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ABSTRACT 

This paper describes a method for computing the expected loss under 
a group life contract in excess of a stated limit. In accordance with a 
common assumption of collective risk theory, it is assumed that the 
number of claims under the contract is a Poisson-distributed random 
variable. 

The possible aggregate amounts less than the stop-loss level which 
can occur are identified, and the probability of each such amount is 
calculated. From these calculations the probability of an aggregate claim 
less than the stop-loss level is determined, and also the expected value of 
such a claim. 

The mean aggregate claim is then recognized to be the weighted 
average of the mean aggregate claim of each of two mutually exclusive 
subpopulations of aggregate claims--those with aggregate claims ex- 
ceeding the stop-loss level and those with aggregate claims not exceeding 
the stop-loss level. From the information enumerated about the sub- 
population of smaller aggregates, information is obtained about the 
subpopulation of larger aggregates--namely, the probability of occur- 
rence of an aggregate claim exceeding the stop-loss level and the mean 
such claim. The expected stop-loss claim is then readily calculated. 

The paper also shows how to compute the variance and standard 
deviation of the stop-loss claim and suggests how the method can be 
extended to group insurance benefits where the claim amount per certifi- 
cate is not fixed. 

INTRODUCTION 

I 
T IS the objective of this paper to develop a method for computing 

the expected stop-loss claim under a group life insurance contract, 
where the stop-loss claim is defined as the excess of the aggregate 

claim in some interval over a specified stop-loss level. 
Bartlett [1] reviewed a number of methods which had been proposed 

for generating this kind of information and went on to develop a method 
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312 ALGORITHM FOR COMPUTING EXPECTED STOP-LOSS CLAIMS 

of fitting a gamma function to the frequency distribution of aggregate 
claims. 

In our development we shall consider a group of lives each of which is 
insured for a fixed amount of death benefit and for each of which there 
is given the probability of dying during the year. The development 
assumes that lives who die are immediately replaced by lives of identical 
risk. This assumption is a simplification of what is likely to happen in 
practice, but it may not be less realistic than the assumption of no 
replacement at all. If we also assume that the force of mortality is a 
constant for each life during the year, then we have postulated an 
environment where the risk remains constant. This permits us to apply 
collective risk theory and assume that the number of claims during the 
year is a Poisson-distributed random variable and that we are dealing 
with a compound Poisson process as described by Bartlett. 

We shall not attempt to find an expression for the cumulative distribu- 
tion function of the aggregate claim but shall develop an algorithm 
using an enumerative approach for the computation of the expected 
stop-loss claim from (a) the expected aggregate claim, (b) the probability 
that the aggregate claim will not exceed the stop-loss level, and (c) the 
conditional expected aggregate claim given that the aggregate claim 
does not exceed the stop-loss level. The method will be first of all de- 
veloped algebraically and then illustrated numerically. 

E X P E C T E D  AGGREGATE CLAIMS 

Our first step will be to compute the expected value Z of the aggregate 
claim Z under the group. Let us assume that we have N certificates, 
with a~ the amount of insurance under certificate i and q~ the mortality 
rate applicable to certificate/. 

Because we are considering certificate / to be immediately reissued to 
a new life in the event of a claim thereunder, the number of claims 0~ 
under certificate i is a Poisson-distributed random variable which can 
take on any integral value 0, 1, 2 , . . . .  

Let l; be the expected number of claims under certificate i. From the 
Poisson function it follows that the probability of 0; claims under the 
certificate is given by 

e-~t~ 
Probability of Oi claims = 0d (1) 

The probability of no claims is obtained from the above formula by 
substituting 0~ = 0 and is given by e- q. But the probability of no claims 
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under certificate i is also given by 1 -- q;. Therefore, 

e ~ =  1 - - q ¢ ,  
and 

t ,  = E(O,) = - I n  (1 - -  q,) . (2) 

I t  may be of interest to note that t~ is also the force of mortality for 
certificate i. 

The aggregate claim Z under the group is given by 

N 

Z = ~a~O~ , 
i ~ l  

and, if we assume that claim experience under each certificate is indepen- 
dent, it follows that the expected value of the aggregate claims is 

2 = E ( z )  = E(~a,O,)  = ~ a , E ( 0 3 ,  
o r  

= ~ a d ~ ,  (3) 

The number of claims T under the group is given by 

T = Z01 

and has an expected value T = E ( T )  = EE(Oi), or 

= ~ t , .  (4) 

The number of claims T is also a Poisson-distributed random variable. 

Wa~tANCE O• ACOREGATr CLAMS 

Our next step will be to compute the variance V ( Z )  of the aggregate 
claims. This is given by 

v ( z )  = E ( Z  - 2)~ 

Therefore, 

N 

I- i * l  

[ z  o, - - > ]  = E a~( - t , ) '  + 2 2 a , a j ( o ,  t,)(o~ tj 
i * l  i * l  i * l  

N N N 

= Z , ~ v ~ ( o ,  - t , ) '  + 2 ~ a , ~ i E ( o ,  - t , ) (o i  - tj) 
i - 1  i = l  j - 1  

N 
2 ~ a , V ( o O  + O .  

i * l  

(j m i) (s) 

(j  ~ i) 

v ( z )  = Nad~ .  (6) 
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The simplification of the first term follows from the property of the 
Poisson distribution that its variance equals its mean. The vanishing 
of the second term is a consequence of the assumption that the numbers 
of claims on different certificates are independently distributed. 

CALCULATION OF CONDITIONAL EXPECTED CLAIMS 

The population of aggregate claims which could occur if the group 
could relive the year under study many times can be divided into two 
subpopulations according to whether or not the aggregate claim exceeds 
the stop-loss level S. The subpopulation of smaller aggregates can then 
be further subdivided according to the number of claims. Given below 
are some definitions which will be used. 

Let p(j) be the probability of occurrence of j claims. 
Let Zj be the expected aggregate claim conditional on the occurrence 

of exactly j claims. 
Let Li be the expected aggregate claim conditional on the aggregate 

claim's not exceeding S and conditional on the occurrence of exactly j 
claims. 

Let f~. be the probability that the aggregate claim will not exceed S 
conditional on the occurrence of exactly j claims. 

Let L be the expected aggregate claim conditional on the aggregate 
claim's not exceeding S. 

Let H be the expected aggregate claim conditional on the aggregate 
claim's exceeding S. 

Let f be the probability that the aggregate claim will not exceed S. 
Let Ask be the kth possible aggregate of j claims, the aggregates being 

ranked in ascending order. We will find it necessary to enumerate only 
the situations where the aggregate claim does not exceed the stop-loss 
level. 

Let Pjk be the probability that the aggregate of j claims will equal 
Ask. 

Let ni be the number of possible aggregates of j claims not exceeding 
the stop-loss level S. 

Let us now obtain an expression for Z,, the expected aggregate claim 
given that only one claim occurs: 

iV N 

~]a~. Probability(O~ = 1) 1-IProbability(Oi --- O) 
2~ = ~'~ J'~ ( j  # i)  

27 27 

]~Probability(O~ = 1)IIProbability(Oj = O) 
i - 1  j - 1  
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o r  

N N 
Zale-t~ t~,He-ti 

N N 
Ze-t~ t~He-ti 
i=1 j = l  

_ e-rY .ad~ 

e--rydl , 

2 
21 -- ~ .  (7) 

I t  is evident that  the same expression represents the average-sized claim 
whenever it occurs during the year, and we conclude, therefore, that 

2j = j21.  (8) 

Because the total number of claims under our model is a Poisson-dis- 
tributed random variable, we can state the probability of exactlyj  claims 
to be 

P(J) = i t  (9) 

As stated, the possible aggregates of a single claim are represented by 
Au, A12, and so on. The enumeration of these amounts is a straight- 
forward process carried out by an examination of the certificate amounts 
ai. The probability P~k of occurrence of Alk is given by 

Pt~ = Zt~ (for those certificates where a~ = A l k )  (10) 
• t~ (for all certificates) 

We then proceed to enumerate the A2~ values, the possible aggregates 
of two claims. This we can do systematically by sequentially associating 
each Axk value with other Alk values, but enumerating only those A~ 
values which do not exceed the stop-loss level. Similarly, we can enumer- 
ate the Ask values for any j by taking into account the As_I , k and Alk 
values. Enumeration stops for some j = J if J + I occurrences of the 
smallest-sized claim would exceed the stop-loss level. 

For each Aik value we compute a probability Pik from 

Pj~ = Z P j - 1 .  IPl,,, , (11) 

summed over all pairs such that As-~. z + At,, = Ajk. 
We now have the necessary data for computation of Li, the expected 

aggregate of j claims conditional on the aggregate claim's not exceeding 
the stop-loss level. 
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nj 

~-~.PikA ik 
Li = ~-1 (12) n J 

k = l  

Also, the probability that the aggregate of the j claims will not exceed 
the stop-loss level is given by 

nj 

f i  = Y~'~Pi* • (13) 
k = l  

We can now compute L, the expected aggregate claim conditional on 
the aggregate's not exceeding the stop-loss level. 

1 

~_~P(Y)fjZs 
L = i=o (14) 

J 

~_,p(s)Y, 
j~O 

Also, the probability f that the aggregate claim will not exceed the stop- 
loss level is given by 

dr 

! = ~ p 0 ) f ; .  (is) 
i=0 

We are now ready to compute H, the expected aggregate claim con- 
ditional on the aggregate claim's exceeding the stop-loss level. This we 
do by recognizing that the mean of the aggregate claims must be a 
weighted average of the means of the two mutually exclusive subpopula- 
tions into which we have decomposed the over-all population. Tha t  is, 

= fL + (1 -- I )H .  (16) 

Solving for the unknown value of H, the expected value of the aggregate 
claim conditional on the aggregate claim's exceeding the stop-loss level, 
we get 

2 - / L  
u = - -  (17)  

l - f "  

EXPECTED STOP-LOSS CLAIM 

We can now obtain an expression for the expected value of the stop-loss 
claim W, where 

W = T -- S (T > S) 

= o (2" < s ) .  
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We have 
If/ = E ( W )  = f .O + (1 -- f ) f f t  -- S) , 

o r  
= (1 - / ) ( a  - s ) .  (18) 

V A R I A N C E  OP S T O P - L O S S  C L A I M S  

Our next step will be to develop an expression for the variance of the 
stop-loss claim W. 

