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T I M E  S E R I E S  ANALYSIS  A N D  F O R E C A S T I N G  

ROBERT B. MILLER AND JAMES C. HICKMAN* 

If you do not think about the future, you cannot have one. 
--GALSWORTHY 

ABSTRACT 

Actuaries study the past experience of claims, expense, investment, 
and other economic processes developing over time in order to build 
models for insurance systems that will operate in the future. This paper 
outlines a method of parametric modeling that is applicable to a broad 
class of time series. The resulting models may be used to produce fore- 
casts and forecast intervals that will convey a measure of the reliance 
that may be placed in the forecasts. 

I. INTRODUCTION 

F 
ORECASTING is at the heart of actuarial science. Actuaries fix 
insurance prices not to match past costs but to balance a stream 
of future expected costs. Reserves reflect expectations about the 

insufficiency of future income to balance future claim payments. 
In formulating these expectations, some kind of model for the future 

is required. This model can be built only on knowledge of the past. 
Consequently, actuaries study past claims, expense, and investment 
experience as a preliminary step to building a model of the future. In this 
analysis it is highly convenient to view each value of a particular process 
of interest as being a realization from an unchanging random generator 
of values. The actuary's task is then to use the assumed independent 
observed values of the process to estimate the distribution from which 
the stream of future values, which will determine the experience of the 
insurance system, will be selected. Many of the existing stock of sta- 
tistical methods are directed toward estimating a distribution from a set 
of independent observations determined by the distribution. 

Yet the concept of a single unchanged distribution generating in- 
dependent insurance cost values is obviously not universally adequate. 
An example of distributions shifting over time is provided by annuity 

* Mr. Mitler, not a member of the Society, is associate professor of statistics and 
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mortality. The experimental evidence of this century is very convincing 
that annuity mortality is not generated by an unchanging process. An 
alternative to the classical stationary model is the time-trend model 
brought into the mainstream of North American actuarial science by 
Jenkins and Lew [8]. They adopted the model 19~O+kq~ ___ 19S0q,(1 _ s=)~, 
where 1os0+kq, is the mortality probability that will be expected to be 
experienced in calendar },ear 1950 + k at age x, and s, is an annual im- 
provement rate. Although we cannot push the analog)- very far, this 
time-trend model, in its basic concept, has elements in common with the 
autoregressive time series model to be discussed later. 

In their role as technical insurance managers, actuaries are involved 
with short-term as well as long-term forecasts. Cash flows, security prices, 
policy loans, sales, claim numbers, and claim amounts are examples of 
processes developing over time for which short-term forecasts may be 
very useful. 

The purpose of this paper is to explain a technical method for analyzing 
the past experience of a process that is developing over time for the pur- 
pose of forecasting. Almost equally important, the method will provide 
indexes of the reliance that may be placed on the forecast and will also 
provide a warning when one is yielding to the temptation to read more 
structure into past experience than is really there. The justification for 
this review is that these methods are not covered in the Society's course 
of study on statistics, and forecasters in diverse fields have found them 
useful. 

Since the basic ideas that are the building blocks for these methods are 
already covered in the Societys course of reading on statistics and 
numerical analysis, is it reasonable to ask why these methods were not 
made routine long ago? The answer is that these methods require ex- 
tensive computation in their application and this was impractical before 
large-scale electronic computers became available. In addition, the reader 
will note that these methods involve ideas from several traditional fields 
in applied mathematics..'~Iethods intersecting several existing fields seem 
to develop more slowly because there are relatively few generalists who 
can effectively integrate ideas from apparently independent areas. 

Even before starting our technical exposition, it seems wise to make 
tentative responses to certain fundamental questions that will naturally 
arise. The methods reviewed in this paper are only one of several families 
of technical methods for analyzing numerical data for the purpose of 
forecasting [4, 7}. Some of the others, such as multiple regression, have al- 
ready been used in actuarial science [10, 12]. The methods to be developed 
here will involve the analysis of a single variable time series. Analysis in- 
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volving past values of several series often lead to excellent forecasts, but 
such models require more intricate mathematics. In addition, the values 
of the associated series may not in practice be available in time to permit 
forecasting. Frequently, the past values of the single variable time series 
under study capture the essence of the impact of associated series [9, 
111. 

I I .  I N T U I T I V E  DISCUSSION 

A common assumption made in many theoretical discussions of sta- 
tistics is that one's observations are generated independently. However, 
particularly in the nonexperimental sciences, research workers are pain- 
fully aware of the fact that their observations are often necessarily cor- 
related. Unfortunately, many statistical methods designed for use on 
independent observations are not effective when used on correlated 
observations. Hence it behooves practical research workers to include 
in their bags of statistical tools methods which are designed to handle 
such observations. Such tools fall under the rather vague title of "time 
series analysis" in the parlance of statisticians. Our purpose in this paper 
is to provide an introduction to time series methods for actuaries. We 
will deal mainly with the approach developed by Box and Jenkins [1]. 
Our justification is that this approach is fairly easy to understand and to 
implement and that this approach is being used successfully by a number 
of research workers faced with business and economic forecasting prob- 
lems. 

In this section we will look at several examples of time series data and 
some of the complications that arise when they are analyzed. These 
examples set the stage for our discussion of methods for handling such 
data. 

Our first example is the hypothetical series plotted in Figure 1. The 
abscissa is a "t ime" axis, and time is assumed to be measured at equally 
spaced, discrete points. The ordinate is the observation axis. An observa- 
tion at time t is denoted by Zt. Even though Figure 1 displays only 100 
observations, the points are connected by straight lines to aid the visual 
examination of the series. Casual observation reveals that the observa- 
tions appear to vary about a fixed mean level (the line denoted by u in 
Fig. 1) and within fixed bands about that level (the lines marked u and l 
in Fig. 1). Note further that the observations tend to fall above and below 
their mean level in an alternating pattern and that the pattern is quite 
consistent throughout the series. This suggests that the observations 
may be correlated. To check this, we constructed Figures 2 and 3. 
Figure 2 is a scatter diagram of the points (Zt-b Zt) for t = 2, 3, . . . , 
100, while Figure 3 is a scatter diagram of the points (Z,-2, Zt) for t = 
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3, 4 , . . .  , 100. These figures indicate negative and positive correlation 
between observations one and two time periods apart, respectively. 
Observations separated by a specified number of time periods are said 
to be lagged• Thus Zt-1 and Zt are one lag apart, Zt-2 and Zt are two lags 
apart, and so forth. If lagged observations in a time series are correlated, 
then the series is said to be autocorrelated. A numerical measure of auto- 
correlation in an observed series at any lag k = . . .  - 2, --1, 0, 1, 2, 
• . . , is given by the sample autocorrelation coefficient 

L ( Z t  - -  Z ) ( Z t - k  - -  Z )  
r ,  = , = * + 1  , ( 1 )  

n 
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For  our  h y p o t h e t i c a l  series in F igure  1, 2 --- 99.92, and  

fO ~ 1 ,  

100 

~ ( z ,  - 2)(z,_~ - 2) 
t = 2  

rl = 1oo = - - 0 . 5 5 ,  

Z ] ( z , -  2)~ 

~ ( z , -  2)(z,_~- 2) 
t = 3  

r~ -- 10~ -- 0 . 3 0 ,  

~ ( z , -  2)~ 

r3 = - - 0 . 1 8 ,  r4 = 0 . 1 4 ,  r5 = - - 0 . 1 4 ,  

re --  0 . 0 3 ,  r7 - 0 . 0 0 .  
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(We need only consider k ~ 0 because r_~ = r,.) The sample autocor- 
relation coefficients move rapidly toward zero, indicating that auto- 
correlations after lag 2 or lag 3 are not very significant compared to 
those of shorter lags. 

The series in Figure 1 evidences properties of stationarity. The process 
generating a series is said to be stationary (in the wide sense) if the 
following facts are true: 

a) g(Zt )  and Vat (gt) = g [ Z t -  8(Z0] ~ are constant functions of the 
index t. 

b) Coy (Zt, Zt÷~.) = 8(ZtZt+,~) -- [~(Zt)] 2 is some function of the lag k 
alone. (Note that ~ denotes mathematical expectation.) 

A stricter form of stationarity is the requirement that the joint distributions 
of any two sets of random variables { Ztl, Zt  . . . . .  , Zt,} and { Zt,+~, Z t z + , , . . . ,  
Zt,+,} be the same. For many practical applications wide-sense station- 
arity is all that need be assumed, although it should be pointed out that 
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the imposition of joint normal distributions on the variables implies the 
stricter form of stationarity. The series in Figure 1 appears to be gen- 
erated by a stationary process because it varies about a fixed mean level, 
and it displays a consistent pattern of autocorrelation and variability 
throughout its length. A further useful characteristic of many stationary 
processes is that their autocorrelation functions (the theoretical analogue 
of the sample autocorrelation coefficients) decay quickly as k increases 
[1, p. 1741. 

Many series in practice are not generated by a stationary process. 
Often series fail to vary about a fixed mean level. Instead they "me- 
ander" about or exhibit strong upward or downward trends. Our next 
two example series exhibit these sorts of nonstationarity. They were 
selected not only because they illustrate practical and important models 
but also because they are series of direct concern to actuaries. 

Figure 4 displays the series of nominal interest rates, expressed 

6.00 

5.50 

5.00 

4.50 

4.00 

u 3.50 

3 . 0 0  

2.50 

• t , l ' 

2 
2 . 0 0  

1 . 5 0  ~ 

0.0 20.0 

' ' F ' ' ' l ' ' ' I " -~  ' - ~ -  I , ~ , t - ~  

i 
't / 

/ 

2"J 'I / 
/ -I 
; i 

40.0 60.0 80.0 100.0 120.0 140.0 160.0 

Time Period 
F1o. 4.--Nominal annual interest rates on three-month Treasury bills, 1956-69 



274  T I M E  S E R I E S  A N A L Y S I S  AND F O R E C A S T I N G  

as  a p e r  c e n t ,  on  t h r e e - m o n t h  U n i t e d  S t a t e s  T r e a s u r y  bi l l s  for  t h e  

p e r i o d  J a n u a r y ,  1 9 5 6 - J a n u a r y ,  1969. T h i s  is a m e a n d e r i n g  se r i e s  w h i c h  

d o e s  n o t  d i s p l a y  c o n s i s t e n t  b e h a v i o r  a b o u t  i t s  m e a n  v a l u e  ~¢ = 3 .439 .  

H e n c e  we  c a n n o t  e x p e c t  t h e  a u t o c o r r e l a t i o n  c o e f f i c i e n t s  to  p r o v i d e  

i n f o r m a t i o n  a b o u t  t h e  a u t o c o r r e l a t i o n  w h i c h  m a y  e x i s t  in t h i s  se r ies .  

P a n e l  1 of  T a b l e  1 s h o w s  t h e  a u t o c o r r e l a t i o n  c o e f f i c i e n t s  for  l ag s  1 -24 .  

TABLE 1 

SAMPLE AUTOCORRELATION COEFFICIENTS FOR 
TREASURY BILL SERIES 

PANEL 1: ORIGINAL SERIES PANEL 2: FIRST DIFFERENCE 

Lag Coefficient 

1 . . . . . . . . . . . .  95 
2 . . . . . . . . . . . .  89 
3 . . . . . . . . . . . .  82 
4 . . . . . . . . . . . .  76 
5 . . . . . . . . . . . .  69 
6 . . . . . . . . . . . .  63 
7 . . . . . . . . . . . .  58 
8 . . . . . . . . . . . .  53 
9 . . . . . . . . . . . .  50 
10 . . . . . . . . . .  47 
11 . . . . . . . . . . .  45 
12 . . . . . . . . . . .  43 
13 . . . . . . . . . .  40 
14 . . . . . . . . . .  37 
15 . . . . . . . . . . .  35 
16 . . . . . . . . . . .  33 
17 . . . . . . . . . .  31 
18 . . . . . . . . . .  31 
19 . . . . . . . . . .  31 
20 . . . . . . . . . .  34 
2 1  . . . . . . . . . .  36 
22 . . . . . . . . . .  39 
23 . . . . . . . . . .  42 
24 . . . . . . . . . .  44 

Lag Coefficient 

1 . . . . . . . . . . . .  39 
2 . . . . . . . . . . . .  20 
3 . . . . . . . . . . . .  07 
4 . . . . . . . . . . . .  02 
5 . . . . . . . . . . .  - - .  10 
6 . . . . . . . . . . .  - - , 2 3  
7 . . . . . . . . . . .  - - , 3 0  
8 . . . . . . . . . . .  - - .  16 
9 . . . . . . . . . . .  -- ,07 
10 . . . . . . . . . . .  0 |  
l l  . . . . . . . . . .  -- .01 
12 . . . . . . . . . . .  08 
13 . . . . . . . . . . .  04 
14 . . . . . . . . . .  - -  .00 
15 . . . . . . . . . .  - - . 0 0  
16 . . . . . . . . . .  - - . 1 0  
17 . . . . . . . . . .  - - . 1 5  
18 . . . . . . . . . .  -- . 18 
19 . . . . . . . . .  - - .  15 
20 . . . . . . . . . .  - - .  08 
21 . . . . . . . . . .  - - .  10 
22 . . . . . . . . . .  -- . 16 
23 . . . . . . . . . .  - - ,  01 
24 . . . . . . . . . . .  15 

T h e y  d o  n o t  d e c a y  t o w a r d  ze ro  v e r y  q u i c k l y ,  i n d i c a t i n g  t h e  l a c k  of  

s t a t i o n a r i t y  t h a t  w a s  o b v i o u s  b y  v i s u a l  i n s p e c t i o n  o f  t h e  s e r i e s  a s  wel l .  

I n  v i e w  of  t h i s  d i f f icul t )"  it  is n a t u r a l  to  s e e k  a t r a n s f o r m a t i o n  of  t h e  

o r i g i n a l  i n t e r e s t  r a t e  s e r i e s  t h a t  is s t a t i o n a r y  a n d  t o  t r y  to  a n a l y z e  t h i s  

t r a n s f o r m e d  se r i e s .  A r e a s o n a b l e  q u a n t i t y  to  l ook  a t  h e r e  is t h e  c h a n g e  in 

i n t e r e s t  r a t e s  f r o m  m o n t h  to  m o n t h .  I n  f i n i t e - d i f f e r e n c e  n o t a t i o n  f a m i l i a r  

t o  a c t u a r i e s ,  we  w a n t  t o  l ook  a t  t h e  f i r s t  b a c k w a r d  d i f f e r e n c e  V Z t  = 

(1 - -  E - t ) Z ,  = Z t  - Z t _ I .  F i g u r e  5 is a p l o t  o f  t h e  VZt  se r ies ,  a n d  t h e  

s e c o n d  p a n e l  o f  T a b l e  1 d i s p l a y s  s o m e  a u t o c o r r e l a t i o n  coe f f i c i en t s  c a l c u -  
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lated from it. The coefficients appear to fall roughly along a damped sine 
wave. We shall see later that such behavior is characteristic of a certain 
kind of stationary process. Hence we may tentatively accept the series 
( 1  - -  E--1)Z, as being generated by a stationary process. 

