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ABSTRACT

This paper describes a method for computing the expected loss under
a group life contract in excess of a stated limit. In accordance with a
common assumption of collective risk theory, it is assumed that the
number of claims under the contract is a Poisson-distributed random
variable.

The possible aggregate amounts less than the stop-loss level which
can occur are identified, and the probability of each such amount is
calculated. From these calculations the probability of an aggregate claim
less than the stop-loss level is determined, and also the expected value of
such a claim.

The mean aggregate claim is then recognized to be the weighted
average of the mean aggregate claim of each of two mutually exclusive
subpopulations of aggregate claims—those with aggregate claims ex-
ceeding the stop-loss level and those with aggregate claims not exceeding
the stop-loss level. From the information enumerated about the sub-
population of smaller aggregates, information is obtained about the
subpopulation of larger aggregates—namely, the probability of occur-
rence of an aggregate claim exceeding the stop-loss level and the mean
such claim. The expected stop-loss claim is then readily calculated.

The paper also shows how to compute the variance and standard
deviation of the stop-loss claim and suggests how the method can be
extended to group insurance benefits where the claim amount per certifi-
cate is not fixed.

INTRODUCTION

T 18 the objective of this paper to develop a method for computing

I the expected stop-loss claim under a group life insurance contract,

where the stop-loss claim is defined as the excess of the aggregate
claim in some interval over a specified stop-loss level.

Bartlett [1] reviewed a number of methods which had been proposed

for generating this kind of information and went on to develop a method
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312 ALGORITHM FOR COMPUTING EXPECTED STOP-LOSS CLAIMS

of fitting a gamma function to the frequency distribution of aggregate
claims.

In our development we shall consider a group of lives each of which is
insured for a fixed amount of death benefit and for each of which there
is given the probability of dying during the year. The development
assumes that lives who die are immediately replaced by lives of identical
risk. This assumption is a simplification of what is likely to happen in
practice, but it may not be less realistic than the assumption of no
replacement at all. If we also assume that the force of mortality is a
constant for each life during the year, then we have postulated an
environment where the risk remains constant. This permits us to apply
collective risk theory and assume that the number of claims during the
year is a Poisson-distributed random variable and that we are dealing
with a compound Poisson process as described by Bartlett.

We shall not attempt to find an expression for the cumulative distribu-
tion function of the aggregate claim but shall develop an algorithm
using ah enumerative approach for the computation of the expected
stop-loss claim from (a) the expected aggregate claim, (5) the probability
that the aggregate claim will not exceed the stop-loss level, and (¢) the
conditional expected aggregate claim given that the aggregate claim
does not exceed the stop-loss level. The method will be first of all de-
veloped algebraically and then illustrated numerically.

EXPECTED AGGREGATE CLAIMS

Our first step will be to compute the expected value Z of the aggregate
claim Z under the group. Let us assume that we have N certificates,
with a; the amount of insurance under certificate 7 and ¢, the mortality
rate applicable to certificate 1.

Because we are considering certificate ¢ to be immediately reissued to
a new life In the event of a claim thereunder, the number of claims 6;
under certificate ¢ is a Poisson-distributed random variable which can
take on any integral value 0, 1,2, .. ..

Let 1; be the expected number of claims under certificate 7. From the
Poisson function it follows that the probability of 8, claims under the
certificate is given by

-t 8.
e “f;F

Probability of 8; claims = 51 (1)

The probability of no claims is obtained from the above formula by
substituting 6, = 0 and is given by ¢ ‘. But the probability of no claims
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under certificate 7 is also given by 1 — ¢.. Therefore,
ei=1-—gq,
ti=E@) = —In (1 —4q). (2)

and

It may be of interest to note that ¢; is also the force of mortality for
certificate 1.
The aggregate claim Z under the group is given by

N
Z = Za"o( s
i=1

and, if we assume that claim experience under each certificate is indepen-
dent, it follows that the expected value of the aggregate claims is

Z = E(Z) = E(Za#:) = Za;E@),

or .
Z = Zai;. 3)
The number of claims T under the group is given by
T = 20"
and has an expected value T = E(T) = ZE(6,), or
T =3t. 4

The number of claims T is also a Poisson-distributed random variable.

VARIANCE OF AGGREGATE CLATMS
Our next step will be to compute the variance V(Z) of the aggregate
claims. This is given by

V(Z) = E(Z — Z)?

- E[ZNa.-(G; - t;)_T

. "
= E[Z_;af(& —_ t()Q + E Z‘{a,-a,—(e.' - t.-)(Bj - t,)] (j 7 l) (5)

g=1 jJ=

N N N
2 B0 — 1) + X 200 B6: — )0 — 1) (G #9)

=1 j=1

i

N
Y aiVE) +0.
f=1

Therefore,
V(Z) = Zd¥%; . (6)
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The simplification of the first term follows from the property of the
Poisson distribution that its variance equals its mean. The vanishing
of the second term is a consequence of the assumption that the numbers
of claims on different certificates are independently distributed.

CALCULATION OF CONDITIONAL EXPECTED CLAIMS

The population of aggregate claims which could occur if the group
could relive the year under study many times can be divided into two
subpopulations according to whether or not the aggregate claim exceeds
the stop-loss level S. The subpopulation of smaller aggregates can then
be further subdivided according to the number of claims. Given below
are some definitions which will be used.

Let p(7) be the probability of occurrence of j claims.

Let Z; be the expected aggregate claim conditional on the occurrence
of exactly j claims.

Let L; be the expected aggregate claim conditional on the aggregate
claim’s not exceeding S and conditional on the occurrence of exactly j
claims.

Let f; be the probability that the aggregate claim will not exceed §
conditional on the occurrence of exactly 7 claims.

Let L be the expected aggregate claim conditional on the aggregate
claim’s not exceeding S.

Let H be the expected aggregate claim conditional on the aggregate
claim’s exceeding S.

Let f be the probability that the aggregate claim will not exceed S.

Let A be the kth possible aggregate of j claims, the aggregates being
ranked in ascending order. We will find it necessary to enumerate only
the situations where the aggregate claim does not exceed the stop-loss
level.

Let Pj be the probability that the aggregate of j claims will equal
A ske

Let n; be the number of possible aggregates of j claims not exceeding
the stop-loss level S.

Let us now obtain an expression for Z;, the expected aggregate claim
given that only one claim occurs:

N N
e+ Probability(6; = 1) [[Probability(s; = 0)
> y 11 y
== -

N I
2 _Probability(6; = l)HProbability(O,- = 0)

=1 =1

(7 1)
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N N
Za,—e- g t;ne_t"

=1 =1
N N

—1. —t.

e et
i=1 j=1

e TZa;
Tt

or

N N

It is evident that the same expression represents the average-sized claim
whenever it occurs during the year, and we conclude, therefore, that

Z; =32, . (8)
Because the total number of claims under our model is a Poisson-dis-
tributed random variable, we can state the probability of exactly j claims
to be

e TTi

7!

As stated, the possible aggregates of a single claim are represented by
Ay, Ay, and so on. The enumeration of these amounts is a straight-
forward process carried out by an examination of the certificate amounts
a;. The probability Py of occurrence of Aj: is given by

p(j) = 9

P — 3t; (for those certificates where a; = Ay)
1k Zt; (for all certificates)

. (10)

We then proceed to enumerate the Ao values, the possible aggregates
of two claims. This we can do systematically by sequentially associating
each Ay value with other Ay values, but enumerating only those Ag
values which do not exceed the stop-loss level. Similarly, we can enumer-
ate the 4 values for any j by taking into account the 4, & and Ayu
values. Enumeration stops for some j = J if J <4 1 occurrences of the
smallest-sized claim would exceed the stop-loss level.

For each Aj value we compute a probability P, from

Pjy = ZP; 4, 1Pim, (11)

summed over all pairs such that 4, ; 4+ 41n = 4.

We now have the necessary data for computation of L;, the expected
aggregate of j claims conditional on the aggregate claim’s not exceeding
the stop-loss level.
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i
2 Pid
L= (12)
i
2Pt
k=1
Also, the probability that the aggregate of the j claims will not exceed
the stop-loss level is given by

fi= 2P . (13)
s

We can now compute L, the expected aggregate claim conditional on
the aggregate’s not exceeding the stop-loss level,

;P(J)f iL;

L= (14)

7
J_23_;015(1)fj

Also, the probability f that the aggregate claim will not exceed the stop-
loss level is given by

f= gp(J)fj~ (15)

We are now ready to compute H, the expected aggregate claim con-
ditional on the aggregate claim’s exceeding the stop-loss level. This we
do by recognizing that the mean of the aggregate claims must be a
weighted average of the means of the two mutually exclusive subpopula-
tions into which we have decomposed the over-all population. That is,

Z=fL+ (- HH. (16)

Solving for the unknown value of H, the expected value of the aggregate
claim conditional on the aggregate claim’s exceeding the stop-loss level,
we get _

Z — fL
H = 1=/

EXPECTED STOP-LOSS CLAIM

We can now obtain an expression for the expected value of the stop-loss
claim W, where

)

W=T-35 (T > S)
=0 (r<S).
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We have _
W=EW)=f0+QQ—-f)H~-S),

or _
W=_0-HH-S). (18)

VARIANCE OF STOP-LOSS CLAIMS

Our next step will be to develop an expression for the variance of the
stop-loss claim W,

Let us define LL; as the expected sum of the squares of the claims
conditional on there being exactly j claims whose aggregate does not
exceed the stop-loss level S. It follows that

J
lejkAfk
i=

i

Also, let LL be the expected sum of the squares of the claims conditional
on the aggregate claim not exceeding the stop-loss level:

LL; = (19)

IL = E_i’(_f)ffz_f;]ﬁ (20)
Now -
V(W) = E(W — W)?
and = EW?) — W?,

E(W?) = gp(j)[k;;f""(“i"" - 5)2]

i

© © "
;P(i)[gl’jk(flik — 82— ’Z:lpjk(Ajk - S)z]

i

20 (ZPIkAik — 252 Ppdj + SZZij)
=0 i=1 k=1 %=1

o "J' "J' "j
- ;P(i) (;ijA?k - 2S’§ijAjk + S’;-ij>
= {[V(Z) + 2% ~ 25Z + % — {fLL — 2SfL + S} .
Substituting, we have

VW) = V(Z) + 2* — 28(Z — fL) — fLL + $*(1 — f) — W2. (21)
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NUMERICAL EXAMPLE

Consider a group of fifty certificates with the characteristics outlined
in Table 1, and let us assume a stop-loss level S of $18,000. The results
are shown in Tables 2-35.

