TRANSACTIONS OF SOCIETY OF ACTUARIES 1971 VOL. 23 PT. 1 NO. 67

THE 1971 GROUP ANNUITY MORTALITY TABLE

HAROLD R. GREENLEE, JR., AND ALFONSO D. KEH

ABSTRACT

The Joint Actuarial Committee of the ALC-LIAA has been considering the steps necessary to obtain relief from the annual statement surplus strain caused by new group and individual annuity business. The strain results from the low purchase rates available for new business, a result of recent and apparently continuing high rates of interest relative to the maximum rate of interest permitted for determining minimum annual statement reserves.

The committee decided that, in addition to considering possible interest rate changes for valuation purposes, there should be an investigation of recent group and individual annuitant mortality. This paper reports the results of the investigation of recent group annuitant mortality.

As a result of the investigation, new group annuity mortality tables have been prepared for both males and females. Also, two new projection scales, Projection Scales D and E, have been prepared for males, and one new projection scale, Projection Scale D, has been prepared for females.

The paper concludes that, if a new mortality table is adopted for valuation purposes, a substantial increase in the maximum rate of interest would be needed to obtain any appreciable relief. It also concludes that, if the male table is used for female lives, the appropriate uniform age setback is six years.

INTRODUCTION

URRENT high interest rates have enabled insurance companies to establish very attractive purchase rates for single-sum group and individual annuity contracts. It appears that relatively high rates of interest may be available for some time to come. The new annuity business that companies have been able to attract because of the favorable purchase rates has been welcome but has caused some problems. Perhaps the greatest single difficulty faced by all companies is the surplus strain which results from the establishment of minimum legal reserves. In 1971 the amount of surplus strain can be about 40 per cent of the considerations received on some classes of business. Naturally, companies

570 THE 1971 GROUP ANNUITY MORTALITY TABLE

would like to know whether the minimum valuation standard can be relaxed.

Although the obvious way to obtain immediate relief is to raise the maximum statutory valuation interest rate, the Joint Actuarial Committee of the American Life Convention and the Life Insurance Association of America concluded that a reinvestigation of annuitant mortality experience would be an appropriate part of any study of minimum valuation standards. Accordingly, the Subcommittee on Statutory Interest Rates—Annuities was further subdivided into a group annuity section and an individual annuity section. This paper reports the results of the group annuity mortality investigation.

The paper introduces a new group annuity mortality table for 1971, together with new mortality improvement projection scales. The new table is specifically intended to be used for valuation purposes. It is a table based on the estimated mortality rates experienced by persons at all ages in calendar year 1971—that is, a static mortality table—and it includes some margin.

GROUP ANNUITY TABLE FOR 1951

The publication of the Group Annuity Table for 1951,¹ Ga-1951, introduced the device of mortality projection scales to the pension world. Although the fact that annuitant mortality was steadily improving had long been recognized by actuaries, Mr. Peterson was the first to recommend an explicit means of recognizing this improvement on a continuing basis for group annuity business.

In the years since its publication, the Ga-1951 Table has become the valuation standard for most companies in the group annuity business and is so designated for new business in the Standard Valuation Law. For valuation purposes some companies are using the Ga-1951 Table unprojected; other companies are using the Ga-1951 Table projected to the year of valuation and fully projected thereafter by Projection Scale C—that is, a generation mortality system. A different method of approximating a generation mortality system is also in use. Age ratings for each year or group of years of birth are applied to a mortality table deemed appropriate for a single year of birth. This practice avoids the need for calculating new tables each year.

NEED FOR A NEW TABLE

The group annuity mortality experience published in the annual *Reports* number of the *Transactions of the Society of Actuaries* is sub-¹TSA, IV, 246. divided into three major classes of experience: (1) retirement on or after normal retirement date, (2) retirement prior to normal retirement date, and (3) retirement under a plan having no stated retirement date. The investigation of a need for a new mortality table was based primarily on the "retirement on or after normal retirement date" experience, since this group is both the largest and the most homogeneous of the three. Table 1 shows the ratio of actual to expected mortality based on the Ga-1951 Table, without projection, over four time intervals.

	ТΑ	BLE	1
--	----	-----	---

COMPARISO	ON WITH Ga-1	951 WITHOUT I	ROJECTION*	
Attained Age	1951-55	1956-60	1961-65	1964-68
	Males			
60 and under	158.4% 115.9 108.0 108.0 140.2 99.0 108.4 157.2 78.3 107.8% 107.2	125.0% 109.3 101.1 103.6 101.2 101.4 104.9 108.2 62.8 102.7% 102.5	115.8% 100.3 100.9 100.7 100.2 101.2 97.4 89.6 78.4 100.5% 100.5	127.4% 102.7 99.0 100.0 96.1 97.6 97.2 99.7 74.0 98.7% 98.7
	Females			
60 and under	84.1% 92.1 97.8 94.0 122.0 138.6 112.4 ‡	80.8% 84.7 86.4 87.8 119.8 113.7 123.3 121.3 ‡	102.2% 81.5 84.8 87.7 99.4 113.4 113.0 143.6 ‡	115.1% 68.7 76.1 83.9 96.2 102.1 116.9 140.4 91.0
All ages	102.6% 104.1	94.1% 96.4	91.2% 92.0	85.7% 85.7

Group Annuity Mortality Ratios by Amount of Annuity Income Retirement on or after Normal Retirement Date Comparison with Ga-1951 without Projection*

* Male table set back five years for females.

† Based on 1968 distribution of annuity income by age.

‡ Less than ten deaths-actual or expected.

THE 1971 GROUP ANNUITY MORTALITY TABLE

Since publication of the Ga-1951 Table, pension mortality rates have continued their steady decline. For both males and females there have been substantial decreases, 9 per cent and 17 per cent, respectively, in the aggregate ratios over the period 1951-55 to 1964-68 after allowance is made for the effect of underreporting of exposures and deaths in 1968. The mortality margin contained in the Ga-1951 has virtually disappeared at the significant ages. It should be noted that the substantial drop in mortality ratios between the 1951-55 and 1956-60 periods was caused in part by the establishment of the separate category "retirement under a

TA	BL	E	2
----	----	---	---

Age Group	1953	1958	1963	1968	
	Males				
70 and under Over 70	67.1% 32.9	66.4% 33.6	59.9% 40.1	52.4% 47.6	
-	Females				
70 and under Over 70	76.1% 23.9	74.3% 25.7	69.9% 30.1	64.8% 35.2	

DISTRIBUTION OF AMOUNT OF ANNUITY INCOME RETIREMENT ON OR AFTER NORMAL RETIREMENT DATE

plan having no stated retirement date" after 1955; previously these data had been included with the "retirement on or after normal retirement date" data.

It is interesting to note, too, that the distribution of amounts of annuity income in force has been shifting gradually to higher ages. Table 2 shows the shift between ages 70 and under and ages over 70. This gradual shift has contributed to the decrease in aggregate mortality ratios shown for males in Table 1.

Table 3 compares with Projection Scale C the rates of mortality improvement from the period 1956-50 to 1963-1967. Projection Scale C overstates the male rate of mortality improvement substantially at the younger ages and understates it at higher ages. For females the pattern is not so clear, but Scale C does understate the rate of mortality improvement for the high age groups.

Table 4 shows ratios of actual to expected mortality for 1967 and 1968

Age	Mortality Ratio 1956–60 (1)	Mortality Ratio 1963–67 (2)	(2)÷(1) (3)	Rate of Improvement 100%×[1-(3) ^{1/7}] (4)	Projection Scale C (5)
			Males		•
60 and under 61-65 66-70 71-75 76-80 81-85 86-90	125.0% 109.3 101.1 103.6 101.2 101.4 104.9	127.0% 104.7 99.8 101.3 98.9 98.2 98.4	1.0160 0.9579 0.9871 0.9778 0.9773 0.9684 0.9380	$\begin{array}{r} -0.23\% \\ +0.61 \\ +0.18 \\ +0.32 \\ +0.33 \\ +0.46 \\ +0.91 \end{array}$	1.25% 1.25 1.25 1.10 0.80 0.47 0.13
		··· · · · · · · · · · · · · · · · · ·	Females		
60 and under 61–65 66–70 71–75 76–80 81–85 86–90	80.8% 84.7 86.4 87.8 119.8 113.7 123.3	119.1% 73.2 80.3 85.4 97.9 107.5 117.9	$\begin{array}{c} 1.4740\\ 0.8642\\ 0.9294\\ 0.9727\\ 0.8172\\ 0.9455\\ 0.9562\end{array}$	$\begin{array}{r} -5.70\% \\ +2.06 \\ +1.04 \\ +0.39 \\ +2.84 \\ +0.80 \\ +0.64 \end{array}$	1.25% 1.25 1.25 1.10 0.80 0.47 0.13

RATES OF MORTALITY IMPROVEMENT BASED ON AMOUNT OF ANNUAL INCOME RETIREMENT ON OR AFTER NORMAL RETIREMENT DATE

TABLE 4

RATIO OF ACTUAL TO EXPECTED MORTALITY BASED ON Ga-1951 PROJECTED BY PROJECTION SCALE C (Percentages Based on Amount of Annual Income)

Age	1967	1968	Age	1967	1968
	M	ales		Fem	ales
56-60	147.5% 143.1 118.2 120.2 110.4 102.3 108.4 94.0 58.5	154.5% 118.6 118.7 116.4 102.5 105.3 91.6 89.0 59.7	56–60 61–65 66–70 71–75 76–80 81–85 86 and over	170.0% 138.1 112.1 129.5 139.6 101.9 115.0	133.8% 86.2 127.0 110.0 113.5 115.2 158.1

574 THE 1971 GROUP ANNUITY MORTALITY TABLE

(the most recent experience available), where the actual mortality is "on or after" experience and the expected mortality is based on the Ga-1951 Table projected to the appropriate year by Scale C. The results indicate that a possible alternative to constructing a new mortality table would have been to construct a new projection scale only. However, the decision was that a new table and a new projection scale together could better reflect both the mortality changes which have occurred since the introduction of the Ga-1951 Table and the current mortality trends.

CONSTRUCTION OF THE 1971 TABLE (1971 GROUP ANNUITY MORTALITY) Data

The intercompany experience by amount of annual income for the most recent five-calendar-year group available, 1964-68, was selected as the source of retired life data. Since the "retirement on or after normal retirement date" data not only were the most extensive and the most homogeneous but also exhibited the lowest mortality rates, these data were deemed suitable for developing a valuation mortality table.

As various types of deposit administration contracts have come to dominate the funding of retirement benefits for active lives, deferred group annuity business has steadily declined. Thus the most logical source of active life data upon which to base a group annuity valuation mortality table is drying up. At first, group insurance mortality data seemed to be a likely source of data; however, the data can be split by sex only on an estimated basis. As an alternative, data were obtained on four large deferred group annuity contracts and on one large municipal employee group, excluding persons engaged in hazardous occupations. The data were available by number of lives, and a large portion only by five-year attained age groups. The average exposure year for the data turned out to be 1967. Table 5 summarizes the active life data used in developing the 1971 Group Annuity Mortality (GAM) Table.

Projection Scales D and E

Work on Projection Scale D was performed while the mortality data were being collected and analyzed. Projection Scale E for males was developed later. Since Projection Scale D was used in graduating the data, a discussion of the scales is appropriate at this point.

Projection Scale D was developed after examination of the changes in "on and after" retired life mortality between the periods 1956-60 and 1964-68. Although the work presented in this paper is based on Scale D, the data for males suggest that an even flatter scale could be used to estimate future mortality improvement. Projection Scale E for males is one such scale. Suitable age ratings of the unprojected 1971 GAM Table might produce results closely approximating results of the 1971 GAM Table projected by Scale E. The authors have not investigated this possibility.

Table 6 presents the two projection scales. As is evident, the annual rate of mortality improvement does not present a uniform pattern by increasing age. The value for males at the young ages was chosen after examining the rates of improvement shown in Tables 3 and 6 at ages

Age	Exposure	Deaths	Age	Exposure	Deaths
	Males	3		Female	25
Under 25 25–29 30–34 40–44 45–49 50–54 55–59 60–64	107,097.5 155,184.5 141,317.5 152,365.5 168,001.0 163,797.0 144,332.5 122,768.5 77,569.0	125 123 137 254 408 679 1,010 1,389 1,161	Under 25 25-29 30-34 35-39 40-44 55-54 55-59 60-64	113,763.0 58,201.0 40,282.0 42,748.0 52,191.0 59,887.0 55,861.0 45,593.0 23,548.0	34 31 39 58 74 139 174 208 150
Total	1,232,433.0	5,286	Total	492,074.0	907

TABLE 5 ACTIVE LIFE DATA BASED ON LIVES

61-65. The authors noted that the underreporting of 1968 experience may have caused the annual rates of improvement in Table 6 to be slightly higher than they otherwise might have been. The high experience rates of male retired life mortality at most ages under 60 appeared to be unreasonable, especially when compared with the experience rates at higher ages. Consequently, limited credence was given the annual rate of mortality improvement derived for ages 60 and under when the Projection Scale D and Projection Scale E mortality improvement factors were chosen. The values for females at the younger ages were selected somewhat arbitrarily after considering the rates of improvement shown in Tables 3 and 6 for ages under 66, weighted by 1966 intercompany group annuity income exposed for females at those ages. In view of the apparent improvement in mortality at high ages, Scale D allows for mortality improvement at some higher ages than in Scale C. Scale E provides for substantially more mortality improvement at the higher ages, and less improvement at ages 64-75, than does Scale D.

TABLE 6
ANNUAL CHANGES IN RETIRED LIFE MORTALITY
BETWEEN 1956-60 AND 1964-68

Age	Mortality Ratio (1964–68)÷ Mortality Ratio (1956–60)	Annual Rate of Mortality Improvement	Projection Scale D (Applicable to Central Age of Age Group)
		Males	·•
60 and under 61-65 66-70 71-75 76-80 81-85 86-90	1.0192 0.9396 0.9792 0.9653 0.9496 0.9625 0.9266	$\begin{array}{r} -0.24\% \\ +0.77 \\ +0.26 \\ +0.44 \\ +0.64 \\ +0.48 \\ +0.95 \end{array}$	0.65% 0.65 0.60 0.50 0.40 0.30 0.20
		Females	<u>.</u>
60 and under 61–65 66–70 71–75 76–80 81–85 86–90	1.4245 0.8111 0.8808 0.9556 0.8030 0.8980 0.9481	$\begin{array}{r} -4.52\% \\ +2.58 \\ +1.57 \\ +0.57 \\ +2.70 \\ +1.34 \\ +0.66 \end{array}$	$ \begin{array}{c} 1.30\% \\ 1.30 \\ 1.25 \\ 1.15 \\ 1.00 \\ 0.80 \\ 0.50 \\ \end{array} $

PROJECTION SCALE E: MALES

Age	Scale E	Age	Scale E
5-63 64 65 66 67 68-92 93. 94 95. 96 97	$\begin{array}{c} 0.65\% \\ 0.61 \\ 0.57 \\ 0.53 \\ 0.49 \\ 0.45 \\ 0.42 \\ 0.39 \\ 0.36 \\ 0.33 \\ 0.30 \end{array}$	98	$\begin{array}{c} 0.27\% \\ 0.24 \\ 0.21 \\ 0.18 \\ 0.15 \\ 0.12 \\ 0.09 \\ 0.06 \\ 0.03 \\ 0 \end{array}$
		- 11 - 1	

Although the rate of decrease of group annuitant mortality rates in the aggregate has been higher than among lives retiring on or after their normal retirement dates, there is no reason to assume that the mortality rates for the total group would ever drop below the rates for the group retiring on or after normal retirement age. As "aggregate" mortality rates approach the "on or after" rates, the corresponding rates of decrease also should draw closer together. Nevertheless, calculations were performed (not illustrated herein) on the assumption that recent rates of decrease in "aggregate" mortality rates could continue indefinitely and so drop below the "on or after" rates. At the most significant ages, and for all ages combined, the crossover point would be after 1991.

Graduation

Several preliminary graduations were performed. One major difficulty with these graduations was that of bridging the very significant discontinuity between active and retired life mortality experience. The male retired life crude mortality rates at many ages under 65 are very high. In all likelihood not any of the retired life data below age 65 are pure "on or after" data; some poor-health early retirements are probably included too.

The next step, after the failure to produce a satisfactory merger of the active and retired life preliminary graduations, was to apply the Scale D rates of mortality decrease to the Ga-1951 Table mortality rates. For males the results for retired lives were not consistent with the actual experience rates; however, this technique provided reasonably good results in the aggregate for active male lives. For females the results were remarkably consistent with the crude rates, especially for retired lives. Therefore, the 15-year projection of the Ga-1951 female table by means of Scale D produced the graduated 1966 female experience table.

The graduated 1966 male experience table was obtained by calculating ratios of the crude mortality rates to Ga-1951 rates for ages 60–92. Since, below age 65, the Ga-1951 rates projected 16 years by Scale D were reasonably consistent with aggregate active life data, at ages below 60 the ratios were determined as $[1 - (\text{Scale D})]^{15}$. Ratios above age 92, except 110, were taken as $[1 - (\text{Scale D})]^{15}$. Ratios above age 92, except 110, were taken as $[1 - (\text{Scale D})]^{15}$, using the age 88 Scale D factor. The ratios were graduated by a nine-factor linear compound, minimum smoothing coefficient formula to produce adjusted ratios from age 55 to age 97. When the resulting mortality rates were examined, it was discovered that the formula had lived up to its name: negative second differences appeared at ages 70, 71, 78, 82–84, and 88–90. The mortality

577

rates produced by the preliminary graduations had negative second differences at ages 69–71. Ray Peterson discussed a similar phenomenon in his paper "Group Annuity Mortality."² Consequently, the ratios at ages 56, 57, 80, 83–92, 95, and 96 were adjusted. The adjustments were arbitrary but were selected to make the adjusted ratios more consistent with the apparent general pattern. After adjustment, the resulting fit was only very slightly worse, and the negative second differences had been eliminated at all ages except 70 and 71. The adjusted ratios were then applied to the Ga-1951 male mortality rates to obtain the graduated 1966 male experience table. Table 7 shows retired life crude mortality rates and ratios of actual deaths to expected deaths calculated on the basis of the graduated 1966 experience tables.