Figure 6 displays a series obtained from the Insurance Services Office 
in New York. The observations are year-end quarterly indexes of auto- 
mobile property damage paid claim costs, 1954-70. The series has a 
decided upward trend that appears somewhat quadratic. This nonsta- 
tionary behavior is reflected in the autocorrelation coefficients displayed 
in panel 1 of Table 2. Again we must look for a transformation to reduce 
the series to stationarity. We might try the first backward difference 
again, but panel 2 of Table 2 shows that this series is also nonstationary. 
Such a result should not be too surprising given the quadratic-like trend 
exhibited in Figure 6, but we should expect the second backward differ- 
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AUTOCORRELATIONS FOR PROPERTY DAMAGE 

CLAIM COST SERIES 

PANEL 1: ORIGINAL SERIES 

2 . .  
3 . .  

7 .  , 

9 . .  

10. 
11. 
12. 

PANEL 2: FIRST DIFFERENCE 

L a g  C o e f f i c i e n t  

.94 

.88 

.81 
• 75 
.69 
.64 
.58 
.53  
.48 
.43 
.39 
.34 

Lag Coe f f i c i en t  

! . . . . . . . . . . . .  84 
2 . . . . . . . . . . .  I .82 
3 . . . . . . . . . . .  76 
4 .  ! .68 
5." . . . . . . . . .  I .63 
6.  ~ .57 
7." ......... I 51 
8 ........... ! .50 
9.  i .45 
l o l i i i i i i i i i  I .4o  
11 . . . . . . . . . .  I .38 
12 . . . . . . . . . .  : .33  

PANEL 3: SECOND DIFFERENCE 

L a g  Coe f f i c i en t  

1 . . . . . . . . . . .  - - . 5 4  
2 . . . . . . . . . . . .  15 
3 . . . . . . . . . . . .  02 
4 . . . . . . . . . . .  - - . 0 5  
5 . . . . . . . . . . . .  02 
6 . . . . . . . . . . .  - -  . 06  
7 . . . . . . . . . . .  - - . 1 3  
8 . . . . . . . . . . . .  24 
9 . . . . . . . . . . .  - - . 0 5  
10 . . . . . . . . . .  - - .  1.5 
l l  . . . . . . . . . . .  19 
12 . . . . . . . . . .  - - . 0 9  
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ence to appear stationary. Panel 3 of Table 2 is consistent with this 
expectation. The autocorrelation coefficients of (1 -- E-1)2Zt die out very 
quickly. 

Our final example illustrates a different sort of nonstationarity that is 
sometimes encountered in practice--nonstationarity of variance. Fig- 
ure 7 shows daily stock market rates of return, approximately from 1963 
to 1971. These data are based on Standard and Poor's index and were 
made available to us through the courtesy of the New York Life Insur- 
ance Company. Note that while the series appears to vary about a fixed 
mean level of zero, the pattern of variability changes with time. In tech- 
nical terms, it appears as if occasionally the variance of the distribution 
shifts. 

The ancillary benefit of the examples of this section is that they illus- 
trate the insights that may be gained from simple visual displays of the 
original data and of transformations of the data. 

I I I .  L I N E A R  TIME SERIES MODELS 

In this section we shall introduce a class of mathematical models that 
is often used to graduate time series data. The distinctive feature of these 
models is that they explicitly allow for correlation among the observa- 
tions. The primary purpose of fitting models to time series data is to 
allow the researcher to forecast future observations in the series and to 
obtain a measure of the potential error in his forecasts. 

We shall motivate the time series models by reference to the familiar 
linear multiple regression model 

y~ = ~0 + ~lXl~ + ~2X~i + . . .  + ~ X ~  + e~, (2) 

i = 1, 2 , . . . ,  n. Here y is considered the dependent variable whose 
value depends on the values of the independent variables X1 . . . .  , Xp 
plus some observational error e. The ¢i coefficients are unknown param- 
eters, and the errors el, e 2 , . . . ,  en are assumed to be uncorrelated, with 
means equal to 0 and variances equal to the common unknown value ~r ~. 
Lewis has used a multiple regression model to calculate (forecast) ex- 
pected profit as a function of withdrawal rates and amount of insurance 
[101. 

The time series models we wish to consider are similar to equation (2), 
except that the "independent" variables are to be taken as past observa- 
tions in the series. This is how autocorrelation is to be introduced. In 
order to distinguish the time series models from the model in equation (2), 
we shall introduce some new notation. The correspondences between 
the items in the time series models and equation (2) are given in the 
tabulation on page 279. Thus the time series models may be written in 
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I tem Regression T i m e  Series 
Model  Models  

Index . . . . . . . . . . . . . . . . . . . . .  i t 
"Dependent" variable . . . . . . .  yi Z.'t 
"Independent" variable . . . . .  Xk, Zt-k 
Coefficients . . . . . . . . . . . . . . . .  t/, IIk 
Error . . . . . . . . . . . . . . . . . . . . .  ei a t 

the general form 

"2 ,  = n,"2,_, + rt22,_~ + . . .  + rh '2 ,_k  + . . .  + a , ,  (3) 

where we assume tha t  the at's are uncorrelated, with common mean 0 and 
common variance a 2. We also assume that  any at is uncorrelated with 
past  observations 2t-1, 2t-~, • . . . The dot  over the Z 's  denotes the fact 
that  if the Z 's  are s ta t ionary  with fixed mean u, then we consider '2 = 
Z --  g in equation (3)• I f  the Z 's  are nonstat ionary,  there may be no 
fixed mean level g, so tha t  2 = Z and we need not use the dot. Note  
that  equation (3) allows us to enter an infinite number  of past  Z ' s  into 
the model. In  other words, theoretically speaking, the present  observa- 
tion may  be a function of the entire pas t  his tory of the series. We will 
now consider some specific examples of equation (3). 

Example / . - - S u p p o s e  that  I / t =  q~, H k = 0 ,  k2> 2, - i  < ¢ <  1. 
Then 

"2, = 4~2',-, -4- a t .  (4) 

This is called the autoregressive model of order 1 - -abbrev ia ted  A R ( 1 ) - -  
because it looks like a simple linear regression of the present  observation 
on the previous observat ion of the series. The  model can be interpreted 
as saying tha t  the current  observation "2t is a fraction ¢ of the previous 
observation plus a random "shock"  a,. 

The assumption --  1 < ¢ < 1 ensures tha t  equation (4) is a s ta t ionary  
model. To prove tha t  this assumption will ensure s ta t ionar i ty  is a ra ther  
technical mat ter .  However,  some insight may  be gained from the follow- 
ing development.  Using successive subst i tut ion,  we obta in  

"2t = 4>2t-I q- at = ¢(¢2"t-2 + at-l) -'b at 

= 6:Zt-2 q- ¢~at-x q- at 

= ~32,_3 + ep~a,_2 + ~a,_x + a, 
(4')  

k--1 

= ~k2t_k + ~a,-j. 
i=O 
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This shows that  the dependence of Z, on past  Z,-k's and at_~.'s decreases, 
since $~--+ 0 as k ~ o~. Hence the observations are being drawn toward 
an equilibrium position. In  fact, if the shocks, at, into the model were 
somehow "turned off" at some point in time, the observations, 2"t, 
would eventually satisfy the equation ~2t = ¢~'2t_~., which tends to the 
equation Zt = 0, or Z, = /a, the equilibrium value. 

Another way to express stationarity is to define the theoretical auto- 
correlation function 

~ ( z , -  ~ ) ( z , + k  - ~) ~ ( 2 , 2 , + ~ )  
= ( s )  

P~ = ~ ( z ,  - ~ )2  ~ ( ~ )  , 

k . . . .  -- 2, -- 1, 0, 1, 2 . . . .  [5]. This function is the theoretical analogue 
of the sample function defined in equation (I). The assumption of sta- 
tionarity implies that  the denominator in equation (5), the variance of 
the series, is a constant value, "/0, say, while the numerator, the covariance, 
is a function of k alone, yk, say. To compute yk for the AR(1) model in 
equation (4), note that  

e~ a(2,Z,+~) = ~[(~2,_~ + ,k-~a,_~+~ + . . .  + epa,_~ + a,)Z,_~] 

k ~:2 (6) = ¢~ ~(Z,_k)  • 

Equat ion (6) follows because a,, at-~, . • . , at-k+, are uncorrelated with 
-Pt-k, that  is, ~(at-iZ,-k) = 0 f o r j  -- 0, 1, . . . , k - 1. But equation (6) 
may be written 

"/k = ¢ ~ ' 0 ,  
so tha t  

pk = - -  = , k . . . .  - -2 ,  --1,  0, 1, 2 . . . . .  (7) 
~'0 

Thus  it is clear that  the theoretical autocorrelations tend to zero as {kl 
becomes large. If  we had taken ]¢1 > 1, we can see from equation (4') 
that  the effect of past observations and shocks would have grown rather 
than diminished. In this case the model would not be stationary, as the 
observations would not have been drawn toward an equilibrium value. 
We could not have defined pk as we did in equation (5), because the 
variance of the model depends on t when i~'[ > 1. 

An important example of the nonstationary case occurs when ¢ = 1, 
so that  the model is 

Z t  "~" ZI-1  -'}- a t .  (8) 

This is a random walk model which has appeared in man)" models of 
stock price change. The present observation is the previous observation 
plus a random shock. If  in equation (7) we let ¢ approach unit)', we see 
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that  p~-o  1, which suggests that  if the sample autocorrelations were 
calculated for data  generated by  a random walk, they would tend to s tay 
close to unity rather than die out. We have seen in our example that  this 
sort of behavior is characteristic of other nonstat ionary series as well. 

If  we asstlme in equation (8) that  Z t  = O, t < O, then 

Z I  = a l  , 

Z2 = Z1 + ao = al + a2, 

Z , =  Z , _ l + a , =  a ~ + a 2 + . . . + a , _ ~ + a ~ ,  

so that  8(Z,) = 0 and Var (Z t )  = t¢ 2, t > 0. This result shows the de- 
pendence of the variance of Zt on t and hence the absence of statistical 
equilibrium. 

E x a m p l e  & - T h e  autoregressive model of order p, abbreviated AR(p),  
is simply the model in equation (3) with IIv ~ 0, and I I k =  0, k > p + 1. 
The autoregressive model of infinite order is given by equation (3) with 
the condition that  there is no p '  > 0 such that  1I, = 0 for all k > p' .  For 
these models to be stat ionary,  certain restrictions must be placed on the 
coefficients. For example, the AR(2) model with I ] t =  ~bl, 112 = ~b2, 
II~. = 0, k > 3, is s ta t ionary if and only if the following conditions are 
satisfied : 

(see Box and Jenkins [1, Fig. 3.2, p. 59]). Figure 8 shows the various 
possible pat terns  that  AR(2) autocorrelations can take. In general, for 
stat ionary AR models the autocorrelations decay toward zero as k in- 
creases. Notice in particular the pat tern in Figure 8, b, which is reminis- 
cent of a damped sine wave. 

Now consider the s tat ionary infinite autoregressive model with l l k =  
_Ok, --1 < 0 < 1, that  is, 

2 ,  = - - 0 2 , _ ~  - -  022,_~ --  . . .  + a , ,  (9) 
or 

oo 

a, = 2 ,  + ~,o~2,_~. (9') 
k = !  

.Multiply equation (9'), with t replaced by t -- 1, by 6, and subtract  the 
resulting equation from equation (9') to obtain 

Z t  =- at  - -  Oat_ l .  (10) 

Thus an observation from the infinite autoregressive model in equation 
(9) can be thought  of as the difference between two components:  (a) the 
current shock and (b) a fraction 0 of the previous shock. The  model in 
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equation (10) is called a m o v i n g  a v e r a g e  model of order 1--abbreviated 
MA(1). The advantage of the simple representation in equation (10) 
becomes clear when one contemplates calculating the theoretical auto- 
correlations of the model in equation (9). This appears to be a formidable 
task because of the infinite number of past observations present on the 
right-hand side. However, from equation (10) we obtain the simple 
calculations 

~--- 2 2 8 ( 2 ~ )  = ,?,(at - -  Oat_,)  2 8(a~ - -  2Ca,at_ ,  + O a t_ , )  = (1 q-- O~)o "2 , 

8 ( Z t Z ' , _ , )  = , 2 , [ ( a t -  Oat_ , ) ( a ,_ ,  - -  Oat_2)] = - 0 o  "2 , 

~ ( 2 , 2 - - )  = ~[(a, - a a t _ , ) ( a t _ k  - ea t_k_ t ) ]  = o ,  k >_ 2 .  

Hence 
- -0  

p0= 1, p l =  1 + 0 - / ,  p k = 0 ,  k >  2.  

In other words, the MA(1) model implies nonzero autocorrelation only 
between observations one lag apart. This model has been discussed in the 
context of estimating future claims [6]. 

It  is clear from this development that the MA(1) model is stationary 
no matter what the value of 0. However our restriction of 0 to the interval 
(--1, 1) was necessary to make this model fit into the general model in 
equation (3). To see this, consider equation (10) written in finite-differ- 
ence notation: 

z, = (1 - OF.- ' )a , .  

Now if ]01 < 1, we may invert the difference operator to obtain 

a, = (1 - o ~ - ' ) - ' 2 ,  

= (1 + 0 E - ,  + O'E -2 + . . .  ) z ,  

= Z ,  + ~ _ , o ~ 2 , _ , ,  
k = l  

which is equation (9'). In fact the condition 101 < 1 represents no essen- 
tial restriction, because, if we have an MA(1) model with 101 > 1, there 
is a unique MA(1) model with [8[ < 1 which generates the same time 
series. This is because, if pl = --01/(1 -k 0~), then 82 = 1/01, ]02] < 1, 
produces the same pl- Hence we may always consider MA(1) models to 
be invertible and therefore contained in the model in equation (3). 

We may define moving average models of finite order q--abbreviated 
MA(q)--as follows: 

2 ,  = a t  - -  01a,_1 - -  02a,_~ - -  . . .  - -  O~a,_~.  (11) 
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We shall always assume that  these models are invertible in the sense that 
(1 - -  01E --1 - . . .  --  0~E--q) - l  provides a convergent infinite expansion. 
Tha t  is, the roots of the polynomial equation of degree q, P , ( E  -1) = 

(1 - - O E - 1 . . .  0~E--q)= 0, are outside the unit circle in the complex 
plane. I t  should be clear from equation (11) that  the general MA(q) 
model exhibits nonzero autocorrelation at most at the first q lags, but 
pk = 0 f o r k _ >  q +  1. 

E x a m p l e  3 . - - W e  may define a hybrid and very rich class of models 
which is a mixture of the autoregressive and moving average models, 
denoted by ARMA(p,  q) and given by 

~', 2 ,~2,_p a, - - ¢ 1  t - t - - . . . - -  "= --  O la f -1 - -  . . . - -  Oqat_~. (12) 

This is a flexible class of models which often allows one to fit rather 
complicated time series with a model containing a very small number  of 
parameters ,  say p and q less than or equal to 2. This  is a very advan- 
tageous situation from a statistical point of view because then one loses 
only a small number of degrees of freedom in est imating the parameters.  
See Box and Jenkins [1, Fig. 3.11, p. 78] for pat terns  of theoretical auto- 
correlation coefficients for the ARMA(I ,  I) model. 

