. As each customer joins the queue, the waiting time for service 
ahead of a potential new customer jumps upward by an amount Y, and 
between customer arrivals the waiting time decreases uniformly toward a 
lower bound of zero. We suppose that the server is idle at time t = 0 and 
write W(t) for the (virtual) waiting time ahead of a customer joining the 
queue at time t > 0. Construct a function F~r(t) similar to W(t) except that 
negative values are permitted during a server's idle periods, wlth the 
result that the next upward jump occurs from a negative, instead of a 
zero, value. Then W(O is equal to ]~-(t) increased by the largest amount 
by which l~'(r) is below the t-axis for 0 < r _< t. Hence 

w c t )  = # ( t )  - o<,, ,inf # ( , - )  = [ # ( t )  - 

= sup [Y(t) - - t - -  Y( , - ) - - r ]  = <;~sup [Y(O- -  Y ( r ) - -  t - - r ] ,  
O<,r<# 0 



TABLE I0 

RISK RESERVES OF THE SAME TEN BUSINESSES WHEN SUBJECTED TO AN UP- 
WARD DRIFT OF 0.05 IN THE MEAN AGGREGATE CLAIM AND WHEN PRE- 
MIUMS ARE RECALCULATED BY RELATION (1) WITH ~r(l) ~ 5.0 AND 10 RE- 
PLACED BY ZERO 

I Cou~aNY 
END OF ] 
YEAR 

1 2 3 4 5 6 7 8 9 10 

1 . . . . . . . .  17.43 17.21 18.48 13.09 16.06 Ruin 17.65 10.23 15.97 21.64 
2 . . . . . . . .  18.34 17.26 17.32 20.42 14.38 
3 . . . . . . . .  19.68 19.58 10.56 10.85 17.27 
4 . . . . . . . .  6.66 20.24 14.43 15.18 18.57 
5 . . . . . . . .  10.93 14.51 16.37 14.36 15.37 

6 . . . . . . . .  11.67 15.75 15.65 19.92 17.19 
7 . . . . . . . .  12.54 15.98 18.57 21.76 17.02 
8 . . . . . . . .  9.32 17.07 21.18 23.49 18.07 
9 . . . . . . .  1 10.80 9.49 8.79 26~62 15.95 

10 . . . . . . .  16.20 6.67 1.99 28.30 18.48 

11 . . . . . . . .  10.34 Ruin 0.09 26.16 20.57 
12 . . . . . . . .  4.63 1.36 19.44 16.41 
13 . . . . . . . .  5.36 6.55 24.05 16.38 
14 . . . . .  6.98 3.71 24.72 15.09 
15 . . . . .  " ' i ]  5.32 5.56 19.27 15.86 

16 . . . . . . . .  9.38 3.28 12.82 16.45 
17 . . . . . . . .  6.32 1.21 10.51 11.95 
18 . . . . . . . .  11.30 1.73 12.30 15.61 
19 . . . . . . . .  12.95 3.40 3.01 17.25 
20 . . . . . . . .  [12.70 5.43 Ruin 15.54 

i 

21 . . . . . . . .  115.80 8.67 10.73 
22 . . . . . . . .  !14.50 0.05 12.23 
23 . . . . . . . .  10.90 0.94 16.80 
24 . . . . . . . .  13.68 5.93 10.37 
25 . . . . . . . .  13.25 9.74 12.17 

26 . . . . . . . .  14.35 12.96 11.35 
27 . . . . . . . .  17.77 8.40 12.97 
28 . . . . . . . .  14.81 8.41 9.61 
29 . . . . . . . .  12.37 10.80 3.06 
30 . . . . . . . .  12.63 I0.11 3.35 

31 . . . . . . . .  7.53 12.66 4.91 
32 . . . . . . . .  9.47 13.62 3.45 
33 . . . . . . . .  11.97 16.98 5.06 
34 . . . . . . . .  7.03 12.04 7.45 
35 . . . . . . . .  8.03 6.23 7.88 

36 . . . . . . . .  7.58 Ruin 8.64 
37 . . . . . . . .  11.11 8.15 
38 . . . . . . . .  113.47 11.47 
39 . . . . . . . .  10.06 13.53 
40 . . . . . . . .  11.75 14.92 

Premium 3 .48-  3.64- 3 .92-  5.06- 5.30- 
r a n g e . . .  6.73 7.741 6.42 8.24 6.59 

