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ABSTRACT 

The first part of the paper is an attempt to give to some ideas of 
classical life contingencies a common probabilistic denominator. In the 
second part, generalized reserves, and in particular exponential reserves, 
are developed. Like Horn's system, exponential reserves produce a 
release of risk. Unlike Horn's system, they are compatible with risk 
theory. 

I. INTRODUCTION 

T 
HE purpose of this paper is twofold. In the first part some of the 
main principles of classical life contingencies are generalized and 
formulated in the language of probability theory. This is an 

extension of the line of thought that has been initiated by others [9, 
12]. In order to avoid technicalities, the discrete time approach has been 
chosen. 

In the second part of the paper the concept of generalized reserves is 
developed. In particular, exponential reserves seem to be a meaningful 
alternative to the system developed by Horn [I0]. Both systems show a 
release of risk. While Horn's system requires the determination of the 
deltas, exponential reserves require the determination of the parameter 
a. Since a can be interpreted as an adjustment coefficient (a term familiar 
to every Part 5 student; see [14]), its determination is an easy task. 
Exponential reserves are related to premium calculation principles that 
are based on an exponential utility function (see [5, 6, 7]). 

II. W~IAT IS A POLICY? 

For our purposes a policy will consist of a sequence of real random 
variables X0, X1, X , , . . .  and a sequence of random vectors So, $1, 
S , , . . .  (say k-dimensional vectors) such that X, is measurable with 
respect to the ~-field that is generated by So, $ 1 , . . . ,  St. Intuitively, Xt 
is the balance (benefits plus expenses, etc., minus premiums) payable at 
time t. Furthermore, the values of So, $ 1 , . . .  , St provide information 
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128 PROBABILISTIC MODEL FOR CONTINGENCIES 

about the development of the risk (or, more generally, of the "world") 
up to time t. Then the interpretation of the measurabil i ty condition 
above is s imply that  the cash flow at any time is a function of past and 
present states of the risk but  is otherwise independent of the future. 
Supposedly the policy is initiated at time 0, so we assume that  So and X0 
are constant. The following examples illustrate this concept. 

Example 1: Consider a whole life policy (issue age x, face amount  z, 
annual premium P). Disregarding expenses and so on, set 

St = 1 if the person survives to age x + t 
(1) 

= 0 if the person does not survive to age x + t 

and 
X t =  --P if S t =  1 

= z if St-1 = 1 and St = 0 (2) 

= 0 if S t _ l =  O. 

Observe that  So = 1 and Xo = - P  are constant. 

Example 2: A policy provides the following survivorship benefit for k 
lives: as long as person 1 is alive, and as long as at least one of the 
other k -- 1 persons is alive, an annual premium of P is payable. If 
person 1 is dead, person i receives an annui ty  of ai (i = 2, 3, . . . , k). 
Here it is convenient to define St as a vector, 

S 1 2 s ,  = 

where 

1 

= 0  

(i = 1, 2 , . . . ,  k). Then 

Xt = - - P  

if person i is alive at the end of policy year ! 

if person i is dead at the end of policy year t 

= 0  

k 

= E a,S  
i = 2  

k 

if S~ = 1 and  ~ S~ _> 1 
i = 2  

(3) 

(4) 

Example 3: The reader is invited to choose any discrete time policy from 
[11] (including the ones described in chap. 16, "A Generalized Model") 
and to define it in terms of two sequences {S,} and {Xt}. 

,f  s l  = o .  

k 

,f  = 0 (s )  
i = 2  
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Example 4: This example relates to casualty insurance. Let St  denote the 
claims to be covered in policy year t (So = 0), and let P0 be the initial 
premium. Then a credibility premium payable at time t would be of 
the form 

p S x + . . . + S t +  c 
= t + c t--g-7 t'o, (6) 

where c is some constant (see [2]). Thus we may set X t  = St  --  Pt .  