TABLE 1
CERTIFICATE DETAILS
Certificate | Amount ai i Certificate | Amount 'R 1%
1......... $4,000 | .001382 | .001383 |1 26. .. .. .. $10,000 | .001190 | 001191
2. 4,000 | .001193 | 001194 || 27 .. .. .. 10,000 } 002587 | .002590
K . 4,000 | .001193 | .001194 |} 28....... 10,000 | .002587 | .002590
4. ... 4,000 | .001011 | 001012 {{ 29.. .. .. 10,000 | .005956 | .005974
5. ... 4,000 | 000918 | .000918 {{ 30 . ... 16,000 | .011182 | 011245
6......... 4,000 | .000890 | .000890 |} 31....... 12,000 ) .002587 | .0025%90
S 4,000 | .001313 | .001314 |} 32..... .. 12,000 | .003715 | .003722
8. . ... 4,000 | .004750 | .004761 || 33 .. ... . 12,000 | .004204 | 004213
[* 4,000 | .008507 | .008543 || 34 . .... 12,000 | .004204 | 004213
10.... ... 4,000 1 .013308 | .013397 |} 35....... 12,000 | .006569 | 006591
[ 5 DU 6,000 | .001011 | .001012 {{ 36....... 14,000 | .002914 | .002918
tz2.... ... 6,000 | .000882 | .000882 {| 37....... 14,000 | .003715 | .003722
i3.... ... 6,000 | .000914 | .000914 || 38... .... 14,000 | .004750 | .004761
14. ..., 6,000 | .000953 | .000953 || 39....... 14,000 | .004750 | .004761
15........ 6,000 | .001313 | .001314 |} 40..... .. 14,000 | .008307 | .008543
16...... .. 6,000 | 001313 ) .001314 || 41, ... . 16,000 | .001632 | 001633
17, ... 6,000 | .001827 | .001829 |{ 42....... 16,000 | .002587 | 002590
18........ 6,000 | 002587 | .002590 || 43....... 16,000 { .004204 | .004213
19........ 6,000 | .003288 | .003293 || 4. . .... 16,000 | .004204 | .004213
20........ 6,000 | .003715 | .003722 || 45.... ... 16,000 | .009303 | .009346
21..... ... 8,000 | .000893 | .000893 || 46. ... .| 20,000 | .003715 { .003722
22.. ... .. 8,000 ) .001827 | .001829 || 47. ... .. 20,000 | .005956 | .005974
23........ 8,000 | 003715 | .003722 |} 48....... 20,000 | .009303 | .009346
24... . ..., 8,000 | 006569 ) .006591 49, ... .. 20,000 | .021590 | .021825
25........ 8,000 | .012213 | .012288 || 50.. . .... 25,000 | .015753 | .015878
TABLE 2
EXPECTED VALUES

Expected aggregate claim, Z=TZai;. ..... $ 2,851.874

Expected number of claims, T = 2¢;...... 0.226116

Variance of expected claims, V(Z) = Zajt;. . 44,989,822

Average-sized claim, Z, = Z/T........... $12,612.44

J = 4, since 5 claims of the smallest size will exceed the
stop-loss level.
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TABLE 3
POSSIBLE AGGREGATES AND PROBABILITIES
i k Ajk Pjx F] k Ajk Pji
1...... 1 4,000 .15304534 2., 4 14,000 .04958834
..., 2 6,000 .07882237 2...... 5 16,000 .05786145
) P 3 8,000 .11199119 2. 6 18,000 07168055
R, 4 10,000 .10432698 3...... 1 12,000 .00358476
) S 5 12,000 9432769 3...... 2 14,000 00553874
oo, 6 14,000 . 10925808 3. 3 16,000 01072206
1...... 7 16,000 .09727308 3., 4 18,000 .01592660
2...... 1 8,000 02342288 4...... 1 16,000 00034863
2...... 2 10,000 .02412679 4...... 2 18,000 00113024
2......1 3 12,000 . 04049243
TABLE 4
VALUES OF p(4), fi, Lj, LL;
j 16) i L LL
0. .. ... 79762608 1.00000000 0 0
1........ . 18035602 0.74904473 9,668.620 110,522,297
2. .02039069 0.26717244 14,315.960 215,213,058
K .00153689 0.03577216 16,179.935 265,761,537
4. ... 00008688 0.00167887 17,346.429 301,778,860
TABLE §
OTHER VALUES
[ oo, 0.93822377 LL..... 17,179,357
L........ 1,476.2604 Viw)... 4,089,333
H.. ... .. 23,743.92 a(W). ... 2,022.21
w.. ... 354.84

EXTENSIONS TO OTHER GROUP BENEFITS
The formulas that we have developed have assumed a group life
insurance type of environment in which the amount of insurance per
certificate is constant. The following discussion relates to group benefits
in general, in which the above assumption may not be applicable.
Let us define the secondary distribution as Bartlett has done, to be
the probability distribution of the size of a particular claim given that a
claim has occurred, and let us assume that the first and second moments
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of the secondary distribution are available. For the group life situation
described earlier the first moment u;' is equivalent to Z, and the second
moment uf is equivalent to V(2)/T — Z2.

The secondary distribution itself is equivalent to the Py probabilities
which we have previously defined. The method of this paper can then be
used to evaluate L, f, H, LL, and hence W, the expected value of the
stop-loss claim, and V(W) the variance of the stop-loss claim.
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DISCUSSION OF PRECEDING PAPER

WILLIAM A. BAILEY:

The ingenuity of actuaries like Mr. Mereu, together with the speed and
storage capacity of some modern computers, has made it possible to
solve numerically problems in risk analysis which previously could be
solved only approximately by somewhat deep theoretical mathematical
techniques. This is especially encouraging because presumably one of the
actuary’s primary professional functions is the evaluation of risk, and
versatile computer techniques like Mr. Mereu’s permit more actuaries to
perform this task on a scientific basis.

Mr. Mereu’s method of calculating net stop-loss premiums for a group
life contract involves the following:

1. Assuming a Poisson distribution of the number of deaths arising from each
certificate.

2. Calculating the first part of a frequency distribution of aggregate claim by
a) Enumerating each possible aggregate claim less than the stop-loss level.
b) Determining the probability that each such aggregate claim will occur.

3. Making use of the fact that the expected aggregate claim Z is equal to
JL + (1 — f)H and the stop-loss premium W is equal to (1 — /)(H — 5).

The author measures the expected variability in the stop-loss claim by
calculating the variance thereof.

To assess the efficacy of the Poisson assumption, I have used the “risk
analyzer program” to calculate fwo complete frequency distributions of
aggregate claim (together with the stop-loss premiums at each stop-loss
level) for the group illustrated in Mr. Mereu’s Table 1. Table 1 of this
discussion assumes, as did Mr. Mereu, that the number of deaths under
each certificate follows a Poisson distribution; this is equivalent to as-
suming that lives who die are immediately replaced by lives of identical
risk. Table 2 assumes that only one death is possible under each certificate
—that is, lives who die are assumed not to be replaced during the year.
Of course, in practice a given life might be replaced by a life of different
age (or risk).