Let us define LLj as the expected sum of the squares of the claims 
conditional on there being exactly j claims whose aggregate does not 
exceed the stop-loss level S. I t  follows that 

3" 

A ~ ZPjk jk 
LLi  = i=x (19) 

/ i  

Also, let LL be the expected sum of the squares of the claims conditional 
on the aggregate claim not exceeding the stop-loss level: 

LL  = Y.P(j)JiLLi (20) 
f 

Now 
v ( w )  = E ( W  - ff:)~ 

and = E ( W 2 )  - -  I ~ 2 '  

E(I~)  = ~]]p(j)[ ~]~ P j k ( A i * -  S)2] 
j=O k~ni+X 

m v~ n j  

= X p ( j ) [ X P i k ( A y ~ -  S ) ~ -  k~=lP,k(Ajk- S) 2] 
j=O k = l  = 

= ff"p(j) P ~kAik -- 2S PikAyk -k ~ Pik 
/=0  k = l  

n.  n j  n 

- -  ~ P ( j )  PikAi~ -- 2S~_,Pi~Ask -t- S ~ Pi~ 
jffiO k = l  

= {[ v ( z )  + ~ ]  - 2 s ~  + y )  - ( /LL - 2S/L + Y / ) .  

Substituting, we have 

v ( w )  = v ( z )  + ~ - 2 s ( ~  - / r )  - / L L  + S~(1 - - / )  -- ~ " .  (21) 



NUMERICAL EXAMPLE 

Consider  a group of f i f ty cert i f icates  wi th  the charac ter i s t ics  out l ined 

in T a b l e  1, and let us assume a stop-loss level S of $18,000. T h e  resul ts  

a re  shown in Tab le s  2-5. 

TABLE 1 

CERTIFICATE DETAILS 

c 

1. 
2. 
3. 
4. 
5, 

6, 
7. 
8. 
9. 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
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21 
22 
23 
24 
25 

.001191 

.002590 
~002590 
.005974 
.011245 

,002590 
,003722 
.004213 
.004213 
.006591 

.002918 
,003722 
.004761 
.004761 
.008543 

• 001633 
• 002590 
.004213 
.004213 
.009346 

.003722 

.005974 

.009346 

.021825 

.015878 

TABLE 2 

EXVrCTED VxntrES 

E x p e c t e d  aggregate  claim, 2 = Xaiti  . . . . . .  

Expec t ed  n u m b e r  of claims, T = 2;t~ . . . . . .  

Var iance  of expected  claims, V ( Z )  = Za~t l . .  

Average-s ized  claim, Z ,  = Z / T  . . . . . . . . . . .  

$ 2 ,851 .874  

0.226116 

44 ,989 ,822  

$12 ,612 .44  

J = 4, since 5 c la ims of the  smal les t  size will  exceed the  

s top-loss  level. 
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TABLE 3 

POSSIBLE AGGREGATES AND PROBABILITIES 

319 

k 

1 . . . . . .  1 

1 . . . . . .  2 
1 . . . . . .  3 

1 . . . . . .  4 
1 . . . . .  5 

1 . . .  6 
1 . . .  7 
2 . . .  1 
2 . . .  2 
2 . . .  3 

A j, Pik 

4,000 .15304534 
6,000 .07882237 
8,000 .11199119 

10,000 .10432698 
12,000 09432769 
14,000 .10925808 
16,000 .09727308 
8,000 .02342288 

10,000 .02412679 
12,000 .04049243 

i i::i:i 31::iilj 1 
2 ~i:iii: 3 

3 . . . . . .  I 
4 . . . . . .  

4 . . . . . .  

I Ajk - Z5- 
18,000 
12,000 
14,000 
16,000 
18,000 
16,000 
18,000 

.04958834 

.05786145 

.07168055 

.00358476 

.00553874 

.01072206 

.01592660 

.00054863 

.00113024 

TABLE 4 

VALUES OF p ( j ) , f ~ ,  Lj ,  L L j  

p(j) yj Lj LLi 

0 . . . . . . . .  79762608 I. 00000000 0 0 
1 . . . . . . . .  18035602 0. 74904473 9,668. 620 110,522,297 
2 . . . . . . . .  02039069 0.26717244 14,315.960 215,213,058 
3 . . . . . . . .  00153689 0.03577216 16,179.935 265,761,537 
4 . . . . . . . .  00008688 0.00167887 17,346.429 301,778,860 

TABLE 5 

OTHER VALUES 

~.. . . .  [ ] 0.93822377 L L  . . . .  17,179,357 
1,476.2604 V ( W ) .  4,089,333 

H.. '  23,743.92 ,r(W) . . 2 ,022 .21  
W.. 354.84 

EXTENSIONS TO OTHER GROUP BENEFITS 

The  formulas that  we have developed have assumed a group life 
insurance t)2oe of environment  in which the amount  of insurance per  
certificate is constant .  The  following discussion relates to group benefits 
in general, in which the above assumption may  not  be applicable.  

Let  us define the secondary dis t r ibut ion as Bar t le t t  has done, to be 
the probabi l i ty  dis t r ibut ion of the size of a par t icular  claim given that  a 
claim has occurred, and let us assume tha t  the first and second moments  
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of the secondary distribution are available. For the group life situation 
described earlier the first moment ai' is equivalent to Z~, and the second 
moment #~ is equivalent to V(Z)/T - ~ .  

The secondary distribution itself is equivalent to the PI, probabilities 
which we have previously defined. The method of this paper can then be 
used to evaluate L, f, H, LL, and hence t{ -T, the expected value of the 
stop-loss claim, and V(W), the variance of the stop-loss claim. 
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DISCUSSION OF PRECEDING PAPER 

WILLIAM A. BAILEY:  

The ingenuity of actuaries like Mr. Mereu, together with the speed and 
storage capacity of some modern computers, has made it possible to 
solve numerically problems in risk analysis which previously could be 
solved only approximately by somewhat deep theoretical mathematical 
techniques. This is especially encouraging because presumably one of the 
actuary's primary professional functions is the evaluation of risk, and 
versatile computer techniques like Mr. Mereu's permit more actuaries to 
perform this task on a scientific basis. 

Mr. Mereu's method of calculating net stop-loss premiums for a group 
life contract involves the following: 

1. Assuming a Poisson distribution of the number of deaths arising from each 
certificate. 

2. Calculating the first part of a frequency distribution of aggregate claim by 
a) Enumerating each possible aggregate claim less than the stop-loss level. 
b) Determining the probability that each such aggregate claim will occur. 

3. Making use of the fact that the expected aggregate claim ~z is equal to 
]L + (1 - )OH and the stop-loss premium ~' is equal to (1 - - f ) ( t t  -- S). 

The author measures the expected variability in the stop-loss claim by 
calculating the variance thereof. 

To assess the efficacy of the Poisson assumption, I have used the "risk 
analyzer program" to calculate two complete frequency distributions of 
aggregate claim (together with the stop-loss premiums at each stop-loss 
level) for the group illustrated in Mr. Mereu's Table 1. Table 1 of this 
discussion assumes, as did Mr. Mereu, that the number of deaths under 
each certificate follows a Poisson distribution; this is equivalent to as- 
suming that lives who die are immediately replaced by lives of identical 
risk. Table 2 assumes that only one death is possible under each certificate 
- - tha t  is, lives who die are assumed not to be replaced during the year. 
Of course, in practice a given life might be replaced by a life of different 
age (or risk). 

The magnitude (absolute or relative) of the excess of the stop-loss 
premium based on the Poisson assumption over that based on the binomi- 
al assumption will depend on the distribution of lives by amount and age 
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TABLE 1 

FREQUENCY DISTRIBUTION OF AGGREGATE CLAIM 

AND STOP-LOsS PREMIUM: EXAMPLE I 

(Assumes Poisson Distribution for Each Certificate) 

Amount 

0 . . . . . .  
4,000.0000. 
6,000.0000. 
8,000.0000 • 

I0,000.0000. 

12,000.0000• 
14,000.0000. 
16,000. 0000. 
18,000.OOO0. 
20,0OO.0000. 

22,000.0000. 
24,000.0000. 
25,000.0000. 
26,000.0000. 
28,000.0000. 

29,000. 0000. 
30,0O0.0000. 
31,000. 0000. 
32,000.0000. 
33,0O0.0O00. 

43,000.0000• 
44,000.0000. 

63,000.0000. 
64,000.0000. 

83,000.0000. 
84,000.0000. 

103,000.0000 . . . .  
104,000.0000.. .  

123,000.0000. . .  
124,000.0000. . .  

Frequency 

.79762557173 

.02760263053 
•01421608056 
.02067588066 
.01930794892 

.01784373320 

.02072499202 

.01874013497 

.00148619057 
•03424170211 

.00125970755 

.00227776578 

.01266469882 

.00147878254 

.00153145947 

.00043827456 

.00129059429 

.00022572292 
•00098707130 
•00032829163 

.00002359773 

.00008168163 

.00000153684 

.00000439244 

.00000006051 

.00000014154 

.00000000192 
• 00000000295 

.OOOOOOOOOO4 

.00000000004 

Cumulative 

.79762557173 
•82522820226 
.83944428283 
.86012016350 
.87942811242 

.89727184562 

.91799683765 

.93673697263 

.93822316321 

.97246486532 

.97372457288 

.97600233866 

.98866703749 

.99014582003 

.99167727951 

.99211555408 

.99340614838 

.99363187130 

.99461894261 

.99494723424 

.99883452514 

.99891620678 

• 99996431923 
• 99996871167 

• 99999914841 
• 99999928995 

.99999998335 
• 99999998630 

• 99999999970 
• 99999999975 

Stop-Loss Premium 

2,851.8740 
2,042. 3763 
1,692. 8327 
1,371.7213 
1,091 •9616 

850.8178 
645. 3615 
481.3552 
354. 8291 
231. 2754 

176. 2052 
123. 6543 
99. 6567 
88. 3237 
68.6153 

60. 2926 
52. 4082 
45. 8143 
39.4462 
34.0651 

6. 2914 
5.1260 

O. 1896 
0.1540 

0.0045 
0. 0036 

0.0001 
0.0001 

0.0000 
0.0000 

Mean from table ~ 2,851.8739992; theoretical mean = 2,851.8700000. 