We conclude this section with a technical remark. In order to avoid 
any discussions about convergence, we shall assume that the random 
variables X t are of bounded range and that  only finitely many among 
them are not identically zero. From a practical point of view, this is not 
a real restriction. 

I I I .  RESERVES AS EXPECTED VALUES 

For simplicity assume a constant rate of interest i, with a discount 
factor v = 1/(1 q- i). (More generally, one could assume that the rate 
of interest for policy year t is a random variable that  is measurable with 
respect to the a-field generated by So, S,, . . . , St.) 

The initial reserve at time t, say Vt, is defined as a conditional expected 
value, 

o ] 
v,  = E [  v - - 'X ,  l S 0 , . . . ,  S, . (7) 

n= t+l  
Remarks  

1. This definition corresponds to the prospective formulas for reserves. 
There is no obvious way to adapt the retrospective formulas  to our 
model. 

2. Since we do not distinguish formally between benefits and premiums, 
we can define only the initial reserve (rather than the terminal reserve). 

3. Vt,  like all the other random variables that are indexed by t, is measur- 
able with respect to So, • • • ,  St .  

We shall now derive a general recurrence relation between successive 

reserves (special cases of this formula can be found in [11]; see sec. 5 of 
chap. 5). First apply the iterative rule for expectations and rewrite 
definition (7) as follows: 

¢ o  

Now split off the first term of this sum and make use of the fact that  
Xt+l is a function of So,. • • , St+l: 
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V,  = E [ v X , + x  + v E [  ~ v ' - H X , ] S o ,  . . . , S , + x ] ] S 0 , . . . ,  S , ] .  (9) 
t-n== t+2 

But the conditional expected value inside is Vt+l. Thus 

V, = E[vX,+~ + vV,+l I S0, . . .  ,S,] ,  (10) 

which is the desired relationship. (Strictly speaking, eq. [10] as well as 
most of the other equations in this paper holds only "almost surely"; 
for practical purposes this is an irrelevant qualification and can be 
ignored.) 

For numerical purposes the recursive formula (10) is very handy: it is 
easily programmable, and avoids the use of commutation functions and 
other special devices. 

Let us denote the present values of Xt and Vt at time t = 0 by Yt 
and W t: 

Y t  = v*Xt , 

W t  = v t V t .  

Thus equation (10) can be rewritten as follows" 

W t  = E[Yt+I + Wt+l I S o , . . . ,  S t ] .  

With the understanding that Lo = Xo + Vo, define 

L ~ =  Y t + W ~ - - W , - 1  

(11) 
(12) 

(13) 

(14) 
= v, [x ,  + v ,  - (1 + i) v ,_1] ,  

which is the present value of the loss incurred at time t (t = 0, 1 , . . .  ). 

IV. HATTENDORF'S  THEOREM REVISITED 

As an application we derive Hattendorf's theorem (see [9], for example). 
A simple proof is based on the following properties of the sequence {L,}. 

Lz~t~Al . (a)  F o r t =  O, 1, 2, . . . and h = 1, 2, . . . , E[L,+h [ S o , . . . ,  

S,] = 0. (b) Cov (L,, L,,) = 0 for t # t'. 
Proof: 
a) A glance at equations (13) and (14) shows that 

E[Lt+h [ S o , . . . ,  S,+h-1] 

= E[r',+h + W,+h [ S o , . . . ,  S,+h-1] -- W,+h_~ (15) 

= 0 .  

Using this and the iterative rule for expectation, we see that 



PROBABILISTIC MODEL FOR CONTINGENCIES 131 

E[L,+h [ So,... ,St] 
= E[E[Lt+h [ So , . . .  ,S,+~11 I So , . . .  ,S,] (16) 

~ 0 .  

b) Suppose t < t'. Since E[Lv] = 0, 

Coy (L,, Lv) = E[L,L,,I. (17) 

Because of the iterative rule, this is 

E[E[LtLv l So , . . .  ,S t ] ] .  (18) 

Since Lt is a function of S o , . . . ,  St, this is the same as 

E[L,E[Lv l So , . . .  ,S , ] ] .  (19) 

Using part a, we see that the conditional expected value vanishes. 
Q.E.D. 