The magnitude (absolute or relative) of the excess of the stop-loss
premium based on the Poisson assumption over that based on the binomi-
al assumption will depend on the distribution of lives by amount and age

321




TABLE 1

FREQUENCY DISTRIBUTION OF AGGREGATE CLATM

AND STOP-LOSS PREMIUM: EXAMPLE 1

(Assumes Poisson Distribution for Each Certificate)

Amount Frequency Cumulative Stop-Loss Premium
O.......... .. 79762557173 . 79762557173 2,851.8740
4,000.0000. . .02760263053 82522820226 2,042.3763
6,000.0000. . ..... .01421608056 .83944428283 1,692.8327
8,000.0000. . ..... 02067588066 86012016350 1,371.7213
10,000.0000. . . . ... .01930794892 87942811242 1,091.9616
12,000.0000. . ... .. .01784373320 .89727184562 850.8178
14,000.0000 .02072499202 .91799683765 645.3615
16,000. 0000 .01874013497 .93673697263 481.3552
18,000.0000 .00148619057 193822316321 354.8291
20,000.0000. . ..... 03424170211 .97246486532 231.2754
22,000.0000 .00125970755 .97372457288 176.2052
24,000.0000. . ... .. .00227776578 97600233866 123.6543
25,000. 0000 .01266469882 .98866703749 99.6567
26,000.0000. . ... .. .00147878254 99014582003 88.3237
28,000. 0000 00153145947 .99167727951 68.6153
29,000.0000. . ... .. .00043827456 .99211555408 60.2926
30,000.0000. . ... . . 00129059429 . 99340614838 52.4082
31,000.0000. . ... .. 00022572292 99363187130 45.8143
32,000.0000. . ... .. 00098707130 .99461894261 39.4462
33,000.0000. . ..... .00032829163 . 99494723424 34.0651
43,000.0000 00002359773 .99883452514 6.2914
44,000.0000. . ... .. 00008168163 99891620678 5.1260
63,000.0000. . ..... 00000153684 99996431923 0.1896
64,000.0000. . ..... .00000439244 99996871167 0.1540
83,000.0000. . . 00000006051 99999914841 0.0045
84,000.0000. . .00000014154 .99999928995 0.0036
103,000. 0000 00000000192 . 99999998335 0.0001
104,000.0000. . ..... 00000000295 .99999998630 0.0001
123,000.0000. . ..... . 00000000004 . 99999999970 0.0000
124,000.0000. . ... .. . 00000000004 99999999975 0.0000

Mean from table = 2,85{.8739992; theoretical mean = 2,851 .8700000.
Standard deviation from table = 6,707.4452621; theoretical standard deviation

6,707.4452618.

Table variance = 44,989,821.9440; theoretical variance = 44,989 821.9400.
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TABLE 2

FREQUENCY DISTRIBUTION OF AGGREGATE CLAIM
AND STOP-LOSS PREMIUM: EXAMPLE IT

(Assumes Binomial Distribution for Each Certificate)

Amount Frequency Cumulative Stop-Loss Premium

O 79762119004 79762119004 2,837.6710
4,000.0000. . ... .. .02771677790 .82533796794 2,028.1558
6.000.0000. . ... ... -01423335201 - 83957132085 1.678.8317
£.000.0000. ... ... -02064997985 86022130071 1,357.9743
10,000.0000. .. .. ... .01938145144 87960275215 1,078.4169
12,000.0000. . ... ... 01786950632 87947225848 837.6224
14,000.0000. .. .. .. -02078721901 191825047749 632. 5670
16.000.0000. . . ... [01871234134 (93607181884 4690859
18,000 0000 . . .. ... -00149309845 -93846491729 343.0296
20,000.0000. .. ... .. 03442248851 .97288740581 2199594
22,000.0000. . . ... .. .00126262140 .97415002721 165, 7342
24.000.0000. . . .. ... .00225176705 -97640179427 114.0343
25,000, 0000 "01276602987 "08016782414 904360
26,000.0000. . ... .. .00148557635 -99065340050 79.6039
28,000.0000. , ... .. .00147870759 -99213210810 60.9107
29,000. 0000 . 00044361060 .99257571870 53.0428
30,000.0000. . ... ... 00129843732 .99387415603 45.6185
31,000.0000. ... .. 00022780664 .99410196268 39,4027
32.000.0000. . ... . .00093554868 199503751136 33.5046
33,000.0000. ... ... .00033050558 .99536801695 28.6321
43,000.0000. .. ... ... .00002389723 .99902239980 4.4227
44.,000.0000 .00006955276 -99909195256 3.4451
63,000.0000. . 00000150744 .99998367472 0.0750
64,000.0000. . ... .. 00000105430 -99998472903 0.0587
83,000. 0000 00000003659 99999984294 0.0008
84,000.0000. . . ... ... - 00000000857 199999985151 0.0006
103,000, 0000 00000000044 .99999999897 0.0000
104,000.0000. . ... ... 00000000003 -99999999901 0.0000
110,000.0000. . ... ... . 00000000000 99999999977 0.0000

Mean from table = 2,837.6709996; theoretical mean = 2,837.6700000.
Standard deviation from table = 6,650.2975704; theoretical standard deviation =

6,650.2975700.

Table variance = 44,226,457, 7747; theoretical variance = 44,226,457.7700.
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(or other underwriting characteristics) under the particular group life
contract.

There is an overriding advantage in calculating the complete frequency
distribution, in that the variability in the stop-loss claims is evident from
the table, and, although the variance can be computed as a by-product,
we do not need to rely on the variance to guess at the shape of the dis-
tribution. An enormous advantage is that other financial calculations can
be made from the complete frequency distributions. For example, the
aggregate claim amounts can be translated into profit (&) amounts,
which would reflect premiums, expenses, dividends, and so on, as well as
aggregate claim amounts. Thus trial or actual premium rates, credibility
factors, and risk charges in the retrospective dividend formula can be
evaluated on a frequency distribution basis. Convoluting the frequency
distributions of profits (%) (one frequency distribution for each group
contract) produces a frequency distribution of total profits () expected
from the over-all group life portfolio.

A somewhat more complex situation occurs when the retrospective
dividend is based both on the aggregate claim of the specific group and
on the total of the aggregate claims for all groups in the portfolio. By
convoluting the frequency distributions of aggregate claims (i.e., one
frequency distribution for each group other than a selected group), we
can then calculate a frequency distribution of profits (4 ) for the selected
group, reflecting the frequency distribution of aggregate claims for all the
other groups in the portfolio as well as the aggregate claim for the selected
group. Thus we can evaluate premiums, credibility factors, and risk
charges in the dividend formula for each group separately. However, the
calculation of the frequency distribution of profits (&) from the over-all
portfolio of group contracts is not as facile in this situation (i.e., where the
dividend is based on both the experience of the specific group and the ex-
perience of the over-all portfolio of groups).

A different situation exists when we wish to determine the adequacy of
contingency reserves or surplus for a portfolio of group life contracts
where the prospective rate adjustment for each group is based in part on
the previous year’s premium and aggregate claim (loss ratio) for such
group. This process can be treated as a specialized two-dimensional ran-
dom walk,! where the pertinent variables for each group contract are
(1) the accumulated profit () and (2) the prospective premium rate;
that is, the second variable is required to continue the random walk from

1 Equivalent to a Markov chain.
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year to year, whereas the first constitutes primacy in the problem. By
retaining the frequency distribution of accumulated profits (+) for each
group at the end of each year in the random walk, we can convolute such
frequency distributions (i.e., one for each group contract in the portfolio)
for sums at the end of any specified number of years to produce a fre-
quency distribution of accumulated profit (+) for the over-all portfolio
of group contracts; then, translating these profits (+) into present values
by discounting them at a suitable interest rate, we can attempt to evalu-
ate the adequacy of various levels of contingency reserves.

A less complex but equally valuable use of complete frequency dis-
tributions of aggregate claim is in assessing the likelihood that the death
claim experience (group by group or portfolio) is consistent with the
mortality rates assumed in the pricing of the group life contract.

Mr. Mereu has presented his ideas clearly and succinctly. He has com-
bined his knowledge of probability theory and computer science to pro-
duce a direct method for calculating stop-loss premiums for group life
contracts, assuming that the Poisson distribution for the number of
deaths applies. The extension of his method to group health contracts
peeds elaboration, but perhaps this furnishes a topic for a future paper.

WILLIAM J. TAYLOR!

Mr. Mereu refers to the paper “Excess Ratio Distributions in Risk
Theory” by Dwight K. Bartlett, IIT (7.SA4, XVII, 435). Robert Tookey,
in discussing Mr. Bartlett’s paper, proposed a ‘“‘voyage to the center of
the earth.” The vehicle he suggested for this voyage was the use of Monte
Carlo techniques for the determination of excess risk measurement in
specific group cases. Mr. Mereu is to be congratulated! His paper and
the several discussions which it has inspired provide a choice of several
vehicles for a ““voyage to the center of the earth.”

There are several points which I would like to make in my discussion,
some of which will be elaborated upon. They are as follows:

1. Risk theory should be a rather fundamental subject for the life actuary, vet
many of us have never studied the subject, since it was not added to the
syllabus until 1964, and many people missed it when it was transferred in
1971 from Part 10 to Part 5 in the examinations; very few practitioners of
the subject have emerged by virtue of its presence on the syllabus; and the
few practitioners we have within our membership come almost exclusively
from our better mathematicians.

2. The central idea of risk theory as it appears to a neophyte is the application
of esoteric mathematical methods to obtain very rough approximations to
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part or all of the probability distribution function for the total claims in a
portfolio of risk, values which could be easily computed if such a function
were available.

. If risk theory is going to be utilized by a majority of actuaries, rather than a
small minority, then we must have simple, easily understood, accurate, and
efficient methods of calculating directly such probability distribution func-
tions.

Mr. Mereu’s paper illustrates, under a simplifying assumption, how solu-
tions can be found using only the probability and statistics from the pre-
liminary examinations and a little imagination as to computational methods.
My discussion will present two additional algorithms, as well as modifications
to Mr. Mereu’s model which require even less knowledge of probability and
statistics.