Standard deviation from table = 6,707.4452621; theoretical standard deviation = 
6,707. 4452618. 

Table variance = 44,989,821.9440; theoretical variance = 44,989,821.9400. 
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TABLE 2 

FREQUENCY DISTRIBUTION OF AGGREGATE CLAIM 
AND SToP-LOSS PREMIUM: EXAMPLE I I  

(Assumes Binomial Distribution for Each Certificate) 

Amount 

0 . . . . . . . . . . . . .  
4,000.0000 . . . . . . . .  
6,00O.0000 . . . . . . . .  
8,000.0000 . . . . . . . .  

10,00O.0O0O . . . . . . . .  

12,000.0000 . . . . . . . .  
14,000.0000 . . . . . . . .  
16,000.0000 . . . . . . . .  
18,000.0000 . . . . . . . .  
20,1300.0000 . . . . . . . . .  

22,000.0000 . . . . . . . . .  
24,000.0000 . . . . . . . . .  
25,000.0000 . . . . . . . .  
26,000.0000 . . . . . . . .  
28,000.0000 . . . . . . . .  

29,000.0000 . . . . . . . . .  
30,000.0000 . . . . . . . .  
31,000.0000 . . . . . . . .  
32,000.0000 . . . . . . . .  
33,000.0000 . . . . . . . .  

43,000.0O(J0 . . . . . . . .  
44,00O. 0000 . . . . . . . .  

63,000.0000 . . . . . . . .  
64,000.0000 . . . . . . . .  

8 3 , 0 0 0 . 0 0 ~  . . . . . . . .  
84,000.0000 . . . . . . . .  

103,000.0O00 . . . . . . . .  
104,000.0000 . . . . . . . .  

110,00O.0O00 . . . . . . . .  

Frequency 

.79762119004 

.02771677790 

.01423335291 

.02064997985 

.01938145144 

.01786950632 

.02078721901 

.01871234134 

.0O149309845 

.03442248851 

.00126262140 

.00225176705 
.01276602987 
.00148557635 
.00147870759 

.00044361060 

.00129843732 

.00022780664 

.00093554868 

.00033050558 

,00O02389723 
.00006955276 

.00000150744 
• 00000105430 

• 00O00003659 
• 00000000857 

.ooooob0o~ 

.00000000003 

.oo0oo~ooo 

Cumula t ive  

.79762119004 

.82533796794 

.83957132085 

.86O2213OO71 

.87960275215 

.87947225848 

.91825947749 

.93697181884 

.93846491729 

.97288740581 

.97415002721 

.97640179427 

.98916782414 

.99065340050 

.99213210810 

.99257571870 

.99387415603 

.99410196268 

.99503751136 

.99536801695 

.99902239980 

.99909195256 

.99998367472 

.99998472903 

.99999984294 

.99999985151 

. 9 9 9 9 9 ~ 8 9 7  

.99999999901 

. 9 9 9 9 ~ ) 9 9 7 7  

Stop-Loss Premium 

2,837.6710 
2,028.1558 
1,678.8317 
1,357.9743 
1,078.4169 

837.6224 
632.5670 
469.0859 
343.0296 
219.9594 

165.7342 
114.0343 
90.4360 
79.6039 
60.9107 

53.0428 
45.6185 
39.4927 
33.5946 
28.6321 

i .4227 
3.4451 

0.0750 
0.0587 

0". 0008 
0.0006 

o.o0oo 
0.00O0 

6.00o0 

Mean from table = 2,837. 6709996; theoretical mean = 2,837. 6700000. 

Standard deviation from table = 6,650.2975704; theoretical standard deviat ion--  
6,650. 2975700. 

Table variance = 44,226,457. 7747; theoretical variance --- 44,226,457. 7700. 

323 
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(or other underwriting characteristics) under the particular group life 
contract. 

There is an overriding advantage in calculating the complete frequency 
distribution, in that the variability in the stop-loss claims is evident from 
the table, and, although the variance can be computed as a by-product, 
we do not need to rely on the variance to guess at the shape of the dis- 
tribution. An enormous advantage is that other financial calculations can 
be made from the complete frequency distributions. For example, the 
aggregate claim amounts can be translated into profit ( + )  amounts, 
which would reflect premiums, expenses, dividends, and so on, as well as 
aggregate claim amounts. Thus trial or actual premium rates, credibility 
factors, and risk charges in the retrospective dividend formula can be 
evaluated on a frequency distribution basis. Convoluting the frequency 
distributions of profits (4-) (one frequency distribution for each group 
contract) produces a frequency distribution of total profits ( i )  expected 
from the over-all group life portfolio. 

A somewhat more complex situation occurs when the retrospective 
dividend is based both on the aggregate claim of the specific group and 
on the total of the aggregate claims for all groups in the portfolio. By 
convoluting the frequency distributions of aggregate claims (i.e., one 
frequency distribution for each group other than a selected group), we 
can then calculate a frequency distribution of profits ( _ )  for the selected 
group, reflecting the frequency distribution of aggregate claims for all the 
other groups in the portfolio as well as the aggregate claim for the selected 
group. Thus we can evaluate premiums, credibility factors, and risk 
charges in the dividend formula for each group separately. However, the 
calculation of the frequency distribution of profits ( + )  from the over-all 
portfolio of group contracts is not as facile in this situation (i.e., where the 
dividend is based on both the experience of the specific group and the ex- 
perience of the over-all portfolio of groups). 

A different situation exists when we wish to determine the adequacy of 
contingency reserves or surplus for a portfolio of group life contracts 
where the prospective rate adjustment for each group is based in part  on 
the previous year's premium and aggregate claim (loss ratio) for such 
group. This process can be treated as a specialized two-dimensional ran- 
dom walk, 1 where the pertinent variables for each group contract are 
(1) the accumulated profit (4-) and (2) the prospective premium rate; 
that is, the second variable is required to continue the random walk from 

i Equivalent to a Markov chain. 
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year to year, whereas the first constitutes primacy in the problem. By 
retaining the frequency distribution of accumulated profits (4-) for each 
group at the end of each year in the random walk, we can convolute such 
frequency distributions (i.e., one for each group contract in the portfolio) 
for sums at the end of any specified number of years to produce a fre- 
quency distribution of accumulated profit (4-) for the over-all portfolio 
of group contracts; then, translating these profits (_+) into present values 
by discounting them at a suitable interest rate, we can attempt to evalu- 
ate the adequacy of various levels of contingency reserves. 

A less complex but equally valuable use of complete frequency dis- 
tributions of aggregate claim is in assessing the likelihood that the death 
claim experience (group by group or portfolio) is consistent with the 
mortality rates assumed in the pricing of the group llfe contract. 

Mr. Mereu has presented his ideas clearly and succinctly. He has com- 
bined his knowledge of probability theory and computer science to pro- 
duce a direct method for calculating stop-loss premiums for group life 
contracts, assuming that the Poisson distribution for the number of 
deaths applies. The extension of his method to group health contracts 
needs elaboration, but perhaps this furnishes a topic for a future paper. 

WILLIAM J. TAYLOR: 

Mr. Mereu refers to the paper "Excess Ratio Distributions in Risk 
Theory" by Dwight K. Bartlett, I I I  (TSA, XVII,  435). Robert Tookey, 
in discussing Mr. Bartlett's paper, proposed a "voyage to the center of 
the earth." The vehicle he suggested for this voyage was the use of Monte 
Carlo techniques for the determination of excess risk measurement in 
specific group cases. Mr. Mereu is to be congratulated! His paper and 
the several discussions which it has inspired provide a choice of several 
vehicles for a "voyage to the center of the earth." 

There are several points which I would like to make in my discussion, 
some of which will be elaborated upon. They are as follows: 

1. Risk theory should be a rather fundamental subject for the life actuary, yet 
many of us have never studied the subject, since it was not added to the 
syllabus until 1964, and many people missed it when it was transferred in 
1971 from Part 10 to Part 5 in the examinations; very few practitioners of 
the subject have emerged by virtue of its presence on the syllabus; and the 
few practitioners we have within our membership come almost exclusively 
from our better mathematicians. 

2. The central idea of risk theory as it appears to a neophyte is the application 
of esoteric mathematical methods to obtain very rough approximations to 
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part or all of the probability distribution function for the total claims in a 
portfolio of risk, values which could be easily computed if such a function 
were available. 

3. If risk theory is going to be utilized by a majority of actuaries, rather than a 
small minority, then we must have simple, easilv understood, accurate, and 
efficient methods of calculating directly such probability distribution func- 
tions. 

Mr. Mereu's paper illustrates, under a simplifying assumption, how solu- 
tions can be found using only the probability and statistics from the pre- 
liminary examinations and a little imagination as to computational methods. 
My discussion will present two additional algorithms, as well as modifications 
to Mr. Mereu's model which require even less knowledge of probability and 
statistics. 

The emergence of FORTRAn and the general availability of computational 
power should be sufficient to spark the imagination of enough actuaries to 
bring about the application of risk theory throughout most of the life actu- 
aries' work. There is, however, a computer language much more powerful 
than FORTRAN which facilitates the development of algorithms. In fact, the 
language was originally developed for the purpose of specifying algorithms 
rather than as a computer language. Its name is APL, which stands for 
"A Programming Language." All the algorithms in my discussion are pre- 
cisely defined as working APL programs. Even though not everyone may 
be able to decipher them without some knowledge of the language, an under- 
standing of what they accomplish and an examination of their brevity should 
be enough to whet one's appetite. 

4. The assumption made in Mr. Mereu's paper is that any death which occurs 
on a case will be replaced by another life insured for the same amount, with 
probability of death for the remainder of the year equal to the force of 
mortality for the life it replaces. The justification for this assumption is 
presumably that some replacement will normally occur, and this assumption 
is as good as any. The motivation for the assumption is presumably to 
satisfy the requirements for the applicability of the Poisson probability 
distribution function. 

I would like to suggest that the composition of the group throughout the 
year will change for reasons other than replacement and that it is more ap- 
propriate to make the calculation without the assumption of replacement and 
relate the stop-loss premium to the premium on the dosed group. As changes 
in the composition of the group occur, one can either recompute the stop-loss 
premium or, if this is either inconvenient or too expensive, maintain the 
stop-loss premium as the same percentage of the total premium. 