HATTENDOP~'S THEOREM'. L e t  n < m .  Then 

" 2 V a r [ t ~ , L t ]  = -  t- ,  Var [Lt ] .  

Since the Lt's are by no means independent, this result has come as a 
surprise to many people. Its proof follows immediately from the formula 

V . r  -- W r  (20) 
L t~n  I t=n n < t < t ' < m  

and part b of Lemma 1. 

v. GENERALIZED RESERVES 

Generalized reserves are based on the concept of reserving principles. 
A reserving principle R is a functional that assigns a real number to any 
random variable Y of bounded range (given by its distribution). Sym- 
bolically, 

Y --. R( Y) . (21) 

Thus, mathematically, a reserving principle is the same as a principle of 
premium calculation (see [2]). Some examples are 

a) The expected value principle: 

R(Y)  = E[ YI ; 

b) The variance principle: 

R(Y) = E[ YI + a Vat [ Y] ; 
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c) The  exponent ia l  pr inc ip le:  

R(Y) = _1 In E[e"Y] , a ~ O . 
a 

Then, given a reserving principle R, define the present value of the 
generalized reserves in the following way: 

W~ = R Y , [ S o ,  . . . , S ,  . (22) 
n 1 

This means that the functional R is applied to the conditional distribution 
of ~= t+ l  Y, (given So, . . . , St). 

Now the generalized reserve at time t, V~, is defined from the relation 
W R = v'VR,: 

V~ = (1 + i ) ' R  v " X ,  I S o , . . .  , S t  . (23) 
\ n = t + l  

Observe that in example a above these formulas bring us back to formulas 
(7) and (12) of Section III.  If the variance principle is applied, we obtain 
formulas that are related to recent suggestions in A R C H  (see [3, 8]). 
The author has a strong preference for the exponential principle, which 
leads to the formulas 

W~ = l l n E [ e x p (  ~ a Y , ) l S 0 , . . .  S , ]  (24) 
a n= t + l  ' 

and 

1 V R [ = lnEl_ex p a v " X , ,  S o , . . .  S t  . 
t av--- ] \ n  ffi t + l  / ' 

In this case we shall speak of exponen t ia l  reserves. 

(25) 

VI .  W H Y  E X P O N E N T I A L  R E S E R V E S ?  

For computational purposes as well as for theoretical reasons it is 
desirable that the generalized reserves satisfy a recurrence relation in the 
spirit of formulas (10) and (13). Therefore our postulate is that 

W R = R ( Y , + I +  W ~ t + , [ S 0 , . . . ,  St) (26) 

or, equivalently, that 

. t + l  TTR V R = (1 + i ) 'R(v '+XXt+x  + ,, - t + x l S 0 , . . . ,  S , ) .  (27) 

Thus the expected value principle satisfies this postulate. But so does 
the exponential principle: from formula (24) and the iterative rule for 
expectations we obtain 
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Wtn = l ln E [ E [ e x p  ( ~ - ' . a Y , , ) ] S o , . . .  S,+,] ISo, S,]  (28) 
a n f f i t + l  ' " " " ' " 

Now use the definition of WR+I and the fact that Yt+1 and W~+I are 
functions of S0,. •. , St+l, and obtain 

W,n = 1 In E[exp (a V,+, + aW~+x) [ So, . . . , S,] , (29) 
a 

which shows the validity of formula (26) for exponential reserves. The 
equivalent formula (27) then reads as follows: 

Vt n = ~ In E[exp (avt+XXt+, "4- av'+XVnt+~)[So, St]. (30) 
a r t  • . . , 

Thus both the expected value and the exponential principle satisfy the 
recursive equations (26) and (27). But, to some extent, the converse is 
also true: under a mild additional condition, these are the only reserving 
principles that satisfy that postulate (see [13]). So the postulate leads in 
a natural way to exponential reserves! 