15.94 18.36 19.94 21.46 
16.72 25.11 22.13 15.03 
19.74 ,29.42 22.19 11.54 
18.47 21.82 18.54 2.05 

i 
18.44 !11.96 21.00 5.18 
16.78 i16.28 10.19 8.60 
10.11 18.00 Ruin 10 .19  
6.07 22.16 10.53 
6.66 23.31 5.43 

0.80 !23.53 Ruin 
2 .98 :25 .58  
Ruin 29.38 

30.97 
34.20 

11.19 
12.78 
4.49 
1.09 
2.80 

3.35 
7.36 
9.58 
9.24 
5.05 

i 5 . 3 6  
10.08 
10.36 
4.46 
8 77 

6.32 
!9 .38  

1.98 
6.49 
8.42 

10.15 
9.34 
7.94 

I0.06 
12.29 

4.00- 4.19 -i 3 .12-  0 .26-  
7.96 7.52 7.62 7.19 
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where Y(r) is the sum of the random variables Y caused by arrivals at the 
queue through time r. Because of the assumption of independent incre- 
ments in Y(r) homogeneous in time, the distribution function of W(t) is 
given by 

P[w( t )  < xl = P{ sup [Y(t - ~) - t - ~] < x}  
O<r<t 

(3 )  
= P{0<,~,sup [Y(~) - ~1 _< x} = P[0~<up ~(~)  _< x ] .  

The Lundberg model for a risk business assumes that contractholders 
make claims independently on the company at random instants de- 
termined by a negative exponential with unit mean and that a contract- 
holder's claim amount is an independent positive random variable Y 
with a distribution function P( . )  independent of the time of the claim. 
The risk reserve (capital and surplus) of the risk business is incremented 
by premiums assumed to be paid uniformly at a rate 7rx per unit of time 
(which unit is equal to the real-time interval during which one claim is 
expected) and is reduced instantaneously by the amount of any claim that 
occurs. If the risk reserve is x at time t = 0 and is R(t) at time t > 0, the 
net decrease in the risk reserve by time t is 

x - R ( t )  = r ( t )  - , ~ l t ,  ( 4 )  

where Y(t) is now the sum of the claim amounts that have been paid 
through time t. When ~r, = 1, the right-hand side of this relation is 
equivalent to the 19"(t) of the queueing model. If the risk reserve of a 
company becomes zero' or negative as the result of a claim, the risk busi- 
ness is said to be ruined. The probability that ruin will not occur during 
the period (0,t) is thus 

P[R(r) > 0 all r in 0 < r _< t] = P{os<Upt [x -- R(r)l < x} 

(5) 
= P{ sup [r(~) - ~1~1 < x} 

and is a generalization of relation (3) to the extent that ~rl is not necessari- 
ly equal to unity. In what follows we write u(x,t) for the probability of 
relation (5), and 

rl  = P , + ' / , =  p,(1 +,1)  = 1+~, 

where p, is the mean of the distribution of Y and '71 is the so-called risk 
loading. If we agree to work in monetary units each equal to the mean 

a The inclusion of zero does not change the probability of ruin and allows us to retain 
formal identity with the queueing model. 
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claim, Pl = 1 and '7 is called the rate of risk loading. The risk reserve x 
must, of course, be expressed in the same monetary unit. 

In the queueing literature a convenient notation has been introduced 
to indicate what assumptions have been made about the interarrival and 
service times and the number of servers. We have utilized this in our dis- 
cussion of, and illustrations from, ruin theory. For example, the foregoing 
description of the Erlang-Lundberg model would be designated as M / G / l ,  
indicating that claims are independent and occur randomly (M for Mar- 
kov), that the distribution of claim amounts is general (G), and that the 
theory is that of the queueing model with a single server (1). A generaliza- 
tion of this model is to replace the negative exponential distribution of 
interclaim periods by some arbitrary distribution, and this is designated 
as GI/G/1.  For example, the chi-square distribution with n degrees of 
freedom could be used for interclaim periods, and the model would then 
be designated by K, /G/1 .  A further generalization is to assume that the 
times at which claims occur form a stationary point process in which the 
joint distribution of the numbers of events in any k fixed intervals 
(k = 1, 2, 3 , . . . )  is invariant under translation of the time scale. This 
allows for certain types of dependence between the lengths of successive 
interclaim periods and is the most general type of model for which the 
formulas of ruin theory are valid. 

A particular stationary point process is known as the birth (claim) 
process with stationary increments. I t  is characterized by a density func- 
tion of r, the interclaim period following the epoch of the nth claim, given 
by (n = I, 2,...). 