E x a m p l e  4.--Suppose that  II~. = (1 - 0)0 k-~, - 1  < 0 < 1, k = 1, 2, 

. . . .  Then 

2,  (1 o ) ( 2 , _ , +  ~ "~" = -- OZ,_2 + OZt_~ + . . .  ) + a t ,  (13) 
and 

0 2 t _ ,  = (1 - -  O)(02t_., + 0~2,_.~ + . . .  ) + Oa,_ , .  (14) 

Subtracting equation (14) from equation (13) yields 

2 ,  - o 2 , _ ,  = (1 - 0 ) 2 , _ ,  + a ,  - o a , _ , ,  
o r  

Z t  - -  Z t _ t  = a, - Oat_,.. (15) 

Thus the model in equation (13) implies that the first difference of the Z 
series is s ta t ionary and follows an MA(1) model. This,  of course, implies 
that  the Z series itself is nonstat ionary with no fixed mean level. Hence 
we have not put  dots on top of the Z 's  in equation (15). 

Interestingly enough, equation (13) can be looked upon as a model for 
simple exponential smoothing, a popular tool of many  forecasters [3]. 
This can be seen as follows. We adopt a rather conventional approach 
related to the idea of using next year 's  expected claims, given all past  
claims, as an estimate of next }'ear's net or pure premium. Tha t  is, we 
define the smoothed value of Zt to be 

S,(O) = ~ ( Z ,  f Z , _ , ,  Z,_~ . . . .  ) 

= ~[(1 - O ) ( Z , _ ~  + OZ,_~ + O~Z,_~ + . . . )  + a, IZ,_,,Z,-~, . . . 1  

= (I - o)(z,_, + oz,_2 + ~z,_~ + ... ). 



TIME SERIES ANALYSIS AND FORECASTING 285 

In  other words, the smoothed value of Zt is its conditional expected value 
at  t ime t - 1. Now 

s , (o )  = (1 - o ) z , _ ,  + o(1 - o ) ( z , _~  + oz,_. ,  + . . .  ) 

= (1 - o ) z , _ ,  + o s , _ 1 ( o ) ,  

so tha t  the smoothed value of Zt is a weighted average of the observation 
at  t ime t - 1 and its smoothed value. But  this is just  the familiar formula 
for exponential  smoothing with smoothing constant  a = 1 --  0. 

A simple operat ional  method of obtaining equation (13) from equation 
(15) is to write equation (15) in difference notation, 

( 1  - E - , ) z ,  = ( 1  - o E - ~ ) a , ,  

and invert  the operator  on the r ight-hand side to obtain 

(1 - 0 E - ~ ) - 1 ( 1  - -  E - - 1 ) Z ,  = a ,  , 
or 

[1 - -  ( 1  - -  O)(E-' + OE -2 + 02E -" + . . .  )]Zt = at 
or 

z ,  = (1 - o ) ( z , _ ,  + oz,_~ + . . .  ) + a, , 

which is equation (13). This  method can be used to show formally tha t  
any  model of the form 

(1 --  4, ,E- '  - . . .  - ~bvE-v) (1 - -  I z ~ ' ) a 2 t  
(16) 

= (1 --  01E - l  - -  . . .  - -  OqE-q)at  

is also of the form of equation (3), provided that  the operator  on the 
r ight-hand side of equation (16) is invertible. The  model in equation (16) 
is called an in tegra ted  autoregress ive  m o v i n g  average model, abbrevia ted 
A R I M A ( p ,  d, q), where p, d, and q are nonnegative integers. The symbol d 
is called the order of differencing, and 

• l Z t - - u  i f  d = 0 
Z t  = Z t  if d >  0 .  

The  model for W t  = (1 - E - 1 ) a Z t  will be s ta t ionary  as long as suitable 
restrict ions are placed on 4)1, 6~, • • . ,  6v. 

A slight extension of the model in equation (16) is the addit ion of a 
t rend term on the r ight-hand side, namely,  

(1  - -  ¢qE- '  --  . . .  - -  SvE- . ) (1  --  E - ' ) a 2 t  
(17) 

= 00 + (1 --  01E -1 - -  . . .  - -  OqE-q )a t .  

Such an extension occasionally proves useful in pract ical  problems where 
differencing does not  el iminate a determinis t ic  trend. 

Our review of t ime series models has culminated in the classes of 



286 TIME SERIES ANALYSIS AND FORECASTING 

models displayed in equations (16) and (17). These classes contain all our 
previous examples as special cases. We shall see in Section V that  such 
models can often be fitted successfully to data  that  arise in practice. 
Consequently, they represent a potential basis for making forecasts. The  
question of forecasting is considered in the next section. 

I V .  F O R E C A S T I N G  

Once a satisfactory model has been obtained, it can be used to gen- 
erate forecasts of future observations. "Forecasts"  must  be interpreted as 
values we would expect to observe if future observations followed the 
model we are using. But we can hardly hope that  our mathemat ica l  model 
reflects all the forces influencing the empirical phenomenon of interest. 
Furthermore,  we are using "expect"  in the technical, statistical sense of 
expected value. Thus, because we are dealing with stochastic models, we 
could not predict future observations with certainty even if our model 
were exact. Consequently, our forecasts nmst be accompanied by a 
s ta tement  of the error inherent in them. In the examples below, forecasts 
will take the form of a "best  guess," an upper limit, and a lower limit. 
These limits will reflect the effect of random error, but  the)" cannot take 
into account the possibility of massive changes in the structure under- 
lying the actual observations. 

In  summary,  we conceive of the forecasting problem in the following 
way: 

a) A portion of the past  history of a series, 21, 22, • . . , Z, ,  is known. 
b) Forecasts of future values of the series, 2 , + 1 ,  Z , + 2 ,  • • • , are needed. 
c) In addition, a measure of the potential  error in the forecasts is 

required. 
If  it can be assumed that  the data came from a model of the form of 

equation (16), then it is possible to use this assumption to produce the 
required forecasts. The usual criterion for choosing forecasts is the min- 
imization of the mean-square forecast error. Let Z , ( l )  denote the forecast 
of 2.+2 when 21, • . . , 2 .  are known. We shall choose 2 . ( l )  so that  

~ . [ Z . + z -  3 . ( l ) ]  2 = rain g . ( L P . + t -  a) ~ , (18) 
a 

where g. stands for conditional expectation, given ~q, . . . , Z . .  I t  is well 
known that  the solution of this minimization problem is to choose 
2).(l) = g.(Z.+~), the conditional expected value of 2'.+z. I t  follows that  

g . [ 2 . + , -  Z . ( / ) I  2 (19) 

is the conditional variance of ~'.+z, and this quant i ty  is a natural  measure 
of the degree of potential  forecast error. Thus we nmst  develop expres- 
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sions for the two quantities ~(Z~+~) and g~[Z~+l -- ~(Z~+~)]2. We shall 
begin with an example. 

Example 5.--Suppose that our model is the AR(1) model 

Z t  - -  ~ t - 1  = a t  , - -  1 < 4~ < 1 . 

Then 
2.+l = ~ 2 . + .  + at 

k - 1  ( 2 0 )  

= C2, ,+z-k + ~.,,l,~a,,+t-i, 
j~O 

using equation (4'). Setting k = l in equation (20), we obtain 
l--1 

2,,+t = ¢kz2,~ + )--]~-ia,,+l_s. (21) 
j=O 

Finally, 
l - 1  

2.(I) = ~.(2.+D = ~ 2 .  + ~Ja.(a~+~_s) = e ' 2 . ,  (22) 
i~O 

because g~(a~+z-s) = 0 for j < I. Furthermore, 
+ / l - 1  . 2 

~.[z.+, - z.(t)V = ~-t 2 , '~ .+ , - ; )  
\ i = 0  z 

l--1 

1 - -  ~21 
- -  0 . 2 .  

1 - -  ~2 

Thus a reasonable forecast interval for -7~+e would be 

1 - ~ t  

where L is a number which determines the number of standard errors 
one wishes to use. A common value of L is 2 because this provides ap- 
proximate 95 per cent forecast intervals, assuming that the a~'s are nor- 
really distributed. Note that, as 1 increases, the forecast interval in 
equation (24) approaches 

L 
0 + v'(1 - ~ )  ~" (25) 

Equations (21) and (23) are a special case of an interesting fact about 
the ARIMA class of models which is generally true, namely, that 

e-1  

"Zn+t -- Z~(I) = ~ s a n + l - i ,  (26) 
j~0  
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where ~0 = 1 and the other ~bj,'s are functions of the parameters of the 
model. Furthermore, the ~b~'s can be determined by equating the coeffi- 
cients of powers of E -~ in the equation 

(1 + ~ ,E- '  + ¢,~E -~ + . . . ) ( 1  -- ~ ,E- '  -- . . .  -- ~,E-")(1 -- E-1)~ 
(27) 

= (1 - O~E -a  - . . .  - O ~ E - ~ ) .  

The proof of this fact can be made by induction (see Box and Jenkins 
[1, pp. 114--19]). It  follows from equation (26) that 

l - 1  
__ ~ 2 2 ~.{~'.+~ z . ( z ) l  ~ = ~ ~ ¢ ~ j ,  (2s)  

j=0 

and this provides a convenient method for calculating our measures of 
potential forecast error. The following example illustrates the procedure. 

E x a m p l e  6.--Suppose that the model is 

Z t  - -  2Z~_x + Z t _ ~  = a t  - -  01a t_ l  - -  ~ . a t - ~  , (29) 

that is, the second difference of the Z t ' s  follows an MA(2) model. We have 

Z . + I  - 2 Z , ,  + Z . _ ~  = a . + l  - -  01a .  - 0 2 a . - 1 ,  

Z.+o.  - -  2 Z . + ~  - k  Z .  = a.+~. - -  O la .+l  - O~a. , 

Z.+~ -- 2Z.+z-i + Z . + z - ~  = a . + z  - -  01a.+z_a - 02a,,+~_~ , 

From these equations it is clear that 

2 .(1)  - 2Z. -k- z ._ ,  = - O ~ a .  - O . _ a . _ l ,  (30a) 

2 . ( 2 )  - 2 2 . ( 1 )  + Z .  = -O.a.,  (30b) 

2 . ( l ) - 2 2 . ( 1 -  1 ) + 2 . ( 1 - 2 ) = 0  for l > 3 .  (30c) 

Equation (30c) is a homogeneous difference equation in l with two initial 
conditions (30a) and (30b) which specify the values of 2.(1) and 2.(2) in 
terms of the quantities 01, 0~, Z., Z._~, a., and a._~. The general solution 
of the difference equation is 

2 . ( l )  = A0 + A, I ,  (31) 

where .4o and A l are determined from the initial condition by the equa- 
tions 

2,(1)  -- A0 q- A , ,  Z,(2) = A0 + 2A1. (32) 
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In order to use equation (28) to obtain our measure of forecast error, 
we must  determine the ~bj's from the equation 

(1 + ~b~E-' + ~k2E-" + . . .  )(1 - E - ' )  2 = (1 -- 01E-' -- O,2E -~) , 

o r  

1 + (~kl - 2 ) E  -1 + (~k2 - 2~kl + 1 ) E  -2 + (~k3 - 2~kz + ff~)E - s  + . . .  

= 1 - -01E  - l - 0 2 E  - ~ .  

Equating coefficients, we have 

6 1 -  2 = --01, 

~. - 2~h + 1 --- - 0 2 ,  

¢ ~ s - - 2 ¢ ~ i - 1 + ¢ ' i - ~ = 0 ,  j > _ 3 .  

Solving this linear difference equation with initial conditions, we obtain 

~i = (1 -1- 0~) + (1 - 01 - 02)j ,  j > 1 .  (33) 

Thus a forecast interval for Z,+t is 

Ao + A l l  +_ L a i , 

where A0 and A1 are given by equation (32) and the ~k/s are given bv 
equation (33). I t  is evident that  the forecasts lie on a line with slope As 
and intercept A0, while the standard errors are increasing functions of l. 
Thus the forecast intervals become wider as l increases. This behavior is 
quite different from that in equations (24) and (25). The reason is tha t  
the model in example 5 is stationary, while the model in the present 
example is nonstationary. (By observing eq. [29], you will note that the 
second difference of the Zt's is a stat ionary MA(2) model, while the 
Zt's are nonstationary.) 

V. ~ I O D E L - B U I L D I N G  

We noted in Section IV that if one could assume that his time series 
came from a model in the A R I M A  class, then he could obtain forecasts 
of future observations and a measure of the potential errors in his fore- 
casts. But the question surely arises: How can one justify assuming an 
A R I M A  model? In  this section we will present a technique for determin- 
ing an A R I M A  model which best describes a given set of time series 
data. In effect, we are seeking to discover whether our data behaved as i f  

they were generated by such a model. Our statistical procedure does not 
a t tempt  to say why a series fits a particular model well, although it may 
be possible on intuitive grounds to explain certain types of behavior 
discovered during the modeling process. 
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We assume that  we have in hand n observations from a t ime series 
21, 22 . . . .  , Z~. We wish to choose a model from the A R I M A  class which 
well describes our da ta  in the following ways: 

a) If Z1, Ze, . . . ,  Z ,  are the observations generated by  the model, 
then the residuals Z t -  Z, = ~, should evidence no significant auto- 
correlation. 

b) The model contains as few parameters  as possible consistent with re- 
quirement a. This  is a modern-day  restatement  of the d ic tum of Ockham 
("Ockham's  razor")  that  "enti t ies  should not be mult ipl ied without  
necessity." The reason for requirement b is tha t  we want  our model- 
building procedure to be as efficient as possible. By adding a large number 
of parameters  to the model, we can make the residuals essentially zero, 
but  the da ta  would contain so little information about  these parameters  
that  we could not es t imate  them with an}" degree of confidence. Our 
s t ra tegy is to use a small  number  of parameters ,  saving a relat ively large 
number of degrees of freedom for est imating residual autocorrelat ion and 
residual variance. As soon as residual autocorrelat ion becomes negligible, 
we can be satisfied tha t  our model  is using the information contained in 
the fact tha t  the observations are autocorrelated.  

The s t ra tegy for finding a suitable model proceeds as follows. Because 
the A R I M A  class of models is quite large, we first t ry to eliminate un- 
realistic candidates  from the class before going to more detai led analysis. 
This can be done most s imply by  calculating the  autocorrelation coeffi- 
cients for the da ta  and trying to match them to theoretical  autocorrela- 
tion coefficients of A R I M A  models. This procedure is i l lustrated in the 
following example. 