Derivation of the 1971 GAM Table from the 1966 Experience Table Margin

To determine the appropriate margins, the standard deviations of crude mortality rates, by lives, were computed. Table 8 shows the results. Two standard deviations correspond to a 97.7 per cent level of confidence on a one-tail normal curve. Table 8 shows that, theoretically, the margin should vary by age, since both the mortality rates and the exposures affect the standard deviation. However, a uniform percentage is more practical. A suitable margin for males was deemed to be an 8 per cent reduction; a 10 per cent reduction was chosen for female rates.

Underreporting of 1968 Exposures and Deaths

Intercompany mortality data are adjusted each year for errors and late reported deaths by any of the contributing companies. Although the major differences generally have been reported the year after a given year's experience is initially reported, there are subsequent adjustments. The effect of the adjustments has always been to increase the crude mortality rates. The reporting procedures being adopted for 1969 and later should reduce the magnitude of these subsequent adjustments; however, 1968 data were reported according to the old procedures. An analysis of the differences for the period 1956–60 as originally published, and as shown in the 1969 *Reports*, indicated that the crude rates should be increased by approximately 1 per cent to adjust for underreporting. An adjustment of about this magnitude was also indicated by information obtained concerning 1968 underreporting. The 1 per cent increase in mortality rates was introduced by reducing the 8 per cent and 10 per cent margins to 7 per cent and 9 per cent, respectively.

² TSA, IV, 292.

1964-68 EXPERIENCE BY AMOUNT OF ANNUAL INCOME RETIREMENT ON OR AFTER NORMAL RETIREMENT DATE MALES

1966 Expected Actual+ Crude Data Experience Actual Age 1,000 gx Table Deaths Deaths Expected 1,000 az \$ 0.936 55.... 8.860 9.464 S 9,806 9,180 56..... 18.254 10.289) 26.972 11.152 57 28.701 12.097 176,874 242,338 1.370 58..... 59.... 12.199 13.247 60.... 14.782 14.574 19.059 16.04161 17.622 19.344 21.302 20.329 62 24.074 1.064 63 3,901,543 4,151,285 27.176 64 23.594 23.674 65 26.268 66.... 26.226 67 29.122 29.176 20,077,039 20,141,205 1.003 68.... 32.009 32.344 69..... 35.906 35.576 41.243 39.929 70.... 71.... 42.987 44.200 49.498 48.370 72 73 52.359 21,246,427 21,179,928 0.997 51.602 74.... 56.817 56.418 75.... 60.634 60.841 76.... 65.840 66.029 77.... 71.726 72.394 0.998 78.... 80.860 79.639 14,201,132 14,166,444 79.... 87.431 87.337 93.847 80.... 95.723 105.470 81.... 104.392 113.297 82 108.251 83 123.831 122.583 6,917,697 7,017,610 1.014 145.406 145.934 132.071 141.727 84..... 85.... 151.124 151.612 86.... 87..... 159.357 161.678 1.004 88..... 160.919 172.130 2,211,517 2,219,441 89.... 177.122 183.049 90.... 237.124 194.510 91 179.615 206.267 92.... 227.073 218.167 289.466 230.166 540,002 555,641 1.029 93 94 282.568 244.562 95.... 244.319 260.096 96.... 450.883 276.040 97.... 137.760 293.282 92,912 0.832 98.... 160.798 312.003 111.677 332.393 99.... 143.285 100 251.896 354.650 176.969 101.... 378.984 405.613 102 0 72.544 436.780 19,739 7,313 0.370 103 474.728 521.701 104.... 0 269.939 105 579,939) 106.... 0 3,273 2.4990.764892.819 107.... 651.687 \$69,776,616 1.005

\$69,406,928

.

Total.

TABLE 7-	—Continued
----------	------------

Age	Crude Data 1.000 q_x	1966 Experience Table 1,000 g _x	Expected Deaths	Actual Deaths	Actual÷ Expected
55	14.421	3.820	\$ 2,500	\$ 9,437	3.775
56 57 58 59 60	4.259 10.614 8.274 9.452 11.327	4.193 4.632 5.148 5.750 6.440	61,604	106,128	1.723
61	8.015 6.869 8.050 12.261 11.004	7.222 8.093 9.048 10.094 11.208	458,302	462,338	1.009
66. . 67. . 68. . 69. . 70. .	11.197 14.807 15.933 16.326 19.847	12.376 13.607 15.069 16.905 19.243	1,206,051	1,217,307	1 .009
71 72 73 74 75	19.270 23.881 29.346 32.441 38.673	22.167 25.537 29.239 33.286 37.592	1,264,815	1,216,489	0.962
76 77 78 79 80	39.056 46.101 47.298 66.468 60.969	42.198 47.181 52.544 58.371 64.547	948,948	923,563	0.973
81 82 83 84 85	73.817 80.169 90.246 74.695 111.976	71.042 77.871 85.053 92.950 101.400	488,966	494,335	1.011
86 87 88 89 90	123.262 139.912 118.236 190.160 215.525	110,491 120,311 130,962 142,552 155,209	179,091	206,975	1.156
91 92 93 94 95	206.800 288.687 133.470 380.237 195.782	168.829 183.780 200.237 218.391 238.457	54,426	68,567	1.260
96 97 98 99 100	251.581 123.688 464.185 331.377 31.167	260.667 283.581 307.953 334.812 364.429	12,216	10,120	0.828
101 102 103 104	116.618 0 492.659 0	397.100 433.150 472.930 518.156	3,580	782	0.218
Total	•••••	•••••	\$4,680,499	\$4,716,041	1.008

Projection to 1971

The Scale D factors were used to project the mortality rates from 1966 to 1971. The following formulas were used to convert the graduated 1966 rates to 1971 GAM tabular rates.

For males:

1971
$$q_x = [1 - (\text{Scale D})]^5 (0.93)(1966 q_x)$$
.

For females:

1971 $q_x = [1 - (\text{Scale D})]^{5}(0.91)(1966 q_x)$.

1971 GROUP ANNUITY MORTALITY TABLE

Table 9 summarizes and compares the sources and methods of constructing the Ga-1951 and 1971 GAM tables. Table 10 shows Ga-1951 Table, 1966 graduated experience table, and 1971 GAM Table mortality probabilities, and Projection Scale D improvement factors. Tables 11-16

Age x	Crude <i>qx</i> (1)	Number of Lives (n _z) (2)	$\sigma_x = \sqrt{p_x q_x / n_x}$ (3)	$(2\sigma_x/q_x)$ ×100% (4)
		Mal	es	
63	0.028746 0.034494 0.055795 0.085962 0.125671 0.179646	6,087.79 106,742.12 83,161.14 44,356.71 16,089.64 3,384.43	0.002142 0.000559 0.000796 0.001331 0.002613 0.006599	14.9% 3.2 2.8 3.1 4.2 7.3 4.5%
		Fema	les	
63	0.009276 0.017242 0.028449 0.048383 0.088725 0.148683	9,486.81 28,476.50 18,875.62 8,949.35 2,806.41 578.41	0.000984 0.000771 0.001210 0.002268 0.005368 0.014793	21.2% 8.9 8.5 9.4 12.1 19.9 12.0%

TABLE 8

STANDARD DEVIATION OF CRUDE MORTALITY RATES BASED ON LIVES

* Weighted by annual income exposed in the five-year age group to which the indicated age is central.

582 THE 1971 GROUP ANNUITY MORTALITY TABLE

provide commutation functions at several rates of interest for the unprojected 1971 GAM Table.

Table 17 shows male annuity values on several mortality bases at several rates of interest. The relationships are about as one would expect considering the reduction of mortality rates since 1951 and the overstatement at the younger ages and understatement at older ages of the Scale C mortality improvement rates.

Although a minimum valuation standard should be based on the unprojected 1971 GAM Table, actuaries undoubtedly will wish to make use of projection factors or generation mortality techniques in valuing some

		G <i>a</i> -1951	1971 GAM
1. Active life	e data	Used <i>a</i> -1949 Table	Experience by lives on four large deferred annuity groups and one large mu- nicipal employee group used for reference when adjusting G_{d-1951} Table
2. Retired lif	fe data .	1946-50 Intercompany group annuity experience for re- tirements on and after nor- mal retirement date, ad- justed for retirements prior to normal retirement date, by lives	1964-68 Intercompany group annuity experience for re- tirements on and after nor- mal retirement date, by amount of annual income
3. Graduatic method	on 	Retired lives: Whittaker-Hen- derson Type B formula, with smoothness represented by a function constraining first differences toward a geomet- ric series; active lives: used <i>a</i> -1949 Table	Males: for retired lives a nine- factor linear compound, minimum smoothing coeffi- cient formula was used, and Scale D applied to Ga -1951 Table was used at low and high ages; females: Scale D applied to Ga -1951 Table used at all ages
4. Projection basic tab	of ble	Retired lives: 1948 Experience table projected three years by Projection Scale B; active lives: <i>a</i> -1949 Table projected one year by Projection Scale B	1966 Experience table pro- jected 5 years by Scale D
5. Margin		Male rates reduced 10 per cent; female rates reduced 12 ¹ / ₂ per cent	Male rates reduced 8 per cent; female rates reduced 10 per cent; rates then increased 1 per cent to adjust for un- derreporting of data
6. Projection	n scales.	B and C	Males: D and E; females: D

TABLE 9

COMPARISON OF CONSTRUCTION OF Ga-1951 AND 1971 GAM TABLES

PROBABILITY OF MORTALITY AND PROJECTION SCALE D

MALES

Age x	Ga-1951 _{qx}	1966 Experi- ence Table <i>q</i> _x	1971 GAM <i>q</i> z	Projec- tion Scale D	Age x	Ga-1951 9x	1966 Experi- ence Table q _x	1971 GAM <i>qx</i>	Projec- tion Scale D
5	.000559	.000507	.000456	.65%	61 62	.016866 .018353	.016041 .017622	.014440 .015863	.65% .65
7	.000494	.000448	.000403	.65	63	.020068	.019344	.017413	. 65
8	.000481	.000436	.000392	.65	04	.022067	.021302	.019185	.04
9	.000476	.000432	.000389	.65	05	.024418	.023394	.021200	.03
10	.000477	.000433	.000390	.65	66	.027193	.026226	.023643	. 62
11	.000486	.000441	000397	.65	67	.030112	.029176	.026316	.61
12	.000496	.000450	.000405	.65	68	.032986	.032344	.029188	.60
13	.000506	.000459	.000413	.65	09	.035943	.035900	.032433	. 38
14	.000517	. 000469	.000422	.65	10	.039303	.039929	.030100	. 30
15	.000530	.000481	.000433	.65	71	.043183	.044200	.040008	. 54
16	000544	000493	000444	65	72	.047476	.048370	.043827	. 52
17	000560	000508	000457	65	73	.052084	.052359	.047489	.50
18	.000577	.000523	.000471	.65	74	.057077	.056418	.051221	.48
19	.000595	.000540	.000486	.65	75	.062427	.060841	.055293	.40
20	.000616	.000559	.000503	.65	76	.068347	.066029	.060068	.44
21	000640	000500	000522	65	77	.075132	.072394	.065924	.42
22	.000040	.000360	.000522	.05	78	.082687	.079639	.072595	.40
23	000603	000004	000544	.03	79	. 090946	.087337	.079692	.38
24	.000724	.000657	000591	65	80	.099679	.095723	.087431	.36
25	.000758	.000687	.000619	.65	81	.108706	104392	095445	.34
26	000704	000700	000650		82	.117979	113297	103691	.32
20	.000790	.000722	.000050	.03	83	.127437	. 122583	.112303	.30
28	.000838	000700	000004	.05	84	.137073	. 132071	.121116	.28
20	.000885	000803	000722	.05	85	. 146852	. 141727	. 130102	. 26
30	000933	000000	008000	.05	86	156836	151612	130315	.24
24			.000007	.00	87	167120	161678	148714	.22
31	.001054	.000956	.000860	.65	88	.177787	172130	158486	.20
22	.001122	.001017	.000910	.03	89	.188919	.183049	.168709	.18
34	.001198	.001080	.000978	.05	90	. 200594	. 194510	.179452	.16
35	001201	.001102	001040	.03	01	212555	206267	100480	14
	.001574	.001240	.001122	.05	02	225161	218167	201681	.12
36	.001475	.001338	.001204	.65	03	238524	230166	212986	.10
37	.001587	.001439	.001295	.65	94	.252765	.244562	.226535	.08
38	.001/11	.001552	.001397	.05	95	.268025	.260096	.241164	.06
39	.001849	.001077	.001509	.03	06	204455	276040	256204	04
40	.002000	.001814	.001035	.05	90	. 204433	203282	272480	.02
41	.002192	.001988	.001789	.65	97	321515	312003	200163	0
42	.002450	.002222	.002000	.65	99	.342526	332303	309125	Ó
43	.002709	.002511	.002260	.65	100	.365462	.354650	329825	0
44	.003147	.002834	.002309	.05	101	200520	270004	250455	Λ
43	.003360	.003240	.002922	.05	101	.390338	.3/0904	377220	ŏ
46	.004065	.003686	.003318	.65	102	450006	436780	406205	ŏ
47	.004599	.004170	.003754	.65	104	489201	474728	441407	Ŏ
48	.005180	.004697	.004228	.65	105	. 537605	.521701	485182	0
49	.005807	.005200	.004/40	.05	104	507610	570020	520242	٥
30	.000475	.005872	.005285	.05	100	. 39/019	. 379939	. 339343	ŏ
51	.007187	.006517	.005867	.65	108	761772	730187	687444	ŏ
52	.007938	.007198	.006480	.65	109	870434	844683	785555	Ó
53	.008731	.007917	.007127	.65	110	.9999999	.9999990	.9999990	Ó
34	.009503	.008072	.00/806	.05					
33	.010430	.009404	.008519	.05			1		
56	.011346	.010289	.009262	.65				1	
57	.012298	.011152	.010039	.65					
58	.013302	.012097	.010889	.65					
39	014379	01/27/	.011924	.03					
00	.013333	.0143/4	.013119	.05					

TABLE 10-Continued

FEMALES

		1966		Projec-			1966		Projec-
Age	Ga-1951	Experi-	1971 GAM	tion	Age	G a-19 51	Experi-	1971. GAM	tion
x	qx.	ence	07.M	Scale	x	q_x	ence	07M	Scale
		Table q_x		D			Table q _x	14	D
5	.000335	.000275	.000234	1.30%	61	.008788	.007222	.006156	1.30%
6	.000275	. 000226	.000193	1.30	63	.009848	.008093	.000898	1.30
7	.000231	.000190	.000162	1.30	64	012264	010094	008608	1.30
8	.000204	.000168	.000143	1.30	65.	.013597	.011208	.009563	1.28
9	000191	.000157	.000134	1.30	66	014001	012276	010565	1 07
10	.000109	.000133	.000132	1.50	67	016457	012570	011621	1.27
11	.000205	.000168	.000143	1.30	68.	.018198	.015069	.012877	1.25
12	000222	.000182	.000155	1.30	69	.020354	.016905	.014461	1.23
13	000239	000190	.000107	1.30	70	.023098	.019243	016477	1.21
15	.000275	.000226	.000193	1.30	71	026527	.022167	.019000	1.19
10.1	000000		000000	1 20	72	.030468	.025537	021911	1.17
10	.000292	.000240	.000205	1.30	73	.034779	.029239	025112	1.15
1/	000311	.000230	.000218	1.30	74	.039413	.033286	.028632	1.12
10	000330	000271	000231	1.30	75	.044309	.037592	.032385	1.09
20	000371	.000200	.000240	1.30	76.	.049512	.042198	.036408	1.06
	000202	000202	000075	1 20	77.	.055108	.047181	.040769	1.03
21	000416	.000323	.000275	1.30	78	.061093	.052544	.045472	1.00
22	000410	.000342	000292	1.30	79	.067459	.058371	.050616	0.96
23	000467	000384	000327	1 30	80	.074146	.064547	.056085	0.92
25	.000495	.000407	.000347	1.30	81	.081114	.071042	.061853	0.88
24	000524	000422	000369	1 20	82	.088374	.077871	.067936	0.84
20	000524	.000432	000300	1.30	83	. 095943	.085053	.074351	0.80
27	000591	000437	000390	1.30	84	.103904	.092950	.081501	0.74
29	.000628	.000516	.000440	1.30	85	. 112328	. 101400	.089179	0.68
30.	.000669	.000550	.000469	1.30	86	. 121295	.110491	.097468	0.62
31	000712	000585	000400	1 30	87	. 130885	. 120311	. 106452	0.56
32	000760	000585	000533	1.30	88	.141188	.130962	.116226	0.50
33.	.000812	.000667	.000569	1.30	89	.152300	.142552	.126893	0.44
34.	.000868	.000713	.000608	1.30	90	. 104331	. 155209	.138577	0.38
35	. 000930	.000764	.000651	1.30	91	. 177144	.168829	. 151192	0.32
36	000997	000819	000698	1.30	92.	. 191099	. 183780	.165077	0.26
37.	.001071	.000880	.000750	1.30	93	206341	.200237	.180401	0.20
38	.001152	.000947	.000807	1.30	94.	241226	.218391	.19/349	0.14
39	.001240	.001019	.000869	1.30	93	. 241330	. 230437	. 210129	0.00
40	.001338	.001100	.000938	1.30	96	.261451	.260667	236970	0.02
41.	.001446	.001188	.001013	1.30	97	283581	.283581	.258059	0
42	.001563	.001284	.001094	1.30	98	224012	.30/933	.280237	ů N
43	.001694	.001392	.001186	1.30	100	364420	364420	331630	ŏ
44.	.001836	.001509	.001286	1.30	100.1	207400	207400	224224	Å
45	.001994	.001039	.001397	1.30	101	.39/100	.39/100	.301301	0
46	.002169	.001782	.001519	1.30	102	455150	433130	430366	ŏ
47	.002361	.001940	.001654	1.30	103	518156	518156	471522	ŏ
48	.002573	.002114	.001802	1.30	105.	.570545	.570545	519196	Ŏ
49	002809	.002308	.001907	1.30	106	621912	631913	574050	0
50	.003070	.002525	.002151	1.50	107	703676	703676	640345	ŏ
51	003319	.002727	.002324	1.30	108.	.787851	.787851	716944	ŏ
52.	003597	.002956	.002520	1.30	109.	886054	.886054	.806309	Ō
53 54	004257	003409	002138	1.30	110	. 999999	. 999999	. 99999 9	0
55	.004648	.003820	.002382	1.30]				
56	005100	004102	002574	1 20		1			
50	005627	004193	.003374	1 30					
57	.006265	.005148	.004388	1.30					
59.	.006997	.005750	.004901	1.30					
60.	.007837	.006440	.005489	1.30					
	1	•		<u> </u>	I	I	1	1	۰

