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INTRODUCTION 

NE can prove by a simple mathematical  exercise that  the value 
of an immediate life annui ty  of 1 payable at age x is less than the 
value of an annuity-certain payable for a period equal to the 

curtate expectation of life, and the expression 

a, < a m , (1) 

is well known to actuaries. Apparently, however, very little has been 
written about the attendant inequalities involving insurances, term 
periods, and stationary population concepts. The purpose of this paper 
is to derive and discuss both continuous and curtate inequalities involving 
such attendant inequalities and to show how the proofs of the continuous 
inequalities are of an entirely different nature from the usual proofs for 
the above curtate inequality. In this presentation a number of varied 
techniques familiar to students of life contingencies will be found to be 
useful. 

We will make a brief derivation of the above inequality, in order to 
recall and observe the pattern which will be required later. The usual 
demonstration is based on the fact that the arithmetic mean of n distinct 
positive quantities (not all equal and all > 0) is always greater than their 
geometric mean. 

Consider l. quantities consisting of dz such quantities each equal to v, 
d~+x each equal to ~, and so on. The arithmetic mean of these I. quantities 
is given on the left-hand side of inequality (2) below, and the geometric 
mean on the right-hand side. Then, using the principle stated above, 
we may say that 

lz (2) 
> [(04(¢) ' -+,(r ' ) ' -+, . . .  (~--9,--,],1~, 

or 
A ,  > ~1+~,, (3) 

This last inequality can be transformed routinely into inequality (1), as is 
done in reference [4], but we will tend to concentrate our attention on 
inequality (3). 
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It  might be well to comment at the outset that (a) all the basic in- 
equalities derived herein can be given verbal interpretations; (b) the 
left-hand member of an inequality can be and occasionally is used as a 
rough approximation to the right-hand member (or vice versa), since 
one member rarely overstates or understates the other member to a 
marked degree; and (c) essentially any inequality herein could be, in the 
same way as inequality (1), a source of monetary mischief, confusion, 
and/or incorrect calculation for the layman (and perhaps the courts). 
I t  should also be noted that, given a mortality table, any inequality 
shown (unless otherwise indicated) purports to hold for all integral ages 
x and for all interest rates (except possibly i = 0 and i--o ao and except 
for the single premiums in the last year of life, where x = co - 1 and 
q , - -  1, where these and certain other combinations may produce a 
degenerate equality). 

We know that inequality (3) is strictly obtainable from inequality (1); 
by adding unity to each side of (1), we also can obtain 

//x < a~+-4-~l. • (4) 

I t  should first be mentioned that it will usually be convenient to think 
of the l, persons shown in the mortality table as representing l, "starters" 
on their xth birthday, where all were born at the same instant; then a 
different subscript, as in the symbol l,+5, in a given context, will designate 
the reduced cohort of those same people five years later. Moreover, any 
l, should be thought of as a relative representation of such a large quantity 
(in theory, infinite) that the deaths occur continuously; our concept of 
the mortality table (which is merely a reiteration of the usual concept) 
will not be related to the stationary population model until so noted; our 
l, curve will be a continuous curve, then, about which we have informa- 
tion only at discrete points (unless we know the law of mortality upon 
which it is based). Through the inequalities involving continuous func- 
tions, to be derived later, it is interesting that we will be making very 
definitive statements about curves where we know an infinitesimally 
small amount, relatively speaking, about their ordinates, except for the 
very general routine requirements for an l, curve. 

Returning to inequality (3), we notice that 1 q-e ,  = (lx n u l,+1 n u 
• . . )/l,, where the numerator is the total number of future life-years to 
be enjoyed by our cohort of l, starters, giving a whole year's credit for 
those entering upon any year of age; that is, we are effectively assuming 
that deaths occur at the end of the year of age. Division by l, produces 
the average number of years to be enjoyed after age x by each of the l, 
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persons at exact age x, who also constitute all the eventual deaths in the 
cohort. 

We now want to derive the analogous term-l~, riod version of inequality 
(3). To do this, we consider, as before, the arithmetic mean of d, quan- 
tities each equal to v, d~1 each equal to v ~, . . . , and finally dx+~-1 each 
equal to v ~. The number of quantities to be averaged is the sum of the d's, 
which is Ix -- Ix+,,; the sum of the quantities to be averaged divided by 
the number of quantities is then 

yd, + v~d~+~ + . . .  + v"dx+._l lx 1 
I . -  Ix+. = l x -  Ix+. A~:~ = .q---~ AL~.  (5) 

Now the geometric mean of these same l= - l~+n quantities is 

[(~})ds(v2)dz+l(~)dx+| " " " (vn)dx+n-l]l/(Ix--lx+n> (6) 

