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ABSTRACT 

For the evaluation of a compound Poisson distribution it is an advan- 
tage if the claim amount distribution is arithmetic, that is, if all claim 
amounts are multiples of a common span. Furthermore, the larger the 
span, the fewer the calculations. This idea is the keystone in the develop- 
ment of upper and lower bounds for stop-loss premiums. An upper bound 
is obtained when a stop-loss premium is calculated for a claim amount 
distribution constructed by dispersing the mass of the original claim 
amount distribution to uniformly spaced points. A lower bound is ob- 
tained when the "new" distribution is constructed by a truncation pro- 
cedure. The advantages of this method are that it reduces round-off 
errors and saves computing time. 

I. WHY THE EXPONENTIAL PRINCIPLE 

I'~EMIUM calculation principle is a rule that assigns a premium, 
say P, to any risk, say S. Mathematically, a risk is a random 
variable, given by its (supposedly sufficiently regular) distribu- 

tion. The following four examples illustrate this concept. 

a) The net premium principle: 

P = E[S l .  

b) The exponential principle: 

p = _1 lnE[e ' s ] ,  a > O. 
a 

c) The variance principle: 

P = E[S] -t- b Var IS], b > 0. 

d) The standard deviation principle: 

P = E[S] + c v/(Var IS]), c > 0. 

* This paper was presented at the Brown Actuarial Research Conference, sponsored 
in part by the Committee on Research and held August 28-30, 1975, at Brown Uni- 
versity. 
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216 CALCULATION OF STOP-LOSS PREMIUMS 

In example a there is no loading; in examples c and d the loading is pro- 
portional to the variance and to the standard deviation, respectively. 
The exponential principle involves the evaluation of the moment gen- 
erating function of S at the argument a. 

The following two properties are highly desirable for a principle of 
premium calculation: 

(P,):  P >_ E[S], 

(/)2): P _< Max [S], 

for any risk S, where Max [S] denotes the right-hand endpoint of the 
range of S. The first property means that  the expected gain, P -- E[S], 
is nonnegative for any risk S. The second property guarantees that  the 
premium for any risk is not unreasonably high: if P > Max IS], the pre- 
mium exceeds the maximal possible benefit, and nobody in the world 
would buy such a policy. 

Obviously, the principles a, c, and d above satisfy property (Px). But 
so does the exponential principle: Jensen's inequality tells us that  

E[e ~s] > # Etsl. (1) 

Now we take logarithms, divide by a, and recognize that (P1) is satis- 
fied for the exponential principle. 

Principles a and b satisfy (P~). The latter assertion follows from the 
inequality 

E[e~s] < ~ ~ax t~]. (2) 

Unfortunately, neither the variance principle nor the standard deviation 
principle satisfies property (P~), as is seen from the following examples. 

Example 1: Let S = 0 or Z, each with probability ½ (Z > 0). Thus Max 
[S] = Z. If the variance principle is applied, we find that 

P = Z/2 + bZ~/4. (3) 

But this means that P > Max [S], whenever Z > 2/b. 
Example 2: Let S = 1 (with probability p) or S = 0 (with probability 

q = 1 -- p). Thus Max [S] = 1. If we apply the standard deviation 
principle, we obtain 

P = p + cx/[p(1 -- p)]. (4) 

By examining P as a function of p, we find that P > Max [S] whenever 
(1 + c~) -1 < p < 1. Worse than that, if p is close to 1, P is a decreasing 
function of p.t 
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The net premium principle and the exponential principle are additive 
as well as iterative; these concepts are explained in [1] (pp. 87 and 91). 
Under a mild continuity condition, these two principles can be charac- 
terized by these properties (see [3]). Also, the exponential principle fits 
into the framework of the collective theory of risk: The parameter a 
plays essentially the role of an adjustment coefficient. 

For these reasons we shall adopt the exponential principle. Of course 
net premiums are always of interest; in fact, they may be obtained as a 
limiting case (a ~ 0) from exponential premiums. 

II. MEREU'S FORMULA~ OR WHY THE TAIL IS NOT A PROBLEM 

In the following we consider a stop-loss coverage (deductible a) for 
aggregate claims X. Let F(x) denote the cumulative distribution function 
of X. We assume that F(x) = 0 for x < 0 (no negative claims). The 
"risk" in question is now 

S =  ( X - - a ) +  = 0  i fX_<a  

= X - a if X > a. (5) 

We denote the stop-loss premiums (based on principles a and b above) 
by P(F,  a), P(F,  a, a), respectively. Thus 

c o  

P(F ,  ~) = E [ ( x -  ~ ) + ]  = f ( x -  ,~)dF(x) (6) 
a 

and 

P ( F ,  a, a) = 1 In E[e ~(*-a)+] 
a 

1 ° )] 
= -aln F(a)  + f e ~ ( ~ a t ) d F ( x  . 