,

1971 GAM COMMUTATION FUNCTIONS AT 31 PER CENT

MALES

Age	,		D	N	(12)
x	<i>L₂</i>	<i>u_x</i>	D_x	142	N _x
5	10,000.0000	4.5600	8,419.7318	223,383.7490	219,524.7054
6	9,995.4400	4.2381	8,131.2970	214,964.0172	211,237.1729
8	9,991.2019	3.9150	7.584.3767	198,979,7256	195.503.5531
9	9,983.2605	3.8835	7,325.0277	191,395.3489	188,038.0477
10	9,979.3770	3.8919	7,074.5684	184,070.3212	180,827.8109
11	9,975.4851	3.9003	6,832.0000	170,995.7529	173,804.1144
13	9,967.4863	4.1165	6.373.2524	163,564.0980	160,643.0241
14	9,963.3698	4.2046	6,155.1887	157,190.8456	154,369.7176
15	9,959.1652	4.3123	5,944.5326	151,035.6569	148,311.0796
10	9,954.8529	4.4200	5,741.0228 5 544 4102	145,091.1245	142,439.8223
18	9,945.8856	4.6845	5,354.4786	133,805.6823	131,351.5464
19	9,941.2011	4.8314	5,170.9726	128,451.2037	126,081.1746
20	9,936.3697	4.9980	4,993.6807	123,280.2310	120,991.4608
21	9,931.3717	5.1842	4,822.3833	113 464 1648	110,070.2904
23	9,920.7876	5.6151	4,496.9509	108,807.2873	106,746.1849
24	9,915.1725	5.8599	4,342.4209	104,310.3365	102,320.0603
25	9,909.3126	6.1339	4,193.0962	99,967.9156	98,046.0799
20	9,896,7417	6.7694	3,909,3345	99,774.8194	89.934.2483
28	9,889.9723	7.1406	3,774.5512	87,816.6920	86,086.6895
29	9,882.8317	7.5406	3,644.2763	84,042.1408	82,371.8476
30	9,875.2911	7.9891	3,518.3534 3,306,6252	80,397.8645	78,785.2859
32	9,858.8162	9.0307	3,278.9412	73,482.8859	71,980.0379
33	9,849.7855	9.6331	3,165.1572	70,203.9448	68,753.2478
34	9,840.1524	10.2928	3,055.1320	67,038.7876	65,638.5188
36	9,829.8390	11.0291	2,948.7308	61 034 9248	59 730 5913
37	9,807.0086	12.7001	2,746.2728	58,189.1061	56,930.3978
38	9,794.3085	13.6826	2,649.9675	55,442.8334	54,228.2650
39	9,780.6259	14.7590	2,556.7783	52,792.8659	51,621.0092
40	9,749,9193	17 4426	2,400.3895	47,769,4982	46.678.9919
42	9,732.4767	19.4650	2,294.7149	45,390.2117	44,338.4674
43	9,713.0117	21.9514	2,212.6817	43,095.4967	42,081.3510
44	9,691.0603	24 8903	2,133.0251	40,882.8151	39,905.1780
46	9,637,9194	31.9786	1.980.2830	36,694,1905	35,786,5609
47	9,605.9408	36.0607	1,906.9686	34,713.9075	33,839.8803
48	9,569.8801	40.4614	1,835.5650	32,806.9389	31,965.6383
49	9,529.4187	45.1095	1,705.9945	20 205 3704	28 427 0437
51	9,434.1250	55.3501	1,632.0891	27,507.1923	26,759.1515
52	9,378.7749	60.7744	1,567.6460	25,875.1032	25,156.5988
53	9,318.0005	66.4094	1,504.8190	24,307.4572	23,017.7485
55	9,179.3732	78,1991	1,383.8655	21.359.0689	20,724,7973
56	9,101.1741	84.2951	1,325.6776	19,975.2034	19,367.6012

TABLE 11-Continued

MALES—Continued

Age		 		N	(12)
x	4 x		D_x	IV ₂	N _x
57	0 016 8700	90 5204	1 268 9847	18 649 5258	18 067 0070
58	8 926 3586	97 1991	1 213 7637	17, 380, 5411	16 824 2328
59	8,829,1595	105.2789	1,159,9488	16.166.7775	15,635,1343
60	8,723,8806	114,4486	1.107.3600	15.006.8287	14,499,2887
61	8,609.4320	124.3202	1,055.8768	13,899.4688	13,415.5252
62	8,485.1118	134.5994	1,005.4396	12,843.5919	12,382.7655
63	8,350.5124	145.4074	956.0293	11,838.1524	11,399.9723
64	8,205.1050	157.4150	907.6154	10,882.1231	10,466.1327
65	8,047.6900	171.0939	860.0993	9,974.5077	9,580.2956
66	7,876.5961	186.2263	813.3465	9,114.4084	8,741.6246
67	7,690.3698	202.3798	767.2623	8,301.0619	7,949.4000
08	7,487.9900	218.5594	721.8078	7,533.7990	7,202.9710
09	7,209.4300	235.7840	622 0207	0,811.9918	D, 501.0803
70	6 770 6807	255.9509	580 4474	5, 502, 0170	5 221 8545
72	6 508 4470	285 2457	546 7203	4 012 5705	4 661 0862
73	6 223 2022	205 5337	505 0807	4 365 8412	4 134 3417
74	5 927 6685	303 6211	464 8343	3 860 7515	3 647 7025
75	5,624,0474	310.9705	426.1111	3.395.9172	3,200,6163
76	5.313.0769	319.1459	388.9373	2,969.8061	2,791.5432
77	4,993.9310	329.2199	353.2122	2,580.8688	2,418.9799
78	4,664.7111	338.6347	318.7701	2,227.6566	2,081.5536
79	4,326.0764	344.7537	285.6319	1,908.8864	1,777.9718
80	3,981.3227	348.0910	253.9800	1,623.2546	1,506.8471
81	3,633.2317	346.7738	223.9365	1,369.2746	1,266.6370
82	3,286.4579	340.7761	195.7129	1,145.3381	1,055.6363
83	2,945 0818	330.8089	109.48/2	949.0231	8/1.9435
84	2,014.8/29	310.7029	145.3033	624 7724	713.3121
86	1 000 1734	298.9900	123.4390	511 3334	463 7822
87	1 720 6586	255 8860	86 2740	407 5852	368 0426
88	1 464 7726	232 1460	70 9610	321.3103	288 7865
89	1,232,6266	207.9552	57.6953	250.3494	223,9057
90	1,024.6714	183.8793	46.3397	192.6540	171.4150
91	840.7921	160.1617	36.7381	146.3143	129.4760
92	680.6304	137.2702	28.7342	109.5762	96.4064
93	543.3602	115.7281	22.1634	80.8420	70.6838
94	427.6321	96.8736	16.8530	58.6786	50.9543
95	330.7585	79.7071	12.5944	41.8250	30.0532
90	250.9914	04.1230	9.2339	29.2312	24.9990
97	135 9191	30 4004	0.0339	13 3614	10.9339
90	06 4087	20 8023	3 1001	8 6069	7 2307
100	66 6064	21.9685	2.1354	5.4979	4.5192
101	44.6379	15.7328	1.3827	3.3625	2.7287
102	28.9051	10.9036	0.8651	1.9798	1.5833
103	18.0015	7.3123	0.5205	1.1147	0.8761
104	10.6892	4.7193	0.2986	0.5942	0.4573
105	5.9699	2.8965	0.1612	0.2955	0.2217
106	3.0734	1.6576	0.0802	0.1344	0.0976
10/	1.4158	0.8581	0.0357	0.0542	0.03/9
100	0.3311	0.3834	0.0130	0.0185	0.0123
110	0.0374	0 0374	0 0008	0.0000	0.0031
	0.0014	0.0071	0.0000	0.0000	0.0000

1971 GAM COMMUTATION FUNCTIONS AT 5 PER CENT

MALES

Age x	l_x	d_x	D _z	N_x	$N_{x}^{(12)}$
5	10.000.0000	4,5600	7.835.2618	157,165,1699	153.574.0084
6	9,995,4400	4.2381	7,458,7514	149,329,9081	145,911,3139
7	9,991.2019	4.0264	7,100.5608	141,871,1568	138,616.7332
8	9,987.1755	3.9150	6,759.7136	134,770.5960	131,672.3940
9	9,983.2605	3.8835	6,435.2989	128,010.8823	125,061.3705
10	9,979.3770	3.8919	6,126.4720	121,575.5834	118,767.6172
11	9,975.4851	3.9603	5,832.4597	115,449.1115	112,775.9009
12	9,971.5248	4.0385	5,552.5183	109,616.6518	107,071.7476
13	9,907.4803	4.1105	5,285.9710	104,004.1334	101,041.3908
14	9,903.3098	4.2040	3,032.1790	03 745 0835	01 550 3245
16	0 054 8520	4.3123	4,790.3290	88 055 4545	86 865 2561
17	9,950,4329	4.5473	4.341.3411	84,395,0215	82,405,2402
18	9,945,8856	4.6845	4,132,7211	80.053.6804	78,159,5166
19	9,941.2011	4.8314	3,934.0711	75,920.9593	74,117.8434
20	9,936.3697	4.9980	3,744.9134	71,986.8882	70,270.4696
21	9,931.3717	5.1842	3,564.7902	68,241.9748	66,608.1126
22	9,926.1875	5.3999	3,393.2661	64,677.1845	63,121.9376
23	9,920.7876	5.6151	3,229.9240	61,283.9184	59,803.5366
24	9,915.1725	5.8599	3,074.3770	58,053.9944	50,044.9050
25	9,909.3120	0.1339	2,920 24/7	54,979.0174	50,038.4200
20	9,903.1787	6 7604	2,103.1113	40 268 1022	48 053 2304
27	0 880 0723	7 1406	2,522,8602	46,617 3664	45,461 0514
29	9,882,8317	7.5406	2,400.9978	44,094,4972	42,994,0399
30	9.875.2911	7.9891	2,284,9199	41,693,4994	40,646,2445
31	9,867.3020	8.4858	2,174.3537	39,408.5795	38,412.0008
32	9,858.8162	9.0307	2,069.0321	37,234.2258	36,285.9195
33	9,849.7855	9.6331	1,968.7018	35,165.1937	34,262.8721
34	9,840.1524	10.2928	1,873.1204	33,196.4919	32,337.9784
35	9,829.8596	11.0291	1,782.0582	31,323.3715	30,506.5948
30	9,818.8303	11.8219	1,095.2941	29,341.3132	28,704.3033
37	9,607.0080	12.7001	1,012.0210	27,040.0192	27,100.9009
30	9,794.3083	14 7500	1 458 7606	20,200.5559	24 030 9573
40	9,765,8669	15.9476	1,387,1994	23,240,7953	22,604,9956
41	9,749.9193	17.4426	1,318.9849	21,853.5959	21,249.0612
42	9,732.4767	19.4650	1,253.9288	20,534.6110	19,959.8937
43	9,713.0117	21.9514	1,191.8294	19,280.6823	18,734.4272
44	9,691.0603	24.8963	1,132.5104	18,088.8529	17,569.7856
45	9,666.1640	28.2446	1,075.8104	16,956.3425	16,463.2627
40	9,637.9194	31.9780	1,021.58/5	15,880.5320	15,412.3044
47	9,005.9408	30.0007	909.7123	12,000,0200	14,414.4930
40	9,309.8801	40.4014	872 5510	12 969 1636	12 569 2444
50.	9,484,2492	50,1242	827.0620	12.096.6126	11.717.5425
51	9,434.1250	55,3501	783.5152	11,269.5506	10,910.4395
52	9,378.7749	60.7744	741.8270	10,486.0354	10,146.0314
53	9,318.0005	66.4094	701.9238	9,744.2084	9,422.4934
54	9,251.5911	72.2179	663.7344	9,042.2847	8,738.0731
55	9,179.3732	78.1991	627.1936	8,378.5502	8,091.0865
30	9,101.1741	84.2951	392.2380	1,131.3300	7,479.9139
				1	

TABLE 1	2—Continued
---------	-------------

MALES-Continued

.

.

	1				
Age	,	Ι.			(12)
8- 1:	l_x	d_x	D_x	N_x	N
57	9.016.8790	90.5204	558.8127	7.159.1179	6.902.9955
58	8,926,3586	97.1991	526.8598	6,600.3052	6.358.8279
59	8,829,1595	105.2789	496.3074	6.073.4455	5.845.9712
60	8 723 8806	114 4486	467 0376	5,577,1380	5 363 0791
61	8 600 4320	124 3202	438 9674	5 110 1004	4 008 0003
62	8 485 1118	134 5004	412 0227	4 671 1380	4 482 2043
63	8 350 5124	145 4074	386 1770	4 250 1153	4 082 1172
64	8 205 1050	157 4150	361 3841	3 872 0375	3 707 3031
65	8 047 6000	171 0030	337 5724	3 511 5534	3 356 8327
66	7 876 5061	196 2263	314 6625	3,173,0910	3,000,0027
67	7,670.3901	202 2709	202 5022	2 950 2196	3,029,1001
60	7,090.3098	202.3790	292.3932	2,039.3100	2,123.2133
60	7,407.9900	210.3394	211.3210	2,300.7233	2,442.3071
70	7,209.4300	255.7640	230.8043	2,293.3983	2,100.4109
70	7,033.0400	233.9309	231.1091	2,044.3340	1,938.3810
71	0,779.0897	2/1.2410	212.2119	1,013.3030	1,710.1012
12	0,508.44/9	203.243/	176 6020	1,001.1531	1,512.22/0
13	0,223.2022	295.5337	1/0.0832	1,407.1325	1,320.1527
74	5,927.0085	303.0211	100.2/8/	1,230.4493	1,130.9882
76	5,024.04/4	310.9705	120 2045	1,070.1700	1,003.7912
70	3,313.0709	220 2100	116 6451	705 0394	741 5760
70	4,995.9510	220 6247	102 7671	679 2022	620 9222
70	4 326 0764	338.0347	01 6515	574 6262	532 6102
80	3 081 3227	348 0010	80 3311	482 0746	446 1562
<u>81</u>	3 633 2317	346 7738	60 8168	402 6436	370 6442
82	3 286 4570	340 7761	60 1458	332 8268	305 2500
83	2 045 6818	330 8080	51 3422	272 6800	240 1401
84	2,540.0010	316 7029	43 4060	221 3388	201 4444
85	2 298 1700	298 9966	36 3322	177 9328	161 2805
86	1,999,1734	278.5148	30,1003	141.6006	127,8046
87	1.720.6586	255.8860	24.6732	111.5003	100,1917
88	1,464,7726	232.1460	20.0038	86.8271	77.6587
89	1,232,6266	207.9552	16.0319	66.8233	59.4753
90	1.024.6714	183.8793	12.6925	50.7914	44.9740
91	[^] 840.7921	160.1617	9.9189	38.0989	33.5527
92	680.6304	137.2702	7.6471	28.1800	24.6751
93	543.3602	115.7281	5.8141	20.5329	17.8681
94	427.6321	96.8736	4.3579	14.7188	12.7215
95	330.7585	79.7671	3.2102	10.3609	8.8896
96	250.9914	64.1230	2.3200	7.1508	6.0874
97	186.6864	51.0503	1.6434	4.8308	4.0775
98	135.8181	39.4094	1.1387	3.1873	2.6654
99	96.4087	29.8023	0.7698	2.0487	1.6958
100	66.6064	21.9685	0.5065	1.2789	1.0467
101	44.6379	15.7328	0.3233	0.7723	0.6242
102	28.9051	10.9036	0.1994	0.4491	0.3577
103	18.0015	7.3123	0.1183	0.2497	0.1955
104	10.6892	4.7193	0.0669	0.1314	0.1008
105	5.9699	2 8965	0.0356	0.0646	0.0483
106	3.0734	1.6576	0.0174	0.0290	0.0210
10/	1.4158	0.8581	0.0077	0.0116	0.0080
108	0.5577	0.3834	0.0029	0.0039	0.0026
109	0.1/43	0.1309	0.0009	0.0010	0.0006
110	0.0374	0.0374	0.0002	0.0002	0.0001