= (~)ds+2dx+ l+Sd.  + S + . . . + n d x + ~ -  1) 1/ ( Ix - -  lx+n) • 

Although at this point we could interpret verbally the exponents on the 
v, it will be well to simplify into more compact symbols. Dealing only 
with the sum involving the various &Is, it is not entirely straightforward 
to turn this into lx's, and it may be refreshing, if not to our advantage, 
to use finite integration by parts. I t  will be recalled that the formula 
can be written 

VtA Ut = Vt Ut -- Ut+IA Vt,  
t = l  3 1  t = l  

where the interval of differencing is unity and t is the variable. In our 
case, since Alu = --d~, we have 

~'~ td~+,_l = -- ~'~ tAl~+,_l 
t - 1  t - 1  

,$ 

= - ( n  + 1)lx+~ + i . l ,  + Z t~+,. 
t = l  

The entire exponent associated with v in expression (6) is then 

lx - -  l ~ , ,  - -  n l . + , ,  + l~+t lx t -x  
~llml = 1 +  

l x -  1.+~ l x -  l.+. lx 

1 
= 1 + .q-~ (ex:~ - n ~px) • 

(7) 
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Since the arithmetic mean of our (l~ - l,+~) quantities is greater than 
their geometric mean, we can state that expression (5) is greater than 
expression (5), and, multiplying both sides of this inequality by ~q~, we 
obtain, using equation (7), 

A~:~-I > , q v ' ,  (8) 

where y = 1 + (e,:xi - n np~)/,,q,; this is one form of the term insurance 
inequality that is strictly analogous to inequality (3). 

By using the first expression in equation (7) and slightly simplifying the 
numerator, we can readily write the same inequality in a different form: 

Ai:~ > ,,q~v e: , (9) 

where 
n=l 

lx+, -- nlx+n 
Ox ~ t--O 

l ~ -  l~+n 

Here 0, represents the same type of special average as did 1 + e,: 8x is the 
average number of years since age x, for each of the (l, -- l,+n) deaths 
(which occur in the n years following the xth birthday), that shall have 
been enjoyed by those deaths, considering all deaths as occurring at the 
end of the year of age. As a concrete observation, 0, frequently will be 
near n / 2  for many tables, ages, and durations n. 

Inequality (9) then states that the single premium for an n-year 
term insurance for $1 payable at the end of the year of death is greater 
than the present value (at interest only) of a single payment-certain of 
$(nq,) deferred 0~ years, where 0x could be described very loosely as "the 
(special) average time until a claim occurs." The right-hand member 
involves a present value not of the face amount of insurance on the left 
(which is $1) but rather of the pro rata portion of the unit, or of the life, 
"expected" to become a claim, according to the mortality table used; 
this, of course, is .q,. 

CONTINUOUS INEQUALITIES 

The basic inequality involving continuous functions is not presented 
in Jordan's text [4], nor does it seem to be mentioned in Spurgeon [8]. In 
fact, the student who attempts to turn inequality (3) into a reasonably 
analogous continuous function version might extract inequality (3) from 
Jordan's derivation of inequality (1) and multiply both sides by (1 + 
i)1/2, obtaining (1 + i ) l /~A,  > v 1/~ + *~ or, using two standard approxima- 
tions, 2{~ .~ v*~; the two dots signify a very tentative relationship, since 
we have replaced both members of the first (exact) inequality by approxi- 
mations, and we have apparently arrived at an inexact, or "approximate," 
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inequality--whatever that means! Because of this devious derivation, 
the student might conclude that the elegant relationship 

Affi ~ v ~' (10a) 

or, what is algebraically the same, 

might not always hold for all x and i in a given mortality table. A little 
reflection would show him, however, that the approximate substitutions 
were at best inconsistent, since the right-hand substitution, ~= - e, -4- ½, 
is always exact under the assumption of uniform distribution of deaths, 
for example, whereas the left-hand replacement is not exact under that 
assumption, the correct substitution being 4 ,  - (i/~)A~. As a result, no 
conclusion could be drawn as to the general validity of inequality (10a) 
without further investigation. 

A proof of inequality (10b) (and hence of [10a]) is given in reference 
[3], using the method to be utilized by us presently; we will not derive 
that basic inequality by this method, for it will emerge later in another 
connection. 

The following definite integrals will be found to be useful hereafter, 
and they are presented here as a convenience in verifying, mentally or 
otherwise, some of the integrations that will be needed later. 