5. In the section of this discussion headed "Mereu Model," Mr. Mereu's model 
is presented in APL, and an analysis is made of the changes necessary to 
eliminate the "replacement assumption." 
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6." In the section "Retention Convolution," an algorithm is presented which 
accurately computes the frequency distribution of the retained claim and, 
from this, the statistical parameters of the stop-loss claim. 

7. In the section "Pull Convolution," an algorithm is suggested which computes 
the probability of each of the possible total claim amounts for the portfolio, 
discards those amounts for which the probability is less than some minimum 
value, and then produces a cumulative probability distribution function. 
Considering each of the possible claim amounts as a possible stop-loss level, 
the algorithm then goes on to compute the mean, variance, and standard 
deviation of the stop-loss claim as well as the mean, variance, and standard 
deviation for the related retention. The results are printed out in an abridged 

TABLE 1 

SYMBOL EQUIVALENCE TABLE 

APL Paper 

A ai 
ArK Aik 
A1K Alk 

FJ  

H 
L L 
LJ  L i 
LL LL 
LLJ LL~ 
NJ J 
N J1 J-- 1 
PJ p(/) 

APL Paper 

PJK Pil, 
P1K Pak 
Q q~ 
S S 
SDW a(W) 
T t~ 
VW V(W) 
VZ v(z)  
T i" 
w_ # 
g 2 
z l  2, 

form to fit on an 8½ X 11 page. The power of APL is illustrated by this 
algorithm, since all the calculations are specified in eight lines of program. 
The CPU time for both the calculations and the printing is about 12 seconds. 

Mereu Model 

Although no explanation of the APL code is given, a symbol equiva- 
lence table is given (Table 1), so tha t  anyone famil iar  with both the paper  
and APL can easily read the program.  Anyone familiar  with the paper  
bu t  not  with APL can probably  decipher most of the program simply 
with the addit ional  knowledge tha t  an APL program line is executed 
from right t o  left. 

The  following APL program M E R E U  performs all the calculations 
described b y  the author  but  does not pr in t  any of the results. 
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V A MER_EU Q;J;TI;T2 
[1] T~----(~I-Q 
[2] _Z,--+/A XT 
[31 _r,---+/r 
[41 VZ~----I-/AXAXT 
[5] ZI*--Z+ T 
[6] NJI~-'--Iq-NJ4--LS+L[A 
[71 PJ~--(*-_T) X (T_*J)+ ~--d-t-NJ 
[8] AJK~A1K,[O](NJI,pA1K,,--(TI~O)/TI~--TIX(TI~--IOOOXd+LO.OO1XS)eA) 

p0 
[91 PJK,--P1K,[O](NJI,pP1K,--(+/((pT1)pT)XT1,---A1Ko.=A)+ T)pO 
[10] J~--- 1 
[111 _LI:AJK[J;I~--(oA IK) T ((C1 J, T I ) #  1 [ T1),I)/TI~T2[AXT2~,AJK[O;]o.+ 

AJ K[J-- 1 ;]] 
[12] PJK[J;]~---+ /(AJK[J;]o. = T2) X ((pA 1K),pT2)o,PJK[0;]o. X PJK[J-- 1;] 
[13] --,L1FtNJ I > J~---J + I 
[14] AJK~--AJKXTI~--AJK<_S 
[15] PJKt--PJKXT1 
[16] LJ,-(O,-F/PJKXAJK)+FJ,--1,-F/PJK 
{17] L~----(+/PJ)<FJXLI)+Fe.--+/PJXFI 
[181 H~--(~_--FXL)+I--F 
[19] W,--(1--F)XH--S 
[20] LI.,J,--(O,NJ T +/PJKXAJK,2)+FJ 
[21] LL~(+/PJXFJXLLI)+F 
[22] SDW,.---(VW.~--VZ-F~*2)q-(SXSXI--F)-- ((2XSXZ--FXL)--F(FXLL)+W 

*2))*0.5 

T h e  following p r o g r a m  P JOHN pr in ts  the  results  of the p r o g r a m  
MERE U. 

V PJOHN;TI 
[1] HEAD3 
[2] SFL((--T2,0) ,L T1),((T2~--[O.5X,~),0) ,[ T1,--'I10,CI8,2FlO.6' AFMT((I+ 

,pQ) ;A ,'Q;T) 
[31 L F ; ' Z = ' ~ ; ' T = ' ; T ; '  VZ=';VZ;'Z_I=='~I 
[4] HEAD4 
[5] 'BCI12' AFMT A J K  
I6} HEAD5 
[7) 'BFI2.8' AFMT PJK 
[81 ttEAD6 
[91 'I2,2F14.8,CFI4.3,CllS' aFMT((tpPJ);PJ.,FJ.,LJ;LLJ) 
ll0] LF;'F=,';F;' Lffi';L;' Hf';H;' Wffi';W 
[11] LF,'LL~'.,LL;' VWffi';VW;' SDW---';SDW 

V 

[13 
V R~"-SFL P;T 

R~--((Tq-I.~-I-FT~-I T pP)+5)p 1 1 1 1 1 o ) ~ P  
v 
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The above program, as well as all other APL programs presented in this 
discussion, employs A F M T ,  which is the output formatting feature of 
APL-PLUS. This is the only feature employed that is not available under 
the standard APL. Table 2 illustrates the execution of both programs. 

There are just five formulas in Mr. Mereu's model which are dependent 
upon the "replacement assumption." The necessary changes for four of 
them and their numeric effect on the example will now be set forth. 
Formula number references are to the paper; line-number references are 
to the above program M E R E U .  The first two changes are given in both 
the formulas and the APL code, whereas the latter two are in APL code 
only. 

The first change is the expected number of claims under certificate i, 
formula (2), line 1: change to t; --- qi or T~--- Q. This is the fundamental 
change--use of probabilities of death in one year as opposed to the 
average force of mortality. 

The second change is the variance of aggregate claims, formula (6), 
line 4: change to 

V(Z)  = Y~ a~t~(1 -- t~) or V Z ~ - + / A X A X T X 1 - - T .  

The third change is the probability distribution function for the num- 
ber of claims, formula (9), line 7: change to P J ~ - N J  CONVOLN T, 
where CONVOLN is the following algorithm: 

V g~--J CONVOLN Q 
fl] g,---+ 1,]p+0 
[21 Lt:R,-(g×;-I  TQ)++o,(-I J,R)×I TO 
131 ~-L1[~0~--1 iO 

v 

The above algorithm contains the basic computational idea employed in 
the calculation of all the probability distribution functions presented in 
this discussion. In line 1 the probability distribution function is initialized 
as a 1 followed by the correct number of zeros. This is the correct prob- 
ability distribution function for zero risks. In line 2 the probability dis- 
tribution function is modified to include one more risk in the group. In 
line 3 the looping through all risks is controlled. 

The fourth change is the conditional probabilities Plk, formula (10), 
line 9: change to 

PJK. , - -P  1 K,  [0] ( N J  1, pP 1K.- -ONE) pO , 

where ONE is the following algorithm: 

v R,--ONE'd'd~ 
[1] g~-,I~---O 
[2] Re--R,(+/PJ[O 1]) X +/Y+ Kt--1--J*--(A 1K[I] = A )/Q 
[3] ~2~OA1K)>I,---I+I 

V 



TABLE 2 

A M E R E U  Q; P J O H N  

Cert. A Q 

l . . . . . . .  4 ,000 0.001382 
,~ . . . . . . .  4 ,000 0.001193 
. . . . . . .  4,000 0.001193 

& . . . . . .  4,000 0.001011 
. . . . . .  4 , ~ 0 . 0 0 0 9 1 8  

5 . . . . . .  4,000 0.000890 
¢ . . . . . . .  4 ,000 0.001313 
. . . . . . .  4 ,000 0.004750 

) . . . . . . .  4 ,000 0.008507 
tO . . . . . .  , 4 ,000 0.013308 

l l  . . . . .  ' 6,000 0.001011 
t2 . . . . .  6,000 0.000882 
k3 . . . . . .  6,000 0.000914 
t4 . . . . .  6,000 0.000953 
i5 . . . . .  6,000 0.001313 

i6 . . . . .  6,000 0.001313 
t7 . . . . .  6 ,000 0.001827 
t8 . . . . .  6,000 0.002587 
i9 . . . . . .  6,000 0.003288 
Z0 . . . . . .  6 ,000 0.003715 

Zl . . . . . .  8,000 0.000893 
12 . . . . . .  8 ,000 0.001827 
,~3 . . . . . .  8,000 0.003715 
,~4 . . . . . .  8,000 0.006569 
Z5 . . . . . .  8,000 0.012213 

T Cert. A 

0.001383 26 . . . .  10,000 
0.001194 27 . . . .  10,000 
0.001194 28 . . . .  10,000 
0.001012 29 . . . .  10,000 
0.000918 3 0 . .  10,000 

0.000890 3 1 . . .  12,000 
0.001314 3 2 . . .  12,000 
0.004761 3 3 . . .  12,000 
0.008543 34 . . .  12,000 
0.013397 3 5 . . .  12,000 

0.001012 36 . . . .  14,000 
0.000882 37 . . . .  14,000 
0.000914 38 . . . .  14,000 
0.000953 39 . . . .  14,000 
0.001314 40 . . . .  14,000 

0.001314 41 . . . .  16,000 
0.001829 42 . . . .  16,000 
0.002590 43 . . . .  16,000 
0.003293 44 . . . . .  16,000 
0.003722 45 . . . . .  16,000 

0.000893 46 . . . . .  20,000 
0.001829 47 . . . . .  20,000 
0.003722 48 . . . . .  20,000 
0.006591 49 . . . . .  20,000 
0.012288 50 . . . . .  25,000 

Q T 

0.001190 0.001191 
0.002587 0.002590 
0.002587 0.002590 
0.005956 0.005974 
0.011182 0.011245 

0. 002587 0. 002590 
0.003715 0.003722 
0.004204 0.004213 
0.004204 0.004213 
0. 006569 0. 006591 

0.002914 0.002918 
0.003715 0.003722 
0.004750 0.004761 
0.004750 0.004761 
0.008507 0.008543 