)~.(r) exp [ - -  / A . ( s ) d s ] .  

where, using standard notation for derivatives, 

x . ( ~ )  = , p 0 ( ~ )  = de-~,avtx~, 
p0c-~(~) 0 

and U(.) is a distribution function. In fact p0(r) is the probability that 
there will be no claim in any period of length ~, and U(.) may be inter- 
preted as the d.f. of individual propensities to make claims. A special case 
of this process has been widely used in the actuarial literature, where it is 
known as the P61ya process. U(. ) is then a gamma distribution with index 
k and scale k -1 (so that k/k, or unity, is the mean), and it is easy to show 
that this implies 

),.(r) = k +____nn = 1 + n/________k 
k + ," 1 + ,'/k 
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and that the density of the interclaim period following the nth claim is 

(1 + n/k)(1 + r/k) -k-"-x (0 < r < ~) , 

corresponding to a d.f. 

1 - -  (1 + r / k )  - ~ - "  . (6) 

(It can be shown that the d.f. of the interclaim period following an arbi- 
trary origin of time is that of relation [6] with n = 0.) This distribution 
function is Type XI  in Karl Pearson's family but is more commonly 
known by the name Pareto. The P61ya process for claims in conjunction 
with a general distribution of claim amounts is conveniently designated 
xx/G/1. 

I t  is to be noted that the general birth process formula for the proba- 
bility of n claims in a period t, namely, 

p,,(o = av(x), 
0 lr/.. ! 

leads to the negative binomial 

in the case of the P61ya process. The mean of this discrete distribution is 
t, showing that the time scale of relation (6) is equivalent to the number of 
expected claims. The calculation of u(x,t)  on the alternate models M/G/1 
and XI /G/1  may thus be made strictly comparable by using a negative 
exponential with unit mean and relation (6), respectively. Although claims 
are not occurring uniformly throughout the interval t, premiums are 
supposed to be received uniformly at the rate 1 + ~ per unit of time. 

We conclude this brief review of the hypotheses of ruin theory by 
stating the formulas that have been derived to calculate the probability 
of a risk business maintaining a nonnegative risk reserve throughout a 
period (0,t). These formulas were based on the original Erlang-Lundberg 
model, namely, M / G / I ,  but they can be generalized without difficulty. 
Arfwedson's integro-differential equation for u(x,t)  is 

0 o f  U(z,t)dz (8) Irx[u(x,t) --  u(0,t)] -- f u ( x  --  y,t)[1 -- P(y ) ]dy  = ~-[ 
0 

An alternative form due, independently, to Bene§ and Prabhu is 

$ 

u(x , t )  = F ( x  + rrlt,t) --  fl:.u(O,t --  r ) d F ( x  + ~rxr,r) , (9) 
TmOq- 
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where 

F(y , t )  = ~"]~e -x '  (X t ) "_ , , ,  , . -0  ~ r ~ y ) ,  ( lO) 

where P"*( . )  is the d.f. of the aggregate of n claims, each with d.f. P ( . ) ,  
and X is usually chosen as unity with an appropriate change in time scale. 
The "boundary" probability u(O,t) appearing in both these equations is 
given explicitly by 

~ ( o , 0  = , - '  1 - de"*(y). (11) 
:~0 ~ "  0 

Neither (8) nor (9) is easy to evaluate numerically, and efforts have been 
made to calculate, instead, the bivariable Laplace transform of u(x, t) ,  
namely, 

u(r,s)  = J " e - " d x  j C e - " u ( x , t ) d t  . (12) 
0 0 

Arfwedson's result is that  

1 / r -  1 / o ( s )  (13) 
~,(r , s )  = s + 1 - ~ l r  - ,~( , )  ' 

where 

,4,) = .fie-'~de(r) 
0 

and p(s) is that single value of r that satisfies the equation 

s =  7 r a r + r ( r ) - -  1 .  

However, even if u(r,s) could be calculated for a set of pairs of values 
of (r,s), there still remains the problem of its inversion. So far as we know 
no realistic numerical results have been calculated from any of these 
formulas, since they were published between eight and thirteen years ago. 

On the other hand, Segerdahl was able to prove nearly thirty years ago 
that, with x fixed, 

, _ . , ,  
1 --  U(x , ,~)  ' ~  ~ ' (14) 

where 4 ( . )  is the standard normal d.f., and # and a are functions of x and 
and the first three moments of the two distributions P ' (y)  and e-'u 

P' (y ) ,  where K is given by 

1 -- (1 + n)K -- 2 e - ' v d P ( y )  = 0 .  
0 
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Since an asymptotic relation is available for ~b(x) -= 1 -- u(x, ~o ), this 
means that u(x,t) can be calculated for "large" x and t--though it is not 
known just how big these variables must be for given numerical accuracy. 