(7) 

to obtain 

( x  - ~ ) +  = ( x  - ~) + (~ - x ) + ,  

P ( F ,  ,~) = E [ x ] -  ,~ + E [ ( a -  x ) + ]  
a t  

= E[X] -- a + f ( a  -- x ) d F ( x ) .  (9) 
o 

Thus, if E[X] is obtainable otherwise, this formula requires the knowledge 
of F(x) only for 0 < x < a. 

(8) 

These formulas entail integration over the tail of F(x),  which may cause 
computational problems. Fortunately, these difficulties can be avoided. 

Mereu's idea [5] was to take expectations in the identity 



218 C A L C U L A T I O N  OF STOP-LOSS P R E M I U M S  

In analogy to Mereu's idea, let us now consider the identity 

e ~(x-~)+ = e ~(x-~) -b (1 -- ~(x-"))Itx<,, ]. 
Then 

Thus 

E[e a¢x-')+] = E[e ~¢x-~>] + E[(1 -- e ~¢x-~) ) Itx<.]] 

= e-'*aE[e "x] + f ( 1  -- e~c*-~))dF(x). 
o 

a 

P(F, a, a) = 1_ In le-~'aE[e ~x] + f ( 1 -  ea(x-"))dF(x) t . 
a o 

(lO) 

(11) 

(12) 

Assuming that the moment generating function of X is available other- 
wise, this formula requires the knowledge of F(x) for 0 < x < a only, 
as before. Therefore formulas (9) and (12) are preferable to the original 
formulas (6) and (7). 

Remark 
By differentiating formula (11) k times, and setting a = 0, one obtains 

an expression for the kth absolute moment of (X - a)-b in terms of the 
first k moments of X and the values of F(x) for 0 < x < a. In the case 
k = 1, this brings us back to formula (9). For k = 2, it leads to Mereu's 
formula (21) (see [5]). 

III. THE COMPOUND POISSON DISTRIBUTION 

In the following we assume that the aggregate claims X have a com- 
pound Poisson distribution, say with Poisson parameter k (=  expected 
number of claims) and jump amount distribution H(x) (=  cdf of the 
individual claim amounts). Thus 

F ( x )  = e -~' 
Xk 

k-o ~ H**(x) " (13) 

I t  is assumed that H(0) = 0, which implies that F(x) = 0 for x < 0. In 
a certain sense, the assumption of a compound Poisson distribution is 
conservative (see the last paragraph in [2]). 

If tL = f xdH(x) denotes the average claim size and 4~(t) = f etxdH(x) 
is the moment generating function of the claim amounts, 

E[X] = ~,~; E[e X] = e xt¢¢a)-l]. (14) 

These expressions should be substituted in formulas (9) and (12). I t  
remains to calculate F(x) for 0 < x < a. 
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The latter problem is greatly simplified if H(x) is an arithmetic dis- 
tribution, say with a span d > 0. This means that  all possible claim 
amounts are multiples of the span d. Let h~ denote the probability that  
a given claim amount equals id (i = 1, 2 , . . .  ), and let f~ = P[X = id]. 
Since 

h *k = 0 for k > i ,  (lS) 

we see from formula (13) that  

f i ~ e - ~  *k k-o ~ h~ . (16) 

For the evaluation of formulas (9) and (12) we have to compute h *k and 
f~ for i = 0, 1 , . . . ,  [a/d]. Thus the larger the span d, or the smaller the 
deductible a, the fewer calculations have to be made. 

Remark 

I t  is possible to calculate f~ by an algorithm that  is somewhat different 
from the approach that results from formula (16). Let Nj denote the 
number of claims of amount jd. Obviously, 

X = dNt + 2dN2 + 3dNs + . . . .  (17) 

Also, it is well known that  Ni has a Poisson distribution with parameter 
),hi, and that the random variables Nx, N 2 , . . .  are mutually independent. 
From this it follows that 

f i  = (p(1) , p(2) , p(a) , . . .  ) i ,  

where p~¢) = P[jNi  = i], or 

p~.i) = e-~i  ()`hJ)m i . ' m! if m = _ is an integer 
J 

= 0  
i , 

if m = _ is not an in teger .  
3 

(18) 

(19) 

For the calculation of f l  (i = O, 1 , . . . ,  r = [a/d]), one needs p~J) for 
i = O, 1 , . . . ,  [r/j]. Thus, if j > r, we need only 

po~i ) = e -~hi .  (20)  

Therefore, formula (18) can be rewritten as follows: 

f ,  = ( p ( , ) , . . . ,  p(r)), exp ( - - ) `  ~ h~.). (21) 
r+l 

An algorithm similar to this has been developed very recently [4]. 
However, the underlying idea is not new (see the lemma on p. 120 of [6]). 



220 CALCULATION OF STOP-LOSS PREMIUMS 

IV. THE METHOD OF DISPERSAL 

In the last section we saw that  the exact calculation of a stop-loss 
premium is feasible if the claim amount  distribution is arithmetic with 
a sufficiently large span. If F is an arbi t rary compound Poisson dis- 
tribution (nonarithmetic or arithmetic with a small span), the exact 
calculation of the stop-loss premium may be an extensive procedure and 
may lead to considerable round-off errors. Instead, we suggest a pro- 
cedure that  is outlined in this and the following section. The idea is to 
replace the original distribution F by arithmetic compound Poisson dis- 
tributions F u, F z, respectively, calculating the stop-loss premiums for 
these, thereby getting upper and lower bounds for P(F,  a, a). 