0.001632 0.001633 
0.002587 0.002590 
0.004204 0.004213 
0.004204 0.004213 
0. 009303 0.009347 

0.003715 0.003722 
0.005956 0.005974 
0. 009303 0.009347 
0.021590 0.021826 
0.015753 0 . 0 1 5 8 7 8  

Z = 2,851.955264; .T = 0.2261214934; VZ = 44,991,249.24;  Z1 = 12,612.49084 

AJK 

4,000 6,000 8,000 10,000 12,000 14,000 16,000 
8,000 10,000 12,000 14,000 16,000 18,000 

12,000 14,000 16,000 18,000 
16,000 18,000 

PJK 

0. 15304439[0. 07882425 0.11198781 0. 10432537 0.09432391 0. 
0005486210" 0. 05785950 0. 10926072 O. 09727493 

J PJ FJ LJ LLJ 

0 . . . . . .  0.79762119 1. 00000000 0.000 0 
1 . . . . . .  0.18035929 0.74904137 9,668.645 110,522,955 
2 . . . . . .  0.02039156 0.26716815 14,315.947 215,212,766 
3 . . . . . .  0.00153699 0.03577167 16,179.926 265,761,251 
4 . . . . . .  0.00008689 0.00167886 17,346.441 301,778,990 

F = 0.9382208646; L = 1,476.289731; H = 23,743.76765; W = 354.8449993 

LL = 17,179,752.09;  V W  = 4,089,721.394;  S D W  = 2,022.30596 
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The fifth necessary change is the remaining conditional probabilities, 
P~k (j # 1), formula (11), lines 9-15. This becomes so involved that I did 
not derive the various formulas. 

Table 3 shows the mean and standard deviation of the stop-loss claims 
from Mr. Mereu's model and the cumulative effect of making each of the 
four changes set forth above. The final line gives the theoretically correct 
results from the algorithm C O N V O L R ,  described in the next section. 

From the above, I would conclude that Mr. Mereu's model is also 
valuable as an approximate calculation using the "closed group" assump- 
tion. The accuracy of each of the above forms is greater than is generally 
obtained from Monte Carlo methods, and the error is probably less than 
the error of estimation in the various probabilities employed. 

Retention Convolution 

Table 4 illustrates the execution of the APL program C O N V O L R ,  using 
the author's data. The claim probability distribution function should be 

TABLE 3 

MODEL 

MEREU. . . 
Change line: 

1 . . . . . . . .  

4 . . . . . . . .  
7 . . . . . . . .  

9 . . . . . . . .  

CON VOLR. 

SToP-Loss  

Mean 

354.8450 

351.7453 
351.7453 
345.9583 
343.6949 

343.0296 

S t a n d a r d  Deviation 

2,022.31 

2,011.53 
1,880.99 
1,925.33 
1,931.20 

1,933.26 

C P U  T x ~  

IN SECONDS 

1.23 

1.18 
1.27 
2.70 
2.82 

3 . 4 8  

TABLE 4 
A CONVOLR Q 

Retention... 
Stop-loss .... 

Mean 

2,494.641447 
343.029553 

Variance 

29,851,370.98 
3,737,494.39 

Standard Deviation 

5,463.640817 
1,933.260043 

A m o u n t  

0 
41000. 
6,000. 
8,000. 
10,000 . . . .  

Probability Cumulative 

0.7976211900 0.7976211900 
0.0277167779 0.8253379679 
0.0142333529 0.8395713209 
0.0206499799 0.8602213007 
0.0193814514 0.8796027522 

A m o u n t  Probability 

12,000 .... 0.0178695063 
14,000 .... 0.0207872190 
16,000... 0.0187123413 
18,000... 0.0014930985 
18,000... 0.0615350827 

Cumulative 

0.897472258~ 
0,918259477~ 
0.936971818~ 
0.9384649172 
1.00(gX)00~ 
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useful in explaining the need for risk charges to the policyholder. The 
first 18,000 refers to a total claim of exactly $18,000. The second 18,000 
refers to a stop-loss claim which results in a retention of $18,000 of claim. 

The author's model led to the development of this algorithm. The 
difference is that I compute the probability distribution function for the 
retained claim directly rather than through the use of conditional 
probabilities. 

Although, for the example in the paper, this algorithm appears to take 
longer than the author's model, this would probably not be the case for 
very large cases with a more complete distribution of amounts and higher 
stop-loss coverage, especially if the algorithms are rewritten in assembler 
language or FORTRAN. The execution time for this algorithm is clearly 
directly proportional to both the number of risks and the number of 
amount units in the stop-loss level. 

The following APL program CON VOLR employs an extension of the 
algorithm CONVOLN to compute the claims probability distribution 
function: 

v A CONVOLR Q;Td;B.,R 
[1] ( ( p A ) ~ ) / ' ~ O R  6,A)~pQ',O/B~,4,0/R~-O 
[21 A~-1_4 ÷ IOO0,O/I,-pFR,-I,(LS+ 10o0)o0 
[3] _LI-aVR,--(FRXl-I T O)+((T>_O/+O),(T <Z)/(T0O),((--T~-I f A) 1 FR)Xt 

TO 
[41 -~_LI~0~K~-I 10,O/A,--I ~ A 
[5] CFR*---1 APL FR+--((T+-FR>O)/FR),I--F,----b/FR 
[6] CR~OOOOXT/d),S 
[7] SDR*--(VR*--(-b/FRXCR*2)-- (R_~--q-/FRXCR)*2)*O.5 
[8] W,-(Z_~-+/B XR)--_R 
[9] SDW*--(VW~--(VZ~----.E/BXB>(RXI--R)-F(Z_,2)-E(SXSX1--F)-}-(2XSX-E/ 

- I  J, CR×FR)--((2×S×Z)+(_WX_W)++/-~ I CR×CR×FR))*0.5 
[m] H ~ A m  
[11] ' ~RETENTION ~ ,CF16.6,CF16.2,CF16.6' aFMT(R;VR;SDR) 
[12] '~]STOP-I_.OSS [~,CF16.6,CF16.2,CF16.6' AFMT(W_ ;VW;SDW) 
[13] HEAD2 
[14] SFL 'C19,2F16.10' AFMT(CR',FR;CFR) 

V 

The above program employs a utility program APL which computes 
subtotals. The following will illustrate the use of this program in both the 
above and the next section. 

~5 
0 1 2 3 4 

1 APL ~5 
0 1 3 6 10 

-I APL ~5 
10 10 9 7 4 
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For completeness, the program A P L  as well as ANS which it calls are 
listed. Some readers may be confused and bewildered by the complex 
logic used to accomplish such a simple function. APL is implemented 
only as an interpretive system, which means that the execution of loops 
is very inefficient. A P L  accomplishes the summing process by looping 
only as many times as the smallest power of 2 which is greater than the 
number of elements in the array to be summed. 

V Z~..-J APL X',N 
[1] X*--(XN)X(J*--IJO= (~?I)+,aN*---- (XJ)XaZ*-ANS X 
[2] Je..-J--~?l 
I3] Z + - Z + N  T X l Z 
[41 -*3X({N[J])> {(X+-2XX)[JI 

v 

v Z,--ANS 37 
[1l Z,--((pN),(~ ~ 0 +,0 = praY)mY 

V 

Full Convolution 
Table 5 is an illustration of the execution of the APL program CONVOL 

using Mr. Mereu's data. The accuracy of the calculations in Table 5 has 
been verified by independently calculating the stop-loss mean and stan- 
dard deviation for a zero stop-loss level. The results agree precisely for 
the number of digits shown. All probabilities less than 1E -- 20 have been 
discarded, and only every tenth value has been printed beyond 33,000. 
Obviously, two separate probability distribution functions for each of the 
retention and stop-loss claims can easily be constructed for any given 
stop-loss level from the figures shown in Table 5. The former would be 
useful in establishing the adequacy of contingency reserves for the case, 
and the latter, if convoluted across all group cases, could be used to evalu- 
ate the claim fluctuation risk for the stop-loss coverage. The following is 
a listing of the APL program CONVOL which produced Table 5. 

v A CONVOL Q;T'j 
Ill ((pA)#~)/'Ega~OR (,,A)#M2' 
[2] -._L2,O/F~--(I-- 1 T Q),((-I+I T a)aO),l T Q,O/A*-[.4 + 1000 
[3] LI:F~--((F)<I-- 1 ?Q),T)+(T.--(I ]" A)aO),FX1 TQ 
[41 L2:--*LI~O#~Q,--t L Q,O/A,--1 L A 
[5] CF*--1 APL F*--(T~-F>SCREEN)/F,O/I,--oF 
[6] O--IO00XT/d 
[7] SDW*--(VW.-(-1 APL CXCXF)+(CXCXT)--(2XCXI)+(W.--(I.----1 APL 

CXF)--CXT~----1 APL F).2).O.5 
[8] SDR~--(VR~---(1 APL CMCXF)*--(CMT)--(R~---(1 APL CXF)+ T*--CXI--CF) 

*2)*0.5 
[9] PC 

V 

SCREEN 
IE-20 



TABLE 5 

A CONVOL Q 

AMOUNT 

4,ooo . . . . .  ii 
6,000 . . . . . .  
8,000. 
10,000 . . . . .  

12,000 . . . . .  
14,000 . . . . .  
16,000 . . . . .  
18,000 . . . . .  
20,000 . . . . .  

22,000.. 
24,000.. 
25,000.. 
2 6 , 0 0 0 . . . [  
28,000.. . I 

29,000 . . . . .  
30,000 . . . . .  
31,000 . . . . .  
32,000 . . . . .  
33,000 . . . . .  

43,000 . . . . .  
53,000 . . . . . .  
6 3 , 0 o o  . . . . .  I 
73,000.. 
83,000 i i  

93,000 . . . . .  
103,000. . 
113,000. . 
123,000. 
133,000. 

143,000. 
153,000 
163,000 
173,000. 
185,000. 

PROBABILITY 

~). 7976211900 
D.0277167779 
3.0142333529i 
9. 0206499799 
D.0193814514 ! 