QO 

fo  t , p , d t=  Y" ; (11a)  

c o  o o  

f o t  tp,u,+tdt = T,  7; = = f o  ,p ,d t  ; (11b) 

fo"t  @~t,.+tdt = T ,  -- T,~.,, -- nl,+,, = ~x:,-I -- n ,px ; ( l lc )  
l, 

f o  t~ tp~ t~ td t - -  2Y* ( l l d )  ~z " 

We wish to derive now the continuous version of inequality (8) or 
(9), using Taylor's theorem, which we shall apply informally. I t  will be 
recalled that, for suitable functions f(t), which we will assume, the value 
of the function at some arbitrary point t can be expressed in terms of its 
value at a fixed point r and the derivatives of f(t) evaluated at that point 
r. For our purposes we will state this simply as 

f(t)  = f(r)  + ( t -  r)f'(r) + (t --_ r ) ' f , , (h  ) (12) 
2! 
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where we have truncated the basic series after the second term and 
brought in the "remainder term" (Lagrange's form), in which tl repre- 
sents a numerical value of the abscissa. This value will lie somewhere 
between r and the t that we may be concentrating on at the moment; 
hence tt will generally be different for different t's that one may work with, 
although we will always keep r rigidly constant. Letting f(t) = v t and 
considering the expression for a single-premium n-year term insurance 
payable at the moment of death, 

n 

fitl,:,-'l = ~o vt , p ~ t d t ,  (13) 

we may replace v t by its form as given by equation (12), without deciding 
on the value of the constant r as yet, and we have 

f0"[ ] X~:-- I v ' +  ( t - -  r)( lnv)v r-~ ( t - -  r) ~ = 2l (lnv)~v" ,p.t~.+tdt, (14) 

o r  

= v ' ( -q~J  - _ l ,  - r . q _  + R ,  ( l S )  

where the integration has been performed routinely with the aid of 
equations (11) but the integration involving the last term in the brackets 
in expression (14) has been called R. Since, in order to integrate, we 
effectively used equation (12) an infinite number of times (namely, for 
all values of t from zero to n), tx was hardly constant; regardless of this, 
however, it is not difficult to see that the result for R will always be a 
positive quantity. We may now choose r to be the value which makes the 
second term in expression (15) vanish, and this produces 

T . -  T .+ , , -  nl.+,, 1 T . -  T .+ , , -  nl.+. 
, = - -  = . (16) 

If we omit the positive quanti ty R in equation (15), the right-hand 
Ax:,t; then, by using expression member clearly will be smaller than - ' -  

(16) for r, we may state that 

A~:- 1 > . qv  (r'-r*+"-"t'+")m'-z'+") . (17) 

This is the continuous analogue of inequality (9); the price, or payment, 
on the right-hand side is not unity but .q., as before. This payment is 
deferred for a period of time given by the exponent on v, which will be 
seen to be the exact average number of years lived in the n years, by 
each person who dies in that period, and is comparable to the exponent 
in inequality (9). In fact, the exponents in both (9) and (17) give the 
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"average time until claim," but the former exponent gives this mean 
value under the assumption of deaths at the end of the year of age. 

Inequality (17) also may be written using the temporary complete 
expectation of life; in this case we have 

A~:~ > ,qxv ~ , (18) 

where ~ = (~x:~ - n np,)//,~q~; this is analogous to inequality (8). 
If r is defined as either of the two equal exponents on the v's in formulas 

(17) and (18), we may transform the above inequalities into annuity 
inequalities. However, inequalities involving insurances, especially the 
continuous forms, have somewhat more compact "general reasoning" 
forms, as may be seen from the annuity forms which we will now derive. 

Adding v" ,p~ to both sides of inequality (17) or (18), we obtain 
inequalities involving the endowment insurance: 

i ~ : ~  > .q~v r + v-.px = 3~(¢ - v-) + v - (19) 

and 
1 - -  Sa  .--1 > . q , [ ( 1  - -  v") - -  (1  - -  v 0 ]  + v ~ • ( 2 0 )  

Changing signs, subtracting unity, dividing by ~, and introducing a~ 
for (1 - v")/~, and so on, we obtain 

a~:~ < ~ -  , ,qx(a~-  an) ,  (21) 

o r  

a~:~ < ,,p~a~ + ,,q~a~. (22) 

Again, from formula (21), we can write, remembering that r < n, 

a : ~  < a~ - ,qv,a~-:~. (23) 

Inequality (22) is one that also could be arrived at automatically by 
using Taylor's theorem, just as before, but in this instance starting with 
the identity 

n t , a,..-[ J~o tP~+tand + .P,a.-I (24) 

and expanding the a~ inside the integral sign by Taylor's theorem along 
the same lines as used for v t in equation (14). 