Example 7. - -Consider  the da ta  from the first example in Section II ,  
displayed in Figure 1. The first ten sample autocorrelat ion coefficients 
are given below: 

re . . . . . . .  - .  . 0 . 4 - .  . 3 . - .  . 6 - . 01  

The first ten autocorrelat ion coefficients of an AR(1)  model with 4, = 
--0.6 are as follows: 

k . . . . . . .  1 6 2 316 . . o~ . . . . . . . .  36 . 42') .078 . 6 7 -  .0817 910 .006 

The correspondence is quite close, so that  it would be worthwhile to 
consider an AR(1) model  for the da ta  of this example. We will discuss 
this model further in a moment .  
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Next let us consider the Treasury bill data in the second example of 
Section II. These data are pictured in Figure 4. There we found that the 
first-difference series appeared stationary. Furthermore, the sample 
autocorrelations appeared to follow a damped sine wave pattern of decay. 
We noted in Section I I I  that the AR(2) model can produce such a pattern 
of theoretical autocorrelations. Hence it would be sensible to consider the 
model 

(1 -- ~IE -~ -- ~E-2)(1 -- E - ~ ) Z t  = at 

for the Treasury bill data. 
Finally, let us look at the claim index data in the third example of 

Section II.  There we found that the second difference appeared stationary, 
and it is evident from panel 3 of Table 2 that at most two sample auto- 
correlations from the second-difference series are significant. This sug- 
gests an MA(2) model for the second difference, so that we might entertain 
the model 

( 1  - -  E'-O~Zt = (1 -- O~E -~ - -  02E-2)a, 

for the claim index data of this example. 
We have now tentatively chosen models for the data in the three ex- 

amples of Section II .  We next make a detailed study of the residuals from 
fitting these models to the data. We will use the method of least squares to 
fit the models. The procedure will be illustrated in the next two examples. 

E x a m p l e  8.--We will fit the AR(1) model 

Z , - u = ¢ ( Z , _ 1 - u ) + a ,  

to the data in the first example. Define 

a , ( u ,  ~,)  = ( z ,  - u )  - , ( z , _ ~  - u )  • 

We wish to choose v* and 4'* so that 

n n 
2 , 2 

~'~a,(u , 4~*) rain = , ) .  
t = l  Vt ,¢ ,  t = l  

Unfortunately, al(v, ~) is a function of the unobserved quantity Z0, so we 
set a~(u, 4~) equal to its expected value, 0, and choose # and 6 so that 

n n 

2' ^ 2 
6)  = rain * ) .  

t=2 ~,d~ t=9 

If n is reasonably large, ~ and 6 will be very close to v* and ~b*, so that 
there is very little loss of efficiency in setting a~(v, q~) = 0. For specified 
values of ~ and 4, the quantities 
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a.~(U, * )  = (Z~ - -  , , )  - -  * ( Z ,  - -  U ) ,  

a~(u, ~ )  = (z : ,  - u )  - ~ , ( z . ,  - u ) ,  

a . ( u ,  ¢,) = ( z .  - u )  - ¢ ( z . _ ,  - u )  , 

and hence the quan t i t y  
n 

2 

t = 2  

can be calculated. Figure  9 shows a contour  m ap  of this sum-of-squares  
f lmct ion and  indicates t ha t  ~ = 99.9 and  ~ = - 0 . 5 6 .  The  values  of 
and  4~ are most  efficiently found by  an i tera l ive  nonl inear  least-squares 

rout ine on a computer  [1, p. 495]. ~ 
The  residuals at(O, 4~), t = 2 , . . . ,  n m a y  now be checked for auto-  

correlat ion by examining  the autocorre la t ion coefficients 

k =  1, 2 , . . . ,  where 
r~ 

1 ~ , { ~ , ~ ) .  
a ( / , ,  ,~)  = Jz - 1 ,=:, 

Natu ra l ly ,  if the autocorre la t ion  in the residuals is negligible, the r~(a)'s 
should be qui te  small. If, on the other  hand,  the r~ (a) 's  d isplay a dis t inct  
pa t t e rn ,  then one must  modify  the original model  to account  for the 

autocorre la t ion  still present .  
The  first ten residual au tocorre la t ions  for the da t a  above are given in 

the accompany ing  tabu la t ion .  A rough measure of their  significance is 

r~.(a) . . . . . . .  1 . 1 - - 0 3  --.  --.  - - ° 6  . 1 .0g 

obta ined bv  compar ing them with their  approx imate  s t andard  error, as- 

suming  that  the residuals are uncorrela ted.  This  s t andard  error is s imply 

A discussion of the numerical methods used to solve this t.vl~e of nonlinear least- 
squares problem would direct the exposition from its main goal. However, within the 
Society of Actuaries' current Syllabus of Examinations, these methods are outlined 
under the heading of Newton's iterative method of solving systems of nonlinear equa- 
tions, p. 312 of Theory and Problems of Numerical .,lnalysis by I". Scheid. 
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FiG. 9.--Contours of the sum-of-squares function for the series in Fig. I 

1 / x / ( n  -- 1) = 1/x/99 - 0.1. I t  is seen that  none of the coefficients is 
greater  than twice its approximate  s tandard  error. An over-all test of the .~ 
significance of the coefficients is given by  comparing the quant i ty  

10 
2 99~--~rk(a) = 5.6529 

k= l  

with the tipper 100a per cent critical point  in a chi-square dis t r ibut ion 
with I0 --  2 = 8 degrees of freedom. (See Box and Jenkins [1, p. 291] or 
Box and Pierce [2].) The general rule is to compare 

M 
2 m~"~rk(a) (34) 
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with a chi-square value with degrees of freedom equal to M minus the 
number of parameters appearing in the sum-of-squares function. M is 
the number of autocorrelation coefficients considered, and m is the num- 
ber of residuals computed after the least-squares estimation of the parame- 
ters of the ARIMA model. This result is valid if the residuals are assumed 
to be normally distributed. For our example, with a = 0.05, we could 
compare 5.6529 with 15.507, which is the upper 5 per cent critical value of 
a chi-square distribution with 8 degrees of freedom. Clearly we need not 
be dissatisfied with the fit of our model here. 

The unbiased least-squares estimate of ~ is given by 
100 

1 ~a~(~,$)  18.025. 
97 t=.~ 

In general, the estimate is obtained by dividing the nlinimum sum-of- 
squares function by the number of residuals less the number of parameters 
estimated. An estimate of ~ is provided by the square root of the variance 
estimate, which in our example is x/18.025 =. 4.25. 

Example 9 . - -We will fit the model 

Zt - -  2Zt_l --}- Z t _ ~  = a t  - -  0 1 a t _ l  - -  02at_2 

to the claim index data in the third example of Section II, Define 

a,(O,, 02) = Z, - 2Z,_1 + Z,_.. + 01a,_~(O~, 0~) + 02a,_~(o~, 02) , 

and note that a~(O~, Oz) and a~(O~, 02) cannot be calculated because the). 
depend on the unknown quantities Zo and Z-v Setting at(O~, 02)= 
a2(01.02) = O, however, it is possible to calculate 

n 
2 ~a,(0,,  0~) 

t=:l 

for given values of 0~ and 0~, We take as our estimates of 0~ and 02 the 
values 0~ = 0.62 and 02-- -0 .28  that minimize this sum-of-squares 
function. 

Contours of the sum-of-squares surface are shown in Figure 10. The 
estimate of ~2 is 

1 64 
~2 = ~ a,(O~, 02) = 0.49 X 10 -4 . 

The estimate of ~ is 0.007. 
The first ten residual autocorrelation coefficients are given in the ac- 

companying tabulation. Their estimated standard error, assuming that 

. . . . . . .  0312131  621!  8 9 0  rk . . . . . . . .  - - . 0 5  - - . 0 2  0 6  12 - - .  - -  0 6  . 3 0  . 1 - - . I I  
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the residuals are uncorrelated,  is approximately  1/x/62 = 0.127. This  
may  be used to individual ly  test the hypotheses that  the autocorrelat ions 
are zero. The  value of 

10 

6 2 ~ r ~ ( a )  
k = l  

is 10.6454, and by locating the upper 5 per cent critical value for a chi- 
square distribution with 8 degrees of freedom, we see that  it is not 
significant at the 5 per cent level. Hence we may be satisfied with our 
model here. In reaching this judgment, we observe that  rs is somewhat 
greater than twice the standard error, assuming that the residuals are 

o 
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FIG. 10.--Contours of the sum-of-squares function for the MA(2) model 
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mutually independent. However, in making ten tests, this single deviation 
is not alarming, and in view of the acceptable value of the over-all test sta- 
tistic, we decided to terminate model-building. 

E x a m p l e  10.--Without going into details, we note that the model 

(1 -- ¢1E -1 - -  ~2E-~)(1 -- E - I ) Z ~  = ae 

appears to be adequate for the Treasury bill data in the second example of 

Section II. We have 6~ -- 0.38, 62 = 0.06, and ~ = 0.213. 

VI. APPLICATIONS TO FORECASTING 

In this section we will apply the results of Sections IV and V to the 
forecasting of three of the series presented in Section II. Figure I1 displays 
the basic format of our results. There we have pictured the claim index 
data from the third example of Section II, two "future observations" not 
used in the modeling and held aside for subsequent forecast checking, (de- 
noted by x in Fig. 11), the forecasts produced by our fitted model, and 
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3 . ~  
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FIG. l l.--Twenty past observations, twenty forecasts with error bounds, and two 
"future" values of the series in I"ig. 6. 
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approximate 95 per cent forecast error bounds. I t  is interesting to compare 
the forecasts with "future" values not used in the forecast. Table 3 shows 
comparisons made by means of (a) the root-mean-square forecast error 
and (b) Theil 's coefficient [13]. The root-mean-square forecast error is 
defined by 

k 

while Theil's coefficient is defined by 

where k is the number of "future"  values available. 

TABLE 3 

F O R E C A S T  I N F O R M A T I O N  FOR P R O P E R T Y  D A M A G E  S E R I E S *  

Forecast  
Lead T i m e  

/ 

2 .  
3. 
4. 

Lower 
Forecast  
Boundary 

2.208 
2. 242 
2.271 
2. 299 

Forecast  

2.222 
2. 265 
2. 308 
2.351 

Upper 
Forecast  
Boundary 

2.236 
2.289 
2.345 
2.403 

" F u t u r e "  
Values 

2,225 
2.272 

Ct 

1.380 
2.043 i 

. 2.706 

. 3.368 

* RMS = 0.059; U : 0.08. 

Theil 's coefficient is a comparison of the forecasts 2,(1) with a fore- 
casting procedure which forecasts the next period's observation with that  
of the present period. This forecast would be appropriate for a random 
walk model. A U value less than 1 indicates a rather efficient forecast 
procedure. The following example shows how the forecasts in Table 3 
were obtained. 

E x a m p l e / / . - - F r o m  equations (30) we see that the forecasts are given 
by the equations 

26~(1) = 2Z64 -- Z63 -- 01a64 -- 02a~a, 

2 6 ~ ( 2 )  = 2 2 6 4 ( 1 )  - Z64 - 0 , a ~ 4 ,  

g 6 ~ ( l )  = 2 2 6 4 ( l  - 1) - 2 6 4 ( l  - 2 ) ,  l > 3 .  

Thus, knowing Zs~, Z63, 01, 02, a64, and a~, we can calculate the forecasts 
recursively. The estimation phase of model-building gives us estimates 
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01 = 0.62, 0x = --0.28,  fie4 = --0.0083, and  d63 = - 0 . 0 0 3 1 ,  so that ,  using 

these est imates,  we can ac tua l ly  generate  forecasts. T h u s  

Z64(1) = 2(2.177) - -  2.136 --  ( 0 . 6 2 ) ( - 0 . 0 0 8 3 )  - ( - - 0 . 2 8 ) ( - 0 . 0 0 3 1 )  

= 2 .222 ,  

Z6~(2) = 2(2.222) - 2.177 - ( - 0 . 2 8 ) ( - 0 . 0 0 8 3 )  

= 2 .265 ,  

Z6,(3) = 2(2.265) - 2.222 = 2 .308 ,  

Z6t(4) - 2(2.308) - 2.265 = 2 .351 .  

TABLE 4 

FORECAST INFORMATION FOR AR(1)  DATA* 

Forecast Lower Upper "Future"  
Lead Time Forecast Forecast Forecast ~l 

Values 
l Boundary Boundary 

1 . . . . . . . . . .  9 5 . 6 0  104 .10  112,60 114 .75  0 . 3 1 3 6  
2 . . . . . . . . . .  87.96 97.70 107.44 92.84 0. 0983 
3 . . . . . . . . . .  91.21 101.29 111.37 99.45 0.0308 
4 . . . . . . . . . .  89.04 99.28 109.52 92.58 0. 0096 
5 . . . . . . . .  90.16 100.40 110.64 105.20 0.0030 

* RMS = 6.48; U = 0,42. 

Alterna t ive ly ,  we could use equat ions  (31) and (32) as follows: 

2 . 2 2 2  = A o  + A ,  , 2 . 2 6 5  = A o  + 2 A i  , 

yielding A0 = 2.1793 and ,.l~ = 0.0429. T h u s  

Z , ( l )  = 2.1793 + 0 . 0 4 2 9 l .  

Using equa t ion  (33), we ob ta in  ~0 = 1, ~bl = 1.380, ~b2 = 2.043, ~b3 = 2.706, 

and  the approximate  95 per  cent  forecast in tervals  are 

2.1793 + 0.0429l  +_ 2 0.000049) , 
3=0 

f u r l =  1 , 2 , 3 , 4 .  

Calcula t ions  s imilar  to these in example 11 produce  forecasts for our 
o ther  examples. Tables  4 and  5 summarize  the results.  The  reader 's  at- 

t en t ion  is especially directed to the forecast boundar ies  in Tab le  5 which 
show a forecast range of a lmost  one percentage point  for the one-month-  
ahead forecast and of over three percentage po in ts  six mon ths  ahead. 

These  figures indicate  a high degree of u n ce r t a in ty  in forecasting short- 
t e rm interes t  rates, a phenomenon  famil iar  to m a n y  actuaries.  
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V I I .  C O N C L U S I O N S  

Our purpose in this paper  has been to i l lustrate the parametr ic  model-  
ing approach to time series analysis by  presenting several simple examples. 
Guided bv the reference list, which contains brief notes on the principal  
references, the interested reader may  now construct an individualized 
tour through the expanding l i terature of this subject. 

TABLE 5 

F O R E C A S T  I N F O R M A T I O N  FOR T R E A S U R Y  B I L L  D A T A  

Forecast  Lower Upper " F u t u r e "  
Lead T i m e  Forecast  Forecast  Forecast  61 

Values* 
l Boundary Boundary 

1 . . . . . . . . . .  
2 . . . . . . . . . .  
3 . . . . . . . . . .  
4 . . . . . . . . . .  
5 . . . . . . . . . .  
6 . . . . . . . . . .  

5.83 
5.86 
5.43 
5.22 
5.03 
4.89 

6.30 
6.37 
6.39 
6.41 
6.42 
6.43 

6.72 
7.07 
7.37 
7.61 
7.82 
8.00 

1.3778 
1.5839 
1.6957 
1.7372 
1.7631 
1.7761 

* Not  ava i lab le .  

The approach that  we have i l lustrated involves the following steps: 

l. Graph the data, searching for patterns that may reveal a shifting mean or a 
changing variance. 

2. Obvious shifts in the mean may often be removed by differencing the data. 
Variance shifts are much harder to deal with and have not been discussed in 
this paper. 