Exponential reserves also have another, very desirable property: they 
are additive, that is, the reserve for a portfolio of independent policies is 
just the sum of the individual reserves (to show this, one makes use of the 
fact that the expected value of a product of independent random variables 
is the product of the individual expected values). Of course the generalized 
reserves that are based on the variance principle are also additive. In fact, 
they may be interpreted as a first approximation (with a -- a/2)  to the 
exponential reserves (see [7]). 

V I I .  F U R T H E R  D I S C U S S I O N  O F  E X P O N E N T I A L  R E S E R V E S  

As in Section IV, let us examine the present value of the loss incurred 
at time l: 

Lf = r ,  + W ~ -  W,~_, (31) 

v ' [ x , + v f  ( 1 + i )  ~ = - V , _ l ]  . 

The following two properties may be viewed as the counterpart of 
Lemma 1. 

LEMMA 2. For t = O, 1, 2, . . . and h = 1, 2, . . . , (a) E[exp (aLnt+h) [ 
S o , . . . ,  s , ]  = 1; (b) ~[L~+~ I S o , . . . ,  S,] <_ 0 if a > O, >_ 0 if a < O. 

Proof: 
a) By the iterative formula the left-hand side of part a becomes 

(aL,+h)[So,..., S , + h - d l S o ,  • • • ,  S,]. ( 3 2 )  E[E[exp 
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Now use the definition of L,n+h. Since W,n+h_l is a function of S o , . . .  , 
S,+h-1, the last expression equals 

E[exp (--aWt+h_a)E[expR (a Yt+h -k aWt+l,) [ So, . . . St+h_l] [ So, . . . , St]. 

(33) 

But because of the recurrence equation (29), this is the expected value of 
1--and equals 1. 

b) By taking logarithms in part a and using Jensen's inequality, we 
see that  

0 = In E[exp (aL~t+h) l S o , . . . ,  St] (34) 

L R > aE[ t + h l S o , . . . , S t ] ,  

which is equivalent to the assertion b. Q.E.D. 

Remark 

Part  b of Lemma 2 strongly suggests that  the parameter a should be 
positive. Then we observe a release from risk at any time (with the 
possible exception of t = 0) and under all circumstances, as far as 
expected values are concerned. For the sequel we assume a > 0. 

The following result is reminiscent of Hattendorf's theorem. 
ANALOGUE OF H A T T E N D O R F ' S  THEOREM. / ~ t  • ~ m .  Then 

E [ e x p  L R E[exp R = ( a L , ) ] .  
t t:~n 

While the random variables exp (aL~) are by no means independent, 
the expected value of their product is nevertheless the product of their 
expected values! The proof is based on part a of Lemma 2, but its details 
are left to the reader. 

VIII .  HOW TO CHOOSE a 

The quantification of the parameter a is rather easy. In this section we 
shall see that the parameter a plays the role of an adjustment co~cient  
(see [14], for example). For this purpose let u denote the initial capital 
that  the insurance company sets aside for the line of business in question. 
We are interested in the event that "ruin" occurs, that is, that 

t 

]E _> (3s) 
n~0 

for some l. Let T be the first time when this happens (T is called the time 
of "ruin"),  with the understanding that  T = oo if ruin does not occur. 
Then ~(u) = P[T < a, ] is the probability of ruin. The following result 
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suggests how a can be determined from the initial capital and a prescribed 
upper bound for the probability of ruin. 

THEOREM. ~(U) < exp [--a(u -- L~)]. 
This is a version of the famous inequality in risk theory, which is due 

to Lundberg and Cram~r on the one hand and DeFinetti on the other 
hand (see [4]). For its proof one uses part a of Lemma 2 to show that 

7' 

E [ e x p ( a ~ l  LR,)] = 1.  (36) 

Obtain a lower bound by considering only the case where T < co. But 
there 

T 

Z >_ . -  Lo . (37) 
n u l  

Using this estimate in equation (36), we see that 

P[T < co ]exp[a (u - -  LoR)] < 1,  (38) 

which is the desired inequality. Q.E.D. 