We pick a span d ~ 0. Then we construct a compound Poisson dis- 
tr ibution F u, given by its Poisson parameter  k u and the jump amount  
distribution H~(x), as follows: We set k ~ -- )~, and H u is arithmetic with 
span d, so that  

(i+l)d ) 
-~ -- i dH (x) (22) 

(i-1)d 

for i = 0, 1, 2, . . . .  This simply means that  the probabili ty mass of 
H(x) between id and (i + 1)d is dispersed to the endpoints id and (i + 
1)d, so that  the conditional mean remains unchanged (for i = 0, 1, 2, 
• . .  ). Consequently, the mean of F" equals the mean of F. 

THEOREM 1. P(F, a, a) ~_ P(F u, a, a) for  all a ~_ O, a. 

Thus the method of dispersal leads (for each d) to an upper bound for 
the stop-loss premium. Theorem 1 can be proved by using (in this order) 

1. The second par t  of Example 2 in [2], with a = id, b = (i q- 1)d, ap- 
plied to the conditional distribution of H(x), a ~_ x < b. 

2. Theorem 2 in [2]. 
3. Lemma 1 in [2] to show that  H(x) < Hu(x). 
4. Lemma 3 and Lemma 1 in [2] to show that  F(x) < Fu(x). 
5. Theorem 1 in [2] to complete the proof. 

Here our concern is with the content of the theorem but  not with its 
proof• 

V. THE METHOD OF TRUNCATION 

As before, we first pick a span d > 0. Then we associate a compound 
Poisson distribution F * (Poisson parameter  )J, jump amount  distribution 
H ~ arithmetic with span d) to the original distribution F (given by k and 
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H) as follows: 
(i+X)d 

x all(x) (23) x,h  = x f 
id 

for i = 1, 2, . . . .  The value of X t is determined by the condition that 
hi + h~ + . . .  = 1. The underlying idea is the following: if id ~ x < 
(i + 1)d, a claim of amount x is replaced by one of amount id. In order 
to keep expected values unchanged, we compensate by increasing the 
Poisson frequency proportionately. (A similar construction was sug- 
gested in [6], p. 123, with the symbol F-  instead of FZ.) In this truncation 
process, the claims between 0 and d are ignored. Thus 

f x d F ( x ) -  xdF~(x) -- X f xdH(x ) .  (24) 
o o o 

Truncation leads to a lower bound for the stop-loss premium: 

TttEOREM 2. P(F, a, a) ~ P(F ~, a, a)for all a ~ O, a. 

The proof is similar to the one for Theorem 1, with the following modifica- 
tion: In the first step, part 1 of Example 2 in [2] is applied, with a = 0 
and b = (i + 1)d, to the mixture of the degenerate distribution con- 
centrated at zero and the conditional distribution of tt(x) given id ~ 
x < (i + 1)d, where the weights are chosen so that the mean of this 
mixture equals id (i = 1, 2 , . . .  ). 

VI. AN ILLUSTRATIVE EXAMPLE 

To illustrate the dispersal and truncation methods, let us consider the 
sample portfolio of five policies that is defined in Table 1. For the com- 
pound Poisson distribution F we have k = 1.4, and the claim amount 
distribution is concentrated at the arguments 1.7, 2.3, etc., with prob- 
abilities 0.2/1.4, 0.3/1.4, etc. Thus the original claim amount distribu- 
tion is arithmetic with a span d = 0.1. 

The methods of dispersal and truncation are best applied policy by 
policy. Table 2 shows this procedure for d = 1. The data on the bottom 
line are used to calculate P(F", a, a) and P(F ~, a, a), which are shown 
in Tables 5 and 6. For d = 2 the calculations are summarized in Table 3. 
However, in the case of a large number of policies, it is more economical 
to obtain the bottom line of Table 3 directly from the bottom line of 
Table 2. The calculations are displayed in Table 4. 

In general, this shortcut works if the second span is a multiple of the 
first span. From this observation, and from Theorems 1 and 2, respec- 
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tively, it follows that, if the original span is replaced by a multiple of it, 
the upper bound is increased while the lower bound is decreased. In prac- 
tice one uses this in the opposite direction: if for a given span the upper 
bound differs from the lower bound by too much, one may want to re- 
place this span by one nth of it. 

In Tables 5 and 6 the numerical results are shown for our sample port- 
folio for a span d -- 1. The first column shows the "amounts." These 
should be interpreted as the arguments of the frequency function of the 

TABLE 1 

A SAMPLE PORTFOLIO 

Policy 

a . . . . . . . . . . . . . . . . . . .  

B . . . . . . . . . . . . . . . . . . .  

C . . . . . . . . . . . . . . . . . . .  

D . . . . . . . . . . . . . . . . . .  

E . . . . . . . . . . . . . . . . . . .  

Total . . . . . . . . . . .  