The emergence of FORTRAN and the general availability of computational

power should be sufficient to spark the imagination of enough actuaries to
bring about the application of risk theory throughout most of the life actu-
aries’ work. There is, however, a computer language much more powerful
than ForTrAN which facilitates the development of algorithms. In fact, the
language was originally developed for the purpose of specifying algorithms
rather than as a computer language. Its name is APL, which stands for
“A Programming Language.” All the algorithms in my discussion are pre-
cisely defined as working APL programs. Even though not everyone may
be able to decipher them without some knowledge of the language, an under-
standing of what they accomplish and an examination of their brevity should
be enough to whet one’s appetite.
. The assumption made in Mr. Mereu’s paper is that any death which occurs
on a case will be replaced by another life insured for the same amount, with
probability of death for the remainder of the year equal to the force of
mortality for the life it replaces. The justification for this assumption is
presumably that some replacement will normally occur, and this assumption
is as good as any. The motivation for the assumption is presumably to
satisfy the requirements for the applicability of the Poisson probability
distribution function.

I would like to suggest that the composition of the group throughout the
vear will change for reasons other than replacement and that it is more ap-
propriate to make the calculation without the assumption of replacement and
relate the stop-loss premium to the premium on the closed group. As changes
in the composition of the group occur, one can either recompute the stop-loss
premium or, if this is either inconvenient or too expensive, maintain the
stop-loss premium as the same percentage of the total premium.

. In the section of this discussion headed ““Mereu Model,”” Mr. Mereu’s model
is presented in APL, and an analysis is made of the changes necessary to
eliminate the “replacement assumption.”



DISCUSSION 327

6. In the section “Retention Convolution,” an algorithm is presented which
accurately computes the frequency distribution of the retained claim and,
from this, the statistical parameters of the stop-loss claim.

7. In the section ‘“Pull Convolution,” an algorithm is suggested which computes
the probability of each of the possible total claim amounts for the portfolio,
discards those amounts for which the probability is less than some minimum
value, and then produces a cumulative probahility distribution function.
Considering each of the possible claim amounts as a possible stop-loss level,
the algorithm then goes on to compute the mean, variance, and standard
deviation of the stop-loss claim as well as the mean, variance, and standard
deviation for the related retention. The results are printed out in an abridged

TABLE 1

SYMBOL EQUIVALENCE TABLE
APL Paper APL Paper
A a PJK P
AJK A P1K Py
AlK A 1k Q qi
F f R) S
FJ fi SDW (W)
H H T 12
L L 474 V(W)
Ly L; vz V(Z)
LL LL T T
LLJ LL, w w
NJ J Z Z
NI J-1 Z1 Z
Py 40))

form to fit on an 8% X 11 page. The power of APL is illustrated by this
algorithm, since all the calculations are specified in eight lines of program.
The CPU time for both the calculations and the printing is about 12 seconds.

Mereu Model

Although no explanation of the APL code is given, a symbol equiva-
lence table is given (Table 1), so that anyone familiar with both the paper
and APL can easily read the program. Anyone familiar with the paper
but not with APL can probably decipher most of the program simply
with the additional knowledge that an APL program line is executed
from right to'left.

The following APL program MEREU performs all the calculations
described by the author but does not print any of the results.
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v A MEREU Q;J;T1;T2

1} Te—®1-Q

2] Ze+/AXT

31 Te—+/T

[4] VZe—+4/AXAXT
5] Z21<Z+T

[6] NJle—1-+NJ—|S+|/A

7}  PIe{s—T)X(T*J)+ Ued+NJ

81 AJK—A1K [O)(NJ1,pA1K—(T15£0)/T1—T1X(T11000X:1410.001 XS)ed)
20

9] PIK«P1K[O}(NJ1pP1K—(+/((oT1)pT) X T1e—A1Ko,=A)+T)p0

[10] Je1

[11] L1: ATK[T;}—~(pA1K) T (((C1 } T1)5¢1 | T1),1)/T1T2{AT2,AJK[0;)o.+
ATK[J—13))

[12] PJE;l—+/(ATKJ;le.=T2) X ((pA1K),pT2)p,PTK[0;)o. X PTK[J—1;]

(13] —LINJ1>J—J+1

(14] AJK—AJKXT1—AJKLS

(15] PJK—PJEXT1

[16] LJ«—(0,4/PJKXAJK)+FJ+«1,+/PIK

{(17] Le~(+/PIXFIXLI)+Fe+/PIXFJ

(18] He—(Z—FXL)+1—F

[19] We(1—~F)XH-S

[20) LLI—Q,NJ | +/PIKXAJK*2)+FJ

[21] LL—(+/PJXFJIXLL])+F

(22] SDW—(VW—VZH(Z+2)+(SXSX1—F)—(2XSXZ~FXL)+(FXLL)+W
*2))#0.5

v

The following program PJOHN prints the results of the program
MEREU.

V PJOHN;T1
(1) HEAD3
[2) SFL((—T2,0) | T1),((T2J0.5X0),0) | T1*I10,CI8,2F10.6’ AFMT((14
00);4;0;T)
Bl LFyZ=";Z; T="T; VZ=";VZ; Z1=";Z1
4] HEAD4
5] ‘BCI12’ AFMT AJK
[6) HEADS
[7) ‘BF12.8' AFMT PJK
8] HEADG6

9] ‘I2,2F14.8,CF14.3,CI\S’ AFMT((:pPJ);PJ;FJ;LJ;LLJ)
[10] LFyF=";F;'L=";L; H=";H;' W="W
11 LFML="LL; VW=";VW; SDW =";SDW

v

V R~SFL P;T
1] Re—((TH|(14T11pP)+5p111110)%P
v
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The above program, as weil as all other APL programs presented in this
discussion, employs AFMT, which is the output formatting feature of
APL-PLUS. This is the only feature employed that is not available under
the standard APL. Table 2 illustrates the execution of both programs.

There are just five formulas in Mr. Mereu’s model which are dependent
upon the “replacement assumption.” The necessary changes for four of
them and their numeric effect on the example will now be set forth.
Formula number references are to the paper; line-number references are
to the above program MEREU'. The first two changes are given in both
the formulas and the APL code, whereas the latter two are in APL code
only.

The first change is the expected number of claims under certificate 7,
formula (2), line 1: change to t; = ¢; or T «— Q. This is the fundamental
change—use of probabilities of death in one year as opposed to the
average force of mortality.

The second change is the variance of aggregate claims, formula (6),
line 4: change to

V(Z) =Zdt:(1 —t) or VZe+/AXAXTX1-T.

The third change is the probability distribution function for the num-
ber of claims, formula (9), line 7: change to PJ« NJ CONVOLN T,
where CONVOLN is the following algorithm:

V R—J CONVOLN Q
(1] Re—+1Jp+0
[2) L1:R—(RX1-11Q)++0,(-1 | R)XI1 1Q
Bl «—Lif0=p0—1 | Q
v

The above algorithm contains the basic computational idea employed in
the calculation of all the probability distribution functions presented in
this discussion. In line 1 the probability distribution function is initialized
as a 1 followed by the correct number of zeros. This is the correct prob-
ability distribution function for zero risks. In line 2 the probability dis-
tribution function is modified to include one more risk in the group. In
line 3 the looping through all risks is controlled.

The fourth change is the conditional probabilities Py, formula (10),
line 9: change to

PJK—P1K,[0/(NJ1,pP1K—ONE)g0 ,
where ONE is the following algorithm:

V R—ONE;[,J;K
[1] Re—de0
(2] R—R,(+/PJO 1) X+/T+Ke—1—-TJ—(A1K[[]=A4)/Q
[381 —2f(pA1K)>I—I+1

v



TABLE 2

A MEREU Q; PJOHN

Cert. A Q T Cert. A Q T
1....... 4,000 | 0.001382 | 0.001383 || 26..... 10,000 | 0.001190 | 0.001191
2....... 4,000 | 0.001193 | 0.001194 || 27. ... 10,000 | 0.002587 | 0.002590
... 4,000 [ 0.001193 | 0.001194 1| 28. ... 10,000 | 0.002587 | 0.002590
4....... 4,000 | 0.001011 | 0.001012 || 29... .. 10,000 | 0.005956 | 0.005974
So.o.... 4,000 | 0.000918 | 0.000918 |} 30..... 10,000 | 0.011182 | 0.011245
6....... 4,000 | 0.000890 | 0.000890 [{ 31. .. . 12,000 | 0.002587 | 0.002590
Tooooo. 4,000 | 0.001313 | 0.001314 | 32. . . 12,000 ; 0.003715 | 0.003722
8....... 4,000 | 0.004750 | 0.004761 |} 33. . . 12,000 | 0.004204 | 0.004213
9. ... 4,000 | 0.008507 | 0.008543 || 34. . . 12,000 | 0.004204 | 0.004213
10.. ... 4,000 | 0.013308 | 0.013397 || 35..... 12,000 | 0.006569 | 0.006591
11, 6,000 § 0.001011 | 0.001012 || 36..... 14,000 | 0.002914 | 0.002918
12.... .. 6,000 | 0.000882 | 0.000882 || 37..... 14,000 | 0.003715 | 0.003722
13.... .. 6,000 | 0.000914 | 0.000914 || 38. ... 14,000 | 0.004750 | 0.004761
14.... .. 6,000 | 0.000953 | 0.000953 || 39.. . .| 14,000 | 0.004750 | 0.004761
15...... 6,000 | 0.001313 | 0.001314 || 40.. ... 14,000 | 0.008507 | 0.008543
16... ... 6,000 | 0.001313 | 0.001314 || 41.. . 16,000 | 0.001632 | 0.001633
17...... 6,000 [ 0.001827 { 0.001829 || 42... .. 16,000 | 0.002587 | 0.002590
18...... 6,000 | 0.002587 [ 0.002590 || 43..... 16,000 | 0.004204 | 0.004213
19...... 6,000 | 0.003288 | 0.003293 || 44..... 16,000 | 0.004204 | 0.004213
20...... 6,000 | 0.003715 | 0.003722 || 45..... 16,000 | 0.009303 | 0.009347
21...... 8,000 | 0.000893 | 0.000893 || 46..... 20,000 | 0.003715 | 0.003722
22...... 8,000 | 0.001827 | 0.001829 {| 47.. ... 20,000 | 0.005956 | 0.005974
23...... 8,000 { 0.003715 | 0.003722 || 48..... 20,000 | 0.009303 | 0.009347
24...... 8,000 | 0.006569 | 0.006591 49.. ... 20,000 | 0.021590 | 0.021826
25...... 8,000 { 0.012213 | 0.012288 {| 50..... 25,000 | 0.015753 { 0.015878