IX. A NtrMERICAL ILLUSTRATION 

The purpose of this section is to show the practical implementation of 
exponential reserves for a twenty-year term policy (face amount z, issue 
age 30, financed by a single premium). 

Recall that the additivity property (see Sec. VI) requires independence 
of the risks. It  is quite reasonable to assume that the risks are independent 
with respect to mortality; however, they are dependent with respect to 
investment performance, expenses, and so on. Therefore it is suggested 
that loaded interest and expense rates and so on be used (see [10]), but that 
unloaded mortality rates be used and the mortality risk covered by means 
of exponential reserves. (It is still necessary to determine the deltas for 
interest and expenses, but the delta for mortality is now zero.) 

The numerical calculations are based on the 1965-70 Basic Table 
([1]; see Table 7, Males and Females Combined). The rate of interest i 
is conservatively assumed as 0.04, and expenses and so on are neglected 
for this example. The parameter a was chosen as 0.00005. This is con- 
sistent with an initial surplus of $92,000 (if the probability of ruin 
should be less than 0.01) or with $140,000 (if the probability of ruin 
should be less than 0.001). The sequences {St} and {Xt} can be defined 
as follows: 

St = 1 if the person is alive at age 30 A- t 
(39) 

= 0 if the person is dead at age 30 + t ,  
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and, for t > 1, 
X , =  z if S t _ l =  1, S t =  0, t_< 20 

(40) 
= 0 otherwise. 

For simplicity assume that  the single premium equals the initial reserve, 
Xo = -- V0 n, so that  L0 n = 0 (no underwriting loss). 

The net reserves Vt and the exponential reserves Vt ~ can be obtained 
recursively from formulas (10) and (30). Obviously V20 = V~0 = 0, and 
Vt = Vt n = 0 if St = 0. Let 1Vt and IVt n denote the values of the reserves 
if St = 1. Equations (10) and (30) reduce to the recursive formulas 

1Vt = v(zq3o+~ + 1Vt+l p30+t) (41) 
and 

xV n = 1 l n [ e x p  t+l R (av z)q3o+, + exp (av '+x (42) 1 Vt+l)p3o+,] 
a r t  

Tables 1-6 in Appendix II  exhibit age in column 1, the net reserves in 
column 2, and the exponential reserves in column 3. Column 4 shows the 
exponential reserves as a percentage of the net reserves. We observe that,  
unlike net reserves, exponential reserves are not proportional: if the face 
amount  is doubled, for example, exponential reserves have to be more 
than doubled. This  makes sense" it shows why policies with a high face 
amount  should be reinsured. 

Also computed was 

V R V R a t  R = (1  -3 I- i )  1 , - 1 -  g q 3 0 4 - , - 1 -  1 , p 3 0 + , - I  , (43) 

which is the conditional expected value (given St-1 = 1) of the risk 
released at time t. Column 5 shows Gnt/pt_l, which is the gain per survivor 
at t ime t. Finally, column 6 exhibits the expected value of the present 
value of the release of risk at time t, 

E[L ] , R  
- -  = V G t  t-lP30 • ( 4 4 )  

Observe that  the total in column 6 equals 1Vo ~ -- 1 V0, which has an obvious 
interpretation and may  be used for checking purposes. 
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APPENDIX I 

RETROSPECTIVE FORMULAS FOR RESERVES 

Under the assumption that the premiums are net, that is, X0 -+- V0 = 0, or 

oo 

n ~ O  

one can derive formulas that are analogous to Jordan's formulas (5.3) and 
(5.18). Let us introduce 