Amount 
at Risk 

$ i .  7 
2.3 
3.4 
3.6 
5.0 

Mortality 
Rate 

0.2 
0.3 
0.3 
0.4 
0.2 

1.4 

aggregate claims (second column) and their cumulative distribution func- 
tion (third column), on the one hand, and as deductibles for the net stop- 
loss premiums (fourth column) and the exponential stop-loss premiums 
(fifth column), on the other hand. The latter are based on a -- 0.1. Tables 
7 and 8 display the results for d - 2. Of course our sample portfolio is 
small enough so that the exact distribution of aggregate claims and the 
exact stop-loss premiums can be calculated. Table 9 shows these values 
calculated as lower bounds for d -- 0.1 which are exact. 

For the convenience of the reader, Tables 10 and 11 provide com- 
parisons of the bounds for the premiums from Tables 5-8 with the exact 
values from Table 9. Tables 10 and 11 show the relative errors of the 
bounds increasing as the deductible increases--but remember that all 
are going to zero. 



T A B L E  2 

DISPERSAL FOR d == 1 

P o u c y  t. 

x'h~ 

A . . . . . . . .  0 . 0 6  
B . . . . . . . . . . . . .  

C . . . . . . . . . . . . .  

D . . . . . . . . . . . .  
E . . . . . . . . . . . . .  

T o t a l . . !  0 . 0 6  

x~h~ 

0 . 1 4  
0 .21  

0 .35  

CONTRIBUTION TO 

. . . . . . . . . . . . . . . .  

0 . 0 9  . . . . . . . . . . .  
0 . 1 8  0 .12  . . . . .  
0 . 1 6  0 . 2 4  . . . . .  
. . . . . . . . . . .  0 . 2 0  

0 .43  0 . 3 6  0 . 2 0  

~zh~ 

0 . 3 4  

0 . 3 4  

xz~ 

0 .345  

O. 345 

xzh~ 

0 . 3 4  
O. 48 

0 .82  i . . . . . .  

0 . 2 0  

0 . 2 0  

T A B L E  3 

DISPERSAL FOR d = 2 

POLICY 

x"hg 

A . . . . . . . . . . .  0 . 03  
B . . . . . . . . . . . . . . . . . . . .  

C . . . . . . . . . . . . . . . . . . . .  

D . . . . . . . . . . . . . . . . . . .  
E . . . . . . . . . . . . . . . . . . . .  

T o t a l . . .  O. 03 

CONTRIBUTION TO 

u u u u u u 
x hi x hz x hs x~h~ x~kl 

0 .17  
0 .255  
0 . 0 9  
0 . 0 8  

0 .595  

0 .045  . . . . . . .  
0 .21  . . . . . . .  
0 . 32  . . . . . . .  
0 . 1 0  0 . 1 0  

0 .675  0 . 1 0  

0 .345  
0 .51  
0 .72  

1.575 

0 . 2 5  

0 . 2 5  

T A B L E  4 

T R U  N C A T I O N  

tt u 
A M O U N T  ~ h i  Xth~ 

aT Rxsx 

• 0  . . . . . . . .  

1 . . . . . . . .  

2 . . . . . . . .  

. . . . . . . .  

4 . . . . . . . .  

5 . . . . . . . .  

6 . . . . . . . .  

d - - - - I  d = = 2  

o 06/~'°°3-~ 
0135 ~ 0  35+0 03+0 215 
0 43~__ 
0 . 3 6  j ~ 0 . 3 6 + 0  2 1 5 + 0 . 1 0  
o.2o~_ 

- ' ~ 0 . 1 0  

d = = l  d----2 

~.~,dropped 
0 . 3 4  - ~  
0 .345  ~ . _ , 0 . 3 4 5 + ~ ( 0 . 8 2 )  
O. 8 2 " ' " ~  

~(o. 20) 
0.20 ~ 

2 2 3  



TABLE 5 

UPPER BOUNDS (d= 1.00) FOR NET AND EXPONENTIAL (a=0.10) 
STOP-LOSS PREMIUMS 

Net Exponential Amount Frequency Cumulative 
Premium Premium 

0 . 0 . .  
1.00. 
2.00. 
3.00. 
4.00. 

5 . 0 0  . . . . . . . . . . . . .  

6.00 . . . . . . . . . . . . .  
7.00 . . . . . . . . . . . . .  
8.00 . . . . . . . . . . . . .  
9.00 . . . . . . . . . . . . .  

10.00. 
11.00. 
12.00. 
13.00. 
14.00. 

15.00. 
16.00. 
17.00. 
18.00. 
19.00. 

20.00. 
21.00. 
22.00. 
23.00. 
24.00. 

25.00. 
26.00. 
27.00. 
28.00. 
29.00. 