1971 GAM COMMUTATION FUNCTIONS AT 6 PER, CENT

MALES

Age			D		(12)
x	l_x	d_x	D_x	<i>IV</i> _x	$N_x^{(1)}$
	10,000,0000	4 5600	7 472 5919	128 301 8325	124 066 8004
6	0,000,0000	4.3000	7,046,3008	120, 919, 2508	117 689 6551
7	9,991,2019	4.0264	6,644,7200	113.872.8599	110.827.3634
8	9,987.1755	3.9150	6,266.0775	107,228.1400	104,356.1879
9	9,983.2605	3.8835	5,909.0766	100,962.0624	98,253.7358
10	9,979.3770	3.8919	5,572.4321	95,052.9858	92,498.9546
11	9,975.4851	3.9603	5,254.9612	89,480.5537	87,072.0300
12	9,9/1.5248	4.0385	4,955.5424	84,223.3920 70,270,0502	81,954.5024 77 128 101 <i>4</i>
13	9,907.4803	4.1105	4 406 8081	74 596 9036	72,577 1166
15	9,959,1652	4.3123	4,155,6118	70,190,0954	68.285.4401
16	9,954.8529	4.4200	3,918.6909	66,034.4837	64,238.4171
17	9,950.4329	4.5473	3,695.2368	62,115.7927	60,422.1426
18	9,945.8856	4.6845	3,484.4793	58,420.5559	56,823.5030
19	9,941.2011	4.8314	3,285.6964	54,936.0766	53,430.1325
20	9,930.3097	4.9980	3,098.2071	51,050.3802	50,250.3087
21	9,931.3717	5.1842	2,921.3007	45,552.1751	47,213.2134
23	9 920 7876	5 6151	2,597,2351	42,876,2387	41.685.8393
24	9,915,1725	5.8599	2,448.8350	40,279.0036	39,156.6209
25	9,909.3126	6.1339	2,308.8563	37,830.1686	36,771.9428
26	9,903.1787	6.4370	2,176.8181	35,521.3123	34,523.6040
27	9.896.7417	6.7694	2,052.2671	33,344.4942	32,403.8718
28	9,889.9723	7.1406	1,934.7768	31,292.2271	30,405.4544
29	9,882.8317	7.5400	1,823.9433	29,337.4303	28,521.4705
31	9,873.2911	8 4858	1 620 7522	25 814 1187	25 071 2740
32	9.858.8162	9.0307	1.527.6965	24,193,3666	23,493.1723
33	9,849.7855	9.6331	1,439.9030	22,665.6700	22,005.7145
34	9,840.1524	10.2928	1,357.0705	21,225.7670	20,603.7764
35	9,829.8596	11.0291	1,278.9161	19,868.6965	19,282.5266
36	9,818.8305	11.8219	1,205.1709	18,589.7804	18,037.4104
31	9,807.0080	12.7001	1,135.5848	16 240 0247	10,804.1332
30	0 780 6250	14 7500	1 007 0475	15 179 1057	14 717 1207
40	9,765,8669	15.9476	949.4590	14.171.1581	13,735,9894
41	9,749.9193	17.4426	894.2533	13,221.6991	12,811.8330
42	9,732.4767	19.4650	842.1260	12,327.4458	11,941.4714
43	9,713.0117	21.9514	792.8695	11,485.3199	11,121.9213
44	9,691.0603	24.8963	746.2997	10,692.4503	10,350.3903
45	9,000.1040	28.2440	660 5610	9,940.1507	9,024.2872
40	9,605 9408	36 0607	621 1039	8.583.3412	8,298,6686
48	9,569,8801	40.4614	583.7474	7,962,2373	7,694.6864
49	9,529.4187	45.1695	548.3768	7,378.4898	7,127.1505
50	9,484.2492	50.1242	514.8844	6,830.1131	6,594.1244
51	9,434.1250	55.3501	483.1729	6,315.2287	6,093.7745
52	9,378.7749	00.7744	455.1491	5,832.0558	5,024.3025
55	9,318.0003	72 2170	307 8320	4 054 1777	4 771 8381
55	9.179.3732	78,1991	372.3835	4.556.3457	4.385.6699
56	9,101.1741	84.2951	348.3125	4,183.9622	4,024.3190
	1	1	1		1

MALES—Continued

Age	l_x	d_x D_x		N _x	N ⁽¹²⁾	
		·			¥	
57	9,016.8790	90.5204	325.5532	3,835.6497	3,686.4379	
58	8,926.3586	97.1991	304.0424	3,510.0965	3,370.7438	
59	8,829.1595	105.2789	283.7091	3,206.0541	3,076.0208	
60	8,723.8806	114.4486	264.4587	2,922.3450	2,801.1348	
61	8,609.4320	124.3202	246.2163	2,657.8863	2,545.0372	
62	8,485.1118	134.3994	228.9254	2,411.0/00	2,300.7459	
03	8,350.5124	145.4074	212.3413	2,182.7440	2,085.3298	
04	8,205.1050	157.4150	197.0195	1,970.2032	1,879.9027	
66	0,047.0900 7 976 5061	196 2262	162.3014	1,773.1039	1,009.0291	
67	7 600 3608	202 3708	155 0438	1,390.0023	1 351 4046	
68	7 487 0000	218 5504	142 4185	1,422.5505	1 202 2374	
60	7 260 4306	235 7840	130 4355	1 125 0041	1,202.2014	
70	7 033 6466	253 9569	110 0611	004 6586	040 0880	
71	6 779 6897	271 2418	108.2663	875 5975	825 9754	
72	6.508 4479	285.2457	98.0517	767.3311	722, 3908	
73	6,223,2022	295.5337	88.4475	669.2794	628,7410	
74	5,927,6685	303.6211	79.4785	580,8319	544,4042	
75	5,624.0474	310.9705	71.1392	501.3533	468.7478	
76	5,313.0769	319.1459	63.4016	430.2141	401.1550	
77	4,993.9310	329.2199	56.2200	366.8125	341.0450	
78	4,664.7111	338.6347	49.5413	310.5925	287.8860	
79	4,326.0764	344.7537	43.3442	261.0512	241.1851	
80	3,981.3227	348.0910	37.6321	217.7070	200.4589	
81	3,633.2317	346.7738	32.3980	180.0749	165.2258	
82	3,286.4579	340.7761	27.6469	147.6769	135.0054	
83	2,945.6818	330.8089	23.3776	120.0300	109.3153	
84	2,614.8729	316.7029	19.5775	96.6524	87.6794	
85	2,298.1700	298.9966	16.2324	77.0749	69.6350	
80	1,999.1734	278.5148	13.3213	00.8424	54.7309	
87	1,720.0580	255.8800	10.8104	47.5212	42.5030	
88	1,404.7720	232.1400	8.0807	30.7047	32.7233	
09	1,232.0200	207.9332	0.0902	20.0100	24.03/3	
90	840 7021	160 1617	1 1 1 2 6 5	15 7136	13 7049	
91	680 6304	137 2702	4.1005	11 5270	10.0617	
03	543 3602	115 7281	2 4070	8 3208	7 2262	
94	427 6321	96.8736	1.7878	5.9219	5 1025	
95	330.7585	79.7671	1.3045	4.1341	3.5362	
96	250.9914	64.1230	0.9339	2.8296	2.4016	
97	186.6864	51.0503	0.6553	1.8957	1.5953	
98	135.8181	39.4094	0.4498	1.2404	1.0342	
99	96.4087	29.8023	0.3012	0.7906	0.6526	
100	66.6064	21.9685	0.1963	0.4894	0.3995	
101	44.6379	15.7328	0.1241	0.2931	0.2363	
102	28.9051	10.9036	0.0758	0.1690	0.1343	
103	18.0015	7.3123	0.0445	0.0932	0.0728	
104	10.6892	4.7193	0.0250	0.0487	0.0372	
105	5.9099	2.8905	0.0131	0.0237	0.0177	
100	3.0/34	1.03/0	0.0004	0.0100		
107	1.4138	0.0301	0.0028	0.0042		
100	0.3377	0.3634	0.0010		0.0009	
110	0.1743	0.1309	0.0003	0.0004	0.0002	
	0.0374	0.0074	0.0001	0.0001	0.000	

1971 GAM COMMUTATION FUNCTIONS AT 7 PER CENT

MALES

Age x	l_x	dx	Dx	Nz	N _x ⁽¹²⁾	
5	10 000 0000	4 5600	7 120 8620	107 046 0289	103 778 1756	
6	0,005,4400	4.3000	6 660 3840	00 016 1668	06 863 4000	
7	9 991 2019	4 0264	6 222 0187	93 255 7828	90,404,0244	
8	9,987,1755	3.9150	5,812,6274	87.033.7641	84.369.6433	
9	9,983.2605	3.8835	5,430.2326	81,221,1367	78,732.2803	
10	9,979.3770	3.8919	5,073.0096	75,790.9042	73,465.7749	
11	9,975.4851	3.9603	4,739.2814	70,717.8946	68,545.7240	
12	9,971.5248	4.0385	4,427.4766	65,978.6131	63,949.3531	
13	9,967.4863	4.1165	4,136.1528	61,551.1365	59,655.3999	
14	9,963.3698	4.2046	3,863.9669	57,414.9837	55,643.9989	
15	9,959.1052	4.3123	3,609.6602	53,551.0168	51,896.5893	
10	9,954.8529	4.4200	3,372.0535	49,941.3300	48,395.8322	
10	9,950.4529	4.54/5	3,130.0320	40,309.3032	45,125.5291	
10	9,945.8850	4 8314	2,942.0290	40,419.2300	30 216 7434	
20	9 936 3697	4 9980	2 567 7471	37 727 7963	36 550 9122	
21	9.931.3717	5,1842	2,398,5566	35,160,0492	34.060.7108	
22	9,926.1875	5.3999	2,240.4715	32,761,4926	31,734.6099	
23	9,920.7876	5.6151	2,092.7596	30,521.0211	29,561.8397	
24	9,915.1725	5.8599	1,954.7431	28,428.2615	27,532.3377	
25	9,909.3126	6.1339	1,825.7830	26,473.5185	25,636.7013	
26	9,903.1787	6.4370	1,705.2830	24,647.7355	23,866.1475	
27	9,896.7417	6.7694	1,592.6866	22,942.4524	22,212.4711	
28	9,889.9723	7.1406	1,487.4740	21,349.7659	20,008.0070	
29	9,882.8317	7.3400	1,389.1389	19,802.2919	19,225.3941	
31	9,873.2911	8 4858	1,297.2000	17 175 8442	16 620 6015	
32	9,858,8162	9 0307	1 131 2119	15,964,4056	15,445,9335	
33	9,849,7855	9.6331	1.056.2390	14.833.1937	14.349.0841	
34	9,840.1524	10.2928	986.1738	13,776,9547	13,324.9583	
35	9,829.8596	11.0291	920.6938	12,790.7808	12,368.7962	
36	9,818.8305	11.8219	859.4960	11,870.0871	11,476.1514	
37	9,807.0086	12.7001	802.3002	11,010.5910	10,642.8701	
38	9,794.3085	13.6826	748.8422	10,208.2909	9,865.0715	
39	9,780.6259	14.7590	698.8749	9,459.4480	9,139.1310	
40	9,705.8009	15.94/0	052.1085	8,700.5757	7 920 5059	
41	9,149.9193	17.4420	567 6816	0,100.4052 7 400 8073	7 230 7000	
43	9 713 0117	21 9514	529 4825	6 932 2157	6,689,5362	
44	9,691,0603	24,8963	493, 7251	6,402,7332	6,176,4425	
45	9,666.1640	28.2446	460.2399	5,909,0081	5,698.0648	
46	9,637.9194	31.9786	428.8739	5,448.7682	5,252.2010	
47	9,605.9408	36.0607	399.4869	5,019.8942	4,836.7961	
48	9,569.8801	40.4614	371.9506	4,620.4074	4,449.9300	
49	9,529.4187	45.1695	346.1477	4,248.4567	4,089.8057	
50	9,484.2492	50.1242	321.9691	3,902.3090	3,754.7399	
31 52	9,454.1250	55.3501	299.3154	3,580.3399	3,445.1557	
51	9,3/8.1/49	66 4004	210.0929	3,201.0243	3,133.3033	
54	9,318.0003	72 2170	230.2137	2 744 7150	2,004.3020	
55	9,179,3732	78,1991	222, 1802	2,505,1127	2,403,2801	
56	9,101.1741	84.2951	205.8761	2,282.9325	2,188.5726	
	.,			_,	,	

TAB	LE	14	Contin	iued

MALES—Continued

Age	l _x	l_x d_x D_x		N _x	$N_{\tau}^{(12)}$	
	0.016.0700	00 5004	100 6257	2.077.0564	1 000 6062	
57	9,010.8790	90.5204	190.0255	2,077.0504	1,989.0803	
58	8,920.3380	97.1991	163 0334	1,000.4000	1,805.3903	
60	8 723 8806	114 4486	150 5509	1 547 0312	1 478 0287	
61	8 609 4320	124 3202	138 8559	1 396 4803	1 332 8381	
62	8,485,1118	134.5994	127.8979	1.257.6245	1,199,0046	
63	8,350,5124	145,4074	117.6347	1.129.7265	1.075.8106	
64	8,205,1050	157.4150	108.0246	1,012.0919	962.5806	
65	8,047.6900	171.0939	99.0207	904.0673	858.6828	
66	7,876.5961	186.2263	90.5752	805.0466	763.5330	
67	7,690.3698	202.3798	82.6484	714.4714	676.5909	
68	7,487.9900	218.5594	75.2088	631.8230	597.3523	
69	7,209.4300	235.7840	68.2370	550.0142	525.3389	
70	7,033.0400	253.9509	01.7044	488.3772	400.0900	
71	0,779.0897	2/1.2410	33.3833	420.0728	2401.1901	
72	6 223 2022	205 5337	49.0707	321 2165	300 7007	
74	5 027 6685	303 6211	39 6720	276 6511	258 4681	
75	5 624 0474	310 9705	35,1776	236,9790	220.8560	
76	5.313.0769	319, 1459	31.0584	201.8015	187.5664	
77	4,993.9310	329.2199	27.2830	170.7431	158.2384	
78	4,664.7111	338.6347	23.8172	143.4601	132.5439	
79	4,326.0764	344.7537	20.6432	119.6429	110.1815	
80	3,981.3227	348.0910	17.7552	98.9998	90.8620	
81	3,633.2317	346.7738	15.1428	81.2446	74.3041	
82	3,286.4579	340.7701	12.8014	00.1017	00.2344	
83	2,945.0818	316 7020	10.7234	42 5760	38 4004	
85 85	2,014.0729	208 0066	7 3074	33 6805	30 3313	
86	1 000 1734	278 5148	5 9408	26 3731	23 6503	
87	1,720,6586	255.8860	4,7787	20.4323	18.2421	
88	1,464.7726	232.1460	3.8019	15.6537	13.9111	
89	1,232.6266	207.9552	2.9900	11.8518	10.4813	
90	1,024.6714	183.8793	2.3230	8.8617	7.7970	
91	840.7921	160.1617	1.7814	6.5388	5.7223	
92	680.6304	137.2702	1.3477	4.7574	4,1390	
93	543.3002	115.7281	1.0055	3.4090	2.9488	
94	427.0321	90.8730	0.7390	2.4041	1 4105	
95	250 0014	64 1230	0.3792	1 1200	0.9561	
97	186 6864	51 0503	0 2636	0.7507	0.6299	
98	135.8181	39,4094	0.1792	0.4871	0.4050	
99	96.4087	29.8023	0.1189	0.3079	0.2534	
100	66.6064	21.9685	0.0768	0.1891	0.1539	
101	44.6379	15.7328	0.0481	0.1123	0.0903	
102	28.9051	10.9036	0.0291	0.0642	0.0509	
103	18.0015	/ 3123	0.0169	0.0351	0.02/4	
104	10.0892	4,7193	0.0094	0.0182	0.0139	
105	3.9099	2.0903	0.0049	0.0000	0.0028	
107.	1 4158	0.8581	0.0010	0.0015	0.0011	
108	0.5577	0,3834	0.0004	0.0005	0.0003	
109	0.1743	0.1369	0.0001	0.0001	0.0001	
110	0.0374	0.0374	0.0000	0.0000	0.0000	