Each of the above inequalities has a verbal interpretation; for ex- 
ample, inequality (22) states that the continuous n-year temporary life 
annuity is smaller than (but generally not far from) the full n-year 
annuity-certain payable to the portion of the group that survives the 
n years, plus an annuity-certain to the portion that does not survive, the 
latter annuity being for the exact average amount of time enjoyed by 
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each of them. Somewhat similar verbal statements can be given for 
inequalities (21) and (23). 

In connection with the use of the identity (24) for proving inequality 
(22), we might inquire about applying Taylor's theorem to the more 
usual formula 

c o  

a* - f 0  v' ,p .d t .  

Using the expansion for v* from formula (14), we have 

c o  

a . =  f0  I v ' +  (t -- r) (ln v) v ~-{ ( t - - r )  ~ 
2~ 

(In v)*v " ] ,p.dt 

(2s) 
( r. ) 

where R is always positive. In this case, r, chosen so as to make the 
term in parentheses on the right-hand side vanish, would be (YJ l . )  + 
~., or r = Y # T . ,  and we have, dropping the R as before, the interesting 
result 

a. > vr.lr.~., or _ > v r,/r" . (26) 
ez 

Viewing the mortality table strictly as a stationary population, a./~. 
may not be immediately familiar, but it is the solution to the problems 
in texts and examinations which in effect ask for the net single premium 
that should be paid immediately by each of the T. persons aged x and 
over who are now living, to provide for a unit payable at the death of 
each of them. This is a contract on a closed group, and all obligation of 
the hypothetical company would cease in exactly co - x years from now. 
The right-hand member, by comparison, represents a payment of unity, 
as in the right-hand member of inequality (10a), but here the deferral 
period (i.e., the exponent), Y, /T , ,  will be remembered as the total future 
life-years (measured from now) that will be enjoyed by the group in the 
aggregate, averaged over all T, of them; that is, it is the future lifetime, 
on the average, for each one of the I", people involved in the contract; 
or, again, it is the exact average time until death (i.e., a claim) occurs, 
measured from the present time, for each of the T, people. This inequal- 
ity, despite the appearance of the left-hand member, deals with insur- 
ances. Transforming inequality (26) in the usual way, so that the right- 
hand member becomes an annuity-certain, we obtain 

8~----~ < aHT"~' (27) 
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and it can be verified that the left-hand member of this inequality, as 
one might suspect, is the single premium payable by each of the 7", 
people to provide a continuous life annuity on each of them. 

Returning to the cohort concept of l, starters, there is an appealing 
relationship between (a) the remainder term in the Taylor expansion (as 
we have used it) of 

GO 

a~ = Joo t P ~ t ~ t a ~ d t ,  

(b) the variance of the random variable whose mean is ~, (to be clarified 
later), and (c) the expression for an approximate "corrective subtraction" 
from the right-hand member in inequality (10b), which correction will 
draw the magnitude of the right-hand member down to near-equality 
with that of the left-hand member. The resulting basic correction, derived 
in a different form by a single, but different, method in various sources 
[8, 9], is thought to be worth noting in connection with the demonstrations 
given so far, since the resulting approximate formula can be of great 
value in calculating a network of life annuity values (and hence other 
functions) at several unavailable interest rates, with essentially no more 
labor than for one interest rate; the approximation requires only the l, 
column and its associated sums, which may be of special advantage. 
Undoubtedly the statement has been made before that the advent of 
computers, and the attendant opportunities to use more sophisticated 
formulas and methods for various purposes, may require the actuary to 
re-examine and use older techniques and approximations in order to 
help determine initially the choices of tables, interest rates, and other 
assumptions which will be used ultimately in the computer programs for 
premiums, dividends, asset shares, and similar calculations. 

The derivation that  has been given in other sources deals with the 
curtate life annuity and determines c > 0 such that a, ~. a~--~_~. We shall 
determine, however, a C > 0 such that ~ ~. ~K1 -- C. If we expandf(t) = 
a~ in the integral for a, above, exactly as we did v t in equation (14), we 
obtain, usingf'(t) = [d(1 - vt) /dt] /~ = v t, and i f ( t )  = --art ,  

¢ o  

a. = fo  [an + (t - ,.),: + (t -2! ")' . ( 2 8 )  

Integrating the first two terms in the brackets, using equation ( l lb)  as 
an aid, we find that r should be set equal to ~ to make the second such 
term vanish, and we have 

5~ t oo 

a, ,  = - f o  ( t  - (29) 
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where t represents some average or composite value for the various values 
that tl took on in the integration process and is effectively the result of 
application of a mean-value theorem. If we omit the subtraction of the 
integral term on the right (which is always positive), we have incidentally 
derived the basic continuous inequality (10b), in the same way that 
inequality (17) was obtained. For each value of t in the integration process 
(0 < t _ o~ - -  x ) ,  tx took on some specific value between that t and r = 

~ (say, halfway between), and it is not unreasonable to say that t - ~, 
especially since ~, generally is about halfway to the end of the table and 
the correction term is comparatively small. 