30.00 . . . . . . . . . . . .  
3 1 . 0 0  . . . . . . . . . . . .  
3 2 . 0 0  . . . . . . . . . . . . .  
3 3 . 0 0  . . . . . . . . . . . .  i 
34.00 . . . . . . . . . . . .  i 

3 5 . 0 0  
36.00 

0.246597 
0.014796 
0.086753 
0.111224 
0.110397 

0.092859 
0.061008 
0.065427 
0.054577 
0.041321 

0.030579 
0.023308 
0.018344 
0.013149 
0.009218 

0.006504 
0.004596 
0.003176 
0.002123 
0.001414 

0.000940 
0.000617 
0.000398 
0.000253 
0.000161 

0.000101 
0.000063 
0.000039 
0.000024 
0.000014 

0.000009 
0.000005 
O. 000003 
0.000002 
0 . 0 0 ( 0 1  

0.000001 
0.000000 

0.246597 
0.261393 
0.348146 
0.459370 
0.569766 

0.662625 
0.723633 
0.789060 
0.843637 
0.884958 

0.915537 
0.938845 
0.957189 
0.970338 
0.979556 

0.986061 
0.990656 
0.993833 
0.995956 
0.997370 

O. 998309 
O. 998926 
O. 999324 
O. 999578 
O. 999738 

O. 999839 
O. 999902 
O. 999941 
O. 999965 
O. 999979 

O. 999988 
O. 999993 
O. 999996 
O. 999998 
O. 999999 

O. 999999 
1.000000 

4.490000 
3.736597 
2.997990 
2.346135 
1.805505 

1.375271 
1.037897 
0.761530 
0.550590 
0.394228 

0.279186 
0.194723 
0.133568 
0.090757 
0.061096 

0.040652 
0.026713 
0.017369 
0.011202 
0.007158 

O. 004528 
O. 002837 
0.001764 
O. 001088 
O. 000666 

O. 000404 
o. 000243 
o. 000145 
o. 000086 
0.000051 

o. 000030 
0.000017 
0.000010 
0.000006 
o. 000003 

0.000002 
0.000001 

5.410417 
4.560266 
3.733002 
2.981955 
2.334229 

1.797797 
1.363697 
1.006613 
O. 730186 
0.522717 

o. 369178 
O. 256592 
O. 175434 
o. 118692 
O. 079494 

O. 052622 
O. 034416 
0.022278 
0.014301 
0.009097 

0.005731 
o. 003577 
0.002216 
0.001362 
O. 000830 

O. 000502 
O. 000301 
0.000180 
o. 000106 
O. 000063 

o. 000037 
0.000021 
0.000012 
0.00O007 
0.000004 

0.000002 
0.000001 
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TABLE 6 

LOWER BOUNDS (d--1.00) FOR NET AND EXPONENTIAL (a----0.10) 
STOP-LOSS PREMIUMS 

Amount 

~).0.. 
1.00. 
2.00. 
3.00. 
~.00. 
5.00. 

10.00 . . . .  

15.00 

Z0.00 

25.00 

30.00 

34.00 
?,5.00 
36.00 

Frequency 

0.181772 
0.061803 
0.073218 
0.171566 
0.065222 
0.100489 

0.027452 

0.004900 

0.006600 

0.000054 

0.00~04 

0.0o6o00 
0.000000 
0.000000 

Cumulative 

0.181772 
0.243575 
0.316793 
0.488359 
0.553581 
0.654070 

0.924600 

0.989611 

0.998973 

0.999922 

0.999995 

1 oooooo 
1.000000 
1.000000 

Net 
Premium 

4. 490000 
3. 671772 
2.915347 
2. 232140 
1. 720499 
1. 274080 

0.227178 

0.027959 

o.oo25o4 

0.000185 

0.000011 

0.00~01 
0.000~1 
0.000000 

Exponential 
Premium 

5.287705 
4.399739 
3.563379 
2. 794000 
2.175059 
1.632818 

0.293951 

0.035414 

0.003181 

0.000226 

0.00~)13 

0.006001 
0.000001 
0.000000 
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TABLE 7 

UPPER BOUNDS (d-- 2.00) FOR NET AND EXPONENTIAL (a ---- 0.10) 
STOP-LOSS PREMIUMS 

Amount 

D.0. .  
1.00. 
2.00. 
3.00. 
4.00. 
5.00. 
6.00. 

12.00. 

18.00. 

24.00. 

30.00. 

32.00. 
33.00. 
34.00. 
35.00. 
36.00. 

Frequency 

0.254107 
0.0 
0.151194 
0.0 
0.216502 
0.0 
0.136387 

0.036552 

0.004818 

0.000419 

0.0o6o27 
0.000010 
0.0 
0.000004 
0.0 
0.00(K~I 

Cumulative 

0.254107 
0.254107 
0.405301 
O.405301 
0.621803 
0.621803 
0.758190 

0.96i712 

0.99~)95 

0.999716 

0.999984 

0.999994 
0.999994 
0.999998 
0.999998 
0.999999 

Net 
Premium 

4.490000 
3. 744107 
2.998214 
2.403515 
1.808815 
1. 430618 
1.052421 

O. 144897 

o.omo9 

O. 000923 

0.000049 

0.000018 
0.000012 
0.000006 
0.000004 
0.000002 

Exponential 
Premium 

5.459282 
4.612913 
3. 780000 
3.067901 
2.376726 
1.879491 
1.407223 

O. 194~A29 

0.017659 

o.ooi181 

0.000062 

0.000022 
0.000014 
0 .00(08 
0.000005 
0.000003 
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TABLE 8 

LOWER BOUNDS (d= 2.00) FOR NET AND EXPONENTIAL (a~0.10) 
STOP-LOSS PREMIUMS 

Amount 

~).0.. 
1.00. 
2.00. 
3.00. 
t.00. 
5.00. 
5.00. 