1971 GAM Commutation Functions at $3\frac{1}{2}$ Per Cent

FEMALES

Age x	l _x	dx	D _x	N_x	N _x ⁽¹²⁾	
Age x 5 6 7 8 9 10 11 13 13 14 15 16 17 13 14 17 18 19 19 19 19 10 11 13 14 17 19 19 19 19 10 11 13 14 17 19 19 19 19 19 10 11 13 14 17 19 19 19 19 19 19 19 19 19 19 10 11 11 13 14 17 17 17 17 17 17 17 17 19 19 19 19 19 19 19 10 11 13 19	l_x 10,000.0000 9,997.6600 9,995.7305 9,994.1111 9,992.6820 9,991.3430 9,990.0241 9,988.5955 9,987.0473 9,985.3795 9,983.5821 9,981.6553 9,981.6553 9,979.6090 9,977.4335 9,975.1287	dz 2.3400 1.9295 1.6194 1.4291 1.3390 1.3189 1.4286 1.5482 1.6678 1.7974 1.9268 2.0463 2.1755 2.3048 2.3048	$\begin{array}{c} D_{x} \\ \hline \\ 8,419.7318 \\ 8,133.1030 \\ 7,856.5540 \\ 7,589.6437 \\ 7,331.9405 \\ 7,083.0512 \\ 6,842.6245 \\ 6,610.2860 \\ 6,385.7598 \\ 6,168.7859 \\ 5,959.1068 \\ 5,756.4799 \\ 5,560.6762 \\ 5,371.4628 \\ 5,188.6203 \end{array}$	N _x 229,006.8544 220,587.1226 212,454.0195 204,597.4656 197,007.8219 189,675.8814 182,592.8301 175,750.2057 169,139.9197 162,754.1599 156,585.3740 150,626.2672 144,869,7873 139,309.1111 133,937.6483	N ⁽¹²⁾ 225,147.8108 216,859.4505 208,853.0991 201,118.8790 193,647.3493 186,429.4830 179,456.6274 172,720.4914 166,213.1132 159,926.7998 153,854.1168 147,987.8807 142,321.1441 136,847.1907	
20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.	9,972.6848 9,970.0919 9,967.3501 9,964.4396 9,961.3606 9,958.1033 9,954.6478 9,950.9845 9,947.1036 9,942.9855 9,948.6106 9,933.9494 9,928.9923 9,923.7002	2.5929 2.7418 2.9105 3.0790 3.2573 3.4555 3.6633 3.8809 4.1181 4.3749 4.6612 4.9571 5.2921 5.6466	5,011.9315 4,841.1869 4,516.7377 4,362.6493 4,213.7418 4,069.8354 3,930.7611 3,796.3356 3,666.4579 3,540.9128 3,419.5672 3,302.2810 3,188.9091	128,749.0280 123,737.0965 118,895.9096 114,219.7207 109,702.9830 105,340.3337 101,126.5919 97,056.7565 93,125.9955 89,329.6398 85,663.1819 82,122.2691 78,702.7019 75,400.4209	126,451.8028 121,518.2193 116,752.6565 112,149.5493 107,703.4355 103,409.0355 99,261.2508 95,255.1578 91,385.9992 87,649.1800 84,040.2636 80,554.9676 77,189.1565 73,938.8376	
34	9,918.0536 9,912.0234 9,905.5707 9,898.6566 9,891.2326 9,883.2504 9,865.3994 9,855.4058 9,844.6240 9,832.9482 9,820.3031 9,806.5841 9,791.6879 9,775.4924 9,777.4924 9,757.8770 9,738.6833 9,717.7354 9,695.1513 9,670.7196 9,644.2411	6.0302 6.4527 6.9141 7.4240 7.9822 8.5885 9.2625 9.9936 10.7818 11.6758 12.6451 13.7190 14.8962 16.1955 17.6154 19.1937 20.9479 22.5841 24.4317 26.4785 28.7591	3,079.3185 2,973.3780 2,870.9588 2,771.9371 2,676.1915 2,583.6056 2,494.0681 2,407.4673 2,323.6991 2,242.6637 2,164.2550 2,088.3785 2,014.9382 1,943.8430 1,875.0028 1,808.3324 1,743.7444 1,681.1533 1,620.5278 1,561.7817 1,504.8363	72,211.5118 69,132.1933 66,158.8152 63,287.8564 60,515.9193 57,839.7279 55,256.1223 52,762.0542 50,354.5869 48,030.8879 45,788.2242 43,623.9692 41,535.5907 39,520.6524 37,576.8094 35,701.8066 33,893.4741 32,149.7297 30,468.5765 28,848.0487 27,286.2670	$\begin{array}{c} 70,800.1575\\ 67,769.3951\\ 64,842.9592\\ 62,017.3853\\ 59,289.3316\\ 56,655.5753\\ 54,113.0078\\ 51,658.6318\\ 49,289.5582\\ 47,003.0004\\ 44,796.2740\\ 42,666.7957\\ 40,612.0773\\ 38,629.7244\\ 36,717.4331\\ 34,872.9876\\ 33,094.2580\\ 31,379.2012\\ 29,725.8346\\ 28,132.2321\\ 26,596.5504\\ 25,96.5504\\ 26,117.025\\ 26,596.5504\\ 26,117.025\\ 26,596.5504\\ 26,117.025\\ $	

TABLE 15—Continued

FEMALES—Continued

Age	l _x	d _x		N _x	N ⁽¹²⁾
	0 540 0202	27 7024	1 244 0010	22 025 70/0	
5/	9,549.9202	37.7031	1,344.0019	22,935.7809	22,319.7861
50	9,512.2171	41.7390	1,293.4239	21,391.7830	20,998.9048
60	9 424 0626	51 7286	1 106 2371	10 054 1550	18 505 8805
61	9 372 3340	57 6961	1 149 4405	17 857 0188	17 331 0010
62	9.314.6379	64 2524	1,103,7339	16 708 4782	16 202 6002
63	9,250,3855	71.3390	1.059.0535	15.604.7443	15,119,3448
64	9,179.0465	79.0132	1.015.3488	14,545,6908	14.080.3226
65	9,100.0333	87.0236	972.5688	13,530.3420	13,084.5813
66	9,013.0097	95.2225	930.6939	12,557.7732	12,131.2052
67	8,917.7872	103.6336	889.7209	11,627.0793	11,219.2906
68	8,814.1536	113.4998	849.6439	10,737.3585	10,347.9384
<u>09</u>	8,700.6538	125.8202	810.3411	9,887.7146	9,516.3083
70	8,5/4.8330	141.28/5		9,077.3735	8,723.7101
72	8 272 2027	100.2374	604 0920	7 572 5194	7 252 0846
73	8 002 0322	203 2071	656 7683	6 977 5355	6 576 5167
74	7 888 8251	225 8728	618 6237	6 220 7672	5 037 2313
75	7.662.9523	248.1647	580.5906	5,602,1435	5,336,0395
76	7,414,7876	269.9576	542.7905	5.021.5529	4,772,7739
77	7,144.8300	291.2876	505.3416	4,478.7624	4,247.1475
78	6,853.5424	311.6443	468.3472	3,973.4207	3,758.7616
79	6,541.8981	331.1247	431.9329	3,505.0735	3,307.1043
80	6,210.7734	348.3312	396.2031	3,073.1407	2,891.5476
81	5,802.4422	302.0090	301.3333	2,0/0.93/0	2,511.3250
83	5,499.8320	373.0307	327.3223	2,313.0023	2,105.48/9
84	4 745 0581	386 7260	263 7863	1 603 1314	1,032.0932
85	4.358.3312	388.6717	234.0942	1,429,3451	1 322 0519
86	3,969.6595	386.9147	206.0076	1,195.2509	1,100,8308
87	3,582.7448	381.3904	179.6410	989.2433	906.9078
88	3,201.3544	372.0806	155.0898	809.6022	738.5194
89	2,829.2738	359.0150	132.4293	654.5125	593.8157
90	2,470.2588	342.3211	111.7149	522.0832	470.8806
91	2,127.9377	321.7271	92.9795	410.3083	367.7527
03	1 508 0467	272 0531	61 5124	241 1250	282.4390
94	1 235 0036	243 0221	48 7106	170 6236	157 2070
95	992.0715	214, 4154	37 7755	130 9130	113 5002
96	777.6561	184.2812	28,6098	93,1375	80.0247
97	593.3749	153.1257	21.0919	64.5277	54.8606
98	440.2492	123.3741	15.1197	43.4359	36.5060
99	316.8751	96.5452	10.5146	28.3161	23.4969
100	220.3299	73.0680	7.0638	17.8015	14.5639
	147.2019	53.2147	4.5010	10.7377	8.6470
102	94.0472 56.0760	37.0703	2.814/	0.1/01	4.8800
104	32 4560	15 3037	0.0068	1 7130	2.0003
105	17,1523	8.9054	0.4630	0.8071	0.5949
106	8.2469	4.7416	0.2151	0.3441	0.2455
107	3.5053	2.2446	0.0883	0.1290	0.0885
108	1.2607	0.9038	0.0307	0.0407	0.0266
09	0.3569	0.2878	0.0084	0.0100	0.0061
	0.0091	0.0091	0.0016	0.0016	0.0009
1	1		•		

1971 GAM COMMUTATION FUNCTIONS AT 6 PER CENT

FEMALES

Age	4-	d-	D.	N ₇	N ⁽¹²⁾
x	•1	-1	1		1V x
5	10,000,0000	2 3400	7 472 5818	120 684 2744	126 250 3412
6	0,007,6600	1 9295	7 047 0550	129,004.2144	118 081 3706
7	9 995 7305	1 6194	6 647 7317	115 163 7367	112 116 8598
8	9 994 1111	1,4291	6,270,4290	108,516,0050	105,642,0585
9	9,992,6820	1.3390	5,914,6532	102.245.5760	99, 534, 6934
10	9,991,3430	1.3189	5,579,1138	96.330.9228	93,773,8291
11	9,990.0241	1.4286	5,262.6202	90,751.8090	88,339.7749
12	9,988.5955	1.5482	4,964.0260	85,489.1889	83,214.0104
13	9,987.0473	1.6678	4,682.3176	80,525.1628	78,379.1007
14	9,985.3795	1.7974	4,416.5430	75,842.8453	73,818.5965
15	9,983.5821	1.9268	4,165.8001	71,426.3022	69,516.9773
16	9,981.6553	2.0463	3,929.2416	67,260.5022	65,459.5998
17	9,979.6090	2.1755	3,706.0718	63,331.2606	61,632.6444
18	9,977.4335	2.3048	3,495.5319	59,625.1888	58,023.0700
19	9,975.1287	2.4439	3,296.9099	50,129.0508	54,018.5732
20	9,972.0848	2.3929	3,109.5303	32,832.7409	51,407.5450
21	9,970.0919	2.7418	2,932.7303	49,723.2100	48,379.0300
22	9,907.3301	2.9103	2,703.9903	40,790.4001	43,322.7143
23	9,904.4590	3 2573	2,008.0031	41 415 8065	42,020.0324
25	0 058 1033	3 4555	2,400.2425	38 055 5641	37 802 1270
26	9,950,1055	3 6633	2,188,1315	36,635,3396	35,632,4460
27	9,950,9845	3 8809	2,063,5153	34,447,2081	33 501 4303
28	9,947,1036	4.1181	1.945.9534	32.383.6927	31,491,7975
29	9,942.9855	4.3749	1,835.0450	30,437.7394	29,596.6771
30	9,938.6106	4.6612	1,730.4129	28,602.6943	27,809.5885
31	9,933.9494	4.9571	1,631.6993	26,872.2815	26,124.4193
32	9,928.9923	5.2921	1,538.5709	25,240.5821	24,535.4038
33	9,923.7002	5.6466	1,450.7083	23,702.0113	23,037.1033
34	9,918.0536	6.0302	1,367.8140	22,251.3029	21,624.3882
35	9,912.0234	6.4527	1,289.6060	20,883.4889	20,292.4195
30	9,905.5707	0.9141	1,215.8175	19,593.8829	19,030.0333
3/	9,898.0300	7.4240	1,140.19/0	18,378.0034	17,852.7252
30	9,091.2320	0 5005	1,000.0009	16 151 2615	15 694 5292
40	9,003.2304	0.3003	1,010.3233	15 122 9390	14 602 9214
41	0 865 3004	0 0036	004 8451	14 172 8017	13 758 0811
42	9,855,4058	10.7818	852 7627	13, 267, 9566	12 877 1071
43	9,844,6240	11.6758	803.6130	12,415,1940	12.046.8713
44	9,832,9482	12.6451	757.2263	11.611.5810	11.264.5189
45	9,820.3031	13.7190	713.4458	10.854.3546	10.527.3587
46	9,806.5841	14.8962	672.1218	10,140.9088	9,832.8530
47	9,791.6879	16.1955	633.1140	9,468.7870	9,178.6098
48	9,775.4924	17.6154	596.2895	8,835.6730	8,562.3737
49	9,757.8770	19.1937	561.5235	8,239.3836	7,982.0186
50	9,738.6833	20.9479	528.6972	7,677.8600	7,435.5405
51	9,717.7354	22.5841	497.6981	7,149.1628	6,921.0512
52	9,095.1513	24.4517	408.4553	0,051.4048	0,430.7052
54	9,070.7190	20.4/85	440.8005	5 742 2220	5,900.9932
55	0 615 4920	31 3020	300 0752	5 327 5064	5 148 7210
56	9 584 1740	34 2538	366 7074	4 037 4311	4 769 3156
	2,001.1110	01.2000	000.1714	1,707.3011	1,102.0100

TABLE 16-Continued

FEMALES—Continued

		1			
Age x	l_x	d_x	Dz	N_x	$N_{x}^{(12)}$
57	9,549.9202	37.7031	344.7986	4,570.6337	4,412.6010
58	9,512.2171	41.7396	323.9975	4,225.8351	4,077.3363
59	9,470.4775	46.4149	304.3167	3,901.8376	3,762.3591
60	9,424,0626	51.7286	285.6842	3,597,5209	3,466,5823
61	9.372.3340	57.6961	268.0341	3,311,8367	3,188,9877
62	9.314.6379	64.2524	251.3057	3.043.8026	2,928,6208
63	9,250,3855	71.3390	235.4455	2,792,4969	2,684,5844
64	9,179,0465	79.0132	220, 4054	2,557,0514	2,456,0323
65	9,100,0333	87.0236	206.1398	2,336,6460	2,242,1653
66	9,013,0097	95.2225	192 6117	2,130,5062	2,042,2258
67	8,917,7872	103 6336	179,7894	1 937 8945	1 855 4910
68	8 814 1536	113 4998	167 6416	1 758 1050	1 681 2693
69	8 700 6538	125 8202	156 1159	1 590 4634	1 518 9103
70	8 574 8336	141 2875	145 1494	1 434 3475	1 367 8207
71	8 433 5461	160 2374	134 6771	1 280 1081	1 227 4711
72	8 273 3087	181 2765	124 6300	1 154 5210	1 007 3044
73	8 002 0322	203 2071	115 0084	1 020 8811	077 1600
74	7 888 8251	225 8728	105 7739	014 8728	866 3031
75	7 662 9523	248 1647	96 9296	800 008	764 6729
76	7 414 7876	269 9576	88 4816	712 1693	671 6153
77	7,144,8300	291.2876	80.4341	623.6877	586.8221
78	6.853 5424	311.6443	72 7876	543, 2536	509, 8926
79	6,541,8981	331 1247	65 5451	470,4660	440, 4245
80	6,210,7734	348.3312	58,7052	404.9208	378.0143
81	5,862,4422	362.6096	52.2761	346.2156	322.2558
82	5,499,8326	373.6367	46.2667	293,9395	272.7339
83	5,126.1959	381.1378	40.6826	247.6728	229.0266
84	4,745.0581	386.7269	35.5262	206.9902	190.7074
85	4,358,3312	388.6717	30.7838	171.4640	157.3548
86	3,969.6595	386.9147	26.4514	140.6803	128.5567
87	3,582.7448	381.3904	22.5219	114.2288	103.9063
88	3,201.3544	372.0806	18.9853	91.7069	83.0053
89	2,829.2738	359.0150	15.8290	72.7216	65.4666
90	2,470.2588	342.3211	13.0381	56.8926	50.9168
91	2,127.9377	321.7271	10.5956	43.8545	38.9982
92	1,806.2106	298.1639	8.4846	33.2589	29.3702
93	1,508.0467	272.0531	6.6830	24.7744	21.7113
94	1,235.9936	243.9221	5.1673	18.0914	15.7230
95	992.0715	214.4154	3.9128	12.9241	11.1307
96	777.6561	184.2812	2.8935	9.0113	7.6851
97	593.3749	153.1257	2.0829	6.1178	5.1031
98	440.2492	123.3/41	1.4579	4.0349	3.300/
99	310.8751	90.5452	0.9899	2.5770	2.1233
100	220.3299	73.0080	0.0494	1.38/1	1.2893
101	147.2019	27 0702	0.4094	0.9377	0.7301
102	94.04/2	37.0703	0.2407	0.3283	0.4132
103	30,9709	15 3027	0.1410	0.2010	0.2170
104	32.4300	8 005/	0.0730	0.1400	0.1039
105	8 2460	0.9034	0.0378	0.0040	0.0473
107	3 5053	2 2446	0.01/1	0.0271	0.0192
108	1 2607	0 0038	0.0003	0.0031	0.0020
100	0 3569	0.2878	0.0006	0.0007	0.0005
110	0.0691	0.0691	0.0001	0.0001	0.0001
	5.0071	0.00/1	0.0001		0.0001

COMPARISON OF MALE ANNUITY VALUES

A. $_{65-x} | \ddot{a}_x^{(12)} |$

.