3. Tentatively identify a model for the series by examining the sample auto- 
correlation function, and compare it with the autocorrelation function of 
standard models. In this process keep in mind the necessity of economizing on 
parameters. 

4. Estimate the parameters of the model using a nonlinear least-squares com- 
puter program. 

5. Check the adequacy of the model by examining the residuals. If the model is 
adequate, the residuals should be approximately independently and identi- 
cally distributed. Nothing is gained, and much foolishness may result, from 
going further with model-building after this step is finished. 

6. Use the model to produce forecasts with associated approximate probability 
intervals. 

The  process that  we have outlined is a dynamic  process. Tha t  is, s teps 
3, 4, and 5 may  be repeated several t imes before a sat isfactory model is 
achieved. As new observations are obtained,  the whole process may  be 
repeated.  
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I t  would be unrealistic to assert that this recipe for time series analysis 
is universally applicable. We claim only that it is an orderly method for 
approaching many forecasting problems. I t  does not require extensive 
input or deep technical knowledge, and it may be easily carried out using 
modern computers. In many practical situations it will lead to greater 
insight into the process under study and to improved forecasts. 

I t  might be useful to speculate on the likely role of parametric time 
series analysis in actuarial practice. There seems little doubt that  the 
primary application will be in producing short-term forecasts. Such fore- 
casts can serve to improve the management of cash flows arising from 
claims, investment, and sales operations. Experience in other fields seems 
to indicate that single variable time series models produce forecasts al- 
most as accurate as more elaborate econometric models which incorporate 
many variables and fixed relationships among the variables. Time series 
models may also serve as components of comprehensive corporate models 
or management training games. 

In this review we have stressed the forecasting role of time series 
models. The strategy has been to squeeze all the useful (nonrandom) in- 
formation from the past history of the series for the purpose of forecasting. 
The models have not been explanatory in nature. The goal has not been 
to uncover new relationships among economic variables or to provide 
guides to the indirect control of such variables. The object has been fore- 
casting, but that seems more than enough to justify the effort. 
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DISCUSSION OF PRECEDING PAPER 

FRANK G. REYNOLDS: 

Messrs. Miller and Hickman are to be congratulated for making a 
significant contribution to actuarial literature. Since World War II the 
use of time series as a method of making forecasts has been developed 
and has come to be one of the standard forecasting tools of the statisti- 
cian. Yet this paper is the subject's first real appearance in the Society's 
literature. Our gratitude is due Messrs. Miller and Hickman for rectifying 
this deficiency. 

To the practical actuary involved in everyday problems in an insurance 
company or a consulting firm, the most important question about any 
new area of theory is, "How well does it work in practice?" A general 
conclusion is impossible, but the following three studies attempt to 
illustrate the use of time series as a tool in helping to solve practical 
problems and, hopefully, illustrate some of the pitfalls into which novices, 
such as myself, can fall. 

I. Cash-Flow Forecasting 

INTRODUCTION 

In recent years one of the important problems facing the actuary has 
been to forecast his company's cash flow. Some of the components, such 
as salaries, mortgage repayments, individual policy premiums, and in- 
vestment income, can be handled by computer inventories or relatively 
simple projections of preceding years' figures. Other components, such 
as bond maturities and tax payments, can be predicted with reasonable 
accuracy for a year or two in advance. Much more troublesome, however, 
are the items of policy loans and group annuity cash-outs. Both are 
related to changes in the money markets. High interest rates on long- 
term bonds and mortgages, coupled with a buoyant stock market, led 
to extremely large and, to a great extent, fluctuating cash outflows for 
several years in the late 1960's. As a result, the investment divisions of 
many companies experienced major disruptions in their operations and 
in some cases became net sellers of securities rather than investors. 
Most companies took steps to insulate themselves against these outflows 
and, in so doing, attempted to discover whether there was a relationship 
between the changes in interest rates and their subsequent cash outflows. 

In looking for such a relationship, one of the difficult problems to be 
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dealt with was a seemingly seasonal pat tern in the cash flow. The re- 
mainder of this discussion is devoted to investigating how time series 
can remove this seasonal variation, leaving a series which then can be 

used in observing the effects of interest rate changes. 

TIlE DATA 

Ideally, the problem should be broken up into several components and 
each studied separately. Unfortunately,  the data  available for this 
example consisted of the net cash flow from all sources, with the conse- 
quence that  the predictions were not quite as good as could be made with 
a finer breakdown of the figures. 

TABLE 1 

CASH-FLOW DATA: AUTOCORRELATION FUNCTION 

Lag 

0 . . ,  

2 . . .  
3 . . .  
4 . , .  
5 . . ,  
6 , , ,  
7 . . .  
8 . . .  
9 . . .  

[ 0  1 1 1  

[1. ,1 
12,,, 
13... 
14... 
15... 
16... 

Value 

1.000 
0.358 
0. 259 
0.136 
0.O47 
0.106 
0.402 
0.071 

--0. 036 
--0.056 

0.002 
0,064 
0,539 
O. 053 

- 0 .  015 
--0. 158 
--0.251 

Lag 

17. .  
1 8 . .  
19.. 
20.. 
21.. 
22.. 
23.. 
24.. 
25.. 
26.. 
27.. 
28.. 
29.. 
30.. 
31.. 
32.. 
33.. 

Value 

i - - 0 . 1 9 3  
. I 0 .  0 8 8  
. i - - 0 .  193 
.! --0,281 
.i --0.286 
.' --0. 193 
,~ --0,142 
.I 0,333 
.I --0.O63 
I --0.105 
l --0.193 
. --0.246 

--0.179 
., 0. 080 
., --0. 123 
: --0.179 
• I --0.168 

34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42, 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 

Lag Value 

--0,069 
0,010 
0.424 
0.090 
0.016 

--0.062 
- -0 .~4  
--0.053 

0.142 
--0.040 
--0,146 
--0.169 
--0. 066 
--0.O45 

0.300 
0.051 

--0.051 

A reasonable volume of data was obtained by using the month ly  net 

cash flow in thousands of dollars for the period January,  1961--April,  
1972. The monthly  periods seemed to provide a reasonable balance be- 

tween a large number  of observations and the instabil i ty associated with 
short time intervals. 

PRELIMINARY ANALYSIS 

From Figure 1 the extreme variabil i ty and the wide range of possible 

values are apparent. As a first step, the autocorrelation function was 
calculated (Table 1) to determine whether there were any  seasonal 

patterns, as general reasoning would suggest. The only values which 
are 0.300 or larger are rl, r6, rl~, r2,, ra6, and r4s, which suggests an annual  

pattern.  
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Working under the assumption that  the series of differences from 
the preceding year was stationary, the following prediction equation 
was obtained after a very considerable number of iterations: 

(1--1.983B + 0.998B2)(1 -- B'~)Z, 
= 9.025 + (1 -- 1.683B + 0.708B2)(1 -- 0.584Bl~)a,, 

where Zt is the value of the monthly cash flow, B is an operator such 
that  BZt = Zt-l, and at is the random change which took place at time 
t. With the exception of the constant term, all the coefficients are very 
significantly different from zero. 

Looking at this equation and remembering that the constant term is 
not significantly different from zero, it is easily seen that  the following 
equation could be used almost equally well. 

( 1  - -  2B + B2)(1 -- Bt2)Zt = (1 -- 1.7B + 0.7B2)(1 -- 0.584B'~)at. 

But this factors into 

( 1  - -  B)'(1 -- B12)Z, = (1 -- B)(1 -- 0.7B)(1 -- 0.584B'2)a, 

and reduces to 

(1 - -  B)(1 -- B'2)Z, = (1 - 0.7B)(1 -- 0.584B12)at. 

This common factor was, of course, the reason why so many iterations 
were necessary in order to obtain the coefficients in the prediction equa- 
tion. 

This factoring leaves us with the information that  the series of annual 
increases should be differenced from month to month. A look at the auto- 
correlation function for the series of annual differences (Fig. 2) shows 
that  this problem might have been anticipated (since the autocorrelation 
function displays something of the typical "damped sine wave" shape 
usually associated with series which require that successive values be 
differenced before they are stationary). 

Working with this new information, the prediction equation 

( I  - -  B)(I  -- B12)(I + 0.0398B -- 0.9499B 2) 
X (1 q- 0.9284B 12 q- 0.3036B2*)Zt 

= 62.2266 -b (1 -1- 0.2718B -- 0.5573B 2) 

X (1 + 0.3048B lz -- 0.4985B24)a, 

was obtained. With the exception of 4~ and the constant term, all the 
coefficients are significantly different from zero. 

A search for common factors was not rewarding, and accordingly this 
model, despite its complexity, was retained. 
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The residual standard deviation was 1,350. When compared with the 
data, this value, although in line with the fluctuations therein, is still 
much too large to permit one to have too much confidence in the predic- 
tion formula's ability to forecast the future. 

PREDICTIONS 

Using the prediction equation, the one-step-ahead forecasts for the 
last twelve times at which the values were known were calculated. They, 
and the associated random shocks, are displayed in Table 2. 

TABLE 2 

O N E - S T E P - A H E A D  FORECASTS FOR CAsH-FLOW MODEL 

(In Thousands of Dollars) 

l Zt Forecast at 

125 . . . . . . . . . . . . . . . .  
126 . . . . . . . . . . . . . . . .  
127 . . . . . . . . . . . . . . .  
128 . . . . . . . . . . . . . . .  
129 . . . . . . . . . . . . . . .  
130 . . . . . . . . . . . . . . . .  
131 . . . . . . . . . . . . . . . .  
132 . . . . . . . . . . . . . . .  

133 . . . . . . . . . . . . . . .  
134 . . . . . . . . . . . . . . .  
135 . . . . . . . . . . . . . . .  
136 . . . . . . . . . . . . . . .  

6,586 
7,402 

12,003 
7,982 
6,836 
7,824 
9,797 

12,518 
l1,823 
8,745 

10,870 
2,012 

4,350 
5,360 

12,200 
10,900 
9,740 
4,210 
7,990 
9,620 

20,700 
9,060 
4,030 
9,370 

2,236 
2,041 

- -  162 
--2,936 
--2,905 

3,616 
1,803 
2,901 

--8,868 
- -  311 

6,845 
-- 7,359 

The first reaction of most people looking at the results is one of dismay. 
After all, the forecasts run from $6,845,000 under to $8,868,000 over. 
However, two points must  be remembered. First, the original data 
varied in value from $12,518,000 to -$1,050,000 and did so quite errati- 
cally, suggesting that close adherence to the actual is not to be expected. 
Second, the purpose of this analysis is not so much to derive an accurate 
prediction equation as to ascertain whether the seasonal factors can be 
eliminated from the series so that  a further analysis can be done to 
determine the effect of interest rate changes and changes in other variables 
on the experience. As a consequence, large residual variations which would 
be unacceptable in a pure prediction equation are more acceptable in 
this instance. The real problem, however, emerges in the next paragraph. 

Table 3 shows the actual cash flows for the last two ):ears and the 
monthly predictions for the next three y'ears. The predictions show a 
very strong tendency to explode. A review of the original series (Fig. 1) 
shows why. During the 1960's the cash flows tended to increase only 
slowly. However, starting in the first half of 1970, they accelerated very 
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rapidly. The prediction equation is a function primarily of the preceding 
two years' changes, and, when these show a new and distinct pattern,  
the forecasts will reflect this new direction. 

This new trend explains some of the earlier problems. First, the reduc- 
tion in the variance upon taking the first differences of the annual  
changes was not very great. I t  would appear that the need for this 
difference existed primarily in the last two years. Second, the predictions 
in Table  2 were disappointingly poor. Now, this can be at t r ibuted to the 
fact that  the predictions were based in part  on the new trend and in part  

upon the older data base, which confused the prediction equation. 

TABLE 3 

CASH-FLOW MODEL'S FORECASTS FOR THE FUTURE 
(In Thousands of Dollars) 

t Zt-}2 Zt Pt+l~ Pt+24 P*436 

125 ... .  
126 . . . .  
127 . . . .  
128 . . . .  
129 ... .  
130 . . . .  
131 . . . .  
132 ... .  
133 ... .  
134 ... .  
135 . . . .  
136 ... .  

3,971 
1,525 
8,175 
3,487 
3,714 
6,415 
7,602 
8,827 
9,178 
5,650 
4,226 
4,183 

6,586 
7,402 

12,008 
7,982 
6,836 
7,824 
9,797 

12,518 
11,823 
8,745 

10,870 
2,012 

15,500 
23,500 
26,000 
10,400 
1,050 

14,200 
24,000 
36,300 
4,530 

-- 304 
26,600 

- -  2,540 

23,300 
35,100 
38,100 
17,400 

967 
23,100 
36,200 
54,100 
5,630 
7,510 

40,700 
- -  3,410 

34,000 
50,100 
52,800 
26,600 
4,450 

33,800 
50,600 
74,500 
8,920 
3,510 

57,000 
- -  1,160 

CONCLUSIONS 

TO the actuary looking for a total solution to his cash-flow prediction 
problems the foregoing is not too reassuring, but it does serve to illustrate 
the following points: 

1. Time series can be used to eliminate many seasonal fluctuations and trends, 
so that one can obtain basic data which can be analyzed by other means-- 
for example, regression analysis. (In support of this contention it is to be 
noted that the prediction equation accounts for 75 per cent of the variation 
in the data, leaving only 25 per cent attributable to chancc--a very sig- 
nificant reduction.) 

2. In performing a time series analysis, one should check the following: 
a) Whether data are plentiful. Even here, as the variance shows, the volume 

is, at best, marginal. 
b) Whether the prediction equation can be simplified by factorization. 

Otherwise, convergence problems arise. 
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c) Whether new trends have emerged in the last few values which would 
invalidate any analysis. The theory underlying time series depends upon 
the absence of major nonrandom changes. In the case of this particular 
company, time series would have been useful during the 1960's, but, with 
the changes of the early seventies, they will have to wait until the trend 
becomes more discernible mathematically. 

3. This analysis required roughly 25 minutes of running time on an IBM 
360/75 computer, a costly means of making the original estimate. 

4. Despite the fact that the final prediction equation did not produce results 
that were in line with the most optimistic expectations, several interesting 
points did emerge. 
a) The current month's cash flow is related to the change that took place 

last year and the year before. 
b) It  is important to look at the change which took place two months 

previously. 

In  summary,  it would appear that  the at tempts to use time series alone 
to predict accurately an insurance company 's  total cash flow will not be 
too successful, but  the analysis may  provide important facts for use in 
making such forecasts. 

II .  Forecasting Life Insurance Sales 

INTRODUCTION 

One of the earliest successflfl applications of time series was the pro- 
jection of sales for the large airlines. I t  is well known that these projections 
have led to both under -and  overcapacity at times. Nevertheless, they 
have been reasonably accurate when averaged over the last decade. 

Accordingly, it was felt that it might be of interest to a t tempt  to fit 
a time series to life insurance sales. Two sets of data were available: the 
quarterly Canadian individual life insurance sales of all companies 
combined for the period January,  1947--Septenlber, 1972, and the month- 
ly Canadian individual life insurance sales of one large company for the 
period January,  1962--December, 1971. 