Z = 2,851.955264; T = 0.2261214934; VZ = 44,991,249.24; Z1 = 12,612.49084

ArK

4,000 6,000 8,000 10,000 12,000 14,000 16,000
8,000 10,000 12,000 14,000 16,000 18,000
12,000 14,000 16,000 18,000
16,000 18,000
PIK
0.1530443910. 07882425/0.1119878110.1043253710.09432391/0. 10926072/0.09727493

0.02342258{0. 02412722/0.0404914710.04958753
0.0035847010. 00553880|0.01072185}0. 01592633

0.00054862]0. 00113024,

0.05785950

0.07167984,

J PJ FJ Ls L7
0....... 0.79762119 1. 00000000 0.000 Y
1....... 0.18035929 0.74904137 9,668.645 110,522,955
2. 0.02039156 0.26716815 14,315.947 215,212,766
3. 0.00153699 0.03577167 16,179.926 265,761,251
4....... 0. 00008689 0.00167886 17,346.441 301,778,990

F = 0.9382208646; L = 1,476.289731; H = 23,743.76765; W = 354.8449993
LL = 17,179,752.09; VW = 4,089,721.394; SDW = 2,022.30596
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The fifth necessary change is the remaining conditional probabilities,
P (5 % 1), formula (11), lines 9-15. This becomes so involved that I did
not derive the various formulas.

Table 3 shows the mean and standard deviation of the stop-loss claims
from Mr. Mereu’s model and the cumulative effect of making each of the
four changes set forth above. The final line gives the theoretically correct
results from the algorithm CONVOLR, described in the next section.

From the above, I would conclude that Mr. Mereu’s model is also
valuable as an approximate calculation using the ‘‘closed group” assump-
tion. The accuracy of each of the above forms is greater than is generally
obtained from Monte Carlo methods, and the error is probably less than
the error of estimation in the various probabilities employed.

Retention Convolution

Table 4 illustrates the execution of the APL program CONVOLR, using
the author’s data. The claim probability distribution function should be

TABLE 3
Srop-Loss
MobEL CPU TiME
15 SECONDS
Mean Standard Deviation
MEREU......... 354.8450 2,022.31 1.23
Change line:
... 351.7453 2,011.53 1.18
4o 351.7453 1,880.99 1.27
7o 345.9583 1,925.33 2.70
L 343.6949 1,931.20 2.82
CONVOLR....... 343.0296 1,933.26 3.48
TABLE 4
A CONVOLR Q
Mean Variance Standard Deviation
Retention..........| 2,494.641447 29,851,370.98 5,463 .640817
Stop-loss........... 343.029553 3,737,494.39 1,933.260043
Amount Probability Cumulative Amount Probability Cumulative
0......... 0.7976211900{ 0.7976211900|( 12,000...| 0.0178695063( 0.8974722585
4,000..... 0.0277167779( 0.8253379679|( 14,000. .. 0.0207872190{ 0.9182594775
6,000..... 0.0142333529{ 0.8395713209! 16,000. .. 0.0187123413( 0.9369718188
8,000..... 0.0206499799| 0.8602213007(f 18,000. .. 0.0014930985} 0.9384649173
10,000. .. .[ 0.0193814514] 0.8796027522|| 18,000...| 0.0615350827! 1.0000000000
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useful in explaining the need for risk charges to the policyholder. The
first 18,000 refers to a total claim of exactly $18,000. The second 18,000
refers to a stop-loss claim which results in a retention of $18,000 of claim.

The author’s model led to the development of this algorithm. The
difference is that I compute the probability distribution function for the
retained claim directly rather than through the use of conditional
probabilities.

Although, for the example in the paper, this algorithm appears to take
longer than the author’s model, this would probably not be the case for
very large cases with a more complete distribution of amounts and higher
stop-loss coverage, especially if the algorithms are rewritten in assembler
language or FORTRAN. The execution time for this algorithm is clearly
directly proportional to both the number of risks and the number of
amount units in the stop-loss level.

The following APL program CONVOLR employs an extension of the
algorithm CONVOLN to compute the claims probability distribution
function:

v A CONVOLR Q;T;I;B;R

(11 ((p4)#0Q)/'ERROR (pA)#pQ’,0/B—A4,0/R—Q

2]  Ae]4+1000,0/I—pFRe1,(|S~1000)p0

[3) L1:FR—~(FRX1—-11Q)+((T>1)/+0) (T <D)/(Tp0),((—T11 A) | FR)X1
Te

4] —Li[0=p0—1}Q0/A—~1] A4

ISl CFRe—1 APL FR—((TFR>0)/FR),1—Fe—+/FR

6] CR—(1000XT/1),S

71 SDR—(VRe(+/FRXCR*2)~ (R—+/FRXCR)*2)#0.5

8] We(Z~+/BXR)—R

9] SDW—(VW—(VZ—4/BXBXRX1~R)+(Z*2) +(SXSX1—~F)+2XSX +/
~1 § CRXFR)~ (2XSXZ)+(W XW)++/"1 | CRXCRXFR))+0.5

(10] HEAD1

[11) ‘CIRETENTION [1,CF16.6,CF16.2,CF16.6’ AFMT(R;VR;SDR)

12} ‘OSTOP-LOSS [),CF16.6,CF16.2,CF16.6' APMT(W ;VW ;SDW)

(13] HEAD?

[14] SFL ‘CI9,2F16.10' AFMT(CR;FR;CFR)

v

The above program employs a utility program APL which computes
subtotals. The following will illustrate the use of this program in both the
above and the next section.

15
012 3 4

1 APL 5
013 6 10

1 APL S
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For completeness, the program APL as well as ANS which it calls are
listed. Some readers may be confused and bewildered by the complex
logic used to accomplish such a simple function. APL is implemented
only as an interpretive system, which means that the execution of loops
is very inefficient. APL accomplishes the summing process by looping
only as many times as the smallest power of 2 which is greater than the
number of elements in the array to be summed.

V ZJ APL X:N
(1] Xe—(XN)X | = (~21)+ipNe— (XJ)X pZ~ANS X
[2) JeJ—n~ip1
B] Z—Z+N1X\2
(4] —=3X(NIN>|(Xe2XX)[T]
v

V Z~ANS N
1] Ze((oN),(~?1)+0=ppN)pN
\%

Full Convolution

Table 5 is an illustration of the execution of the APL program CON VOL
using Mr. Mereu’s data. The accuracy of the calculations in Table § has
been verified by independently calculating the stop-loss mean and stan-
dard deviation for a zero stop-loss level. The results agree precisely for
the number of digits shown. All probabilities less than 1£ — 20 have been
discarded, and only every tenth value has been printed beyond 33,000.
Obviously, two separate probability distribution functions for each of the
retention and stop-loss claims can easily be constructed for any given
stop-loss level from the figures shown in Table 5. The former would be
useful in establishing the adequacy of contingency reserves for the case,
and the latter, if convoluted across all group cases, could be used to evalu-
ate the claim fluctuation risk for the stop-loss coverage. The following is
a listing of the APL program CONVOL which produced Table 3.