Age	Mortality	INTEREST RATE					
x	Table*	31%	5%	6%	1%	i %t	
25	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	2.0922 2.3769 2.2848 2.8791 2.5686	1.0557 1.1925 1.1471 1.4277 1.2796	0.6754 0.7603 0.7318 0.9037 0.8125	$\begin{array}{r} 0.4352 \\ 0.4883 \\ 0.4703 \\ 0.5765 \\ 0.5200 \end{array}$	3.75	
30	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	2.4954 2.8322 2.7229 3.3629 3.0205	1.3531 1.5269 1.4691 1.7934 1.6181	0.9077 1.0207 0.9827 1.1910 1.0778	0.6130 0.6871 0.6619 0.7968 0.7231	3.77	
35	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	2.9806 3.3786 3.2490 3.9284 3.5552	1.7367 1.9573 1.8837 2.2535 2.0481	1.2216 1.3720 1.3211 1.5702 1.4310	0.8646 0.9679 0.9326 1.1016 1.0067	3.79	
40	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	3.5684 4.0378 3.8840 4.5939 4.1922	2.2343 2.5137 2.4199 2.8349 2.5971	1.6479 1.8475 1.7796 2.0725 1.9035	1.2224 1.3660 1.3167 1.5249 1.4040	3.82	
45	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	4.2918 4.8427 4.6606 5.3880 4.9614	2.8877 3.2397 3.1203 3.5769 3.3054	2.2331 2.4966 2.4060 2.7437 2.5413	1.7362 1.9348 1.8657 2.1171 1.9654	3.86	
50	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	5.2174 5.8567 5.6415 6.3705 5.9243	3.7723 4.2103 4.0587 4.5499 4.2445	3.0588 3.4021 3.2816 3.6620 3.4233	2.4925 2.7631 2.6670 2.9634 2.7759	3.90	
55	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	6.4499 7.1758 6.9229 7.6347 7.1755	5.0113 5.5434 5.3521 5.8665 5.5286	4.2606 4.6967 4.5373 4.9544 4.6775	3.6387 3.9980 3.8648 4.2048 3.9769	3.95	
60	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	8.1517 8.9439 8.6515 9.3224 8.8609	6.8059 7.4247 7.1875 7.7070 7.3420	6.0673 6.5960 6.3890 6.8297 6.5162	5.4309 5.8846 5.6950 6.0793 5.8090	4.01	

*Ga-1951: 1951 Group Annuity Table (unprojected); Ga-1971: projected Ga-1951 Table (Scale C) to calendar year 1971 and unprojected thereafter; 1971 GAM: 1971 Group Annuity Mortality Table (unprojected); Ga-1971 Proj. C: projected Ga-1951 Table to 1971 and fully projected thereafter (Scale C); 1971 GAM Proj. D: 1971 Group Annuity Mortality Table fully projected (Scale D).

† Interest rate needed with 1971 GAM to produce Ga-1951, 31 per cent value.

TABL	E 17-	–Continu	ied

AGE	Mortality	INTEREST RATE				
x	TABLE*	3 1 /2%	5%	6%	7%	i%t
55	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	$14.4201 \\ 15.2546 \\ 14.9760 \\ 15.7283 \\ 15.2370$	12.4839 13.1149 12.9005 13.4512 13.0844	11.4293 11.9583 11.7773 12.2284 11.9244	10.5236 10.9703 10.8168 11.1886 10.9354	3.90
60	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	12.5676 13.4002 13.0935 13.7809 13.3042	11.0766 11.7340 11.4832 12.0183 11.6389	10.2461 10.8120 10.5920 11.0478 10.7203	9.5213 10.0111 9.8175 10.2078 9.9240	4.00
65	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	10.6337 11.4245 11.1386 11.7009 11.2953	9.5405 10.1914 9.9440 10.4081 10.0650	8.9178 9.4932 9.2683 9.6786 9.3709	8.3661 8.8765 8.6718 9.0357 8.7591	4.13
70	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	8.7561 9.4322 9.2346 9.6057 9.3406	7.9916 8.5694 8.3860 8.7116 8.4711	7.5470 8.0699 7.8958 8.1950 7.9698	7.1468 7.6214 7.4564 7.7318 7.5210	4.35
75	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	7.0011 7.4893 7.5112 7.5781 7.5765	6.4927 6.9234 6.9309 6.9992 6.9853	6.1912 6.5888 6.5892 6.6572 6.6375	$\begin{array}{c} 5.9163 \\ 6.2837 \\ 6.2783 \\ 6.3457 \\ 6.3214 \end{array}$	4.82
80	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	5.4718 5.7566 5.9329 5.7894 5.9680	5.1460 5.4045 5.5540 5.4335 5.5841	4.9491 5.1924 5.3268 5.2193 5.3542	4.7688 4.9964 5.1175 5.0212 5.1424	5.36
85	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	4.2990 4.4020 4.6841 4.4075 4.6997	4.0913 4.1866 4.4390 4.1917 4.4529	3.9629 4.0548 4.2899 4.0596 4.3027	3.8454 3.9315 4.1508 3.9360 4.1627	5.94
90	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	3.3821 3.3821 3.6991 3.3821 3.7039	3.2511 3.2511 3.5433 3.2511 3.5478	3.1697 3.1697 3.4471 3.1697 3.4513	3.0929 3.0929 3.3564 3.0929 3.3604	6.71

* Ga-1951: 1951 Group Annuity Table (unprojected); Ga-1971: projected Ga-1951 Table (Scale C) to calendar year 1971 and unprojected thereafter; 1971 GAM: 1971 Group Annuity Mortality Table (unprojected); Ga-1971 Proj. C: projected Ga-1951 Table to 1971 and fully projected thereafter (Scale C); 1971 GAM Proj. D: 1971 Group Annuity Mortality Table fully projected (Scale D). † Interest rate needed with 1971 GAM to produce Ga-1951, $3\frac{1}{2}$ per cent value.

TABLE 17-Continued

C. $_{65-x}E_x \cdot \ddot{a}_{\overline{65:10}}^{(12)}$

Ace	Mortality	INTEREST RATE					
x	TABLE*	31/3%	5%	6%	7%	i%t	
25	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	2.3228 2.5711 2.5012 3.0042 2.7463	1.1737 1.2919 1.2579 1.4914 1.3705	$\begin{array}{c} 0.7512 \\ 0.8240 \\ 0.8029 \\ 0.9445 \\ 0.8708 \end{array}$	0.4842 0.5295 0.5162 0.6029 0.5576	3.72	
30	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	2.7704 3.0637 2.9809 3.5190 3.2368	1.5043 1.6542 1.6110 1.8793 1.7371	1.0095 1.1064 1.0781 1.2487 1.1578	0.6820 0.7451 0.7265 0.8358 0.7773	3.73	
35	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	3.3090 3.6547 3.5567 4.1242 3.8191	1.9308 2.1205 2.0655 2.3693 2.2040	1.3586 1.4871 1.4494 1.6518 1.5410	0.9619 1.0496 1.0237 1.1595 1.0847	3.74	
40	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	3.9617 4.3677 4.2519 4.8399 4.5145	2.4841 2.7233 2.6535 2.9912 2.8018	1.8328 2.0025 1.9524 2.1880 2.0533	1.3599 1.4813 1.4451 1.6107 1.5165	3.77	
45	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	4.7649 5.2384 5.1021 5.6979 5.3566	3.2105 3.5098 3.4215 3.7886 3.5751	2.4837 2.7061 2.6397 2.9077 2.7505	1.9315 2.0980 2.0478 2.2449 2.1284	3.80	
50 	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971-GAM Proj. D	5.7924 6.3352 6.1759 6.7645 6.4133	4.1941 4.5613 4.4506 4.8390 4.6031	3.4021 3.6875 3.6002 3.8970 3.7149	2.7729 2.9963 2.9272 3.1553 3.0140	3.83	
55	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971-GAM Proj. D	7.1607 7.7621 7.5786 8.1424 7.7894	5.57156.00555.86886.26686.0123	4.7388 5.0907 4.9780 5.2956 5.0900	4.0481 4.3352 4.2420 4.4970 4.3300	3.87	
60	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971-GAM Proj. D	9.0501 9.6747 9.4710 9.9892 9.6465	7.5668 8.0437 7.8814 8.2721 8.0073	6.7483 7.1493 7.0095 7.3349 7.1111	6.0418 6.3810 6.2602 6.5326 6.3427	3.90	

* Ga-1951: 1951 Group Annuity Table (unprojected); Ga-1971: projected Ga-1951 Table (Scale C) to calendar year 1971 and unprojected thereafter; 1971 GAM: 1971 Group Annuity Mortality Table (unprojected); Ga-1971 Proj. C: projected Ga-1951 Table to 1971 and fully projected thereafter (Scale C); 1971 GAM Proj. D: 1971 Group Annuity Mortality Table fully projected (Scale D).

† Interest rate needed with 1971 GAM to produce Ga-1951, 31 per cent value.

T.	AB	LE	17	Contin	ued
----	----	----	----	--------	-----

Age	Mortality	INTEREST RATE				
x	TABLE*	3 1 2%	5%	6%	7%	i% †
55	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	14.9223 15.6483 15.3953 16.1072 15.6479	12.9417 13.4738 13.2825 13.7969 13.4590	11.8577 12.2938 12.1344 12.5515 12.2746	10.9263 11.2856 11.1524 11.4924 11.2645	3.84
60	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	13.3222 13.9947 13.7506 14.3530 13.9488	11.7635 12.2751 12.0812 12.5395 12.2257	10.8896 11.3185 11.1519 11.5358 11.2698	10.1262 10.4872 10.3437 10.6666 10.4405	3.88
65	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	11.8055 12.3580 12.1936 12.6017 12.3331	10.6071 11.0409 10.9040 11.2283 11.0096	9.9186 10.2896 10.1684 10.4476 10.2566	9.3072 9.6253 9.5180 9.7590 9.5920	3.95
70	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	10.5175 10.8882 10.8531 11.0222 10.9395	9.5959 9.8944 9.8604 10.0010 9.9279	9.0540 9.3134 9.2808 9.4053 9.3383	8.5653 8.7911 8.7601 8.8705 8.8093	4.01
75	Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	9.5666 9.7489 9.8293 9.8007 9.8747	8.8321 8.9817 9.0440 9.0240 9.0804	8.4051 8.5232 8.5760 8.5603 8.6075	7.9892 8.1051 8.1498 8.1377 8.1772	4.00

D.	$a_{x:\overline{10}}^{(12)}$
----	------------------------------

* Ga-1951: 1951 Group Annuity Table (unprojected); Ga-1971: projected Ga-1951 Table (Scale C) to calendar year 1971 and unprojected thereafter; 1971 GAM: 1971 Group Annuity Mortality Table (unprojected); Ga-1971 Proj. C: projected Ga-1951 Table to 1971 and fully projected thereafter (Scale C); 1971 GAM Proj. D: 1971 Group Annuity Mortality Table fully projected (Scale D).

† Interest rate needed with 1971 GAM to produce Ga-1951, 3} per cent value.

or all classes of business. Assuming the minimum valuation standard for new contracts were to be based on the unprojected 1971 GAM Table, the last column of Table 17 shows the interest rate needed to produce annuity values equal to the present minimum standard, Ga-1951 unprojected at $3\frac{1}{2}$ per cent interest. The changes which occur among these relationships with advancing age are of interest.

Deferred annuities with payments commencing at age 65.—At ages 50 and under, life annuity, no certain period, values based on the 1971 GAM fully projected by Scale D are greater than the values based on the Ga-1951 projected to 1971 by Scale C. At ages 55 and over the relationship reverses. For life annuities with a 10-year-certain period the same reversal occurs, but at a higher age. The age at which the reversal occurs depends on the interest rate.

Immediate annuities due.—At ages 70 and under, life annuity, no certain period, values based on the 1971 GAM unprojected and fully projected by Scale D are less than the values based on the Ga-1951 projected to 1971 by Scale C. At ages 75 and over the relationship reverses (except at the 7 per cent interest level where, with respect to the 1971 GAM unprojected values, the reversal occurs later). At ages 75 and under, life annuity, no certain period, values based on the 1971 GAM unprojected by Scale D are less than the values based on the 1971 GAM unprojected by Scale D are less than the values based on the Ga-1951 projected to 1971 and fully projected thereafter by Scale C. At ages 80 and over the relationship reverses. For life annuities with a 10-year-certain period the same patterns are evident, but the reversals occur at younger ages.

Table 18 demonstrates the relative magnitudes of aggregate retired life reserves under several valuation bases. The tabular values are based on immediate life annuities due, payable monthly, no death benefit, and are based on the distribution of the 1966 intercompany retired life exposures by amount of annual income.

The relatively small variation between the four bases other than the unprojected Ga-1951 is interesting. Particularly noteworthy is the closeness of the results based on the Ga-1951 projected 20 years by Scale C and the 1971 GAM fully projected by Scale D. Also, it is evident that a change in interest rates to 5 per cent together with a change to a current mortality basis would not cure the surplus strain problem; a much higher interest rate would be needed before there is noticeable relief.

USE OF MALE AGE SETBACK FOR FEMALES

Although the 1971 GAM includes a female mortality table, most companies probably would prefer to use the male table with an age adjustment for females. This practice is much more convenient, is quicker, and is less expensive than using a completely separate table for females. Thus the Ga-1951 female table has had very little use and is no longer even being used in the annual intercompany mortality studies. The main reason for constructing the 1971 GAM table for females is to determine a suitable age rating of the male table for females. Table 19 compares male and female annuity values at two interest rates, $3\frac{1}{2}$ per cent and 6 per cent, and on two mortality bases, the fully projected

602 THE 1971 GROUP ANNUITY MORTALITY TABLE

1971 GAM and the 1971 GAM projected 10 years and fully projected thereafter by Scale D.

From Table 19, a uniform male age setback of 6 years for females seems appropriate. Some companies might prefer to use several age setbacks, depending on attained age. If the 1971 GAM is adopted as an acceptable valuation standard, companies should be allowed reasonable flexibility in this respect.

CONCLUSION

Nearly twenty years have elapsed since Ray Peterson presented his excellent study "Group Annuity Mortality." A tribute to the care with which his study was done is how remarkably well the Ga-1951 Table

TABLE 18

COMPARISON OF AGGREGATE MALE RETIRED LIFE RESERVES UNDER DIFFERENT VALUATION BASES

Mortality	INTEREST RATE					
TABLE*	33%	5%	6%	7%		
Ga-1951 Ga-1971 1971 GAM Ga-1971 Proj. C 1971 GAM Proj. D	100.00% 107.12 106.14 108.86 107.25	91.71% 97.83 96.87 99.25 97.77	86.87% 92.43 91.50 93.69 92.29	82.51% 87.57 86.68 88.68 87.36		

* Ga-1951: 1951 Group Annuity Table (unprojected); Ga-1971: projected Ga-1951 Table (Scale C) to calendar year 1971 and unprojected thereafter; 1971 GAM: 1971 Group Annuity Mortality Table (unprojected); Ga-1971 Proj. C: projected Ga-1951 Table to 1971 and fully projected thereafter (Scale C); 1971 GAM Proj. D: 1971 Group Annuity Mortality Table fully projected (Scale D).

FREQUENCY DISTRIBUTION OF AMOUNT OF ANNUITY INCOME (1966 INTERCOMPANY GROUP ANNUITY MATURED LIFE EXPERIENCE FOR RETIREMENT ON OR AFTER NORMAL RETIREMENT DATE)

	Age							
	63	68	73	78	83	88		
f63+61	12.904%	41.896%	27.754%	12.472%	3.895%	1.075%		

performed. Nevertheless, the vanishing margins and shift in the age distribution of business have raised doubts as to the continued suitability of the Ga-1951 Table for valuation purposes. The 1971 GAM Table is intended to correct these distortions.

At the time of adopting a new mortality table for valuation purposes, new interest rates should also be considered. Under present conditions, and considering the outlook for the next few years, a much higher interest rate than the current $3\frac{1}{2}$ per cent appears eminently reasonable for minimum valuation standard purposes. Companies should also be allowed reasonable flexibility with respect to the recognition of mortality improvement and with respect to the valuation of benefits for females.

TABLE 19			
COMPARISON OF 1971 GAM PROJECTION I	D MALE	AND	Female
ANNUITY VALUES			

Age x	Fемаle ⁽¹²⁾ ^д 2		MALE $\ddot{a}_{x-t}^{(12)}$	r*	FREQUENCY† DISTRIBUTION (PER CENT)			
		1 = 5	<i>t</i> = 0	1=7				
			33 Per Cent Interest Rate					
58 63 68 73 78 83 88	16.7202 14.6824 12.4916 10.2259 8.1489 6.3389 4.7794	$\begin{array}{c} 15.9738\\ 14.0928\\ 12.1026\\ 10.1044\\ 8.2656\\ 6.5757\\ 5.1668 \end{array}$	16.3350 14.4798 12.5049 10.4963 8.6154 6.9004 5.4199	16.6915 14.8611 12.9055 10.8937 8.9728 7.2357 5.6866	$7.1 6.5 6.0 5.3 4.7 4.2 3.4 \bar{r} = 5.8$	5.4196 22.6793 38.2396 21.1078 8.9299 2.7778 0.8459		
			6 Per (Cent Interest R	ate	I		
58 63 68 73 78 83 88	12.8489 11.6439 10.2313 8.6451 7.0977 5.6750 4.3869	12.3583 11.2233 9.9249 8.5269 7.1667 5.8461 4.6940	12.5661 11.4643 10.1951 8.8080 7.4306 6.1055 4.9040	12.7682 11.6978 10.4603 9.0897 7.6976 6.3709 5.1238	$7.4 6.8 6.1 5.4 4.7 4.3 3.4 \bar{r}=6.0$	5.4196 22.6793 38.2396 21.1078 8.9299 2.7778 0.8459		

A. ANNUITY VALUES IN CALENDAR YEAR 1971

* Where r is chosen such that female $\ddot{a}_x^{(12)} =$ male $\ddot{a}_{x-r}^{(12)}$; \ddot{r} is the weighted average of r values.

† Frequency distribution of amount of annuity income based on 1966 intercompany group annuity female matured life experience for retirement on or after normal retirement date.