L2.00. 

t8.00. 

24.00. 

;0.00 

32.00. 
;3.00. 
34.00. 
35.00. 
;6.00. 

Frequency 

0.161218 
0.0 
0. 253918 
0.0 
0. 240265 
0.0 
0.168459 

0.026420 

0.006940 

0.006023 

o.0o6ooo 
O.00OOOO 
0.0 
0.000000 
0.0 
0.0000(0 

Cumulative 

0.161218 
0.161218 
0.415135 
0.415135 
0.655400 
0.655400 
0.823859 

0.987843 

0.990594 

0.999992 

1.oo6ooo 
1.006000 
1.000000 
1.0000~ 
1.000000 
1.000000 

Net 
Premium 

4.150000 
3.311218 
2.472435 
1.887571 
1.302706 
0.958106 
0.613506 

0.036514 

0.00i126 

0.006021 

o.oo6oo0 
O.00~O 
0.000000 
0.000000 
0.000000 
0.000000 

Exponential 
Premium 

4.716655 
3.821895 
2.936929 
2.257233 
1.599683 
1.170472 
O. 765562 

o.04~o71 

o.ooi36o 

0.006025 

o.0o60oo 
0.006000 
0.000000 
0.000000 
0.000000 
0 . ~  
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TABLE 9 

LOWER BOUNDS (d=0.10) FOR NET AND EXPONENTIAL (a=0.10)  
STOP-LOSS PREMIUMS 

Amount 

0.0  . . . . . . . . . . . . .  
0 .10 . . . . . . . . . . . . .  

1 . 0 0  . . . . . . . . . . . . .  

1 . 6 0  . . . . . . . . . . . .  

1.70 . . . . . . . . . . . .  
1.80 . . . . . . . . . . . .  

2 .20 . . . . . . . . . . . .  
2 .30 . . . . . . . . . . . .  
2 .40 . . . . . . . . . . . .  

3 . 4 0  . . . . . . . . . . . .  

3.50 . . . . . . . . . . . .  
3 .60 . . . . . . . . . . . .  
3 .70 . . . . . . . . . . . .  
3 .80 . . . . . . . . . . . .  
3 .90 . . . . . . . . . . . .  
4 .00 . . . . . . . . . . . .  
4 .10 . . . . . . . . . . . .  

4 . 6 0  . . . . . . . . . . . .  

4.70 . . . . . . . . . . . .  
4 .80 . . . . . . . . . . . .  
4 .90 . . . . . . . . . . . .  
5 .00 . . . . . . . . . . . .  
5 .10 . . . . . . . . . . . .  
5 .20 . . . . . . . . . . . .  
5 .30 . . . . . . . . . . . .  
5 .40 . . . . . . . . . . . .  

6 .00 . . . . . . . . . . . .  

7.00 . . . . . . . . . . . .  

8 . 0 0  . . . . . . . . . . . .  

Frequency 

0.246597 
0 .0  

0 .0  

0 .0  
0.049319 
0 .0  

0 .0  
0.073979 
0 .0  

0.078911 
0 .0  
O. 098639 
0 .0  
0 .0  
0 .0  
O. 014796 
0 .0  

0.01i097 
0 .0  
0 .0  
0 .0  
0.049319 
0.015125 
0 .0  
0.019728 
0 .0  

0 .0  

o03i564 

0.003551 

Cumulative 

0.246597 
0.246597 

0.24~i597 

0.24~i597 
0.295916 
0.295916 

0.295916 
0.369895 
0.369895 

0.448806 
0.448806 
0 547445 
0 547445 
0 547445 
0 547445 
0 562241 
0 562241 

o 573338 
0 573338 
0 573338 
0 573338 
0 622657 
0 637782 
0 637782 
0 657510 
0 657510 

0.716775 

0.768125 

0.816655 

Net 
Premium 

4. 490000 
4.414660 

3.73~i597 

3.284555 
3.209215 
3.138806 

2.857173 
2. 786765 
2. 723754 

2.093650 
2.038530 
1.983411 
1.938155 
1.892900 
1.847645 
1.802389 
1.758613 

1.539734 
1.497067 
1.454401 
1.411735 
1.369069 
1.331335 
1.295113 
1.258891 
1.224642 

1.029209 

0.747126 

O. 54(r480 

Exponential 
Premium 

5.392013 
5.306456 

4.54½136 

4.038491 
3.955027 
3.875032 

3.556667 
3.477485 
3.403706 

2.676737 
2.611190 
2.545870 
2.488432 
2.431239 
2.374291 
2.317588 
2.262305 

1.989605 
1.936719 
1.884083 
1.831696 
1.779558 
1.731798 
1.685559 
1.639569 
1.595500 

1.344943 

0.984301 

o.71894o 
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TABLE 9--Continued 

Amount 

9.00. 