Vv A CONVOL Q;T;I

(1] ((pA)7pQ)/ ERROR (pA) 5o

2} —L20/F—(1—110),(C1+11 A)p0),1 10,0/ 4| A4+1000

B] L1:F—((FX1—11Q),T)+(T—(1 T A)p0),FX11Q

4] L2: >L1[07pQ—1 | Q0/A1 | A

[S] CFe1 APL F—(TF>SCREEN)/F0/I—pF

[6] C—1000XT/.I

7l SDW—(VW—("1 APL CXCXF)+({CXCXT)—(2XCXI)+(W—(I+~"1 APL
CXF)~CXTe1 APL F)*2)+0.5

(8] SDR;—(VR«—(l APL CXCXF)—(CXT)— (R~(1 APL CXF)+T—CX1—CF)
+2)#0.5

{9} PC

v

SCREEN
1E-20




TARBLE 5

A CONVOL Q
RETENTION Stoe Loss
AMoUNT PROBABILITY CUMULATIVE
Mean Standard Mean Standard
Deviation Deviation
0.......... 0.7976211900/0. 7976211900 0.0000 0.0000/2,837.6710{6,650.2976
4,000 .. .. 0.0277167779/0.8253379679| 809.51521,607.0924|2,028.1558|5,357.4352
6,000.... .. 0.0142333529(0.8395713209(1,158.8393(2,321.2913{1,678.831714,752.1655
8,000.... .. 0.0206499799/0.8602213007|1,479.6967]3 ,005.6285/1,357.9743}4,181.3689
10,000. .. .. 0.0193814514(0.8796027522{1,759.2541]3 ,627 .7215{1,078 . 41693, 6458435
12,000. .. .. 0.017869506310.8974722585|2,000.0486|4,189.5850) 837.6224|3,149.8362
14,000. .. .. 0.0207872190(0.91825947752,205 . 10404 ,692 . 7365 632.5670/2,698.6218
16,000. . . .. 0.0187123413)0.9369718188|2,368.585115,116.4925] 469.0859|2,293.3279
18,000. . . .. 0.0014930985/0.9384649173)2,494.6414|5,463.6408| 343.0296|1,933.2600
20,000. . ... 0.0344224885|0.9728874058(2,617.7166{5,822.2727| 219.9594(1,637.3160
22,000. .. .. 0.0012626214(0.974150027212,671.9368|5,990. 7833 165.73421,389.3634
24,000. . ... 0.0022517671|0.9764017943|2,723.636716,163.4999| 114.0343(1,176.9698
25,000. .. .. 0.0127660299/0.9891678241(2,747.2350|6,246.2742 90.4360{1,088.8585
26,000. .. .. 0.0014855764(0.9906534005|2,758.0671(6,285. 5984 79.6039(1,008. 6698
28,000. .. .. 0.0014787076/0.9921321081)2,776.7603/6,357.2570 60.9107} 859.6582
29,000. . ... 0.0004436106(0.9925757187(2,784.6282(6,389.0085 53.0428{ 791.1734
30,000. .. .. 0.0012984373|0.9938741560(2,792.0525/|6,419.9735 45.6185| 726.6544
31,000..... 0.0002278066,0.994101962712,798 . 1783[6,446.3549]  39.4927| 665.9105
32,000. . ... 0.0009355487/0.9950375114(2,804.0764/6,472.5594; 33,5946/ 608.9176
33,000..... 0.0003305056(0.9953680170{2,809.0839]6,495.2854 28.6321| 555.7542
43,000. .. .. 0.0000238972|0.9990223998|2,833.2483|6,620. 3005 4.4227) 206.8578
53,000. .. .. 0.000023666910.9998852526(2,837.022716,644 9451 0.6483 78.2050
63,000. .. .. 0.0000015074(0.9999836747|2,837. 5960(6,649 . 5687 0.0750 25.7760
73,000. .. .. 0.00000061890.9999983340)2,837.6625/6,630. 2020 0.0085 8.4720
83,000... .. 0. 0000000366|0.9999998429/2,837.6702|6,650. 2879 0.0008 2.5185
93,000. .... 0. 000000007 510.9999999856|2,837.6709(6,650. 2966 0.0001 0.7197
103,000. . . . {0.0000000004|0.9999999990|2,837.6710{6,650.2975 0.0000 0.1947
113,000. . . .|0.0000000000,0.9999999999:2,837.6710]6,650.2976 0.0000 0.0489
123,000. . . . [0.0000000000}1 . 0000000000(2,837.6710|6,650.2976 0.0000 0.0119
133,000. . . . {0.00000000001 . 0000000000(2,837.6710(6,650.2976 0.0000 0.0027
143,000. . . . {0.0000000000!1 .0000000000(2,837.6710(6,650.2976 0.0000 0.0006
153,000. . . . {0.0000000000/1 . 0000000000i2,837. 6710(6,650.2976 0.0000 0.0001
163,000. . .. [0. 0000000000 1. 0000000000|2,837.6710|6,650.2976 0.0000 0.0000
173,000. .. 0,000000000011.00000000002,837.67106,650.2976 0.0000 0.0000
185,000. . . O.OOOOOOOOOOII.00000000002,837.67106,650.2976 0. 0000 0.0000
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The left argument to the program A is a vector of amounts of benefit,
and the right argument Q is a vector of the corresponding probabilities
of claim. The first line merely checks to see that the two vectors are of
identical lengths and prints an error message in the event that they are
not.

The second line in the program converts the vector 4 into an integer
number of thousands of coverage. It then initializes the probability dis-
tribution vector F so that it is correct for the first risk, that is, it is a
vector one element longer than the amount of benefit for the first risk,
with the cells representing the amount of claims in thousands from zero
up to and including the amount for the first risk. The vector contains the
probability of no claim in its first element and the probability of one claim
in its last element. Control is then transferred to line 4, which decrements
each of the vectors 4 and Q by throwing away one element, tests to see
whether the Q vector is a null vector, and, if it is not, transfers control
to line 3, where the impact of the next risk will be added to the probability
frequency distribution vector. This is done by calculating separately the
impact of a claim and no claim and adding the results.

The loop is continued until all the risks have been processed, at which
point execution drops to line 5. Then all the probabilities which are less
than the parameter SCREEN are discarded and the cumulative fre-
quency distribution computed.

The above algorithm works well for small groups. It can be extended
to work better for large groups by throwing away any contiguous string
of insignificant probabilities at both ends of the distribution function
inside the loop.

In line 6 the vector of corresponding claim amounts is determined and
stored in the variable C. Line 7 computes the mean, variance, and stan-
dard deviation of the stop-loss claim and stores them in the vectors W,
VW, and SDW, respectively.

In line 8 the mean, variance, and standard deviation of the retention
claim for all possible levels of stop loss are computed and stored in the
vectors B, VR, and SDR, respectively.

Line 9 calls a program denoted PC to print the results, the listing for
which is as follows:

v PC
1] HEAD
[2) SFL((2001),((~21+4pC)p(950),1),1)+CI9,2F14.10 ACF12.4’ AFMT(C;F;CF;R;
SDR;W;SDW)
v
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GERALD J. RANKIN:

Mr. Mereu’s paper is a welcome addition to the literature, since it
provides a lucid exposition of the properties of the compound Poisson
distribution, along with the stop-loss premiums associated with this
distribution. This discussion will present an alternate method which uses
a binomial distribution to calculate the frequency function of the ag-
gregate amount of claims and the associated stop-loss premiums.

The risk theory literature has a plethora of statements about the pre-
sumed superiority of the Poisson distribution. However, for group life
insurance and many other types of insurance, there is no practical differ-
ence in the two methods. The assumption that the deaths are replaced
(Poisson} does not differ materiallv from the assumption that the deaths
are not replaced (binomial), as long as the assumed claim rates are rela-
tively low.

In my opinion, the binomial distribution is easier to work with, since
the frequency function is cobtained directly and it is not necessary to
combine a conditional probability distribution, P(j, &), with a frequency
function, p(3), for the number of claims. In addition, it is easier to calcu-
late stop-loss premiums for all relevant values of aggregate claims after
the frequency function has been determined.

The superiority of either method cannot be determined by a priori
type arguments. Both models are of the “urn-wager” type and require
empirical evidence and statistical testing to validate their use. As long
as both models predict essentially the same claim distribution, I would
suspect that the common statistical tests are too robust to differentiate
between them.

The method of determining the frequency function of the aggregate
claims using the binomial theorem is outlined below. Mr. Mereu’s nota-
tion has been retained wherever possible.

A. Basic Relationships

Let f(z, i) be the probability that the aggregate claims will be exactly 2
for a group of 7 lives. Then

f(z, 1) = f(z — ai, i — Dti + f(3,4 — 1) = 1), (1)
where f(z, 1) = 0, if 2 < 0. Since
f(z0 =1, 2z2=0,
=0, z2>0,

formula (1) can be used recursively to calculate the frequency function for
each life until all N lives have been considered.
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For simplicity, let
f(z) = f(z’ N)
F(z) = c.d.f. of f(z) .

and

From elementary statistics, the expected value and the vartance of Z are
as follows:

Z = Ed.’l,’ y
V(Z) = a1 — L) < Zait:.
The variance of the binomial model is, of course, less than the variance

of the Poisson model. This results in smaller stop-loss premiums.

B. Stop-Loss Premiums
Let W be the expected value of the stop-loss claim for a deductible of s:

W = i(z ~ /()

-4
=7 - ;zf(z) — {1 — F(s — 4)},

where (s — A) is the first nonzero value of f prior to s. V(W) is the vari-
ance of the stop-loss claim:

—A

YW = 20~ WH@ + 3~ W ~ 946

B8

2—-A —A

=+ (Z -9 — L) + 52 40
2==0 z2=0
— s2F(s — A) — W2.
C. Exlension to Other Benefils

Formula (1) can be extended to other types of benefits where there
are more than two disjoint events, life or death, and different payoffs
for each event. Let

a(i, k) = Payoff for event & for life ¢,
t(z, k) = Probability of event %,
where Zt(i, k) = land k= 1,2,..., M. Then

M
f(z, i) = k};{f(z — ali, B)tG, k) . )



338 ALGORITHM FOR COMPUTING EXPECTED STOP-LOSS CLAIMS

D. Numerical Example

Table 1 below shows the frequency function and the stop-loss premium
for various claim amounts, using the group of fifty certificates outlined
in Table 1 of Mr. Mereu’s paper.