TABLE 19—Continued

Age x	Fемаle ä _x ⁽¹²⁾	$MALE \ddot{a}_{x-i}^{(12)}$ $i=5 \qquad i=6 \qquad i=7$			r*	FREQUENCY† Distribution (Per Cent)
		······	31 Per	Cent Interest	Rate	I
58 63 68 73 78 83 88	17.0409 15.0243 12.8372 10.5519 8.4183 6.5238 4.8735	16.1770 14.3016 12.3071 10.2905 8.4189 6.6922 5.2456	16.5361 14.6880 12.7114 10.6873 8.7761 7.0242 5.5062	16.8901 15.0685 13.1134 11.0891 9.1405 7.3669 5.7804	$\begin{array}{c c} 7.4 \\ 6.9 \\ 6.3 \\ 5.7 \\ 5.0 \\ 4.5 \\ 3.5 \\ \hat{r} = 6.2 \end{array}$	5.4196 22.6793 38.2396 21.1078 8.9299 2.7778 0.8459
			6 Per C	ent Interest Ra	te	r
58 63 68 73 78 83 88	13.0388 11.8636 10.4708 8.8880 7.3112 5.8294 4.4693	12.4807 11.3586 10.0669 8.6642 7.2858 5.9409 4.7609	$\begin{array}{c} 12.6855\\ 11.5973\\ 10.3366\\ 8.9473\\ 7.5542\\ 6.2054\\ 4.9767\end{array}$	12.8844 11.8285 10.6007 9.2305 7.8353 6.4757 5.2022	$7.87.26.55.85.14.63.6\bar{r} = 6.4$	5.4196 22.6793 38.2396 21.1078 8.9299 2.7778 0.8459

B. ANNUITY VALUES IN CALENDAR YEAR 1981

* Where r is chosen such that female $d_x^{(12)} = \text{male } d_{x,r}^{(12)}$; \vec{r} is the weighted average of r values.

† Frequency distribution of amount of annuity income based on 1966 intercompany group annuity female matured life experience for retirement on or after normal retirement date.

ACKNOWLEDGMENTS

The authors are greatly indebted to Mr. Peterson for his pioneering work, and in the course of this study they referred to and relied on his study more than might be evident. Also, the authors would like to express their gratitude to the various people in many companies who offered help and encouragement. Particular thanks are due Stephen Margolies, Varnum Abbot, Jr., Harold Moulton, Ernest Heyde, and Jonathan Schwartz, who contributed significantly to this project.

DISCUSSION OF PRECEDING PAPER

HARRISON GIVENS, JR.:

The last major study of group annuity mortality, which produced the Ga-1951 Table, was conducted almost twenty years ago; the margins in that table have now disappeared; and the rate of mortality improvement currently experienced is both quite different from that of a decade ago and an uncertain guide at best for the future. Hence a current examination is certainly welcome.

The Present

It is certainly regrettable that reporting errors have crept into the Society's reports on group annuity mortality. As a result, the most recent information available is for 1967. This or a combination with 1966 is a natural starting point for representing current experience. The route taken by the authors to reach a "1966 Experience" Table introduces a little uncertainty in allowing quantitatively for the probable underreporting of 1968 mortality. The 1966 Experience Table (Table 7) is 2 per cent lighter than the reported 1966 experience in aggregate and in the important age ranges 61-75 and 81-85. In part this is because the reported 1968 experience is light, but, if it is no more so than the originally reported 1967 experience (about 2 per cent) or 1966 experience (about 3 per cent), this accounts for only about $\frac{1}{2}$ per cent overall when submerged in a five-year block of experience. Since, after corrections, the reported 1966 experience well represents that for 1964-67, it is natural to wonder how the other $1\frac{1}{2}$ per cent margin crept into the 1966 Experience Table.

As to active employee mortality, we recently made a fairly careful analysis of the intercompany 1960-64 group life mortality experience in order to reach the male component. Compared with the male experience of Table 5, our results would produce 27 per cent more deaths overall and in the important age range 50-59, and 40 per cent more deaths in the age range 60-64. It is natural to feel uneasy at what may be a distinctly rich margin in valuing group deferred annuities.

The Future

In analyzing current rates of improvement, the authors have reasonably put aside the relatively strong improvement experienced in the 1950's in favor of the slight degree of improvement experienced in the 1960's. Different starting and end points in the 1960's would have produced somewhat different scales, but the route taken is reasonable to get a representation of the current trend. It would be helpful to have a clearer measure of how well Projection Scale D reproduces that trend.

In any case, current trends are an uncertain guide for the future. Discussion should be encouraged of the various factors that may change mortality experience significantly in the future. For example, if present standards of medicine and public health are maintained without further change, how much more improvement can be expected from deferred effects? What continuing improvements in medicine and public health are required to continue recent improvements in mortality? Where are improvements likely to come from? For example, will they be more in the area of preventive care than in that of curative care? Thus, at what ages and in what calendar period will their results be observable? To what extent may countertrends be developing because of increasing population density, pollution, rising social unrest, crime, and the psychological pressure of massive social and economic changes amid uncertainty? Finally, it would be helpful to interpret any proffered projection scale in terms of the extent to which it provides financial coverage for various age-specific improvements in the major causes of death after retirement.

Margins

Even from the viewpoint solely of statistical fluctuation, it is difficult to perceive the usefulness of Table 8. First, it is not clear whether the number of lives shown is the exposure for the five years 1964-68 at the single central age shown or the exposure for one year for the five-year age group to which the indicated age is central. In any event, the standard deviation obtained depends upon the number of lives, of course, and a different grouping would have led to different entries in columns 3 and 4. This would not matter if the composite figure for the whole experience were calculated by the usual formula for the variance of an aggregate of independent experiments. In that case two standard deviations for the aggregate of the male experience would be 1.6 per cent, rather than the 4.5 per cent displayed as the weighted average of column 4.

Second, and more important, the relevance of Table 8 is obscure because no single carrier has an experience as large as that of the intercompany study. Do the authors wish to suggest a margin for statistical fluctuation that is determined by the volume of business in force? If so, for a company with 10 per cent of the volume of business in the intercompany study, two standard deviations would be 5.1 per cent rather than 1.6 per cent; for a company with 1 per cent of the intercompany volume, this would be 16 per cent. The 8 per cent margin chosen by the authors happens to provide a margin of two standard deviations for a company with 4 per cent of the intercompany volume.

Third, and more important still, the variation to be expected by industry, geographical location, character of employment, and so on, is more significant than that caused by purely statistical fluctuation. It would be desirable to have a current appraisal of this at least as developed as that contained in the presentation of the Ga-1951 Table.

Fourth, and most important, an analysis is needed of the aggregate margin required for all mortality and interest contingencies: this would clearly be less than the sum of the margins needed for independent contingencies. Such a discussion is all too rare in our literature.

Valuation Standard

The omissions pointed out here would be serious in a paper that purported to be a fully developed analysis of present and future group annuity mortality. Such an analysis would indeed be most valuable. In this case, however, the authors have clearly pointed out that the 1971 Group Annuity Mortality Table was developed solely as a valuation standard. For this purpose it probably measures "current" experience well enough if the margins are removed, and these margins are presumably intended to allow a static current table to be used safely as a valuation table for an extended period, as has been the case with the Ga-1951 Table. Indeed, the apparent 2 per cent margin noted in the 1966 Experience Table compared with the corrected 1966 experience reported, plus the explicit 7 per cent margin built into the 1971 table, produces a 9 per cent margin, which is strikingly close to the 10 per cent margin that was explicitly built into the Ga-1951 Table.

The paper is most helpful in providing the tools for appraising the financial consequences of using this new table in conjunction with various rates of interest for a representative distribution of business. Table 18 indicates, for example, that the reserves required for male retired lives by the Ga-1951 Table and $3\frac{1}{2}$ per cent interest, the common minimum standard today, would be about equal to those on the new table and $4\frac{1}{2}$ per cent interest. This is a clear indication of the strong margins introduced in comparison with the Ga-1951 Table, and it underscores the importance of considering the new table as a valuation standard only in conjunction with the accompanying interest rate. While this is true in any circumstances, it is of the greatest importance in the present environment. It would be a substantial miscarriage of the authors' intent if the new table were mandated without a substantial liberalization in the

608 THE 1971 GROUP ANNUITY MORTALITY TABLE

required maximum interest rate, since the composite effect is not to begin relief until the interest rate exceeds the $4\frac{1}{2}$ per cent level.

WILLIAM H. CROSSON:

With the disappearance of mortality margins in the present statutory annuity mortality valuation standard, and the importance of obtaining some kind of relief from the present statutory maximum valuation interest rate, it is a highly propitious time for the emergence of a proposed new annuity valuation mortality table.

In reviewing the valuation mortality table proposed by Messrs. Greenlee and Keh, I was impressed by the magnitude of the mortality margin provided, and I was led to consider in a rather fundamental way the question of how margins should be developed for and included in a statutory minimum valuation standard. As a result of this consideration, I conclude that the proposed mortality margins are seriously redundant. (An elaboration of this theme constitutes the main body of this discussion.) Consequently, I believe that substantially more work is required before we can consider that we have a satisfactory proposed valuation standard.

I am also deeply concerned about the possibility that this new mortality table might be imposed without any relief whatever on the interest rate. This would be a terribly unfortunate and completely inappropriate development.

This discussion concludes with brief consideration of a few technical difficulties, and a brief note about female mortality and nomenclature.

Margins

The reserves produced by application of a statutory minimum valuation standard should be larger than the reserves that would be produced by application of an "expected experience valuation standard," by an amount called "margin." The purpose of margin is to compel an insurance company to retain in hand sufficient funds to provide for any and all divergences (in directions that tend to produce larger present values of annuities) of actual experience conditions from expected experience conditions that may reasonably be contemplated. Such divergences may take the form of (1) chance mortality fluctuations producing mortality lighter than expected, (2) mortality improvement at rates greater than expected, (3) chance interest-rate fluctuations producing interest rates lower than expected, and (4) interest rate decreases at rates greater than expected.

DISCUSSION

In an idealized situation, the margin required to provide for each of these contingencies separately could be determined. The total margin required to provide for all of these contingencies would obviously be larger than any of the separate margin requirements but would certainly be less than the sum of the separate margin requirements (since the possibility that all of the contingencies will materialize simultaneously is quite remote). If the chances of occurrence of each of the contingencies were independent, then the total margin requirement would be the vector sum of the separate margin requirements (the separate margin requirements being viewed as mutually perpendicular vectors). In symbols, if M_1 , M_2 , M_3 , and M_4 are the separate margin requirements, then the total margin requirements, then the total margin requirements.

$$\sqrt{(M_1)^2 + (M_2)^2 + (M_3)^2 + (M_4)^2}$$
.

If an "expected experience valuation standard" is composed of (1) a current experience mortality table, (2) a set or sets of mortality improvement factors, (3) a current experience interest rate, and (4) a set or sets of interest rate decrease factors, it would not be correct to derive from this a statutory minimum valuation standard merely by adjusting each of these four elements so as to cover, separately, the margins separately required for each of the corresponding four contingencies. On the other hand, it would be reasonable to modify the adjustments to each of the four elements in such a way that the total margin produced by the resulting statutory minimum valuation standard is equal to the total margin required and not to the sum of the separate margin requirements. (Failure to recognize the propriety of partial offsets of margins for independent contingencies can contribute, and has contributed somewhat, to the justifiable criticism that life insurance company reserves are substantially higher than they should be.)

As a practical example of how these kinds of considerations affect company reserving practices, I merely need to point out that many companies are using, as a reserve basis, one of the present statutory minimum valuation standards (Ga-1951, $3\frac{1}{2}$ per cent), despite the absence of margin in the mortality table component of that standard, because the interest rate margin in that standard is clearly adequate to cover any reasonable variations in mortality and interest experience that could be contemplated.

In short, the point of this discussion so far is that if the statutory maximum interest rate, even though it may be increased, should continue to provide an interest rate margin that is clearly adequate to cover

610 THE 1971 GROUP ANNUITY MORTALITY TABLE

the reasonable variations in mortality and interest experience that could be contemplated, then there is no need to have a margin in the mortality basis at all. In the event that the statutory maximum interest rate is increased to such a point as to provide only the required interest rate margins, then the margins in the statutory mortality basis need be sufficient to cover only a small fraction of the total mortality margin requirement. Also, it is impossible to decide whether the mortality margin is right unless we know the interest margins. I believe that it is quite likely that whatever statutory maximum interest rate is permitted, the interest margin will still be somewhat redundant with respect to the total margin requirement, and to have any margin in the mortality standard would be highly redundant. In the absence of knowledge as to what interest margins there will be, I will nevertheless examine the margins in the proposed mortality table and projection scales, keeping in mind that whatever mortality margins are required should be tempered when the interest margins are recognized.

As to the mortality table proposed as the valuation standard, mortality rate margins are proposed as 8 per cent for males and 10 per cent for females. The development of these particular margin needs is not completely laid out in the paper. The description of how the margins were developed would allow one to infer that these margins are intended to provide for mortality fluctuation, and very little margin is provided for mortality improvements. The data presented should lead to the conclusion that the mortality rate margin for fluctuations should be something like 5 per cent for males and 12 per cent for females, or appropriate multiples of these two numbers depending on the desired level of confidence that there be adequate margin. It is difficult to see how we can conclude that 8 per cent and 10 per cent are the right figures, particularly when it is easy to conclude that the proper multiples are 0 per cent and 0 per cent. (The confidence level shown in the paper is appropriate only for an experience as large as the intercompany experience. Any one insurance company will have a smaller experience, so that a company's level of confidence will be smaller than the confidence level shown.)

The paper proposes two mortality improvement projection scales for males and one for females, to be used at the company's option, to recognize expected mortality improvement. Projection Scale D is intended to represent a projection of recent past experience. It is not clear what Scale E is intended to represent. It is also not completely clear how either of these scales was developed. In considering the question of projection scales, it is appropriate and, I would think, essential to examine the

DISCUSSION

nature of what changes in mortality rates are likely to occur in the future. To consider what sort of margins for mortality improvement should be provided, it is necessary to examine the nature of the changes in mortality rates that could occur in the future with reasonable probability. For example, it would be quite appropriate to develop a projection scale by projecting the mortality improvement that is likely to occur or could reasonably be conceived of as occurring as a result of probable developments and reasonably possible developments in the prevention and treatment of cardiovascular-renal diseases and cancer.

A Few Technical Points

It is difficult to understand how the authors could have concluded, in Table 6, that the ratio of mortality ratios for females at ages 60 and under is 0.8992, when the mortality ratios themselves are 1.151 and 0.808, as presented in Table 1. It is certainly not clear why, in adjusting the graduation of the table, the negative second differences were not eliminated at ages 70 and 71, nor do I understand why the graduation was adjusted at ages 56, 57, 95, and 96 in order to eliminate negative second differences at ages 70–90.

The underreporting of deaths and exposures for 1968, referred to in the paper, presumably results in an overstatement of the improvement rates of Scales D and E. The underreporting was corrected, however, by adjusting the margins in the static table. It is certainly difficult to see why the adjustment was made in this way.

Female Annuity Values

While the paper is quite cogent in suggesting a six-year age setback from the male table for female retired lives, it says nothing about female deferred annuities. If we wish to use the male table, including the male Projection D or Projection E, for female deferred annuities, it is probable that a seven- or eight-year age setback of the male table would be appropriate.

Nomenclature

I will conclude this discussion with a brief note as to nomenclature. Several references to tables derived from the Ga-1951 Table have appeared in the literature, and these tables have consistently been referred to in terms of the Ga-1951 Table together with a brief description of the modification. This usage, as a result, reserves the term "Ga-19XX Table" for the title of a mortality table for the year 19XX that is derived from a substantially independent investigation of mortality rates. In

accordance with this usage, the various tables appearing in the paper should be redesignated, and I suggest the following:

Title of Table in Paper	Proposed Title of Table
G <i>a</i> -1971	Ga-1951, Projection C to 1971
G <i>a</i> -1971, Projection C	Ga-1951, Projection C, age in 1971
1971 GAM	Ga-1971
1971 GAM, Projection D	Ga-1971, Projection D, age in 1971

JOHN C. ANTLIFF:

Table 1 of the paper demonstrates that the Ga-1951 Mortality Table without projection is not suitable as a valuation standard for variable annuities, since the actual intercompany experience in 1964 to 1968 was 98.7 per cent of expected for males and 85.7 per cent of expected for females (rated down five years in Ga-1951 Male Table). For fixed annuities

	Gene	ERATION RESERV	REGULATION NO. 47 Reserve Basis		
YEARS OF BIRTH	Male Age Ratedown (Years)	Female Age Ratedown (Years)	Reserve	Central Year of Retirement	Reserve
Up to 1925 1926–1940 1941–1955 (etc.)	3 4 5	9 10 11	\$152.39 156.11 159.88	1983 1998 2013	\$149.97 154.68 159.14

TABLE 1

the Ga-1951 Table with the present maximum valuation interest rate of $3\frac{1}{2}$ per cent produces reserves which are overconservative in relation to single-sum annuity purchase rates which have been offered for several years and apparently will continue for some time to come. However, there is no possibility of excess interest earnings to cover mortality losses on variable annuities. This is recognized by the New York Insurance Department in Regulation No. 47. As a valuation standard for group variable annuities, the regulation specifies the Ga-1951 Table projected to the year of retirement using Projection Scale C or "any other table approved by the Superintendent." In order to avoid using a new set of commutation functions for the new generation of retirees each year, my company is using the Ga-1951 Male Table without projection but with age ratedowns on a progressive basis according to year of birth and sex, as shown in Table 1. The reserves shown in the table are for \$1 per month payable for ten years certain and life to a male at age 65 with an assumed investment result of $3\frac{1}{2}$ per cent. Assuming a central year of

retirement 65 years after the central year of birth in each bracket, we find that our reserves will continue to be slightly more conservative than those specified in Regulation No. 47. The generation reserve basis for group variable annuities is analogous to the Progressive Annuity Table, which is specified in Regulation No. 47 as one of two alternate valuation standards for individual variable annuities.

If the 1971 GAM Table is adopted as the group annuity mortality valuation standard with a much higher interest rate than the present maximum of $3\frac{1}{2}$ per cent, it should be as suitable for variable annuities as for fixed annuities. In other words, the mortality margin of 8 per cent for males and 10 per cent for females should be adequate for variable annuities, just as for fixed annuities, until such time as actual future mortality improvement eliminates most of the margin.