There is thus a significant gap between the practically important cases 
where x and/or t are small and those where asymptotic theory becomes 
applicable. I t  is fortunate that the queueing and risk models can be 
simulated very easily on an electronic computer to produce values of 
u(x,t) nearly correct in the third decimal place. 4 For values of n and x that 
lead to small values for 1 -- u(x,t), the probability of ruin before time t, 
it appears that between One and two minutes of large computer time is 
required for each claim expected. I t  would thus be relatively expensive to 
calculate ruin probabilities extending well into the future. On the other 
hand, it is the short period which is of more interest to the entrepreneur, 
and inexpensive computer runs will satisfy him. The longer run will be of 
interest to the theoretician who wants to know when asymptotic theory 
will be adequate. 

There are substantial advantages in simulating a risk business on a 
computer. For example, it is not necessary to confine interclaim periods 
to be intervals of a stationary point process. I t  is also possible to generalize 
P ( . )  to be an arbitrary function of the time at which a given claim occurs. 
Neither of these generalizations has been considered in the text. 

APPENDIX II 

C FREQUENCY 0 F  RUIN OF N RISK BUSINESSES IN A 
C PERIOD DURING WHICH T CLAIMS ARE EXPECTED.  

C READ-IN HAZARD (AMBDLA), MEAN CLAIM RECIPR0-  
C CAL (ALPHA), PROPORTIONATE RISK LOADING (ETA), 
C INITIAL RISK RESERVE (RR0),  T IME PERIOD CON- 
C SIDERED (T), NUMBER OF TRIALS (N). 

READ(5,1) JOBS 
1 FORMAT (15) 

WRITE (6,2) JOBS 
2 FORMAT (IH1, 50X, 'NUMBER OF JOBS'/1H0, 'JOBS = ',I5) 

10 READ (5,50) AMBDLA, ALPHA, ETA, RR0,  T, N 
50 FORMAT (5F10.5,I5) 

WRITE (6,51) AMBDLA, ALPHA, ETA, RR0,  T,N 
51 FORMAT (1H1,50X, ' INPUT PAKAMETERS'/1H0,  

4 This degree of accuracy corresponds to a simulation of 60,000 risk businesses. 
Longer, and thus more expensive, computations could improve the accuracy of the 
result if this were desired. 
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1 'AMBDLA = ', F10.5, 6X, 'ALPHA = ', F10.5,6X, 'ETA = ', 
2 F10.5,6X, 'RR0  = ', F10£,6X, 'T = ', F10.S,6X,'N = ',I5) 

JOBN0 - 0 

IRUIN == 0 

IREPS = 0 

ICOUNT = 0 
ST = 0.0 
RR = RR0 

C START A BUSINESS AND CALCULATE A RANDOM EX- 
C PONENTIAL INTERCLAIM PERIOD TESTING TO SEE IF 
C IT  EXCEEDS T 

100 CALL GASI(R) 
T1 = --ALOG(R)/AMBDLA 
ST = ST + T1 
IF ( (ST-T) .GE.0 .0)  GO TO 250 

C CALCULATE A RANDOM EXPONENTIAL CLAIM 
C AMOUNT 

CALL GAS2(R) 
Y1 -- - -ALOG(R)/ALPHA 
ICOUNT = ICOUNT + 1 

C CALCULATE RESULTING RISK RESERVE AND REGIS- 
C TER  RUIN 

RR = RR + (TI*AMBDLA*(1.0 + ETA)/ALPHA) -- Y1 
IF  (RR.LT.0.0) I R U I N  = I R U I N  + 1 

IF (RR.LT.0.0) GO TO 250 
GO TO 300 

C CALCULATE ANOTHER RANDOM EXPONENTIAL IN- 
C TERCLAIM PERIOD AND CHECK W H E T H E R  TOTAL 
C TI ME ELAPSED EXCEEDS T 

150 CALL GAS3(R) 
T2 = --ALOG(R)/AMBDLA 
ST = ST + T2 
IF((ST -- T).GE.0.0) GO TO 250 

C CALCULATE ANOTHER RANDOM EXPONENTIAL 
C CLAIM AMOUNT 
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CALL GAS4(R) 
Y2 = --ALOG(R)/ALPHA 
ICOUNT = ICOUNT + 1 