10.00. 

11.00. 

12.00 

14.00 

16.00. 

18.00. 

20.00. 

24.00. 

28.00. 

32.00. 

34.00. 

35.00. 

35.90. 
36.00. 

Frequency 

0.002959 

0.004932 

o.ooi81s 

o.oo6381 

o.ooi3os 

i 0.000367 

• 0.000148 

• 0 . 0 0 0 0 6 3  

• 0 . 0 0 0 0 2 4  

• 0 . 0 ( ~ 2  

• 0 . ~  

• 0 . ~  

• 0 . 0 0 t ~  

• 0 . ~  
• 0 . 0 0 0 0 0 0  

Cumulative 

0.872099 

0.900067 

0.9St~S34 

0.95i186 

0.976464 

0.989989 

0.995527 

o.998os1 

o.~7o3 

0.99()962 

0.99~)995 

O. 99c)998 

0.999999 

o.99~9 
1.000000 

Net 
Premium 

0.387504 

o.27s83s 

0.189156 

O. 128682 

o.os83s8 

0.025239 

0.01(~488 

0.004197 

O. 000594 

0.00()074 

0.006008 

0.006003 

0.006002 

0.006001 
0.000001 

Exponential 
Premium 

0.510486 

0.359412 

0.247744 

0.168073 

0.075471 

0.032298 

0.013286 

0.005265 

0.000735 

0.006091 

0.000010 

0.006003 

0.006002 

0.006001 
0.000001 
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TABLE 10 

N E T  P R E M I U M S  

~).. 
1 . .  

3 . .  
4 . .  
5 . .  

7 . .  
8 . .  
9 . .  
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

P( F l, a) /  P( F, a) 

d ~ 2  d-~ l 

O. 924 1.000 
O. 886 O. 983 
O. 825 : 0.972 
O. 805 O. 952 
O. 723 O. 955 

P( F u, a) /  P( F, a) 

d---- 1 d =~ 2 

1.000 1.000 
1.000 1.002 
1.000 1.000 
1.000 1.025 
1.002 1.004 

0.700 
0.596 
0.585 
0.478 
0.468 
0.371 
0.365 
0.284 
0.277 
0.209 
0.206 
0.151 
0.151 
0.107 
0.109 
0.075 

0.931 
0.902 
0.905 
0.863 
0.852 
0.830 
0.802 
0.794 
0.760 
0.741 
0.718 
0.696 
0.677 
0.655 
0.633 
0.611 

.005 1.045 

.008 1.023 

.019 1.085 

.008 1.041 

.017 1.114 

.020 1.076 

.029 1.162 

.038 1.126 

.032 1.212 

.046 1.170 

.044 1.275 

.058 1.226 

.063 1.361 

.068 1.288 

.081 1.451 

.079 1.358 

TABLE 11 

EXPONENTIAL PREMIUMS 

~). . 
1 . .  
2 . .  
3 . .  
4 . .  
5 . .  

7 . .  

9 . .  
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

P(Ft,.., o.1)/P(F,a, o.1) 

d ~ 2  

0.875 
0.842 
0.790 
0.761 
0.690 
0.658 
0.569 

d ~ l  

0.981 
0.969 
0.959 
0.942 
0.939 
0.918 
0.893 

P( F u, a, O.I)/ P( F, a, 0.1) 

d m  1 d m  2 

1.003 1.012 
1.004 1.016 
1.005 1.017 
1.006 1.035 
1.007 1.026 
1.010 1.056 
1.014 1 046 

0.546 
0.454 
0.435 
0.352 
0.338 
0.268 
0.257 
0.198 
0.191 
0.144 
O. 140 
O. 102 
0.101 
0.072 

0.889 
0.854 
0.839 
0.818 
0.792 
0.781 
0.750 
0.731 
0.7O9 

1.023 
1.016 
1.024 
1.027 
1.036 
1.044 
1.040 
1.053 
1.053 

1 094 
1 069 
1 127 
1 106 
1 176 
1 157 
1 229 
1 205 
1 293 
1.264 
1.379 
1.329 
1.468 
1.404 

0.687 
0.668 
0.646 
0.625 
0.604 

1.066 
1.071 
1.076 
1.089 
1.089 
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DISCUSSION OF PRECEDING PAPER 

B. J. J. ALTING VON GEUSAU:* 

I read the above paper with great interest and was quite surprised and 
impressed by the elegant solution the authors found for a problem as 
complicated as the rating in stop-loss contracts. However, I have a few 
questions, and I would also like to make some remarks. 

1. In the first part of the article the question "Why the exponential 
principle?" is answered. A score of reasons is provided why the variance 
and the standard deviation principle should be rejected, but formally 
speaking I cannot find any good reason why the net premium principle 
should be overruled. 