YEARS OF BIRTH	AGE RATINGS I (YEARS)		YEARS OF BIRTH	Age Ratings II (Years)	
	Male	Female		Male	Female
Up to 1920 1921–1935 1936–1950 (etc.)	1 2 3	7 8 9	Up to 1925 1926–1940 1941–1955 (etc.)	1 2 3	7 8 9

TABLE 2

Nevertheless, it may be of interest to illustrate a set of age ratedowns which will closely approximate the effect of Projection Scale D on the 1971 GAM Male Table. As indicated by the authors, it might be of greater value to determine a set of age ratings which would approximate Projection Scale E, since Scale E seems to have more merit as an estimate of future mortality improvement than Scale D. However, the necessary commutation functions are available for Scale D but not yet for Scale E. Two possible sets of age ratedowns which are shown below to be close approximations of Projection Scale D are given in Table 2.

Table 3 shows reserves for \$1 per year payable monthly for life, based on 6 per cent annual interest (or assumed investment result for a variable annuity) and the 1971 GAM Male or Female Table fully projected to the valuation date and beyond by Projection Scale D. The weights were obtained from the second portion of Table 18 of the paper, assuming a female percentage increasing steadily from 20 per cent at age 63 to 30 per cent at age 88.

The same model-office valuation was also done on the basis of the 1971

614 THE 1971 GROUP ANNUITY MORTALITY TABLE

GAM Male Table unprojected and the two sets of age ratedowns defined above. Ratios of the resulting average reserves to those shown on the "All ages" line in Table 3 were as follows:

		1		
Age Ratings I	1.0250	1.0019	1.0065	1.0133
Age Ratings II	1.0250	0.9980	0.9990	1.0060

This approximation is very close. Similar ratios were obtained using $3\frac{1}{2}$ per cent interest instead of 6 per cent, as follows:

Age Ratings I	1.0293	1.0032	1.0094	1.0180
Age Ratings II	1.0293	0.9982	1.0005	1.0093
				1

The second set of age ratedowns seems to be a closer approximation to Projection Scale D than the first set. By coincidence, the second set involves the same year-of-birth brackets as the generation reserve basis used by my company with the Ga-1951 Table. However, the work of

TABLE 3

Attained Age	WEIGHT	YEAR OF VALUATION				
	by Amount in Force	1971	1986	2001	2016	
	Males					
63	$\begin{array}{c} 0.10323\\ 0.32679\\ 0.21094\\ 0.09230\\ 0.02805\\ 0.00753 \end{array}$	\$ 9.9249 8.5269 7.1667 5.8461 4.6940 3.7741	\$10.1366 8.7319 7.3448 5.9880 4.7942 3.8319	\$10.3404 8.9310 7.5195 6.1282 4.8937 3.8895	\$10.5364 9.1243 7.6906 6.2667 4.9924 3.9467	
			Females			
63	$\begin{array}{c} 0.02581 \\ 0.09217 \\ 0.06661 \\ 0.03243 \\ 0.01091 \\ 0.00323 \end{array}$	\$11.6439 10.2313 8.6451 7.0977 5.6750 4.3869	\$11.9682 10.5857 9.0053 7.4151 5.9051 4.5099	\$12.2621 10.9112 9.3410 7.7154 6.1260 4.6297	\$12.5273 11.2088 9.6523 7.9982 6.3375 4.7461	
All ages (male and female)	1.00000	\$8.1481	\$8.3691	\$8.5807	\$8.7831	

DISCUSSION

developing a set of age ratedowns for the 1971 GAM Table with Projection Scale E remains to be done.

JOHN S. MC COY:

The efforts of Messrs. Greenlee and Keh in undertaking the task of updating the study of group pension mortality and producing the 1971 Group Annuity Mortality Table are appreciated. The Group Annuity Table for 1951 has served its turn well, due largely to the painstaking care which Ray Peterson gave to its preparation, but certainly a detailed review of group pensioner mortality experience was long overdue. A major deterrent to would-be successors of Mr. Peterson may well have been the knowledge that their efforts would be judged by comparison with his, and both the diligence of his effort and the longevity of his product made it a difficult act to follow.

The authors have done a workmanlike job, but there are several aspects of their study that I find somewhat questionable. The retired life experience involved in the study has been limited to that taken from the portion of the Intercompany Group Annuity Mortality Study applicable to retirements on and after normal retirement date. In the period 1964-68 the actual deaths among males for retirements in this classification constituted about 60 per cent of the total deaths under all male classifications. Since the effect of adverse mortality experience on retirements prior to normal retirement date and those under plans having no stated retirement date can be expected to disappear from the experience after a few years (the data reported in the intercompany study suggest that after attained age 70 the experience for all categories is becoming homogeneous), it seems that more data could have been used to study the experience at the older ages. In this connection it is well to note that liberalized benefits at early retirement in recent years have improved the caliber of lives coming into the early retirement experience. Although it may be true that the block of experience selected exhibited the lowest mortality rates, is it appropriate to exclude the source of additional mortality experience in making the study?

An important element in the construction of the new table is the scale of mortality improvement factors which has been developed from the intercompany experience of 1956–60 and 1964–68. This experience was also derived solely from the retirements on or after normal retirement date. I have some of the same misgivings here as in the area previously mentioned. It is especially difficult to accept the sparse data available for ages 60 and under as evidence that mortality improvement for all ages under 65 approximates that for ages 61–65 and is about half as much as it was assumed to be under Projection Scale C. This conclusion

is also contrary to some experience which has emerged under deferred annuity plans which we administer.

As a part of our annual reserve reconciliation work, we make comparisons of actual reserves released by death during a calendar year with the expected reserves released on the basis of tabular mortality. Since our group annuity reserves have been based on the Group Annuity Table for 1951 with full Projection C since 1963, these comparisons give some indication of the reliability of Projection Scale C. The figures show some minor fluctuations from year to year, but the ratio of actual to expected reserves released has had a downward trend, and the ratio for 1968 was about 98 per cent of that for 1963. Unfortunately, we develop only aggregate figures, and there is no separation between deferred and matured annuities. However, as the bulk of the reserves are for deferred annuities, it is reasonable to assume that the mortality improvement actually emerging for active lives is not significantly less than that of Projection Scale C.

The other aspect of the study that is difficult to accept with much confidence is the significance of the data used to derive mortality experience for the active life group. Should experience which is based on such limited data be the basis for a minimum valuation standard? This question seems especially pertinent because the annuity values shown in Table 17 indicate that reserves for deferred annuities on, say, the 1971 GAM Table are about 5 per cent weaker than those on the Ga-1971 Table. Those on the 1971 GAM Projection D Table would appear to be about 8 per cent less than those on the Ga-1971 Projection C Table. It seems to me that we should be wary of moving to a weaker standard from one which for the first time in history has managed to keep pace with mortality improvement unless there is strong evidence to support such a move.

One final point may bear mentioning. History indicates that mortality tables adopted for minimum valuation standards have a way of becoming used as standards for estimating the costs of pensions in the uninsured private pension plan sector. It would be ironic if a table such as this, which reflects only a portion of the mortality experience under insured group annuity plans, were to be put to use in the uninsured sector—a sector that, according to recent estimates, accounts for about \$96 billion of the \$135 billion in private pension plan funds. It is obvious that even if the authors had been able to use all the data available from the intercompany study, only by coincidence would their mortality table be applicable in the broader pension field.

DISCUSSION

The activities of the lawmakers in Washington and other interested parties around the country suggest to me that the time has come when actuaries should gather mortality data from the various private pension plans with which they are involved and carry out a comprehensive mortality study of both active and retired lives to produce mortality statistics to which they can refer with confidence. The authors deserve our appreciation for a paper which draws attention to this subject and may spur long-needed action on a broader front.

BARNET N. BERIN:

I have nothing but admiration for the authors' work in putting together the study and in developing the mortality table. These comments concern a point of interest and of education.

The theoretically correct basis for an annuity mortality study is a comparison of the actual reserves released by death with the expected reserves released by death—not amounts of annual income, and not lives. The problem of preparing a meaningful study of this kind for nonretired employees must be enormous. The problems associated with a study of retired lives only, probably less difficult, are still considerable.

Have the authors any information as to modern mortality studies based on reserves?

(AUTHORS' REVIEW OF DISCUSSION)

HAROLD R. GREENLEE AND ALFONSO D. KEH:

At the outset the authors would repeat an observation made in several of the discussions: the 1971 GAM Table is a valuation mortality table. The major comments on the 1971 GAM Table fall into questions concerning the data used, the margin selected, and the projection scales presented.

Data

In selecting the data, the authors wanted a relatively large volume which would be realistic but conservative, as befits a valuation mortality table. Since the "on and after normal retirement date" mortality rates are lower than those under the other two retirement date categories, and since the "on and after" data were significantly more numerous than the other two sets of data, the "on and after" data for the most recent fiveyear period available seemed to be a natural choice. A single year's experience was thought to be too small a sample for this undertaking. Mr. McCoy reasons that the authors could have used all the data at the higher ages after the effects of early retirement mortality had worn off. The argument sounds reasonable; however, the data do not clearly indicate an emerging homogeneous experience even above age 70 (see Table 1).

Mr. Givens has observed that the resulting 1966 Experience Table, before adjustment, has a 2 per cent margin over the 1966 experience in most important retired life age ranges. The authors' investigation showed that the 1966 Experience Table rates should be increased by 0.5 per cent for males and 0.9 per cent for females to account for underreporting of exposures and deaths. A uniform increase of 1 per cent was deemed to be

	RETIREMENT CATEGORY			
AGE GROUP	On and After	Early	No Stated Date	
61-65. 66-70	102.7 99.0 100.0 96.1 97.6 97.2 99.7 74.0	134.3 114.2 109.8 94.9 104.7 106.9 125.6	136.0 104.4 104.8 100.3 92.2 95.8 119.1 97.6	

TABLE	1
-------	---

MALE MORTALITY RATIOS, 1964–68, BASED ON AMOUNT OF ANNUAL INCOME

* Less than 10 deaths (actual or expected).

suitable for both sexes, and this increase was included in the final loading formula used to derive the 1971 GAM Table from the 1966 Experience Table. Another approach could have been to adjust the experience table first and then derive the 1971 GAM Table. With the 1 per cent adjustment, there would still be a 1 per cent difference between the 1966 Experience Table derived from the 1964–68 combined data and the 1966 data at the ages Mr. Givens mentioned.

The active life data presented a problem; the data were sparse. Mr. Givens suggests that the mortality rates from ages 50 to 64 are too low. As stated in the paper, the reason for not using group life mortality data was that there is no separation by sex of such data other than on an estimated basis. The authors were wary of using such estimates to produce mortality rates for the 1971 GAM Table and finally decided upon the method used as being the most reasonable one available. In struggling with the

DISCUSSION

problem of the active life rates, one comforting thought was that, with the dominance of various types of deposit administration contracts in today's world, active life mortality rates are much less important than the retired life rates in a valuation mortality table.

Margin

Mr. Crosson has prepared a thoughtful discussion of how margins should be developed. He expresses his concern that the new table might be adopted without any interest rate relief. Everyone in the group annuity business must share this concern, since, under this condition, minimum reserves under the 1971 GAM Table would be substantially higher than under the Ga-1951 Table. The study was undertaken with the understanding that the table would be combined with realistic interest rates to produce a minimum valuation standard, and, therefore, redundant interest rates should not be considered in establishing a suitable margin. Also as Mr. Antliff notes, a company in the variable annuity business may not be able to rely on any interest rate margin with respect to its variable business. Thus, if there is to be a single valuation mortality table for both fixed-dollar and variable annuities, the margin adopted should consider the mortality fluctuation element only. The authors believe that any margin for mortality improvement at a faster rate than anticipated should be considered in deriving an appropriate mortality improvement projection scale.

Table 8 was developed by the authors to provide some idea of the extent of fluctuations which could occur in intercompany experience. An individual company's experience could, of course, fluctuate more widely because of its smaller exposure and also could vary because of the nature of its business. The number of lives shown in Table 8 is the exposure at the indicated central age for the five-year period 1964-68. The weighted average was determined with the thought that a single margin factor would be applied at all ages rather than a factor varying by age. Furthermore, the assumption was made that, while mortality rates at specific ages can fluctuate independently, a valuation mortality table should provide for the possibility of fluctuation in mortality rates at all ages all in the same direction at the same time, not independently of one another. The step from Table 8 to the 8 per cent margin for males and 10 per cent for females was made after noting that, while Mr. Peterson's 10 per cent margin for males apparently had been a good choice, now 10 per cent seemed overly conservative for males, and perhaps a little light, but satisfactory, for females.

) THE 1971 GROUP ANNUITY MORTALITY TABLE

If a company's experience is likely to differ significantly from the intercompany experience because of the nature of its business, it is the company's actuary's responsibility to establish a more conservative reserve basis than the minimum standard if such action is in order. Some companies could find the minimum basis conservative (and will, if the realistic interest rate assumption turns out to be unwarranted), but to set a lower standard to accommodate such companies could lead other companies into unsound practices. It may be of interest to note the effect of the 8 per cent margin on male life annuity values at $3\frac{1}{2}$ per cent and 6 per cent interest (see Table 2).

TABLE 2

	3} Per Cent		6 Per Cent			
Male Age	1971 GAM (12) ä _x	Unloaded 1971 GAM ⁽¹²⁾ ä _x	Ratio Loaded/ Unloaded	1971 GAM (12) ä _z	Unloaded 1971 GAM ⁽¹²⁾ ä _x	Ratio Loaded/ Unloaded
55 60 65 70 75 80 85 90	14.9760 13.0935 11.1386 9.2346 7.5112 5.9329 4.6841 3.6991	14.6384 12.7391 10.7757 8.8758 7.1715 5.6188 4.4036 3.4561	$\begin{array}{c} 1.0231\\ 1.0278\\ 1.0337\\ 1.0404\\ 1.0474\\ 1.0559\\ 1.0637\\ 1.0703 \end{array}$	$\begin{array}{c} 11.7773\\ 10.5920\\ 9.2683\\ 7.8958\\ 6.5892\\ 5.3268\\ 4.2899\\ 3.4471 \end{array}$	$\begin{array}{c} 11.5734\\ 10.3623\\ 9.0169\\ 7.6317\\ 6.3258\\ 5.0714\\ 4.0528\\ 3.2350\end{array}$	$\begin{array}{c} 1.0176\\ 1.0222\\ 1.0279\\ 1.0346\\ 1.0416\\ 1.0504\\ 1.0585\\ 1.0656\end{array}$

MALE LIFE ANNUITY VALUES

Projection Scales

Mr. Givens has prepared an impressive list of factors which may affect future mortality rates; Mr. Crosson added several more. The authors concluded, while preparing the paper, that it was best to assume that there would be no spectacular breakthroughs in such fields as cancer cure, heart disease, and slowing the aging process in the near future. While substantial progress in one or more of these fields may be a good longterm prospect, the authors did not feel themselves capable of making any reliable estimate of when the advances might come. On the other hand, forces are operating in the opposite direction, as Mr. Givens suggests. Recent group life insurance experience indicates that significant increases in mortality rates from accidents are occurring, particularly at the younger ages. The *New York Times* on November 21, 1971, reported on a recent study published by the National Center for Health Statistics. DISCUSSION

It states that male death rates for most American men rose in the late 1960's. This information was not available to the authors at the time of preparing the table. The article mentions the higher death rate from accidents at the younger ages (war deaths are excluded), increased incidence of lung cancer, circulatory diseases, and cirrhosis of the liver, apparently at most or all male ages. In view of the information the authors did have when preparing the paper, the decision was made to consider recent experience in deriving mortality improvement projection scales. Scale E, in particular, follows this experience. The authors believe that the improvement factor at the younger ages is adequate in the light of the information now emerging from group life insurance experience and the above-mentioned report. Any data that Mr. McCoy could present in this area would be most welcome. With respect to older age mortality improvement, Mr. Cherry presents an interesting discussion in his companion paper, "The 1971 Individual Annuity Mortality Table." While he concludes that Projection Scale B is appropriate for individual annuity purposes, one can infer from his discussion that use of recent experience to determine a suitable projection scale for retired lives is a reasonable approach at this time. The actuary who does not agree with the authors' approach can use one of the other existing scales or develop a new scale which he may deem to be a better representation of probable future experience.

Additional Comments

The authors share Mr. Crosson's difficulty in understanding how they arrived at the Table 6 entry he questions; suffice it to say that a correction has been made.

As mentioned in the paper, negative second differences near male age 70 seemed to be a feature of these data as well as of Mr. Peterson's. The authors could have eliminated the negatives but decided not to do so. The adjustments at ages 56, 57, 95, and 96 were made to remove an anomaly induced by the graduation process in the ratios at these end points rather than to eliminate negative second differences, although without the adjustment there would have been a negative second difference at age 95 too.

The authors are not aware of any table based on a comparison of actual reserves released by death with expected reserves released by death. In view of the difficulties encountered in gathering active life data, it is doubtful whether any such active life study could be made. Many companies might have to revise their retired life systems to produce suitable retired life data for the study Mr. Berin suggests.

622 THE 1971 GROUP ANNUITY MORTALITY TABLE

Conclusion

The authors would like to thank Mr. Antliff for his fine analysis of an age rating system which will reproduce the effects of Projection Scale D. It is indeed a valuable addition to the paper. Thanks, too, to those who remarked kindly on the authors' efforts. Finally, thanks to the loyal opposition who, through their questions and discussions, not only have contributed to the value of the paper but also have pointed out several possible areas of further research.