Now tp,~+t can be regarded as a probability density function of a 
random variable t, if only because j~o°°tp,~+tdt = 1; but, further, it also 
measures the probability of enjoying exactly t years after age x and then 
dying at age x + t. The mean of this random variable t, the "number of 
life-years that are enjoyed after age x by a random starter," should be the 
first moment of the probability distribution, or 

Joo t ,p~t~,+tdt = ~ 

(see eq. [llb]), which is also obvious from the definition of ~,, since ~, is 
the mean of the variable indicated in the quotation marks above; another, 
shorter description of the random variable t whose mean is ~ is simply 
"duration of life after attainment of age x." It  is now easily seen that 
the integral in expression (29) is indeed the second moment about the 
mean of the probability distribution of t and hence is the variance of 
t, "time left until death," a third and even more terse description of what 
is, perhaps, the random variable with more significance in real life than 
just about any other imaginable. Further discussions of allied random 
variables are found in reference [1]. Evaluating the integral in expression 
(29), either by using equations ( l lb)  and ( l ld)  or otherwise, and replac- 
ing ~' by ~, as discussed above, we obtain 

1 [ 2 r , _  (30) 

The factor in brackets is the variance of our random variable t. The 
negative correction above adjusts by the present value of a small pay- 
ment due in ~, years, in the amount of "interest" on one-half of the 
variance of the random variable t, "duration of life after attainment of 
age x." 

The above formula can be quite practical in connection with various 
computations in which approximate values of functions are desired at 
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several unavailable interest rates. One need not have several "starting" 
commutation columns but only a table of lz, Tz, and Y,, which are 
standard actuarial functions independent of interest. 

As regards net annual premiums, we may easily say that 

~)t+Ct 
A~ > _  (31) 

where we have combined, so to speak, inequalities (3) and (4); the numer- 
ator of the left-hand side is seen to be larger than that of the right, and 
vice versa for the denominators, thus making the inequality always 
valid. Defining v"/d~ = P ~  as in reference [2], where the symbol on the 
right-hand side can be called "the annual sinking fund premium which 
provides for the accumulation of a unit in n years," we can rewrite 
inequality (31) as 

~'~ > Pr+--~ • (32) 

A continuous version similarly can be derived by merging inequality 
(10a) with (10b), from which we obtain 

P(A,) >Ptn. (33) 

The above net annual premium represents a contract where both benefits 
and premiums are payable continuously; where only benefits are payable 
at the moment of death, and premiums are payable annually, we can 
merge inequality (10a) with (4) and obtain 

P(A ) > P(A~), 

where P on the right-hand side is based on 1 4- a~ .  
I t  is hoped that this actuarial note will be of interest to students and 

members alike; the author is aware that there are many other related 
extensions and demonstrations of similar inequalities, branching out into 
other areas of life contingencies (even pensions), and perhaps some dis- 
cussants may wish to present discoveries which they make. 
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DISCUSSION OF PRECEDING PAPER 

HARRY M. $ARASON: 

Inequalities and approximations are an important part  of actuarial 
expertise, and they require more care and explanation than do exact 
calculations. Actuarial approximations have been legalized into actuarial 
exactness in policy calculations but hardly anywhere else. 

My "Layman's  Explanation of the Expectancy Annuity," which is 
listed in the bibliography of Mr. Olson's paper, has had some interesting 
reactions. After I had laboriously written a presumably perfect and very 
concise explanation of the expectancy annuity fallacy, I showed the 
result to another actuary, Mr. Henry E. Belden. Mr. Belden took a look 
at my explanation and said, half-a-dozen times, "You don't  mean that; 
you mean this." He was obviously correct in every single case! 

The following explanation, due largely to Ronald Kobrine, is better. 

The expectation of life is the average number of years a number of people 
will live, according to a mortality table. The number of payments in the ex- 
pectancy annuity is for that number of years and is the same as the number of 
payments according to the mortality table. But, with interest discount, the 
mortality table effect of spreading the payments all the way up to at least 
age 100 or 110 makes the life annuity value less than the value of the payments 
all concentrated within the life expectancy period--and the life expectancy is 
a very approximate estimate of the future life of an individual. 

Quantitative comparisons are always in order, and the comparisons 
shown in Table 1 of this discussion are an outgrowth of my paper. 

United States population mortality tables for white females are not 
too different from the 1971 Group Annuity Mortality Table---Males 
(another "actuarial inequality"!). Correspondingly, population tables for 
males with the age set back five or six years in the male lane, are not too 
"unequal" to the female table--as we use "actuarial inequalities" here. 