The two sets of data  are portrayed in Figures 3 and 4. The  all-com- 
panies data  show a general tendency to increase with time and a seasonal 
pat tern with high sales in the last quarter of each year and a much lower 
level of activi ty in the first and third quarters. The single-conlpany data 
also show the increase with time and a seasonal pattern. 

These observations lead one to anticipate a model containing either an 
ordinary or a seasonal difference and a seasonal prediction term. 

THE ALL-COMPANIES MODEL 

As a preliminary step, the residual variance for all models of the form 
(p, d, q) >( (0, DS, 0), (where p = 0, 1, 2, 3; d = 0, 1, 2; q = 0, 1, 2, 3; 



o 

! , 0 0 0  

900 

8 0 0  

700 

6OO 

5 0 0  

4 0 0  

300 

200 

100 

• o O o ° e ° o ° o ° o o e 0  • • 

• o •  • 
o •  • 

- -  o o o  
c o o  • 

• QQO • 

..OOOOO0 o O o 0  o O O 0 0 • O  • • 

I 

t I l [ I I I I I ( 
10 20 30 40 50 60 70 

Time (Months) 

Fzc. 3.--Life insurance sales for all companies 

80 90 100 



37,000 

34,100 

31,200 

28,300 

25,400 

~ 22,500 

19,6oo 

16,7oo 

13,8oo 

lO,9OO 

8,000 

O •  • 

0 e • 

o •  • 

• 0 • 

I I I 
10 20 30 

• • g o  
Q • • 

• • D 

O •  • O •  

o •  • • • 

• ° ° • o •  • • 0 ° • • 

1 I j I 1 
40 50 60 70 80 

Time (Months) 

FIG. 4.--Sales data for a single Canadian company 

0 • 0 0  

90 100 110 120 
1 I l 1 



DISCUSSION 313 

D S  = 0, 1, 2) was calculated.  T h e  (0, 1, 3) X (0, 1, 0)4 model,  which involves  

app rox ima t ing  the results, af ter  an o rd ina ry  and a seasonal  difference 

are taken,  by  a th ree - te rm m o v i n g  ave rage  formula,  had  the lowest  

residual var iance .  T h e  pa r t i a l  au tocor re la t ion  funct ion  (Tab le  4) shows 

an in te res t ing  pa t t e rn .  M o s t  of the pa r t i a l  au tocorre la t ions  corresponding 

to a lag of 1 + 4n (n = 0, 1, 2, 3, 4, . . . , 10) are cons iderably  larger in 

absolute  va lue  than  their  neighbors,  suggest ing a s t rong  annual  pa t t e rn .  

At  this po in t ,  because of the  increasing complex i ty  of the  model ,  i t  was 

decided to look at the series of increases f rom the same quar te r  in the 

TABLE 4 

L I F E  I N S U R A N C E  S A L E S  F O R  A L L  C O M P A N I E S :  P A R T I A L  

A U T O C O R R E L A T I O N  F U N C T I O N  

L a g  V a l u e  L a g  V a l u e  L a g  V a l u e  

1 . . . . . . . .  

2 . . . . . . . .  
3 . . . . . . . .  

4 . . . . . . . .  

5 . . . . . . . .  
6 . . . . . . .  
7 . . . . . . . .  

8 . . . . . . . .  
9 . . . . . . . .  

10 . . . . . . . .  
11 . . . . . . . .  
12 . . . . . . . .  
13 . . . . . . . .  
14 . . . . . . . .  
15 . . . . . . . .  
16 . . . . . . . .  

--0.260 
--0.076 

O. 138 
--0,281 
--0,099 

O. 232 
--0.008 
--0.109 
--0.146 
--0.056 
--0.054 
--0,015 
--0,172 
--0.001 

0. 069 
0.083 

1 7  . . . . . . .  

1 8  . . . . . . .  
1 9  . . . . . . .  
20 . . . . . . .  

21 . . . . . . .  
22 . . . . . .  
23 . . . . . .  
24 . . . . . .  
25 . . . . . .  
26 . . . . . .  
27 . . . . . .  
28 . . . . . .  
29 . . . . . . .  
30 . . . . . . .  
31 . . . . . . . .  
32 . . . . . . . .  

--0. 170 
0.104 

- -  0. 085 
--0.021 
--0.151 

0.035 
--0.015 
--0.132 
--0.032 
- 0 . 0 3 6  

0.017 
-0 .011  
--0.092 

0.050 
--0.023 

0.037 

3 3  . . . . . . . .  
34 . . . . . . . .  
35 . . . . . . . .  
36 . . . . . . . .  

37 . . . . . . .  

38 . . . . . . .  
39 . . . . . . .  
4 0  . . . . . . .  

41 . . . . . . .  
42 . . . . . . .  
43 . . . . . . .  
4 4  . . . . . . .  
45 . . . . . . .  
46 . . . . . . .  

47 . . . . . . .  
48 . . . . . . .  

-0 .077  
-0 .080  

0.037 
0,001 
0,057 

--0,026 
--0.000 

0.032 
-0 .100  

0.064 
0. 059 

--0,055 
O. 065 
O. 105 
O. 052 
O. 155 

preceding  year  (i.e., the  or iginal  series a f te r  an  annua l  difference).  Th i s  

s tep decreased the vo lume  of calcula t ions  considerably ,  and hence the  

t ime  needed to ob ta in  es t imates .  

T h e  residual  var iances  for models  of the  fo rm (p, 1, q) wi th  values  of 

p and q ranging  f rom 1 to 6 were  calcula ted and compared .  T h e  (5, 1, 2) 

mode l  had  by  far  the smallest  residual  va r iance  and was selected for 

fu r the r  tes t ing.  T h e  va lue  of 45 was found to  be no t  significant,  and 

hence the mode l  d ropped  to a (4, 1, 2) model .  Calcula t ions  for this mode l  

gave  the resul ts  shown in T a b l e  5. Obviously ,  there  is an annual  compo-  

nen t  in the series, and p robab ly  a semiannua l  one as well  ( the change f rom 

a (5, 1, 2) mode l  to a (4, 1, 2) model  increased the residual var iance  by  

less t han  1 per  cent,  another  indica t ion  t h a t  q~ was no t  an i m p o r t a n t  

pa ramete r ) .  T h u s  the results ob ta ined  by  working  with  the  series of 
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increases from the preceding year pointed to a (2, 1, 2) X (p, 1, 0)4 
model for the series of actual quarterly sales. 

Working once more with series of actual quarter ly sales, an a t t empt  
was made to fit a (2, 1, 2) X (2, 1, 0)4 model to the data.  The value of 
Sq~ was found to be nonsignificant, and the model was reduced to a 
(2, 1, 2) X (1, 1, 0)4 form. When the calculations were done, this model 
had the parameters  shown in Table  6. The key values are all significantly 
different from zero, and all would seem well. However,  one significant 

TABLE 5 

INITIAL PARAMETERS FOR ALL-COMPANIES MODEL 

Param- Value Standard Param- Value Standard 
eter Deviation eter Deviation 

~1 . . . . . . . .  - - 0 . 0 1 5 8 "  0 .  1378 ~ 4 ~  . . . . . . . .  - - 0 . 4 4 8 4  0 .  1124  
. . . . . . . .  - - 0 .  5843  O. 1496 ~121 ~ i i i i i O. 2575 O. 1247 
. . . . . . . .  - - 0 . 1 6 4 1 "  0 . 1 1 4 2  - - 0 . 7 4 7 1  0 . 1 2 4 1  

* These two values are not significantly different from zero at the 95 per cent confidence level, 

TABLE 6 

TENTATIVE PARAMETERS FOR ALL-COMPANIES MODEL 

Standard Standard Parameter Value Parameter  Value 
Deviation Deviation 

C o n s t a n t  t e r m . .  0 . 9 3 3 0 "  1 . 4 1 3 9  Sq~ . . . .  , - - 0 . 3 2 5 4  0 . 1 2 3 2  
4,~. - -  0 .  0054* 0 .  0907 0~. 0 . 1 2 7 2  0.  0462  
4~. - - 0 . 6 9 1 4  0 .  1018 02. - - 0 . 9 2 5 5  0 . 0 4 2 1  

* Not significantly different from zero at the 95 per cent confidence level. 

change had occurred in moving from the series of increases from the 
preceding year to the series of actual quarterly sales--namely,  the 
residual variance had risen from 281.988 to 300.740, despite the fact 
that  the models were supposedly the same. 

The  reason for the change in the residual variance lay in the nature  of 
the prediction equation. The model for the series of increases from the 
preceding year was of the form 

(1 - -  B*)(1 -- B)(1 - -  , 2 B  2 - -  ¢ . tB4)Z t  ---- (1  - -  OxB - -  02B~)at 

(showing only the parameters  which are significantly different from 
zero), while the (2, 1, 2) X (1, 1, 0)4 model is of the form 

( 1  - B4)(1 -- B)(1 - ~b~B2)(1 -- Sq~ ,B4)Z t  = (1 -- O,B - O~B2)a, .  
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This  later  model  involves a te rm of the form S¢t~b2B 6 which is not present  
in the earlier one and accounts for the difference in the residual variance. 
I t  provides an excellent i l lustrat ion of the extreme care that  must  be 
used in making "smal l"  changes in the model. 

The  (4, l, 2) )< (1, 1, 0), model was invest igated and the seasonal Sqh 
term found to be nonsignificant. 

Final ly,  the following (4, 1, 2) model with an annual difference was 
examined and found to have the form 

( l - - B ) ( 1 - -  B 4) 

X (1 + 0.0188B + 0.5836B 2 -t- 0.1624B ~ + 0.4470B*)Z, (1) 

= 1.0351 + (1 --  0.2539B + 0.7440B~)at. 

All the parameters  except 4,t, ~3, and the constant  term are significantly 
different from zero. The residual s tandard  deviat ion is only 16.81, 
which is small relative to the ac tual  sales (which are up to 1,000). Fur ther -  
more, the model explains 99.53 per  cent of the variat ion in the original 
series, a ra ther  r emarkab ly  high percentage. The chi-square test for 
goodness of fit produces a value of 25.52 for 42 degrees of freedom: 
indicative of a good fit. 

As a further test on the adequacy of the model, the one-step-ahead 
forecasts were calculated for the last twelve time periods for which 
actual  values were available (October, 1969--September ,  1972) and 
compared with the actual  sales. The  results are shown in Table  7. 

TABLE 7 

ONE-STEP-AHEAD FORECASTS FOR ALL-COMPANIES MODEL 

Time  Per iod Actua l  Sales Predic t ion  Residual  E r ro r  
(t) (gt)  (P(t-1)+l) (at) 

1 9 6 9 :  
October-December (92) . . . . . .  

1 9 7 0 :  

January-March (93) . . . . . .  
April-June (94) . . . . . .  
July-September (95) . . . . . .  
October-December (96) . . . . . .  

1 9 7 1 :  
January-March (97) . . . . . .  
April-June (98) . . . . . .  
July-September (99) . . . . .  
October-December (100) . . . . . .  

1 9 7 ~ :  
January-March (101) . . . . . .  
April-June (102) . . . . . .  

July-September (103) . . . . . . .  

822.77 

732.49 
780.86 
718.90 
887.22 

753.61 
812.63 
757.12 
932.52 

841.93 
962.36 
869.22 

868 .0 0  

751.00 
808.00 
697.00 
837.00 

785.00 
818.00 
736.00 
890.00 

820.00 
919.00 
884.00 

--45.21 

--18.23 
--27.56 

22.34 
50.12 

--31.11 
-- 5.54 

21.38 
42.77 

2l .94 
43.63 

- - 1 4 . 8 8  
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A visual comparison shows that  the largest difference is only 50, 
while the smallest is a mere 5. More mathematical ly,  the chi-square test 
gives a statistic of 1.2 with 6 degrees of freedom, a value which will be 
exceeded by random chance 97.5 per cent of the time even if the model is 
a perfect fit. 

A final check was made by comparing the last four available sales 
figures with the projections of them that  would have been made a year 
earlier (Table 8). The errors are much larger than those in Table 7. 
This is to be expected, since the projections extend much farther into the 
future. Also, a look at Figure 3 shows that  sales leveled out in 1970 and 
1971 and then surged ahead in 1972, catching the prediction equation 
flat-footed. 

All things considered, the model in equation (1) appears to pass the 
reasonabili ty tests. 

TABLE 8 

ONE-YEAR-AHEAD FORECASTS FOR ALL-COMPANIES MODEL 

Time P .  eriod 

October-December 1971 . . . . . . . . .  I 
January-March 1972 . . . . . . . . . . . . .  I 
April-June 1972 . . . . . . . . . . . . . . . .  i 
July-September 1972 . . . . . . . . . . . .  

Actual 

932.52 
841.93 
962.36 
869.22 

P(t-O-~ 

907.00 
775.00 
846.00 
795.00 

25.52 
66,93 

116.36 
74.22 

THE SINGLE-COMPANY MODEL 

As a preliminary step, the residual variance for all models of the form 
(p, d, q) X (0, DS, 0)l~.(where p = 0, 1, 2, 3; d = 0, 1, 2; q = 0, 1, 2, 3; 
DS = 0, 1, 2) was calculated. A comi)arison of the residual variances 
indicated that  a (2, 0, 3) X (p, 1, q)r,. model would be best. Both the 
autocorrelation function and the partial  autocorrelation functions showed 
very high values for a lag of one year but  did not show unusual values 
for lags of multiples of one year (Table 9). Accordingly, a (2, 0, 3) X 
(1, 1, 1)1-. model was constructed. I t  was found that  03 was not significantly 
different from zero. Better  results were obtained with a (2, 0, 2 ) X  
(1, 1, 1)1-. model, as can be seen in Table 10. All parameters  of the model 
are significantly different from zero. The residual s tandard deviation of 
2,169 (or $2,169,000) is disappointingly high, since it is about 10 per cent 
of many  of the sales values. Comparison of the variance in the original 
series with that  in the residual series shows that  the model accounts for 
about 86 per cent of the variation, a reasonably high proportion. A chi- 
square statistic of 22.05 with 43 degrees of freedom indicates that  the 
fit is certainly reasonable. 



T A B L E  9 

SALES DATA FOR A SINGLE C A N A D I A N  COMPANY 

A U T O C O R R E L A T I O N  FUNCTION 

Lag Value Lag Value Lag Value 

0 . . . . . . .  

1 . . . . . . .  

2 . . . . . . .  

3 . . . . . . .  

4 . . . . . . .  

5 . . . . . . .  

6 . . . . . . .  

7 . . . . . . .  

8 . . . . . . .  

9 . . . . . . .  

I0  . . . . . . .  
I i  . . . . . . .  
12 . . . . . . .  

13 . . . . . . .  

14 . . . . . . .  
15 . . . . . . .  
16 . . . . . . .  

1 .000 
0.011 
O, 185 
O. 060 
O, 137 
O. 080 
O. 070 

- - 0 , 0 6 0  
- O. 061 
- 0 . 0 0 6  
- - 0 .  103 

O. 026 
- - 0 . 3 2 4  
- - 0 . 0 3 1  
- - 0 . 0 7 1  
- 0 . 0 9 3  
- 0 .  128 

17  . . . . . .  