D. 0178695063 ! 
3.0207872190 
D.0187123413 
3.00149309851 
D. 0344224885 

D.0012626214 
9.0022517671 
D. 0127660299 
D. 0014855764' 
D. 0014787076 I 

9.0004436106 
D.0012984373 
3. 00022780661 
D 0009355487 
3. 0003305056! 

D. 00002389721 
D. 0000236669 
D. 0000015074 
D. 0000~6189 
D. 0000000366 

D. 0000000075' 
D. 0000000004 

CUMULATIVE 

RETENTION 

9.0000000000 

3.000000(O001.000000(O00 
~. 0000000000 1.0000(O0000 
3. 00000(0)O~ 1. ~ 
D. 00000(O0(~11 . ~  
D. 00(010000~ 1. ~ 

M ean 
Standard M ean Deviation 

D. 797621190C 0. 000~ 0.00002,837.6710 
0. 8253379679 809. 5152 1,607.0924 2,028. 1558 
9.8395713209 158.8393'2,321.2913 1,678.8317 
D. 8602213007 1,479. 696713,005.6285 1,357.9743 
D. 879602752211,759.254113,627.7215 1,078.4169 

i i 

D.8974722585 2,000.0486 4,189.5850 837.6224 
9.918259477512,205.1040 t,692.7365 632.5670 
D.936971818~12,368.5851 5,116.4925 469.0859 
D.9384649173 2,494.6414 5,463.6408 343.0296 
D.972887405~ 2,617.7166 5,822.2727 219.9594 

0.9741500272 2,671.9368 5,990.7833 165.7342 
0.9764017943 2,723.6367 5,163.4999 114.0343 
0.9891678241 2,747.235C 5,246.2742 90.4360 
0.9906534005 2,758.0671 5,285.5984 79.6039 
0.9921321081 2,776.7603 6,357.2570 60.9107 

9.9925757187 2,784.6282 5,389.0085 53.0428 
0.993874156C 12,792.052516,419.9735 45.6185 
D.9941019627 2,798. 1783 6,446.3549 39.4927 
D.9950375114 2,804.0764 6,472 5594 33.5946 
0.995368017C 12 , 809.0839 6,495.2854 28.6321 

0.9990223998 2,833.2483 5,620.3005 4.4227 
0.9998852526 2,837.0227 6,644.9451 0.6483 
0.999983674712,837.596016,649.5687 0.0750 
0 9999983340 2,837.66256,650.2020 0.0085 
D. 9999998429 2,837.670216,650.2879 0.0008 

0.9999999856~ 2,837.6709! 6,650.296~ 0.0001 
D. 9999999990 2,837.6710! 6,650. 2975 0.0000 
0.9999999999.2,837.6710 6,650.2976 0.0000 
1.0000(0)O~ 2,837.6710 6,650.2976 0.0000 
1 . ~  2,837.671016,650.2976 0.0000 

2,837.6710'6,650.2976 0.0000 
2,837. 6710 6,650.297~ 0.0000 
2,837. 6710 6,650.2976 0.0000 
2,837.6710 6,650.2976 0.0000 
2,837.67106,650.2976 0.0000 

SToP Loss 

Standard 
Deviation 

6,650. 297 
5,357.435 
4,752. 165 
4,181.368 
3,645. 843 

3,149.836 
2,698.621 
2,293.327 
1,933. 260 
1,637.316 

1,389.363 
1,176.969 
1,088. 858 
1,008.669 

859. 658 

791. 173 
726. 654 
665. 910 
608.917 
555. 754 

206. 857 
78. 205 
25. 776 

8. 472 
2.518 

0.719 
0. 194 
0.048 
0.011 
0.002 

0.000 
0.000 
0.000 
0.000 
0.00~ 
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The left argument to the program A is a vector of amounts of benefit, 
and the right argument Q is a vector of the corresponding probabilities 
of claim. The first line merely checks to see that the two vectors are of 
identical lengths and prints an error message in the event that they are 
not. 

The second line in the program converts the vector A into an integer 
number of thousands of coverage. I t  then initializes the probability dis- 
tribution vector F so that it is correct for the first risk, that is, it is a 
vector one element longer than the amount of benefit for the first risk, 
with the cells representing the amount of claims in thousands from zero 
up to and including the amount for the first risk. The vector contains the 
probability of no claim in its first element and the probability of one claim 
in its last element. Control is then transferred to line 4, which decrements 
each of the vectors A and Q by throwing away one element, tests to see 
whether the Q vector is a null vector, and, if it is not, transfers control 
to line 3, where the impact of the next risk will be added to the probability 
frequency distribution vector. This is done by calculating separately the 
impact of a claim and no claim and adding the results. 

The loop is continued until all the risks have been processed, at which 
point execution drops to line 5. Then all the probabilities which are less 
than the parameter SCREEN are discarded and the cumulative fre- 
quency distribution computed. 

The above algorithm works well for small groups. I t  can be extended 
to work better for large groups by throwing away any contiguous string 
of insignificant probabilities at both ends of the distribution function 
inside the loop. 

In line 6 the vector of corresponding claim amounts is determined and 
stored in the variable C. Line 7 computes the mean, variance, and stan- 
dard deviation of the stop-loss claim and stores them in the vectors W, 
VW, and SDW, respectively. 

In line 8 the mean, variance, and standard deviation of the retention 
claim for all possible levels of stop loss are computed and stored in the 
vectors R, VR, and SDR, respectively. 

Line 9 calls a program denoted PC to print the results, the listing for 
which is as follows: 

v PC 
[I] ItEAD 
[2] SFL((2Oal),(~-21+pC)p(9.M)),I),I)-P'cIg,2FI4.IO,4CF12.4' AFMT(C;F;CF;R_; 

SDR;W'~DW) 
V 
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GERALD J. RANKIN: 

Mr. Mereu's paper is a welcome addition to the literature, since it 
provides a lucid exposition of the properties of the compound Poisson 
distribution, along with the stop-loss premiums associated with this 
distribution. This discussion will present an alternate method which uses 
a binomial distribution to calculate the frequency function of the ag- 
gregate amount of claims and the associated stop-loss premiums. 

The risk theory literature has a plethora of statements about the pre- 
sumed superiority of the Poisson distribution. However, for group life 
insurance and many other types of insurance, there is no practical differ- 
ence in the two methods. The assumption that the deaths are replaced 
(Poisson) does not differ materiallv from the assumption that the deaths 
are not replaced (binomial), as long as the assumed claim rates are rela- 
tively low. 

In my opinion, the binomial distribution is easier to work with, since 
the frequency function is obtained directly and it is not necessary to 
combine a conditional probability distribution, P ( j ,  k),  with a frequency 
function, p( j ) ,  for the number of claims. In addition, it is easier to calcu- 
late stop-loss premiums for all relevant values of aggregate claims after 
the frequency function has been determined. 

The superiority of either method cannot be determined by a priori 
type arguments. Both models are of the "urn-wager" type and require 
empirical evidence and statistical testing to validate their use. As long 
as both models predict essentially the same claim distribution, I would 
suspect that the common statistical tests are too robust to differentiate 
between them. 

The method of determining the frequency function of the aggregate 
claims using the binomial theorem is outlined below. Mr. Mereu's nota- 
tion has been retained wherever possible. 

A.  Basic Rdationships 

Let f(z, i) be the probability that the aggregate claims will be exactly z 
for a group of i lives. Then 

f ( z ,  i) = f ( z  --  al, i --  1)h + f ( z ,  i -- 1)(1 -- h) , (1) 

where f ( z ,  i) = O, if z < 0. Since 

f ( z ,  O) = 1 ,  z = O, 

= 0 ,  z > O ,  

formula (I) can be used recursively to calculate the frequency function for 
each life until all N lives have been considered. 
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For simplicity, let 

f (z)  = f(z,  N)  
and 

F(z )  = c.d.f, o f f (z)  . 

From elementary statistics, the expected value and the variance of Z are 
as follows: 

= Y, ad~,  

v ( z )  = ~ t , ( 1  - t,) < za',t,. 

The variance of the binomial model is, of course, less than the variance 
of the Poisson model. This results in smaller stop-loss premiums. 

B. Stop-Loss Premiums  

Let  l~ be the expected value of the stop-loss claim for a deductible of s: 

# = ~ ( .  - s) / ( , )  
It 

m-A 

-= Z, -- ~ .  zf(z) --  s[1 -- F ( s  -- A ) ] ,  
0 

where (s --  A) is the first nonzero value o f f  prior to s. V ( W )  is the vari- 
ance of the stop-loss claim: 

S--A 

v ( w )  = ~ (o - ~ ) ' ] ( z )  + ~ (~ - # - s)'f(z) 
s ~ O  S~m 

J--.4 m--A 

= : + (2  - 42 - ~ , , f ( , )  + 2 s ~  zf(,) 
8 ~ 0  B~O 

- : F ( s  - A)  -- ~ .  

C. Extens ion  to Other Benefits 

Formula (1) can be extended to other types of benefits where there 
are more than two disjoint events, life or death, and different payoffs 
for each event. Let  

a(i, k) = Payoff for event k for life i, 

t(i, k) = Probabil i ty of event k, 

where Z,t(i, k) = 1 and k = 1, 2 , . . . ,  M. Then 

M 

f(z, i) -- ) ' ~ f ( z  - -  a(i,  k ) ) t ( i ,  k) . (2) 
k = l  
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D. Numerical Example 

Table 1 below shows the frequency function and the stop-loss premium 
for various claim amounts,  using the group of fifty certificates outlined 
in Table  1 of Mr.  Mereu ' s  paper .  

TABLE 1 

NUMERICAL RESULTS 

Amount 
of 

Claim 
z 

0 . . . . . . . . .  
4,000 . . . . .  
6,000 . . . . .  
8,000 . . . . .  
10,000.. 
12,000.. 
14,000.. 
16,000~. 
18,000.. 
20,000.~ 
22,000... 
24,000... 
25,000... 
26,000... 
28,000... 
29,000... 
30,000... 