The expectation of life at birth is quite important in various con- 
versational circles. The life expectancy at birth is significantly lower than 
the expectancy at age 1, and the percentages shown in Table 1 at age 5 
are quite low because the death rates are less than one in a thousand up 
to age 30; thus we have almost an annuity certain for a long period even 
in valuing the annuity by the life table for age 5. On the female popula- 
tion mortality table, at  5 per cent interest, the excess is about 4.0 per 
cent, and on the male table the excess is about 4.7 per cent, at birth, 
compared to the 1.47 per cent at age 5 shown in Table 1. 

23 



24 ON SOME ACTUARIAL INEQUALITIES 

TABLE 1 

COMPARISON OF I M M E D I A T E  ANNUITY VALUES ON THE 

1971 GROUP ANNUITY MORTALITY T A B L E - - M A L E S  

AGE 

5 . . . . .  

15 . . . .  
25 . . . .  
35 . . . .  
45 . . . .  

5 5  . . . .  

65 . . . .  
75 . . . .  
85 . . . .  

FUTURE 
LIFE 

~XPECTANGY 

(YEARS) 

69.86 
60.13 
50.40 
40.76 
31.36 

22.71 
15.11 
9.24 
5.34 

VALUE OF 1 PER YEAR FOR LIFE 
AT INTEREST RATES 

3% 

28.574 
27.072 
25.073 
22.457 
19.121 

15.256 
11.052 
7.184 
4.230 

s% 

19.059 
18.569 
17.788 
16.577 
14.762 

12.359 
9.402 
6.389 
3.897 

s% 

12.335 
12.224 
11.994 
11.551 
10.730 

9.448 
7. 601 
5. 453 
3. 479 

EXCESS OF EXPECTANCY ANIqUITY 
VALUE OVER LIFE A~NUITY VALUE 

3% s% 

1.86 1.47% 
2.31 1.98 
2.97 2.82 
3.94 4.13 
5.33 6.14 

6.82 8.38 
8.63 10.93 

10.87 13.55 
14.99 17.60 

8% 

0.87% 
1.26 
2.06 
3.51 
6.06 

9.25 
13.04 
16.60 
20.92 

I expect to follow through on Mr. Olson's suggestion concerning ap- 
proximations in pension plan calculations--sometime, somewhere. 

HANS V. G E R B E R  AND DONALD A. J O N E S :  

The author reminds us that ,  in general, the expected value of a function 
of a random variable differs from the function evaluated at  the expected 
value of the random variable. A general result, Jensen's inequality, gives 
the relationship between these values for the case of .a convex function. 
The reader may find a lengthy discussion of the result in the Steffensen 
paper listed in Mr. Olson's references and also in some beginning prob- 
ability and statistics books [1, 2]. Steffensen puts it as follows: "Dr .  
Jensen's theorem may be expressed very simply in the language of 
p robab i l i t i e s , . . ,  thus: A continuous convex function of a mathematical 
expectation is not greater than the mathematical expectation of the function" 
(italics his). His equation (61), using E X  for the expected value of X and 
~I, for the convex function, is 

~ ( E X )  _ E ~ ( X ) .  

The major i ty  of the author 's  inequalities follow immediately from this 
one, with the appropriate choices for ~I, and X. We will summarize this 
in Table 1 of our discussion, using the following random variables: 

T = Exact  time until death for a life now aged x; 
Y = Integral  par t  of T, i.e., number of complete years; 

W = Exact  age of an individual selected at random from among those 
with age greater than x in a population proportional to the life table. 
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Steffensen included a discrete version of an inequality more general 
than (26), which may be obtained by Jensen's inequality as follows. If, 
for the random variable W, the population is proportional to the com- 
mutation function D for some interest rate j,  then 

E[W] = (Ia)ga= at j ,  

and E[v w] = a'/a,, where v is at i and a" is at the rate (1 + i)(1 + j )  - 1. 
Then Jensen's inequality provides a generalized version of inequality 
(26) that reduces to (26) for j = 0. 

TABLE 1 

Random 
Variable 

X 

Y..  . . . . .  . 

Y + I . . .  
Y + I . . .  

T .  , ° ° ° . , 

T ,  . . . . . .  

W - - x . .  
Y +  1". .  

T* . . . . . .  

Convex 
Function 

--a~ 

V t 

~t 

?)t 

V t 

Expected 
Value of 

ex 

exq- 1 
e : +  1 

~x 

Yx/Tx 
77, O. 