C CALCULATE RESULTING RISK RESERVE AND REGIS- 
C TER RUIN 

RR = RR + (T2*AMBDLA*(1.0 + ETA)/ALPHA) -- Y2 
IF (RR.LT.0.0) IRUIN = IRUIN +I 
IF(RR.LT.0.0) GO TO 250 
GO TO 300 

C IF SUM OF INTERCLAIM PERIODS EXCEEDS T 0R IF 
C RISK RESERVE NEGATIVE RECORD FREQUENCY OF 
C RUIN AND START ANOTHER BUSINESS 

250 IREPS = IREPS + 1 
ICOUNT = 0 
ST = 0.0 
RR = RR0 

C IF NUMBER OF ITERATIONS EQUALS N STOP 

IF (IREPS.EQ.N) GO TO 350 
G0 T0 100 

C OTHERWISE THE BUSINESS CONTINUES AND 
C ANOTHER CLAIM IS AWAITED 

300 IF ((ICOUNT/2)*2.NE.ICOUNT) GO TO IS0 
GO TO 100 

C RECORD RESULTS AND PRINT-0UT 

350 RELFRQ = FLOAT(IRUIN)/FLOAT(N) 
WRITE (6,400) RELFRQ 

400 FORMAT(1H1,20X,'RELATIVE FREQUENCY OF RUIN IN 
I PERIOD T'/(8E15.6)) 

JOBN0 = JOBN0 + I 

IF (JOBN0.EQ.JOBS) GO TO 500 
GO TO 10 

500 STOP 
END 





DISCUSSION OF PRECEDING PAPER 

JOHN A. BEEY._~AN: 

Professor Seal is to be congratulated on a fine contribution to the 
literature of collective risk theory and simulation theory. His techniques 
should be extremely useful in approximating ruin functions for short-time 
periods. 

I feel it appropriate to make a few comments on some of the mathemat- 
ical papers devoted to risk theory. In addition to creating and analyzing 
models for a risk business, they at times derived useful formulas which 
are very inexpensive to apply. Thus, in some cases, they produced for- 
mulas the application of which would take several hours of desk calcula- 
tions as opposed to several hours of expensive computer time. 

Let me illustrate from my own experience. Although some of the 
derivations in my TSA papers were a little involved, some of the results 
can be easily applied. Thus the approximation of the long-term ruin func- 
tion 

= r ) ,  

where ¢(u, T) is equal to v(u, T) in Dr. Seal's notation by a function of 
the incomplete gamma function (see my paper [TSA, Vol. XXI] and the 
forthcoming discussion by Professor Newton Bowers), can be performed 
by anybody with a knowledge of undergraduate statistics. Furthermore, 
in the examples considered, it has proved very accurate and superior to 
the classical 1926 Lundberg approximation. As evidence of this, let me 
recapitulate the four examples in my paper and my review of the dis- 
cussions. 

EXAm'LE 1: P(x) = 1 -- e-~(x ~ 0). As pointed out in Mr. Bowers' 
discussion of my paper, the approximation gives the exact answer. 

EXAMPLES 2 AND 3. In these two examples the approximate values of 
~(u) computed by the method developed in that paper and discussion 
differ by only a small amount from the Lundberg approximation, as more 
correctly stated in my review of the discussions. Incidentally, the use of 
my form of the approximation rather than Bowers' form in the figures is 
not significant because of the large u values. In fact, the differences would 
have been smaller if Bowers' formula had been used. 

EXAMPLE 4. Fire insurance distribution from Cram~r (referenced in 
my review of the discussions of the paper). My review points out a sig- 
nificant improvement in the Beekman-Bowers approximation over the 

587 
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Lundberg approximation and, moreover, errors less than 3 per cent for a 
wide range of initial capital values, as compared with the exact values 
computed from an integral equation. 

This is not to suggest that my and Professor Bowers' formula for ~k(u) 
should be used to approximate ~k(u, T). The differences can be significant 
for small T's. Thus the values of if(u) comparable to Table 1 of Professor 
Seal's paper are shown in the following tabulation: 

RUIN PROBABILITIES: ~(X) 