TABLE 1

NUMERICAL RESULTS

Amount Probability Cumulative Expected Value Standard
of of Claim of Distribution of Stop-Loss Deviation of
Claim Exact Amount 5 Function of f(z) Claim Stop-Loss Claim
3 /() Flz) w o (W)

0......... 0.79684 0.79684 2,851.87 6,668.87
4,000.. ... 0.02780 0.82464 2,039.24 5,374. 40
6,000. . 0.01424 0.83888 1,688.52 4,768.23
8,000.. ... 0.02072 0.85960 1,366.29 4,196.52
10,000. .. 0.01944 0.87904 1,085.48 3,660.01
12,000. . 0.01790 0.89693 843 .55 3,162.96
14,000.. . 0.02083 0.91776 637.42 2,710.65
16,000. . . 0.01875 0.93652 472.95 2,304.23
18,000. . 0.00150 0.93802 345.98 1,943.09
20,000. . 0.03465 0.97267 222.02 1,646.21
22,000. .. 0.00127 0.97394 167.36 1,397.33
24,000. .. 0.00227 0.97621 115.23 1,184.09
25,000. .. 0.01286 0.98906 91.44 1,095.59
26,000. . . 0.00149 0.99056 80.51 1,015.01
28,000. . 0.00149 0.99205 61.62 865.26
29,000. . . 0.00045 0.99250 53.67 796.42
30,000. .. 0.00131 0.99381 46.17 731.57

HANS U. GERBER* AND DONALD A, JONES:

For many years the determination of an adequate stop-loss premium
has been a serious problem from a numerical point of view. This has led
to a series of approximation formulas, some of which were really ingenious.
The first merit of Mr. Mereu’s paper is that it reminds us that in spite of
all of the ingenious approximation formulas we should not forget the most
natural way to determine a stop-loss premium, namely, to compute it
explicitly. The use of a computer enables us to do so in many instances,
and this paper shows how to do it economically-—which is the paper’s
second merit.

The main idea of the paper is applied to a group life insurance port-
folio under the assumptions of the collective risk model. While this model
simplifies the numerical calculations, it is not essential to the main idea,
as we shall illustrate by applying it under the assumptions of the indi-

* Dr. Gerber, not a member of the Society, is assistant professor of mathematics at
the University of Michigan.
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vidual risk model. Assume that N lives are to be covered with amounts
at risk 2, 25, . . ., sy and mortality rates ¢y, gs, . . ., gn. Introducing the
random variables Zy, Z,, ..., Zy, where Z; = 0 if life ¢ survives and
Z; = z; if life 7 dies within one year, we can express the aggregate claims
of one year as Z = Z1 4+ Zo 4+ . .. + Zy, with expected valve E(Z) =
2g1 + 22g2 + . . .+ zngw.

Since for each life there are two possible outcomes, the outcome space,
say 2, contains 2¥ possible outcomes, which we will denote by w. Mereu’s
idea is based on the practical consideration that most stop-loss covers
will be set at a level, S, such that the number of outcomes which produce
a stop-loss claim W is larger than the number of outcomes which produce
no stop-loss claim, even though the probability of the second may exceed
the probability of the first. Thus, instead of directly calculating E(W),
which is constant (i.e., zero) on the smaller set of outcomes and hence
requires the numerical evaluation of the convolution formula on the
larger set, he has used the identity W = Z — (Z — W) and the fact that
Z — W is constant (i.e., S) over the larger set, so that he must evaluate
the convolution formula only over the smaller set of outcomes. We ob-
serve that Mereu included the outcomes where Z = S in the smaller set
even though Z — W = .5 on these outcomes also. We find it natural to
partition  into

A = {w|Z(w) < S},

that is, the event that the retention, R, is less than S, and
B = {w|Z(w) 2 5},

that is, the event that the retention is equal to S. In this notation we have

Stop-loss claim W(w) = 0 if o€ d
= Z(w) — S if w&B,

Retention R(w) = Z(w) if o €4
=S if w€B.

The identity is now written
W(w) + R(w) = Z(w) .

Mereu’s portfolio (N = 50, .S = 18,000; see his Table 1) provides an
impressive illustration of the size of these sets. Using elementary com-
binatorics, we find that A contains 1,951 outcomes and B contains
1, 125, 899, 906, 840, 673 outcomes! The number of outcomes where
Z = Sis 2,170.
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The net stop-loss premium, E(W), may be calculated by
E(R) = 3, Z(w)P(@) + [1 = P(D))S,

and E(W) = E(Z) — E(R).

The variance of W may also be calculated by using the probabilities of
our smaller 4. Since W = Z — R, we have, after squaring and using the
properties of the linear operator E,

E((Z — R)] = E(2%) — 2S E(Z) + ${1 — P(4)]

- ZA; Z(w)2P(w) + 25224 Z(w)P(w) .

Up to this point we have not explicitly used the assumption of indepen-
dent risks for the NV lives. However, some assumption about the stochastic
dependence of the risks would be necessary to calculate the P(w)’s. If we
make the assumption of independent risks to calculate the P’s, then we
may also calculate E£(Z?) in the last formula by

N
2 2
2 pai + E2)) .
=1
A second remark concerns the choice of the Poisson parameter (.
Since Mereu considers an open portfolio, he sets

N
t==2In(1l—gq).
=1
If one is interested in the stop-loss premium for a closed portfolio (no
replacements), the collective model with

N
I = ; qi
produces a stop-loss premium less than that for Mereu’s collective model
but greater than the true stop-loss premium for the closed portfolio. The
first inequality follows from ¢ < In (1 — ¢). The proof of the second in-
equality is based on the following lemma:

If, in the closed portfolio described above, life number N is replaced
by two independent risks, N and N +4 1, with amounts at risk 2y =
Zv41 = 2y and mortality rates fy, §v41 such that g + Gy = g, the
stop-loss premium for this modified portfolio is at least as large as the one
of the original portfolio. For the proof one considers a fixed outcome of
Zy\, Zy, . . ., Zy-1 and verifies that the conditional expectation of W is at
Jeast as large as that of W,
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Now, by repeated application of the lemma, one obtains the result that
the stop-loss premium in the limiting case, that is, the collective model for
the portfolio with

dominates the true stop-loss premium for the closed portfolio.

With the use of the University of Michigan computer, for which our
acknowledgment is due, we have calculated for Mereu’s portfolio the
probability of the retention’s being less than the stop-loss level and the
means and variances of the total claims, the retention, and the stop-loss
claim for closed portfolios (i.e., individual risk model assumptions) with
mortality rates equal to the ¢;’s and to the ¢.’s in Mereu’s Table 1. These

TABLE 1
i [
P(4) 0.9369 0.9365
EZy.......... 2,837.6710 2,851.8740
ER)....... 2,494 6414 2,505.8899
EW). ... 343.0296 345.9841
Var (Z)....... 44,226,457 44,473,869
Var (R)....... 29,851,371 29,976,836
Var (W)....... 3,737,494 3,775,601

results, shown in Table 1 of this discussion, illustrate the above inequality
for the net stop-loss premiums for the collective model and the individual
model.

Our thanks to John Mereu for bringing practical considerations into
the calculation of net stop-loss premiums and for stimulating our thinking
in this area.

L. TIMOTHY GILES:

I have been using the Poisson distribution recently in a very approxi-
mate fashion to handle group life problems, so the precise method pre-
sented by Mr. Mereu is quite enlightening.

In addition to computing expected stop-loss claims, Mr. Mereu’s
algorithm has other applications. Because his numerical example has a
stop-loss level that is rather large in relation to the net premium, I re-
calculated some values with § = $12,000:

f=089738 and H = $20,273.
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The first additional application would be to determine a credibility factor.
This could be done by assuming that claims in excess of the stop-loss
limit would be adjusted to the stop-loss limit, that is, Hz + Z(1 — z) = S:

20,273z + 2848.749(1 — ) = 12,000 ,

and z, the credibility factor, would be 0.5252. The stop-loss level would be
set at the same value of f, say 0.90, for all groups, so that the resulting
credibility values would vary appropriately by size.

A second additional application would be to establish a maximum
coverage on any ‘one life in relation to the average face amount for the
group. This could be done by determining a stop-loss level such that the
probability of exceeding it is equal to the probability of the death of the
individual with the maximum amount, Typically, this would be an older
individual, so that a probability of death of about 0.02 would be ap-
propriate. In Mr. Mereu’s example, $18,000 will be exceeded 1 — f=62
per cent of the time, which indicates that a larger S with f = 0.02 should
be determined. The average face amount in his example is $10,100; hence
a multiple in excess of 1.8 might be appropriate.

Finally, the algorithm involves a lengthy calculation, especially for
the larger groups. The problem has been computerized, but it would be
helpful if we had some procedure for approximate answers. For example,
suppose that we were to attempt to find f with § = $12,000, using only
a table of the Poisson distribution with A = 0.2 (the rounded value of 7).
Dividing $12,000 by Z (= 2,848.749) yields 4.21. Multiplying 4.21 by T
yields 0.95, or approximately 1. The Poisson table tells us that the prob-
ability of zero occurrences (the only integral value less than 0.95) when
A = 0.2 is 0.8187, not terribly close to the precise answer of 0.89738.
Better results would quite probably be obtained for larger groups. In any
event, Mr. Mereu has shown us the extent of the approximation.

RICHARD S. HESTER, SR.:

At Philadelphia Life we have attacked the stop-loss problem on group
life contracts in a different manner. A series of programs has been written
which makes use of random number series generated by computer and a
Monte Carlo simulation of expected claims.

This system requires a change from one of Mr. Mereu’s basic assump-
tions, that of instantaneous replacement of dying members with identical
new members. I am sure that we will all agree that either the assumption
of replacement or the assumption of nonreplacement is equally valid, and
the choice depends on the other features of the system chosen.

To illustrate the comparability of the two methods, I ran his fifty-life
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example through our system. To save time, I assigned an age to each
certificate such that the mortality rate on the 1960 Basic Group Table
(already stored in the computer) was approximately equal to the ¢ in
the example.