T x -  T,,+,,- nl~.,, 
l x -  lx+n 

Expected 
Value of 
~,(x) 

- -  a z  

Ax 

A= 

ax/~x 
A1:~/.q: 

Al::q/,,qx 

Author's 
Inequality 

Number 

(1) 

(3) 
(4) 

(10a) 
(lOb) 
(26) 
(8), (9) 

(17), (18) 

* For the last two the expectations are conditional, given that T, or Y, is less than n. 

Another statement from Steffensen's paper is an appropriate conclusion 
here: "examples . . .  in the table suffice to prove the practical utility of 
Dr. Jensen's inequality which has not yet, amongst actuaries, received 
the popularity it deserves" (p. 292). 

REFERENCES 
1. MOOD, A. M., GRAYBILL, F. A., AND BOES, D. C. Introduction to the Theory 

of Statistics. 3d ed. New York: McGraw-Hill Book Co., Inc., 1974. 
2. P~LRZEN, E. Modern Probability Theory and Its Applications. New York: 

John Wiley & Sons, Inc., 1960. 

A R N O L D  F.  S H A P I R O :  

The inquiry which Mr. Olson has undertaken certainly should be of 
interest to students, since various of his conclusions have found their way 
into the Society's examinations. For example, a question relating to an 
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extension of inequality (1) to multilife statuses can be found at  least as 
far back as 1945, and his inequality (31) provides the solution to one of 
the questions of the 1948 examination. However, one is tempted to in- 
quire into the usefulness of his results as approximations, other than for 
solving examination problems. Most  of the results are given in the form 
of inequalities; one wonders how sensitive these inequalities are. The 
purpose of this discussion is to investigate empirically some of the results 
given in the paper. Only the curtate functions are considered. 

Turning first to Table 1 of this discussion, which compares the ratio 
of a,-~], to a ,  for interest rates of 0.02, 0.03, and 0.04, decennial issue ages, 
and rates of mortal i ty based upon the 1958 Commissioners Standard 
Ordinary Table, one notices that  the disparity between a~--l, and a,  is 

TABLE 1 

a~/ax 

X i = 0 . 0 2  i = 0 . 0 3  i = 0 . 0 4  

0 . . . . . . . . .  

10 . . . . . . . .  
20 . . . . . . . .  
30 . . . . . . . .  
40 . . . . . . . .  
50 . . . . . . . .  
6 0  . . . . . . . .  

70 . . . . . . . .  
80 . . . . . . . .  
90 . . . . . . . .  

1. 02950 
1. 02652 
1. 02828 
1. 03060 
1. 03523 
1. 04000 
1. 04231 
1. 04014 
1.03277 
1. 02074 

1. 03383 
1 03081 
1 03413 
1 03833 
1 04603 
1 05431 
1 05931 
1 05766 
1 04789 
1.03070 

1. 03447 
1.03166 
1. 03642 
1. 04248 
1. 05327 
1. 06542 
1. 07381 
1.07359 
1.06219 
1.04038 

small, the relative error nowhere exceeding 0.075. The ratio is parabolic 
in nature, with maxima at  ages 61, 63, and 65 for interest rates of 0.02, 
0.03, and 0.04, respectively. I t  would appear that  for moderate interest 
rates a72~ provides a reasonable approximation to ax, particularly for the 
younger or older ages. 

Table 2 provides a comparison of the ratio of Ax and v l+e*, based upon 
the same data. As one would expect, this ratio is a decreasing function of 
age and an increasing function of the interest rate. For lower ages and 
relatively high interest rates A x is considerably larger than v1+% However, 
it is worth noting that  for higher ages and /or  lower interest rates v ~+~* 
appears to provide a reasonable approximation to A x. 

Table 3 investigates the ratio P,/P~+-j~,. This ratio has essentially the 
same characteristics as the ratio AJv~+% so tha t  for lower interest rates 
or older ages P~+--~, appears to provide a reasonable approximation to 
P~. 

Table 4 investigates the ratio A~ :~/,,q,v~, where n is defined in formula 



10. 
20. 
30. 
40. 
50. 
60. 
70. 
80. 
90. 
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TABLE 2 

A./vl+'~ 

i ~ 0 . 0 2  

1.08105 
1.05740 
1.04634 
1.03686 
1.02970 
1.02234 
1.01471 
1.00810 
1.00355 
1.00105 

i = 0 . 0 3  

1. 21005 
I. 14149 
1.11113 
1.08622 
1.06824 
1.05055 
1.03284 
1. O1794 
1.00783 
1.00234 

i==0.04 

1.44253 
1.28068 
1.21333 
1.16075 
1.12462 
1.09071 
1.05809 
1 .O3143 
1.01368 
1.00410 
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TABLE 3 

P=/Pv+-GI 

O.. 
10. 
20. 
30. 
40. 
50. 
60. 
70. 
80. 
90. 