Probability 
of Claim of 

Exact Amount 
f(z) 

0.79684 
0.02780 
0.01424 
0.02072 
0.01944 
0.01790 
0.02083 
0.01875 
0.00150 
0.03465 
0.00127 
0.00227 
0.01286 
0.00149 
0.00149 
0.00045 
0.00131 

Cumulative 
Distribution 

Function of f(z) 
F(s) 

0.79684 
0.82464 
0.83888 
0.85960 
0.879O4 
0.89693 
0.91776 
0.93652 
0.93802 
0.97267 
0.97394 
0. 97621 
O. 98906 
O. 99056 
0.99205 
0.99250 
0.99381 

Expected Value 
of Stop-Loss 

Claim 
ff 

2,851.87 
2,039.24 
1,688.52 
1,366.29 
1,085.48 

843.55 
637.42 
472.95 
345.98 
222.02 
167.36 
115.23 
91.44 
80.51 
61.62 
53.67 
46.17 

Standard 
Deviation of 

Stop-Loss Claim 
,(W) 

6,668.87 
5,374.40 
4,768.23 
4,196.52 
3,660.01 
3,162.96 
2,710.65 
2,304.23 
1,943.09 
1,646.21 
1,397.33 
1,184.09 
1,095.59 
1,015.01 

865.26 
796.42 
731.57 

HANS U. GERBER*  AND DONALD A. JONES:  

For  many  years the de terminat ion  of an adequate  stop-loss premium 
has been a serious problem from a numerical point  of view. This has led 
to a series of approximat ion formulas, some of which were really ingenious. 
The first meri t  of Mr.  Mereu ' s  paper  is tha t  it reminds us tha t  in spite of 
all of the ingenious approximat ion formulas we should not  forget the most  
natura l  way to determine a stop-loss premium, namely,  to compute it 
explicitly. The  use of a computer  enables us to do so in many  instances, 
and this paper  shows how to do it economically---which is the paper 's  
second merit .  

The main idea of the paper  is applied to a group life insurance port-  
folio under the assumptions of the collective risk model. While this model 
simplifies the numerical calculations, it is not essential to the main idea, 
as we shall i l lustrate by  applying it under the assumptions of the indi- 

* Dr. Gerber, not a member of the Society, is assistant professor of mathematics at 
the University of Michigan. 
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vidual  risk model. Assume tha t  N lives are to be covered with amounts  
at  risk zl, z2, . . . , ZN and mor ta l i ty  rates ql ,  q~, • • • , qN.  Introducing the 
random variables Z 1 ,  Z 2 ,  . . . , Z N ,  where Zi = 0 if life i survives and 
Z i  = z i  if life i dies within one year,  we can express the aggregate claims 
of one year  as Z = Z1 + Z2 + . . . + ZN, with expected value E ( Z )  = 

glql  + z2q2 "~ • • • + ZNqN. 
Since for each life there are two possible outcomes, the outcome space, 

say ~2, contains 2 N possible outcomes, which we will denote by  w. Mereu 's  
idea is based on the pract ical  consideration tha t  most stop-loss covers 
will be set at  a level, S, such that  the number  of outcomes which produce 
a stop-loss claim W is larger than the number  of outcomes which produce 
no stop-loss claim, even though the probabi l i ty  of the second may  exceed 
the probabi l i ty  of the first. Thus, instead of direct ly  calculating E ( W ) ,  

which is constant  (Le., zero) on the smaller set of outcomes and hence 
requires the numerical evaluation of the convolution formula on the 
larger set, he has used the ident i ty  W = Z - (Z --  W) and the fact t ha t  
Z --  W is constant  (i.e., S) over the larger set, so tha t  he must  evaluate  
the convolution formula only over the  smaller set of outcomes. We ob- 
serve that  Mereu included the outcomes where Z = S in the smaller set 
even though Z - W = S on these outcomes also. We find it natural  to 
par t i t ion  ~2 into 

A = {wlZ(w ) < S} , 

tha t  is, the event that  the retention,  R, is less than S, and 

B = {o, I Z(o,) > S} , 

tha t  is, the event  that  the retention is equal to S. In  this nota t ion we have 

Stop- loss  c la im W(o~) = 0 if ~ E A 

= Z ( ~ o ) - - S  if ~ E B , 

Reten t ion  R(o0 = Z(~o) if ~ C A 

= S  if o ~ C B .  

The  ident i ty  is now wri t ten 

w(o,) + R(o,) = Z(~o). 

Mereu 's  portfolio (N = 50, S = 18,000; see his Table  I) provides an 
impressive i l lustration of the size of these sets. Using elementary com- 
binatorics,  we find tha t  A contains 1,951 outcomes and B contains 
1, 125, 899, 906, 840, 673 outcomes! The  number  of outcomes where 
Z = S is 2,170. 
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The net stop-loss premium, E ( W ) ,  may be calculated by 

E(R)  = ~ Z(w)P(w) "-k [1 -- P ( A ) ] S  , 

and E ( W )  = E(Z)  -- E(R) .  
The variance of W may also be calculated by using the probabilities of 

our smaller A. Since W = Z -- R, we have, after squaring and using the 
properties of the linear operator E, 

E[(Z --  R) ~] = E ( Z  ~) --  2S E (Z )  + S~[1 -- P (A)I  

- + z ( o , ) P ( o , ) .  
meA w~A 

Up to this point we have not explicitly used the assumption of indepen- 
dent risks for the N lives. However, some assumption about the stochastic 
dependence of the risks would be necessary to calculate the P(o~)'s. If  we 
make the assumption of independent risks to calculate the P's, then we 
may also calculate E ( Z  2) in the last formula by 

N 

+ [ e ( z ) }  2 . 

A second remark concerns the choice of the Poisson parameter t. 
Since Mereu considers an open portfolio, he sets 

N 

t = In (1 - q , ) .  
i = l  

If one is interested in the stop-loss premium for a closed portfolio (no 
replacements), the collective model with 

N 

t =  ~'-~ q~ 

produces a stop-loss premium less than that for Mereu's collective model 
but greater than the true stop-loss premium for the closed portfolio. The 
first inequality follows from q < In (1 -- q). The proof of the second in- 
equality is based on the following lemma: 

If, in the closed portfolio described above, life number N is replaced 
by two independent risks, N and N + 1, with amounts at risk z-N = 
~v+l = ZN and mortality rates ~'N, ~v+1 such that q-N + q'~+l = qN, the 
stop-loss premium for this modified portfolio is at least as large as the one 
of the original portfolio. For the proof one considers a fixed outcome of 
Zt, Z2, . . . , Z~_I and verifies that the conditional expectation of ~/" is at 
least as large as that of W. 
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Now, by repeated application of the lemma, one obtains the result that 
the stop-loss premium in the limiting case, that is, the collective model for 
the portfolio with 

N 

I = E q i ,  
i ~ l  

dominates the true stop-loss premium for the closed portfolio. 
With the use of the University of Michigan computer, for which our 

acknowledgment is due, we have calculated for Mereu's portfolio the 
probability of the retention's being less than the stop-loss level and the 
means and variances of the total claims, the retention, and the stop-loss 
claim for closed portfolios (i.e., individual risk model assumptions) with 
mortality rates equal to the qi's and to the t:s in Mereu's Table 1. These 

TABLE 1 

P ( A )  . . . . . . . . .  

z(z) . . . . . . . . . .  
E(R) . . . . . . . . . .  
E ( W )  . . . . . . . . .  

Var (Z) . . . . . . .  
V~r (R) . . . . . . .  
Var (W) . . . . . . .  

qi ti 

0.9369 
2,837.6710 
2,494.6414 

343.0296 
44,226,457 
29,851,371 
3,737,494 

0,9365 
2,851.8740 
2,505.8899 

345.9841 
44,473,869 
29,976,836 
3,775,601 

results, shown in Table 1 of this discussion, illustrate the above inequality 
for the net stop-loss premiums for the collective model and the individual 
model. 

Our thanks to John Mereu for bringing practical considerations into 
the calculation of net stop-loss premiums and for stimulating our thinking 
in this area. 

L. TIMOTHY GILES: 

I have been using the Poisson distribution recently in a very approxi- 
mate fashion to handle group life problems, so the precise method pre- 
sented by Mr. Mereu is quite enlightening. 

In addition to computing expected stop-loss claims, Mr. Mereu's 
algorithm has other applications. Because his numerical example has a 
stop-loss level that is rather large in relation to the net premium, I re- 
calculated some values with S = $12,000: 

f = 0.89738 and H = $20,273. 
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The first additional application would be to determine a credibility factor. 
This could be done by assuming that claims in excess of the stop-loss 
limit would be adjusted to the stop-loss limit, that is, H z  n t- 2(1 -- z) = S:  

20,273z q- 2848.749(1 -- z) = 12,000, 

and z, the credibility factor, would be 0.5252. The stop-loss level would be 
set at the same value of J, say 0.90, for all groups, so that the resulting 
credibility values would vary appropriately by size. 

A second additional application would be to establish a maximum 
coverage on any one life in relation to the average face amount for the 
group. This could be done by determining a stop-loss level such that the 
probability of exceeding it is equal to the probability of the death of the 
individual with the maximum amount. Typically, this would be an older 
individual, so that a probability of death of about 0.02 would be ap- 
propriate. In Mr. Mereu's example, $18,000 will be exceeded 1 - f = 6.2 
per cent of the time, which indicates that a larger S w i t h / - -  0.02 should 
be determined. The average face amount in his example is $10,100; hence 
a multiple in excess of 1.8 might be appropriate. 

Finally, the algorithm involves a lengthy calculation, especially for 
the larger groups. The problem has been computerized, but it would be 
helpful if we had some procedure for approximate answers. For example, 
suppose that we were to attempt to find / with S = $12,000, using only 
a table of the Poisson distribution with X = 0.2 (the rounded value of T). 
Dividing $12,000 by Z (=  2,848.749) yields 4.21. Multiplying 4.21 by 
yields 0.95, or approximately 1. The Poisson table tells us that the prob- 
ahility of zero occurrences (the only integral value less than 0.95) when 
X --- 0.2 is 0.8187, not terribly close to the precise answer of 0.89738. 
Better results would quite probably be obtained for larger groups. In any 
event, Mr. Mereu has shown us the extent of the approximation. 

RICHARD S. HESTER, SR.: 

At Philadelphia Life we have attacked the stop-loss problem on group 
life contracts in a different manner. A series of programs has been written 
which makes use of random number series generated by computer and a 
Monte Carlo simulation of expected claims. 

This system requires a change from one of Mr. Mereu's basic assump- 
tions, that of instantaneous replacement of dying members with identical 
new members. I am sure that we will all agree that either the assumption 
of replacement or the assumption of nonreplacement is equally valid, and 
the choice depends on the other features of the system chosen. 