The computer first calculates the expected claims, in this case $3,034;
this is somewhat higher than the $2,849 found in the example, the error
being due to the slightly different ¢’s. Next, a series of random numbers is
matched against each ¢ to simulate one year’s experience, and a record is
kept of number of deaths and amount of claims. This process is repeated
n times, where # follows a rule of thumb based on number of lives, amount
of insurance, and expected claims. The maximum value of # is 3,000 to
satisfy the capacity of the hardware, and this limit was reached in this
case.

To save time and paper, the computer only prints out the first ten
simulated years plus the last year. In this case, only one claim occurred
in the first ten years, a claim for $16,000 in year 7. Total claims over the
3,000 years amounted to $9,239,000 on 738 deaths for an average of
$3,080 per year. This is only 1.5 per cent higher than the expected value
of $3,034. The average claim in the simulations was $12,519, which is re-
markably close to the $12,606 in the paper. The expected number of
claims in a given year was 0.246, somewhat higher than the 0.226 in the
paper, again presumably due to different ¢’s.

Stop-loss premiums can be determined for any given level. The com-
puter simply separates the years into those with and without claims in
excess of the specified level. At $18,000, it found the split shown in the
accompanying tabulation. The excess of $4,977,000 over the stop-loss

No, of No. of

Years Claims Claims
$18,000 or less. ..... 2,791 455 $4,262,000
Over $18,000........ 209 283 4,977,000

level of $18,000 times 209 years ($3,762,000) is $1,215,000. Spreading this
over 3,000 years produces a stop-loss premium of $405. Once more, this
is higher than the $354 found in the paper. However, it should be remem-
bered that the purpose of our system is to determine whether the correct
value is about $400, as opposed to $25 or $1,000, rather than to pinpoint
a theoretical value to the nearest penny. The probability of not having a
stop-loss claim is quite close to the paper’s value of 0.938, since 2,791
divided by 3,000 is 0.930.
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In actual practice, we do not calculate stop-loss premiums at such a
relatively high level. (The stop-loss level of $18,000 is about six times the
expected claims.) Instead, the computer solves for a stop-loss level, g,
such that p + S(p) = AM, where S(p) is the stop-loss premium at p
and AM is the allowable mortality cost in our rate structure, including
any previously established reserves. In this way each case has a risk
charge assessed against it each year in lieu of actual claims above the
stop-loss level. Therefore, it is never necessary to have any loss carry
forward.

COURTLAND C. SMITH:

Mr. Mereu’s interesting paper gives a method for obtaining the pure
risk charge for a group life stop-loss cover using expected aggregate
claims, the probability f that aggregate claims do not exceed the stop-loss
point, and the average size L of these wholly self-insured claims. While
his method was developed for a case with predetermined benefits on
individual claims, the concept has general application.

The pure stop-loss premium may be expressed as the product of the
probability 1 — f that aggregate claims exceed the stop-loss point
times the average size stop-loss claim H — S; but H or H — S is often
hard to determine withcut (1) making crude assumptions regarding the
upper tail of the aggregate claim distribution or (2) doing extensive calcu-
lations or simulations on the computer. Working with the self-insured
losses can be a great saving, but it has its own risks.

If we substitute Mr, Mereu’s equation (16) in his equation (18), we
obtain essentially the following expression for the pure stop-loss charge:

r(s, @) = E(z) —jL -~ (1= /)S. ¢y

This expression is quite general and gives the expected value of stop-loss
claims as the difference between the expected value of all claims and the
expected value of self-insured claims, whether paid in full or in part by
the insured. Equation (1) above also makes it clear that it is vital for the
insurer not to overestimate fL + (1 — f)S.

In certain nonlife insurance lines an insurer or a reinsurer may be
asked to provide an excess-of-loss coverage in which there are deductibles
for each event and possibly also an aggregate deductible or self-insurance
limit applicable to all events during a specified time period, say a year.
Thus, in aviation hull insurance, we may be asked to cover a given air-
line fleet, and we may have accident frequency rates by type of equipment
and class of carrier. In such cases the benefit payable on each claim is not
predetermined but is itself a variable for which we may have claim severi-
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ty distributions available. In many of these instances a variant of the
method outlined by Mr. Mereu would apply.

For practical purposes the sorts of events we are concerned with range
from (a) multicraft catastrophes, usually collisions, to (b) one-craft
catastrophes to (c¢) occurrences which are relatively common but of low
severity and cost. For convenience the three classes of events may be
handled separately in pricing. The collisions may be so rare that their
expected value can be taken to be an element in the catastrophe loading,
and the minor occurrences may produce an aggregate claim cost that can
be predicted within reasonable limits from separate studies of experience
and cost trends. Hence the one-craft catastrophes may become the major
element in aggregate costs and the major problem in premium deter-
mination. One simplifying assumption we can often make to reflect a low
stop-loss point or a high minimum cost per catastrophe is that when two
such catastrophes occur within the coverage period, the aggregate claims
cost will necessarily exceed the stop-loss point. Therefore, the probability
f that type & aggregate claims do not exceed S depends on the Poisson
probabilities of exactly zero or one claim and on the probability f; that a
single claim will not exceed S. If L; is the average size of a single-catas-
trophe claim which does not exceed S, then

fL = p(Ofils, (2

where f = p(0) + p(1)f1, and equation (1) can be used to find (S, =).
In the special case where the cost of a single catastrophe can be as-

sumed always to exceed S, there are no wholly self-insured losses, f; =
0=/L,f = $0), and

(S, ®) = E(z) — [1 — p(0)}S . 3

An interesting practical question arises when the problem is not to de-
termine the pure stop-loss charge but rather to take the stop-loss pre-
mium as given and find the stop-loss point which the pure charge can
“buy.” In cases where the number of expected claims is less than about
0.3, the probability of zero claims, p(0), becomes large, and L may be of
the order of 0-10 per cent of §. We can then write

L=gS, (4)
where g is small, and equation (1) becomes
so that
_E@@) — (S, =)

S="1=7+7% ®
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Three observations about equation (5) are worth noting for small
numbers of expected claims:

1. Sis very sensitive to changes in the denominator alone. The term fg may be
disregarded by the insurer with safety, but doing so may in some instances
lead to an uncompetitive estimate of S, because f is large (close to unity).

2. When expressed in absolute dollars or other monetary units, the value of §
remains relatively unaffected by variations in the period of the coverage.
Halving the period, for example, would reduce the volume of claims in the
numerator and the probability of one or more claims in the denominator (and
number of expected claims) to about the same degree. Therefore, S would be
relatively stable and would depend largely on the average size of a claim.

3. The buyer of a stop-loss cover may request a stop-loss level quoted as a rate
or as a ratio to expected claims. If the quote seems high, the buyer may then
ask that the coverage period be reduced. Point 2 above indicates that if the
coverage period is cut in half (say), then the quoted stop-loss level should be
roughly doubled, or else the stop-loss charge should be appropriately in-
creased.

(AUTHOR’S REVIEW OF DISCUSSION)

JOHN A. MEREU:

I appreciate very much the discussions of my paper and would like to
thank the contributors for their observations.

Mr. Bailey has run my example through his famous risk analyzer
program and has produced detailed tables of the frequency distributions
of the aggregate claims under both the “Poisson replacement’ and “bi-
nomial nonreplacement models.” Advantages of developing the full dis-
tribution for a variety of problems are explained.

The probability of zero claims should be the same for each model. The
slight difference in Mr. Bailey’s results is attributable to the fact that he
has used the rounded ¢; values that I supplied him.

Mr. William Taylor is to be congratulated on his extensive expository
discussion in which he illustrates and explains how APL can be used to
program algorithms employing both the “binomial nonreplacement” and
the “Poisson replacement’’ assumptions. The slight discrepancies between
his Poisson results and those in the paper arise because the results in the
paper were obtained by inputting ¢ values which had been rounded, where-
as Mr. Taylor inputs the ¢ values and does not round them. His figures
are consequently more accurate,

Mr. Rankin has paralleled the development in the paper using the
binomial model. His recursive procedure involves bringing in one life at
a time, whereas the recursive procedure described in the paper was con-
nected to the claim amounts and number of claims. I believe that Mr.
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Rankin has inputted my /; values as probabilities. This would explain
the difference between his results and Bailey’s and Taylor’s and his
agreement with the second set of results provided by Dr. Jones and
Dr. Gerber.

Dr. Jones and Dr. Gerber have helpfully explained my algorithm in
terms of partitioned sets. They show correctly that in applying the algo-
rithm it is proper to stop with the highest amount less than the stop-loss
level. Nothing is gained by including claims exactly equal to the stop-loss
level in the population of smaller aggregates.

Mr. Giles explores the possibility of using the algorithm for purposes
other than the computation of expected stop-loss claims.

Mr. Hester validates the results in the paper with his simulation pro-
gram.

Mr. Smith discusses the use of the algorithm for catastrophe coverages.
His formula (1) expresses the stop-loss charge in a form explainable by
general reasoning. In analyzing his formula (5), he appears to treat g as a
constant independent of the stop-loss level. It would seem safer to have
a program which produces a complete frequency distribution, from which
it would be a simple matter to set a stop level corresponding to a charge.

In addition to thanking the discussers of the paper, I would like to
acknowledge Mr. Ivan R. Taylor as a source of inspiration for the
algorithm and Mr. David S. Patroch (not a member of the Society) from
my company for programming the algorithm.