x i ~,0.02 i = 0 . 0 3  i = 0 . 0 4  

1.11207 
1.08463 
1.07499 
1.06745 
1.06444 
1.06105 
1.05452 
1.04424 
1.03083 
1.01576 

1.24958 
1.17540 
1.14758 
1.12608 
1.11499 
1.10418 
1.08925 
1.06997 
1.04756 
1.02395 

1.49013 
1.31944 
1.25550 
1.20762 
1.18118 
1.15731 
1.1:2950 
1.09821 
1.06517 
1.03236 

(8), for issue ages 20, 40, and 60 and quinquennial terms. As indicated 
in the table, this ratio is an increasing function of both the term of the 
policy and the interest rate. For short terms and/or low interest rates 
,q,v, appears to be a reasonable approximation to A~.,-- I. I t  is interesting 
to note that  for terms of less than twenty-five years, the relative error of 
using ,,q~v~ in lieu of A~:~ is less than 0.045. 

On the basis of the foregoing it might be concluded that  the inequalities 
mentioned by Mr. Olson may, under proper circumstances, be used as 
approximations. However, it should be mentioned that  applications of 
this type are limited to those instances in which only isolated values are 
required. When a complete table of values is required, i t  is just as simple 
and essentially as fast to generate the exact values. This latter observa- 
tion is particularly appropriate with respect to the excellent approxima- 
tion given by equation (30) of the paper. 
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5. .  
10. 
15. 
20. 
25. 
30. 
35. 
t0.  
~5. 
50. 
55. 
50. 
55. 
70. 
75. 
30. 

x = 2 O  x = 4 o  x = 6 O  

i = o.o2 i = 0.03 i = 0.04 i = o.o2 i = o.o3 i = o.o4 i = 0.02 i = 0.03 i = 0.04 

1.00039 
1.00162 
1.00370 
1.00676 
1.01077 
1.01515 
1.01939 
1.02313 
1.02639 
1.02936 
1.03233 
1.03566 
1.03943 
1.04296 
1.04537 
1.04634 

1.00087 
1.00361 
1.00828 
1.01515 
1.02428 
1.03449 
1.04461 
1.05383 
1.06206 
1.06969 
1.07728 
1.08562 
1.09484 
1.10328 
1.10892 
1.11113 

1.00154 
1.00637 
1.01461 
1.02684 
1.04334 
1.06216 
1.08135 
1.09936 
1.11593 
1.13158 
1.14717 
1.16399 
1.18222 
1.19856 
1.20925 
1.21333 

1.00039 
1.00158 
1.00345 
1.00587 
1.00869 
1.01185 
1.01525 
1.01895 
1.02290 
1.02642 
1.02877 
1.02970 

1.00087 
1.00353 
1.00775 
1.01323 
1.01971 
1.02702 
1.03497 
1.04361 
1.05277 
1.06086 
1.06618 
1.06824 

1.00153 
1.00623 
1.01374 
1.02360 
1.03538 
1.04880 
1.06353 
1.07957 
1.09653 
1.11136 
1.12096 
1.12462 

1.00039 
1.00158 
1.00348 
1.00600 
1.00899 
1.01185 
1.01387 
1.01471 

1.00087 
1.00354 
1.00779 
1.01345 
1.02017 
1.02655 
1.03102 
1.03284 

1.00153 
1.00625 
1.01378 
1.02386 
1.03580 
1.04711 
1.05493 
1.05809 
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(REVIEW OF DISCUSSION) 

JOHN A. SCHUTZ: 

[EDITOR'S NOTE.--Mr. Schutz, a friend of the late Mr. Olson, kindly 
consented to review the discussions and prepare a response to them.] 

It  is indeed an honor to have a response from Mr. Sarason, affection- 
ately known in the industry as "Uncle Harry." His insight is a welcome 
addition to the actuarial note. The verbal analysis will be particularly 
helpful to students, and the quantitative comparisons will be helpful to 
all readers. 

Mr. Shapiro very ably measures the consequences of treating several 
of the inequalities as approximations when 1958 CSO mortality is em- 
ployed. As he points out, exact computations of entire tables often can 
be made with relative ease. In many such situations it is advisable for 
the actuary to establish check values in order to validate the tables pro- 
duced. By the use of inequalities it is possible to determine upper or 
lower bounds which aid in applying tests of reasonableness. 

The discussion prepared by Messrs. Gerber and Jones adds a new 
dimension to the entire topic of actuarial inequalities. I t  brings forth a 
simple, powerful mathematical technique which should be brought to 
the attention of every actuary and every actuarial student. Hopefully, 
Dr. Jensen's inequality will achieve "the popularity it deserves." 