2. Is there any reason to restrict the discussion to the Poisson model 
for the number of claims concerned? The nontruncated Poisson dis- 
tribution does not fit too well in the described situation (as can be proved), 
so why not try the same technique on the truncated Poisson density or 
the negative binomial distribution as a model for the number of claims? 

3. Immediately preceding equation (15), the probabilities hi are 
introduced. Did the authors try to fit some a priori defined probability 
distribution on hi? 

4. From formula (17) the expectation and variance of the random 
variable X can be calculated. Would it not be a good idea to use these 
parameters with the central limit theorem in cases where the span d is 
too small to make the proposed calculations executable? 

5. If there are objections to the use of the central limit theorem in the 
above question, why not use the Edgeworth series approximation as 
described by Cram6r? 

HARRY H. PANJER: 

Professors Gerber and Jones have shown very neatly the theoretical 
pitfalls of some of the premium principles to which the exponential 
principle is not subject. Given that the exponential (and the net premium, 
as a special case) principle satisfies both properties P1 and P~, the natural 
question to ask is whether this is the only principle satisfying P1 and P2. 
The answer is clearly no. The exponential principle is of the form 

P =f-xE[f(s)]. 

* Mr. von Geusau, not a member of the Society, is actuary,  Nederlandse Reassurantie 
Groep. 
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If f(s) is any convex function, then by Jensen's inequality 

~[f(s)] > rE(s), 

and P1 is satisfied. Also, if f (s)  is a strictly monotonic (increasing or 
decreasing) continuous function that takes on finite values over the 
range 0 < s < Max [s], then both PI and P~ are satisfied. Thus, the 
entire class of continuous monotonic convex functions that take on 
finite values over the range 0 < s < Max [s] satisfies the properties P~ 
and P~. This class does not contain all the functions satisfying Px and 
P~ but serves only as an example. One could then construct premiums 
consistent with Px and P~ by using such functions as 

P = [E(s~)] TM , a > 1, (1) 

P = [E(b + s)'] TM -- b,  a >_ 1, b _> 0 ,  (2) 
and 

p = 21r Max [s] tan -1 E tan Max[s] 

O < s <  Max[s ] .  

(3) 

The exponential principle is just one example of functions in this class. 
The key to reducing the class of desirable functions is to impose addi- 
tional properties that must be satisfied by the premium principle. The 
requirement that premium principles be iterative does not reduce the 
class. Any premium of the form P -- f - lE[f(s)]  is iterative, as is shown in 
the author's reference [3], page 165. The requirement that premiums be 
additive does, however, reduce the class significantly. Gerber 1 shows that, 
if the utility function has certain desirable properties consistent with 
economic theory, then only the net premium principle and the exponen- 
tial principle produce premiums that are additive. It is important to 
stress the effect of this additivity requirement on the choice of premium 
principle. It is this property that makes the exponential principle so 
attractive. 

In Section II of the paper, following the derivation of equation (12), 
analogous to Mereu's formula (9), the authors state that, if the moment 
generating function is available, determination of P(F,  a, a) requires the 
knowledge of the distribution only in the left-hand tail region. However, 
it is known * that the moment generating function completely specifies 

x Hans U. Gerber, "On Additive Premium Calculation Principles," ASTIN, VII 
(1974), 217. 

2 Samuel S. Wilks, Mathematical Statistics (New York: John Wiley & Sons, 1962), 
p. 125. 
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the distribution, and therefore the knowledge of the entire distribution is 
implicit in the knowledge of the moment generating function. 

I thank the authors for another stimulating paper in this area. 

(AUTHORS' REVIEW OF DISCUSSION) 

HANS U. GERBER AND DONALD A. JONES: 

We appreciate the comments of the two discussants. 
In reply to Mr. von Geusau's remarks (using the numbers of his 

questions): 
1. The net premium principle can be viewed as a limit of the family of 

exponential principles (a--* 0). Thus it has all the nice properties of the 
exponential principle except one: it does not provide for a loading. 

2. The method of dispersal, which produces upper bounds, works for 
an arbitrary claim number distribution. However, the method of trunca- 
tion, which produces lower bounds, depends on the Poisson assumption. 

3. The original claim amount distribution can be any distribution, not 
necessarily discrete. Then, for a given span, we assign to it two ari thmetk 
claim amount distributions, one with the method of dispersal and the 
other with the method of truncation. 

4 and 5. The classical approximations (normal, Edgeworth, Esscher, 
and Bowers) produce "point estimates" for the stop-loss premium, and 
it is difficult or impossible to establish rigorous bounds for the errors 
involved. In contrast to these methods, our method produces upper and 
lower bounds (or an "interval estimate") for the stop-loss premium. 

We are glad that Mr. Panjer mentions Jensen's inequality. This 
inequality has still not received the recognition it deserves by actuaries. 
For example, the celebrated inequality between a life annuity and the 
corresponding annuity-certain follows immediately from Jensen's in- 
equality. Regarding Mr. Panjer's comment about Section II, a distinc- 
tion should be made between numerical knowledge of F(x) for certain 
values of x and implicit knowledge of F. 