To illustrate the comparability of the two methods, I ran his rifty-life 
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example through our system. To save time, I assigned an age to each 
certificate such that  the mortality rate on the 1960 Basic Group Table 
(already stored in the computer) was approximately equal to the q in 
the example. 

The computer first calculates the expected claims, in this case $3,034; 
this is somewhat higher than the $2,849 found in the example, the error 
being due to the slightly different q's. Next, a series of random numbers is 
matched against each q to simulate one year's experience, and a record is 
kept of number of deaths and amount of claims. This process is repeated 
n times, where n follows a rule of thumb based on number of lives, amount 
of insurance, and expected claims. The maximum value of n is 3,000 to 
satisfy the capacity of the hardware, and this limit was reached in this 
c a s e .  

To save time and paper, the computer only prints out the first ten 
simulated years plus the last year. In this case, only one claim occurred 
in the first ten years, a claim for $16,000 in year 7. Total claims over the 
3,000 years amounted to $9,239,000 on 738 deaths for an average of 
$3,080 per year. This is only 1.5 per cent higher than the expected value 
of $3,034. The average claim in the simulations was $12,519, which is re- 
markably close to the $12,606 in the paper. The expected number of 
claims in a given year was 0.246, somewhat higher than the 0.226 in the 
paper, again presumably due to different q's. 

Stop-loss premiums can be determined for any given level. The com- 
puter simply separates the years into those with and without claims in 
excess of the specified level. At $18,000, it found the split shown in the 
accompanying tabulation. The excess of $4,977,000 over the stop-loss 

M8,000 or less . . . . . .  
3vet $18,000. 

No. of No. of 
Years C|~.ims Cltdms 

2,791 455 $4,262,000 
209 283 4,977,000 

level of $18,000 times 209 years ($3,762,000) is $1,215,000. Spreading this 
over 3,000 years produces a stop-loss premium of $405. Once more, this 
is higher than the $354 found in the paper. However, it should be remem- 
bered that  the purpose of our system is to determine whether the correct 
value is about $400, as opposed to $25 or $1,000, rather than to pinpoint 
a theoretical value to the nearest penny. The probability of not having a 
stop-loss claim is quite close to the paper's value of 0.938, since 2,791 
divided by 3,000 is 0.930. 
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In actual practice, we do not calculate stop-loss premiums at such a 
relatively high level. (The stop-loss level of $18,000 is about six times the 
expected claims.) Instead, the computer solves for a stop-loss level, p, 
such that p + S(p)  = A M ,  where S(p)  is the stop-loss premium at p 
and A M  is the allowable mortality cost in our rate structure, including 
any previously established reserves. In this way each case has a risk 
charge assessed against it each year in lieu of actual claims above the 
stop-loss level. Therefore, it is never necessary to have any loss carry 
forward. 

COURTLAND C. SMITH: 

Mr. Mereu's interesting paper gives a method for obtaining the pure 
risk charge for a group life stop-loss cover using expected aggregate 
claims, the probabi l i ty / that  aggregate claims do not exceed the stop-loss 
point, and the average size L of these wholly self-insured claims. While 
his method was developed for a case with predetermined benefits on 
individual claims, the concept has general application. 

The pure stop-loss premium may be expressed as the product of the 
probability 1 - f  that aggregate claims exceed the stop-loss point S 
times the average size stop-loss claim H - S;  but H or H -- S is often 
hard to determine without (1) making crude assumptions regarding the 
upper tail of the aggregate claim distribution or (2) doing extensive calcu- 
lations or simulations on the computer. Working with the self-insured 
losses can be a great saving, but it has its own risks. 

If we substitute Mr. Mereu's equation (16) in his equation (18), we 
obtain essentially the following expression for the pure stop-loss churge: 

r(s, ¢o) = E(z)  -- f L  -- (1 -- f ) S  . (1) 

This expression is quite general and gives the expected value of stop-loss 
claims as the difference between the expected value of all claims and the 
expected value of self-insured claims, whether paid in full or in part by 
the insured. Equation (1) above also makes it clear that it is vital for the 
insurer not to overestimate f L  + (1 - - f )S .  

In certain nonlife insurance lines an insurer or a reinsurer may be 
asked to provide an excess-of-loss coverage in which there are deductibles 
for each event and possibly also an aggregate deductible or self-insurance 
limit applicable to all events during a specified time period, say a year. 
Thus, in aviation hull insurance, we may be asked to cover a given air- 
line fleet, and we may have accident frequency rates by type of equipment 
and class of carrier. In such cases the benefit payable on each claim is not 
predetermined but is itself a variable for which we may have claim severi- 
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ty distributions available. In many of these instances a variant of the 
method outlined by Mr. Mereu would apply. 

For practical purposes the sorts of events we are concerned with range 
from (a) multicraft catastrophes, usually collisions, to (b) one-craft 
catastrophes to (c) occurrences which are relatively common but of low 
severity and cost. For convenience the three classes of events may be 
handled separately in pricing. The collisions may be so rare that their 
expected value can be taken to be an element in the catastrophe loading, 
and the minor occurrences may produce an aggregate claim cost that can 
be predicted within reasonable limits from separate studies of experience 
and cost trends. Hence the one-craft catastrophes may become the major 
element in aggregate costs and the major problem in premium deter- 
mination. One simplifying assumption we can often make to reflect a low 
stop-loss point or a high minimum cost per catastrophe is that  when two 
such catastrophes occur within the coverage period, the aggregate claims 
cost will necessarily exceed the stop-loss point. Therefore, the probability 
f that type b aggregate claims do not exceed S depends on the Poisson 
probabilities of exactly zero or one claim and on the probability f~ that a 
single claim will not exceed S. If  L~ is the average size of a single-catas- 
trophe claim which does not exceed S, then 

f L  = p(1)f ,  L1 ,  (2) 

wheref  = p(O) "4- p(1)fl, and equation (1) can be used to find r(S, ~ ). 
In the special case where the cost of a single catastrophe can be as- 

sumed always to exceed S, there are no wholly self-insured losses, fl  = 
0 = f L ,  f = p(0), and 

r(S, ~ )  = E ( z )  - [1 - ~ ( 0 ) ] S .  (3) 

An interesting practical question arises when the problem is not to de- 
termine the pure stop-loss charge but rather to take the stop-loss pre- 
mium as given and find the stop-loss point which the pure charge can 
"buy."  In cases where the number of expected claims is less than about 
0.3, the probability of zero claims, p(0), becomes large, and L may be of 
the order of 0-10 per cent of S. We can then write 

L = g S ,  (4) 

where g is small, and equation (1) becomes 

r(S, ,~) = E(z)  -- [fg + (1 -- f ) ]S  , 
so that 

S = E ( z )  - -  r (S ,  co) (5)  
1 - - f + f g  
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Three observations about equation (5) are worth noting for small 
numbers of expected claims: 

1. S is very sensitive to changes in the denominator alone. The term fg may be 
disregarded by the insurer with safety, but doing so may in some instances 
lead to an uncompetitive estimate of S, because/is large (close to unity). 

2. When expressed in absolute dollars or other monetary units, the value of S 
remains relatively unaffected by variations in the period of the coverage. 
Halving the period, for example, would reduce the volume of claims in the 
numerator and the probability of one or more claims in the denominator (and 
number of expected claims) to about the same degree. Therefore, S would be 
relatively stable and would depend largely on the average size of a claim. 

3. The buyer of a stop-loss cover may request a stop-loss level quoted as a rate 
or as a ratio to expected claims. If the quote seems high, the buyer may then 
ask that the coverage period be reduced. Point 2 above indicates that if the 
coverage period is cut in half (say), then the quoted stop-loss level should be 
roughly doubled, or else the stop-loss charge should be appropriately in- 
creased. 

(AUTHOR'S REVIEW OF DISCUSSION) 

JOHN A. MEREU: 

I appreciate very much the discussions of my paper and would like to 
thank the contributors for their observations. 

Mr. Bailey has run my example through his famous risk analyzer 
program and has produced detailed tables of the frequency distributions 
of the aggregate claims under both the "Poisson replacement" and "bi- 
nomial nonreplacement models." Advantages of developing the full dis- 
tribution for a variety of problems are explained. 

The probability of zero claims should be the same for each model. The 
slight difference in Mr. Bailey's results is attributable to the fact that he 
has used the rounded t; values that I supplied him. 

Mr. William Taylor is to be congratulated on his extensive expository 
discussion in which he illustrates and explains how APL can be used to 
program algorithms employing both the "binomial nonreplacement" and 
the "Poisson replacement" assumptions. The slight discrepancies between 
his Poisson results and those in the paper arise because the results in the 
paper were obtained by inputting t values which had been rounded, where- 
as Mr. Taylor inputs the q values and does not round them. His figures 
are consequently more accurate. 

Mr. Rankin has paralleled the development in the paper using the 
binomial model. His recursive procedure involves bringing in one life at 
a time, whereas the recursive procedure described in the paper was con- 
nected to the claim amounts and number of claims. I believe that Mr. 
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Rankin has inputted my t, values as probabilities. This would explain 
the difference between his results and Bailey's and Taylor's and his 
agreement with the second set of results provided by Dr. Jones and 
Dr. Gerber. 

Dr, Jones and Dr. Gerber have helpfully ex'plained my algorithm in 
terms of partitioned sets. They show correctly that in applying the algo- 
rithm it is proper to stop with the highest amount less than the stop-loss 
level. Nothing is gained by including claims exactly equal to the stop-loss 
level in the population of smaller aggregates. 

Mr. Giles explores the possibility of using the algorithm for purposes 
other than the computation of expected stop-loss claims. 

Mr. Hester validates the results in the paper with his simulation pro- 
gram. 

Mr. Smith discusses the use of the algorithm for catastrophe coverages. 
His formula (1) expresses the stop-loss charge in a form explainable by 
general reasoning. In analyzing his formula (5), he appears to treat g as a 
constant independent of the stop-loss level. I t  would seem safer to have 
a program which produces a complete frequency distribution, from which 
it would be a simple matter to set a stop level corresponding to a charge. 

In addition to thanking the discussers of the paper, I would like to 
acknowledge Mr. Ivan R. Taylor as a source of inspiration for the 
algorithm and Mr. David S. Patroch (not a member of the Society) from 
my company for programming the algorithm 