0 5 10 

0.00 . . . . . .  1.000 1.000 1.000 
.05 . . . . .  0.952 0.749 0.591 

0.10. 0.909 0.576 0.366 

I believe that line 1 of the tabulation can be dismissed, because it has 
no practical significance. Furthermore, I believe that Dr. Seal's number 
of expected claims of only 20 is much too low for insurance companies 
and even low for self-insured employee fringe benefits. For this and other 
reasons given below, it would be very interesting to see (for ~ = 0.05 or 
0.10) values of ~b(x, T ) f o r  x = 0, 5, 10, and T = 40, 60, 80, 100. As 
Professor Seal points out, this distribution of claims [P(x) = 1 -- e-C], 
where x >_ 0, "underestimates the probability of claims that are several 
times the mean claim." Therefore the approach of ~(u, T) to ¢/(u) as T 
becomes larger probably is slower than it would be in a more realistic case. 
Nevertheless, the calculations proposed would yield very interesting 
results, I feel. Considerable theoretical work on this problem has been 
done, as can be judged from pages 291-95 of C. O. Segerdahl's paper, "A 
Survey of Results in the Collective Theory of Risk. ''1 A practical study 
of the type proposed would appear to be a worthy complement to the 
theoretical work. A graph showing the approach of ~b(u, T) to ~(u) as T 
gets larger would be very interesting. 

My main concern with simulation is its cost. A few thoughts about its 
potential errors, however, are in order for the unwary. You m u s t  be care- 
ful, as Dr. Seal was, to perform enough trials that  your estimated standard 
error is small. You must also realize, as Dr. Seal does, that there is a posi- 
tive probability that  the true but unknown ruin probability will fall out- 

I Ulf Grenander (ed.), Probability and Statistics, Harold Cram~r volume. 
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side any confidence band. Thus there is a 1 per cent chance that the true 
value will fall outside the band [Estimate --2.58 (Standard Error); 
Estimate -{-2.58 (Standard Error)]. This is different from numerically 
approximating an analytic expression for ~k(u, T), such as is given for 
Dr. Seal's Example 1 in formula (2) (page 295 of the Segerdahl paper). 
The error analysis of such an expression could be phrased as follows: 
There is a 100 per cent chance that the error is less than so and so. The 
reader might wish to consult page 72 of my 1966 Skandinavisk Aktu- 
arietidskrift paper for such an approximation. I must admit, however, 
that error analysis of analytic approximations may be difficult. Thus I 
am unable to give an error bound on my approximation of 6(u). I do feel, 
though, that it is quite accurate and have previously referred to four ex- 
amples in that regard. 

I am currently doing research on approximating ~(u, T), the finite 
time ruin function, in a fashion similar to that for ~(u). If successful, it 
would be considerably cheaper than simulation, as it would involve only 
a few desk calculations. 

Aside from the cost aspect, I am a firm believer in computer solutions. 
I have done considerable work in approximating differential equations by 
difference schemes on a computer. 

I hope that Professor Seal's excellent paper helps to spur the greater 
application of collective risk techniques. 

(AUTHOR'S REVIEW OF DISCUSSION) 

HILARY L. SEAL: 

In answer to Professor Beekman's criticism, I should explain why I 
calculated the probability of ruin for this little casualty company over 20 
time intervals. 

In the first place, I take an interval of time as being the average time 
required to have a claim. It is odd that actuarial mathematics of the 
theory of ruin is identical with the mathematics developed by telephone 
engineers to find the length of time one must wait for the line to be con- 
nected. In telephone practice, time is measured in units equal to the 
average time between calls coming into the telephone exchange. This is 
analogous to our own measure of time as the average time required for a 
claim. 

Why, then, did I use only 20 time intervals as the period over which to 
calculate the probability of ruin of a casualty insurance company? There 
were two reasons: (I) If you are going to go broke, you are going to go 
broke quickly! In other words, suppose that the probability of eventual 



590 SIMULATION OF RUIN POTENTIAL OF NONLIFE COMPANIES 

ruin is, say, I in 100 but that the probability of being ruined before you 
have 20 claims is 80 per cent. The forever probability is useless in view of 
the latter. (2) To say that the number of 20 time intervals is small is a 
relative matter. Suppose the 20 claims happen to be 20 Boeings that have 
just been insured. These 20 claims would be crucial to company manage- 
ment. 

Finally, I would like to say that I think Professor Beekman's idea of 
calculating the probability of ruin over increasingly larger intervals of 
time is excellent. These probabilities would show very clearly how quickly 
asymptotic theory takes over. (Telephone engineers call this theory 
"steady state" theory.) I think it is a very good idea to see at what point 
the two types of probabilities do link up. 

I only drew one set of random numbers for all the companies, so that 
the same claim experience would operate in the different rate-making 
circumstances. I assumed that every company started in business with 
sufficient capital and surplus that it should be ruined in its first yea r with 
a probability of I in 1,000. 