18 . . . . . .  
19 . . . . . .  
20 . . . . . .  
21 . . . . . .  
22 . . . . . .  
23 . . . . . .  
24 . . . . . .  
25 . . . . .  
26 . . . . . .  
2 7  . . . . . .  

2 8  . . . . . .  

29 . . . . . .  
30 . . . . . .  
31 . . . . . .  
32 . . . . . .  
33 . . . . . .  

- - 0 .  143 
- - 0 . 1 0 1  
- -  0. 058 
- - 0 . 1 1 8  

0. 061 
- - 0 . 0 7 7  

0 .003  
- - 0 . 0 4 0  

0 .011 
0 , 0 5 4  
0 , 053  
0. 154 
O, 155 
O. O23 

- - 0 . 0 9 8  
O. 107 

- - 0 . 0 4 5  

3 4  . . . . . . . .  

35 . . . . . . . .  
36 . . . . . . . .  
37 . . . . . . . .  
38 . . . . . . . .  
39 . . . . . . . .  
40 . . . . . . . .  
41 . . . . . . .  
4 2  . . . . . . . .  

43 . . . . . . . .  
4 4  . . . . . . . .  

45 . . . . . . . .  
4 6  . . . . . . . .  

47 . . . . . . .  
48 . . . . . . .  
49 . . . . . .  
50 . . . . . . .  

O. 023 
O. 003 

- 0 .  112 
- 0 . 0 6 7  
- 0 .  048 

O. 032 
- 0 . 0 3 5  
- 0 . 0 6 4  
- 0 . 0 8 1  

O. 126 
- O. 032 
- 0 . 0 4 2  
- 0 . 0 1 3  
- 0 . 0 1 5  

0 .117  
O. 123 
0 .0 1 9  

PARTIAL AUTOCORRELATION FUNCTION 

Lag Value Lag [ Value ] Lag Value 

1 . .  

2 . .  

3 . .  

4 . .  

5 . .  

6 . .  

7 ,  . 

8 , .  

9 . ,  

1 0 . .  
1 1 . .  
1 2 . .  
1 3 . .  
1 4 . .  
1 5 . .  
1 6 . .  
1 7 . .  

0 .011  
O. 185 
O. 059 
O. 106 
O, 062 
O. 027 

- - 0 .  101 
- - 0 . 1 0 8  
- - 0 . 0 0 6  
- - 0 . 0 9 1  

0 . 0 4 9  
- - 0 .  282 
- - 0 . 0 1 8  

0 .047  
- - 0 , 0 6 9  
- - 0 , 0 6 2  
- - 0 . 1 0 7  

1 8  . . . .  

19 . . . .  
20 . . . .  
21 . . . .  
22 . . . .  
23 . . . .  
24 . . . .  
25 . . . .  

26 . . . .  
27 . . . .  
28 . . . .  
29 . . . .  
30 . . . .  
31 . . . .  
32 . . . .  
33 . . . .  
34 . . . .  

- -0~037 
- - 0 , 0 4 1  
- - 0 , 1 3 2  

O. 147 
- - 0 . 0 7 5  

O. 020 
- - 0 .  136 
- - 0 . 0 4 3  

0 . 0 9 4  
- - 0 , 0 3 8  

0 , 155  
0.  105 

- - 0 , 0 9 9  
- - 0 , 2 1 8  
- 0 , 0 9 4  

0 . 0 3 3  
- - 0 .  086 

3 5 . .  

3 6 . .  
3 7 . .  
3 8 . .  
3 9 . .  
4 0 . .  

4 1 . .  
4 2 , .  

4 3 . ,  
4 4 . .  

4 5 . .  
4 6 . .  
4 7 . .  
4 8 . .  
4 9 . .  
5 0 . .  

0 .038  
- 0 . 1 4 4  
- 0 . 1 2 6  
- 0 . 0 0 5  

0 .028  
0 .114  

- 0 . 0 0 4  
- 0 . 1 5 8  

0 .048  
- - 0 . 0 2 9  

0 .013  
- 0 . 0 1 2  

0 .003  
0 . 0 7 0  
0 ,012  

- - 0 . 0 3 7  

T A B L E  10 

INITIAL VALUES FOR SINGLE-COMPANY MODEL 

P a r a m e t e r  

Cons tan t  t e r m . .  

~2 . . . . . . . . . . . . . .  

Sq, l . . . . . . . . . . . .  

Value 

1 , 6 9 8 . 2 8  
1 .3336 

- - 0 . 8 2 9 6  
0 .2398  

Standard 
Deviation 

103.832 
0 .0642  
0 .0679  
0 .1087  

Parameter 

0 1 . .  

S O ~  . 

Value 

1 .4124 
- - 0 . 9 8 9 4  

0 .8771 

Standard 
Deviation 

0.0191 
0 .0140  
0 .0396  
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Two reasons for the lack of fit can be given. First, and most important, 
one usually likes to have two to three hundred values of the series, 
particularly where the seasonal period is long. The all-companies model 
involves data for nearly twenty-five years, whereas this model involves 
only a ten-year period. Second, the data are monthly and for only one 
company. Naturally they are subject to more fluctuation than combined 
sales by quarter for all companies. 

To test the adequacy of the model, one-step-ahead forecasts for 1971 
(the last year actual sales figures were available) were calculated and 
compared with the actual sales figures (Table 11). A visual comparison 

TABLE 11 

ONE-STEP-AHEAD FORECASTS FOR SINGLE-COMPANY MODEL 

(In Thousands of Dollars) 

Actual Sales Predicted SMes Residual Error Period 
(gt) (P(t-1)+l) (a~) 

January . . . . . . . . . . . . . . . .  

February . . . . . . . . . . . . . . .  
March . . . . . . . . . . . . . . . . .  

April . . . . . . . . . . . . . . . . .  

May . . . . . . . . . . . . . . . . . .  

June . . . . . . . . . . . . . . . . . . .  
July . . . . . . . . . . . . . . . . .  
August . . . . . . . . . . . . . . . .  
September . . . . . . . . . . . . .  
October . . . . . . . . . . . . . . .  
November . . . . . . . . . . . . .  
December . . . . . . . . . . . . .  

24,827 
24,727 
32,156 
26,715 
24,300 
23,984 
22,820 
22,880 
27,686 
25,528 
31,221 
36,898 

27,000 
30,900 
31,200 
30,500 
29,200 
30,100 
28,900 
28,900 
30,100 
30,900 
34,500 
37,200 

--2,186.3 
--6,194.9 

980.9 
--3,818.8 
--4,937.1 
--6,088.4 
--6,055.4 
--5,972.1 
--2,389.6 
--5,352.2 
--3,223.9 
-- 259.1 

shows that the errors range in size from $302,000 to $6,173,000, These 
results look poor until they are analyzed. The graph of the actual sales 
(Fig. 4) is most illuminating. Beginning in 1969, sales began to fluctuate 
widely from month to month, particularly between December and 
January. Under such conditions, a mathematical analysis is bound to 
break down somewhat. 

In summary, the model of Table 10 appears to be reasonable, all things 
considered. 

FORECASTS OF THE FUTURE 

For the all-companies model, predictions were made for 1973 and 1974 
(Table 12). The increases appear fairly large, but, when compared as in 
Table 13 with the increases for the preceding two years, they are seen to 
fall reasonably in the range. A modifying influence seems to be at work. 
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Wherever the actual increases are largest, they exceed the forecasts, and 
wherever the actual increases arc smallest, the forecasts arc larger. 

For the single-company model, similar projections were made. They  
are summarized by quarter in Table 14. I t  would appear that  the predic- 
tion equation was able to foresee a better year in 1972 (which actually 
occurred). 

CONCLUSIONS 

The all-companies model is certainly adequate for prediction purposes 
and even for a single company, time series models seem to perform 
adequately. 

TABLE 12 

ALL-COMPANIES MODEL'S FORECASTS FOR THE FUTURE 

Period 

lanuary-March... 
~tpril-June... 
luly-September. 
9ctober-Dccembcr. 

Actual Actual 
1971 1972 

753.61 841.93 
812.63 962.36 
757.12 869.22 
932.52 . 

Predicted 
1973 

931 
1,040 

974 
1,160 

Predicted 
1974 

1,050 
1,150 
1,070 
1,260 

TABLE 13 

ANALYSIS OF THE INCREASES FORECAST BY ALL-CoMPANIES MODEL 

Penultimate 
Period 

Actual 

January-March... 21.12 
~pril-June... 31.77 
July-September. 38.22 
~)ctober-December... 64.45 

Last Actual 

88.32 
149.73 
112.10 
45.40 

1973 
Forecast 

I 91 
78 

105 
120 

1974 
Forecast 

119 
110 
96 

100 

TABLE 14 

SINGLE-COMPANY MODEL'S FORECASTS FOR THE FUTURE 

(In Thousands of Dollars) 

Actual Period 
1970 

January-March . . . . . .  56,900 
~tpril-June .. . .  70,700 
luly-September. 68,400 
3ctober-December . . . . . . .  91,000 

Actual 
1971 

81,700 
75,000 
73,400 
93,600 

Predicted 
1972 

95,800 
94,000 
92,600 

108,600 

Predicted 
1973 

104,300 
103,600 
102,300 
116,100 
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III .  F o r e c a s t i n g  S l ock  M a r k e t  V a l u e s  

INTRODUCTION 

The introduction of variable annuities and other section 81(5) funds 
has brought many actuaries into closer contact with their company's 
investment division. Sooner or later, the actuary is asked whether there 
is not some way in which he can apply his mathematical knowledge to 
assist the investment officers in making stock market predictions. Most 
actuaries back off at this point; for the venturesome individual, however, 
time series can provide some interesting insights into the workings of the 
stock market. 

The following six companies were chosen to illustrate a variety of 
common situations: C.I.L., a chemical manufacturer, whose stock has 
remained relatively stable over the period; Distillers Seagram, whose 

TABLE 15 

Company Model X 2 

C.I.L . . . . . . . . . . . . . . . . . .  
Distillers Seagram . . . . . .  
Gomtar . . . . . . . . . . . . . . . .  
Doodyear . . . . . . . . . . . . . .  
Sherritt-Gordon . . . . . . .  
Stelco . . . . . . . . . . . . . . . . .  

(l -- 0. 943B)Zt = at+0. 913 
(1 - B )  Z ,=  (1-0,103B)a,+0. 189 
( 1  - ]3)Zt = (1 --0.280B)at+O. 028 
(1 - B )  Zt  = (1 +0 .  O04B)at+ O, 382 
(1- B)Zt--(1--0. 126B)at+O,073 
( 1 - -  B ) Z ,  = ( l  + 0 , 0 9 7 B ) a , + O ,  092 

17.97" 
44.35 
9.67* 

21.65" 
53.38 
27.79* 

* Not significant. 

stock rose rapidly during the early part of the period but which has been 
relatively stable for some years; Domtar, a primary iron and steel 
manufacturer, whose stock tends to be cyclical; Goodyear, a rubber and ........ 
tire manufacturer, whose stock declined until very recently; Sherritt- 
Gordon, a mining firm, whose stock rose through most of the period; 
Steel Company of Canada, a primary iron and steel manufacturer, whose 
stock tends to be cyclical. Month-end stock prices for the period January, 
1959--March, 1973, were available. 

THE MODELS 

The results of attempting to fit models to the data are summarized 
in Table 15. The value of X~ at the 5 per cent level is 35.2. Thus the 
models fit reasonably well except in the cases of Distillers Seagram and 
Sherritt-Gordon. Despite some indications of a seasonal factor in the 
autocorrelation function, the introduction of a seasonal factor did not 
reduce the residual variance. 



DISCUSSION 321 

A further test on the adequacy of the models was made by calculating 
the one-step-ahead forecasts for the last twelve time periods for which 
actual values were available and comparing these with the actual prices 
by means of a chi-square test. For all six models the fit was excellent. 

One interesting fact emerges from Table 15, namely, that each model is 
virtually of the form ( 1 -  B ) Z t  ~ at, that is, the month-to-month 
change is a completely random value--the so-called white noise. 

CONCLUSIONS 

The confidence intervals for the estimates are much too large to give 
one confidence that the method produces useful projections. However, the 
fact that the month-to-month changes in values are themselves virtually 
white noise is interesting and suggests that a fundamental review of a 
company's financial outlook by a good securities analyst may still be 
worth much more than a great deal of mathematical analysis. 

IV. General Conclus ions  

The analysis of a number of series of data of the nature of those with 
which the actuary may have contact leads me to suspect that time series 
will be useful to the actuary in the same way that regression analysis often 
is, namely, in pointing out relevant factors that are too subtle for the eye 
to extract from the mass of data available. 

RICHARD W. ZIOCK: 

The purpose of this discussion is to present a modification of time 
series analysis, which sacrifices very little in accuracy to achieve a 
huge gain in ease of practical application. This modification should 
prove to be of special value when a large number of series must be forecast. 

Performing a time series analysis is no mean task. There are many 
steps, and, at several points in the process, decisions have to be made, 
of which the ultimate effect on the final forecast is unknown. Generally 
speaking, the process one follows is to calculate autocorrelations on the 
data and several meaningful transformations of the data and then search 
for a simple and recognizable pattern of the autocorrelation function. 
Having done this, one has identified the process (i.e., model) and the 
transformation to be used. At this stage, unless the model is very simple, 
it is necessary to estimate the coefficients of the model. Then these initial 
estimates are used in a computer program which refines the estimates 
using a nonlinear least-squares method. Finally, when the model has been 
fitted, forecasts can be made. If the forecasts are not suitable in some 
respect, then probably an error has been made in the selection of the 
model and/or the transformation of the data. 
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I would be very much surprised if many actuaries take the time and 
trouble to go through this long process. I t  should also be pointed out that 
it is not a clear-cut process at each juncture. At the Waterloo Time 
Series Conference (sponsored by the Committee on Research of the 
Society of Actuaries) the experts in time series who were present spent 
considerable time on certain models and autoregression patterns, discuss- 
ing whether the model was of this type or that type. 

There is more evidence of this fact in a standard reference on time 
series analysis? These authors show models for six data series, which 
they call Series A-F. Of the six series, four have two fitted models shown, 
indicating that they are unable to find a single model for every set of data. 

The modification of time series analysis (TSA) which I call "stepwise 
elimination" (SWE) eliminates much of the arbitrary decision-making 
which must be done in the process of fitting time series models to the 
data. 

With SWE it is only necessary, once the method is programmed on the 
computer, to choose the transformation of the data on which the model is 
to be built. The remainder of the model-building is performed entirely 
by mathematical routines within the computer. The basis of the SWE 
procedure is that, by giving up very slight amounts of accuracy in the 
fitting process, we can make a huge gain in terms of the elimination of 
decisions and work. 

Consider the following general autoregressive model of order 7, AR(7) : 

Zt  = IIo + II1Zt-1 + II2Zt_2 + . . .  + llTZt_~ + a t ,  (1) 

where the Zt's are values of the time series and at is a normal random 
deviate with zero mean and some specified nonzero variance. By a suitable 
choice of the coefficients in this model, letting coefficients equal zero for 
those variables to be eliminated from the model, one can create any kind 
of autoregressive model needed in practice. This model is about all one 
needs in practice, because moving average processes are very seldom 
encountered. However, on an approximate basis, this model also can 
handle adequately moving average processes as well. This is true because 
any moving average model can be transformed into an autoregressive 
model containing an infinite string of autoregressive parameters. 

The above AR(7) model cuts off the autoregressive parameters after 
lag 7; however, for a moving average process with effective shocks at lags 
of 1, 2, or 3, the coefficients decline very rapidly in the rewritten auto- 
regressive model. In fact, for a MA(1) model rewritten as an autoregres- 

i G. E. P. Box and G. W. Jenkins, Time Series Analysis: Forecasting and Control 
(San Francisco, Calif.: Holden-Day, 1970), p. 239. 
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sive model with an infinite number of terms, if the coefficient of Zt-1 is 
II1, then the coefficient of Zt-r will be II1 to the seventh power (II~). 
Since II1 is always absolutely less than unity (for stationary models), we 
have a quick die-off of the coefficients of the rewritten autoregressive 
model. ~ Hence, on an approximate basis, the above model handles moving 
average processes as well. 

The above AR(7) model could be fitted to the data using a least- 
squares multiple regression method. The problem is that the least- 
squares procedure would assign a nonzero value to each 11,- whether or 
not the Z~_i's were significantly helpful as predictors. Thus the model 
would be overparameterized. This would cause the coefficients to move 
up and down with no regularity. The technical reason for this is known 
as multicollinearity. In laymen's terms, too many variables are moving 
parallel for the procedure to determine adequately the effect of each 
variable. 

This difficulty is solved quite easily by' a procedure commonly used by 
econometricians and statistical researchers--stepwise multiple regression. 
Basically, the stepwise multiple regression p.rocedure uses only those 
variables in the final equation which it finds help significantly to ex- 
plain the variance or changes in the dependent variable. All other coef- 
ficients are set at zero. 

There are many technical variations in the stepwise multiple regression 
procedure The one which is in the IBM computer package used by us is 
the Doolittle method. In this method all variables which predict at 
least 1 per cent (this can be varied) of the variance of the dependent 
variable are retained in the final multiple regression. All others are 
eliminated. In the Doolittle procedure one has the ability to force a 
variable, that is, a variable will be tried first even though it may not 
explain as much variance or have as much potential for explaining 
variance as another variable. When I apply stepwise multiple regression 
to the AR(7) model, I force the variable at lag 1 and at lag 4. The variable 
at lag 1 is forced to cause a pickup of trend factor, if such exists, and at 
lag 4 is forced to pick up a seasonal factor. (I am dealing always with 
quarterly data.) The other variables are allowed to enter freely. However, 
on occasion the forcing will delete lag 4 because it does not explain 1 per 
cent of the variance. The forcing simply provides a better chance to 
explain 1 per cent of the variance, since it is considered first. 

SWE is a fitting to the general AR(7) model by a stepwise multiple 
regression technique. I think one can see how much simpler in practice 

This is also illustrated in eqs. (9) and (10) of the paper under discussion. 
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SWE is than TSA. In  order to demonst ra te  how well S W E  works, I 
carried it out on Series A and Series E tha t  had al ready been fitted by 
conventional  t ime series methods.  Box and Jenkins provide  da ta  in the 
appendix to which I fit the generalized autoregressive model  with the 
stepwise el imination method.  Series A has 197 observations of "Chemical  
Process Concentrat ion Readings:  Every  Two Hours ."  The  model a 
of the differenced da t a  is 

V Z t  = at - -  0.7Oat_l . 

This can be rewrit ten into the following general autoregressive formula 
by  subst i tut ing in order to el iminate terms involving lagged a's. This 
was done, and the result is 

VZt = --0.70~'Zt_l --  0.49VZt_2 --  0.34VZt_a -- 0.24~'Zt-4 
(2) 

--0.17VZt_~ --  0.12VZt_~ -- 0.08VZt_7 + R + at , 

where R involves terms of VZ,_,. with k > 7. 
The  equation I obtained through the SWE procedure is 

~TZt = 0.01 --  0.63~7Zt_1 --  0.41~Zt_2 --  0.38VZt~'~ --  0.33VZt_4 
(3) 

- -  0 . 3 3 V Z t _ 5  - -  0.32VZt_~ --  0 . 2 1 V Z t - r  + a t .  

Here the coefficients do not die off as fast, and a small constant  tern] is 
present;  but  the form is very similar  to that  of formula (2). The da ta  fit 
was ac tual ly  better ,  the residual variance of formula (3) being 93 per cent 
of the residual variance of formula (2). I t  should be pointed out that  my 
computer  program always el iminates the first seven da t a  points  to 
s implify the fitting process; thus we would expect the coefficients to be 
sl ightly different even if there were no other differences. 

The  model* for Series E, which is "Woelfer  Sun Spot Numbers :  
Year ly ,"  of which there are a hundred observations, is 

Zt = 11.31 + 1.57Zt_l - 1.02Zt_2 + 0.21Zt_a + a t .  (4) 

The model  obtained through the SWE procedure was 

Z t  = 10.44 + 1.62Zt_t --  1.12Zt_2 + 0.28Zt~ -+- a t .  (5)  

Here, there is only a small difference between the two models. (All of 
the difference in this case is due to eliminating the first seven da ta  
points.) This i l lustrates the fact that  SWE works bet ter  for autoregressive 
processes. 

a Box and Jenkins, Time Series Analysis,  p. 239. 
4 Ibld. 
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Although SWE is good for pure autoregressive processes because of 
similarity and proved fair in one case for a pure moving average process, 
it was less successful with ARIMA (i.e:, mixed) processes. 

In order to test SWE's performance under stable conditions, 196 
data values were generated (using random numbers) from this ARI3IA 
model: 

Z t  - -  0.92Zt_i = 1.45 + at -- 0.58at_1 . (6) 

This is the model which Box and Jenkins fit to the Series A undifferenced 
data. (The SWE fit to actual data was not good, but this may have been 
because of the consistency of eq. [6i and the data.) The AR(7) form of 
equation (6) is 

Zt = 3.59 + 0.34Z,_1 + 0.20Z,_~. + 0.11Z,_3 + 0.07Z,~ 
(7) 

+ 0.04Zt-5 + 0.02Zt_6 + 0.01Zt-z + at .  

The SWE procedure yielded 

Zt = 7.58 + 0.23Zt-i + 0.23Zt-2 + 0.13Zt_~ + at , (8) 

which is different from formula (7). The sizes of the coefficients at lags 1, 2, 
and 3 are in the same range. All coefficients less than 0.10 in formula (7) 
were eliminated, and because of that the constant term is larger to give 
the model the correct mean or expected value. Thus it appears that SWE 
tends to make simpler models out of complex ARIMA models. 

What is the consequence of this? The residual variance of formula (6) 
was 0.097, whereas that of formula (8) was 0.099. Relative to the data 
(generated) variance of 0.1199, under formula (6) 81 per cent of the data 
variance is unexplained and under formula (8) 83 per cent of the data 
variance is unexplained. Viewed differently, formula (6) explains 19 per 
cent of the variance and formula (8) explains 17 per cent of the variance. 
The difference of 2 per cent does not seem large, especially in light of the 
gain in practicality. 

I also generated data with formula (7). The SWE equation fitted to 
these data was practically identical with formula (8). This shows that the 
effect of limiting the number of terms to seven is almost nil. 

What has been the practical experience with SWE? Each quarter, at 
my company, we update our forecasts for twenty-seven quarterly time 
series. Some of these time series are of cash-flow components, and others 
are of gain from operations by line of business. 

Before fitting the general autoregressive model by SWE, the data 
may be transformed. Our computer program handles five transformations: 
first differences, differences over lag 4, logarithms, logarithms of differ- 
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ences, and logarithms of differences over lag 4. We have found that 
sometimes it is necessary to difference the data, and while usually the 
differences are over interval 1, on some strongly seasonal series we 
difference over interval 4 (first quarter from first quarter, etc.). For 
those series which increase geometrically or as a constant percentage, 
logarithms are taken before differencing. The most common transforma- 
tion is the differences of logarithms. This means that the series is trending 
upward or downward by a constant percentage each period. Because of 
the trend toward term insurance and other factors, I felt that some of the 
series involving either assets or reserves would probably increase arithmet- 
ically rather than geometrically in the future. Thus "Interest Received 
on Bonds" (which involves assets multiplied by rates of interest) was 
only differenced before fitting. Only a few of the series were stationary 
without transformation. One is "New Flow from Changes in Other 
Noninvested Funds." The correct transformation is usually apparent 
from a graph of the raw data. 

.Most of the fitted models conform to expectations. In many of the 
models, only the first few coefficients are nonzero, indicating a basic 
autoregressive process. In others, all of the coefficients are nonzero, and 
they decline with increasing lag, indicating a moving average. A few 
appear to be combined ARIMA models. Of course, the textbook labeling 
of these models does not matter to us. What is important is the reason- 
ableness of the forecasts. Since, with SWE, this is only a function of 
transformation, we have only to choose the correct transformation. A 
chi-square test on the residuals' autocorrelations helps to test the trans- 
formation. However, the resulting forecast is really the final test of the 
choice of transformation. 

The resulting forecasts serve well in picking up seasonal patterns and 
in following the general trends. 

(AUTHORS' REVIEW OF DISCUSSION) 

RO]3ERT 13. MILLER AND JAMES C. t{ICKMAN" 

The two discussions of our paper are interesting but very different. 
Mr. Reynolds presents us with a set of case studies illustrating some of the 
problems that inevitably seem to arise in using time series analysis to 
produce forecasts. Mr. Ziock, on the other hand, has proposed a reduction 
in the size of the class of models used in routine time series analysis. 
He also outlines a semiautomatic method for selecting the model from 
within the reduced class and estimating the parameters of the model. 
His testimonial on the importance of using transformations as a pre- 
liminary step to modeling is welcome. 
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Mr. Ziock proposes that as a practical matter the class of models 
used to analyze business time series may be reduced from the fairly 
broad class of autoregressive integrated moving average (ARIMA) 
models examined in the paper to the subclass of autoregressive models 
with a maximum lag of 7, AR(7). In supporting his proposition, he 
examines three sets of time series data for which models within the 
ARIMA class are already available. For each of these sets of data he 
selects and fits a model from within the AR(7) class, using a stepwise 
regression prograna. In the comparisons of his model with those from 
within the ARIMA class he gives a fair appraisal of the results. 

We would like to make a few comments on each of his examples. In the 
first example, the first differences of the observations have been fitted to 
a moving average model of order 1, MA(1). To the same data 3Ir. Ziock 
has fitted an AR(7) model. His model involves eight parameters, plus the 
variance of the residuals, as compared with one parameter, plus the 
variance of the residuals, in the original model. Despite the convenience 
of the semiautomatic way in which the model was selected and the param- 
eters estimated, it is difficult to see why an AR(7) model is simpler than a 
MA(1) model. 

On a somewhat more technical level, we acknowledge that we adopted 
a "build up" strategy rather than a "build down" strategy in selecting a 
model. That  is, we advocated starting with the simplest model suggested 
by the sample autocorrelation function and a graph of the data, then 
adding as few parameters as possible consistent with the residuals appear- 
ing to be white noise. This was done not out of slavish devotion to the 
slogan "parsimony" but because we wanted to minimize our estimation 
problems and conserve degrees of freedom so that we could make sharper 
statements in testing hypotheses about the parameters and the residuals. 
Perhaps we are overconservative, but we want to avoid reading more 
structure into the data than is incontrovertibly there. 

We are mildly distressed by the constant term in Air. Ziock's equation 
(3). I t  is easy to see that the forecasts made from the original model 
will be a horizontal line. (See the discussion on MA(1) models and 
exponential smoothing in Sec. I I I  of the paper.) The forecasts made 
from equation (3) will edge upward as a result of the constant term. 
If forecasts do not seem reasonable, given the data, there is good reason 
to stop and examine the model. 

Mr. Ziock's second example involves fitting a model from within 
the class of AR(7) models to data to which a satisfactory AR(3) model has 
already been fitted. Since the actual parameter-fitting process differs at 
most in the handling of the starting values and the details of the least- 
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squares method used, it is not surprising that the two models are practical- 
ly identical. 

The third and final example involves a simulation experiment in which 
a mixed autoregressive moving average model is used to generate data to 
which a member of the AR(7) class is fitted. The resulting model is 
interesting, but the experiment was not highly successful. 

In summary, we agree that there is a degree of arbitrariness in starting 
with the large class of ARIMA models. There are certainly even more all- 
encompassing and more complicated classes that could be considered 
initially. If prior evidence rather conclusively indicates that the data may 
be analyzed satisfactorily within a smaller class of models, such as the 
AR(7) class, the process of model selection and parameter estimation 
may proceed more rapidly. We would differ with Mr. Ziock primarily in 
that we are not convinced that mixed models are rare. We are also some- 
what concerned with the apparent concentration on the reduction in the 
variance of residuals in the stepwise regression program. We are apprehen- 
sive that this emphasis may result in overparameterization and may 
discourage a detailed examination of the residuals. The ultimate test of 
the adequacy of the model is the behavior of the residuals. 

If a semiautomatic analysis is desired, we suggest the X-11 program 
developed by the United States Bureau of the Census and described in 
somewhat extravagant terms in reference [4]. We tend to the view that 
X- l  l, exponential smoothing, or any forecasting technique that involves 
automatic analysis and does not compel examination of the data and 
multiple tests of the residuals to check the adequacy of the model may 
lead the forecaster to lose touch with reality. 

Instead of suggesting a reduction in the class of models, Mr. Reynolds 
uses an even broader class of models in some of his case studies. In 
selecting a model he goes beyond the sami)le autocorrelation function 
and displays partial autocorrelations. In both these instances he augments 
our paper. 

Mr. Reynolds' first case study involves cash-flow forecasting. He 
provides the reader with an excellent account of his problems in modeling 
these data. In his comments he suggests that perhaps the process generat- 
ing these data shifted around 1970. A study of his Figure 1 would lead 
one to speculate that the observations beyond observation 100 might 
produce a model different from that which was selected for the entire 
series. The analysis of blocks of economic data with end points identified 
with known economic events (imposition of price controls, devaluations, 
etc.) can often lead to insights. 

The second case study involves the use of seasonal models and the 
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use of the partial autocorrelation function as an identification tool. 
We decided to omit these topics from our expository paper, but the 
interested reader will find them explained in Box and Jenkins (ref. [1] of 
the paper). 

The third case study involves forecasting common stock prices. 
Mr. Reynolds adds yet another piece of evidence that, for all practical 
purposes, stock prices behave as a random walk. There does not appear 
to be enough structure in past observations to permit predictions that 
would lead to consistent gains. 

Our purpose in writing this paper was to bring an exposition of time 
series analysis to actuaries. The two discussions have served to advance 
this project. 