K ,  = E [ X ,  + V,[S0 , . . . ,  S ,_I ] -  X , -  V. (2) 

for n = 1, 2, . . . .  The random variable K,  (which is measurable with respect 
to S o , . . . ,  S.) should be interpreted as the cost of insurance on the "path" 
So, $1, . . . ,  S .  based upon the net amount at risk in the nth policy year. Provided 
that condition (1) holds, the following formula extends Jordan's formula 
(5.18): 

t t 

V, = -- ~ (1 -k- i ) ' - "X , ,  -- ~ (1 + i ) ' - " K , .  (3) 
n ~ 0  n * * l  
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P r o o f :  B y  the  def in i t ion  of K . ,  the  r i g h t - h a n d  side of e q u a t i o n  (3) m a y  be 
r e w r i t t e n  as 

-(1 +/) 'x0+ ~ (1 + i ) ' - . ( V . - E [ X . +  V.[So, . . . ,S ._I]}.  (4) 
n = l  

Because  of f o rmu la  (10) of the  paper ,  this  is 

t 

- ( 1  + i),Xo + ~,  (1 + i) ,- .[v.  - (1 + i) v._,], (5) 
n = l  

which  can be s impli f ied to  

- - ( 1  -~ i ) ' X o  - -  (1 -F i ) ' V o  q -  V , .  (6) 

T h u s  the  va l id i ty  of e q u a t i o n  (3) is e q u i v a l e n t  to the  va l id i ty  of cond i t ion  
(1). Q . E . D .  

T o  ob ta in  a f o rmu la  in the  spir i t  of J o r d a n ' s  (5.3), one considers  Vt = 
Vt(so ,  . . . , s , )  as a func t i on  of the  p a t h  (So, . . . , st). T h e n ,  for a g iven  p a t h ,  
we iden t i fy  the  e v e n t  [S~ = s~ for i --- 0, 1, . . . , n] w i th  be ing  al ive a t  the  end  

of po l icy  yea r  n,  a n d  the  e v e n t  [S~ -= s~ for i = 0, 1, . . . , n - 1 and  S ,  ~ s,] 
w i th  d e a t h  occur r ing  in the  n th  pol icy  year .  In  th is  w a y  e l e m e n t a r y  pr inc ip les  

can  be app l i ed  to  ob ta in  the  des i red  fo rmula ,  and  deta i l s  are left  to  the  reader .  



A P P E N D I X  I I  

T A B L E  1 

FACE AMOUNT $10,000 

Age 

(1) 

30 . . . . . .  
31 . . . . . .  
32 . . . . . .  
33 . . . . . .  
34 . . . . . .  
35 . . . . . .  
36 . . . . . .  
37 . . . . . .  
38 . . . . . .  
39 . . . . . .  
40  . . . . . .  
41 . . . . . .  
42 . . . . . .  
43 . . . . . .  
44  . . . . . .  
45 . . . . . .  
46  . . . . . .  
47 . . . . . .  
48  . . . . . .  
49  . . . . . .  
50 . . . . . .  

Total .  

N e t  
Reserves  

(2) 

288.84 
289.03 
289.14 
289.24 
289.16 
288.59 
287.31 
285.01 
281.44 
276.36 
269.42 
260.03 
247.91 
232.72 
214.04 
191.32 
164.15 
132.13 
94.73 
51.06 

0 .0  

Exponen t i a l  (3) / (2)  
Reserves  (%) 

(3) (4) 

337.56 116.9 
336.68 116.5 
335.79 116.1 
335.00 115.8 
334.07 115.5 
332.62 115.3 
330.42 , l l 5 . 0  
327.06 i 114.8 
322.30 114.5 
315.84 114.3 
307.30 114.1 
296.02 113.8 
281.65 113.6 
263.91 113.4 
242.28 113.2 
216.17 113.0 
185.16 112.8 
148.77 112.6 
106.47 112.4 

57.30 112.2 
0 .0  . . . . . . .  

Release  of Risk 

(s) 

0 .0  
3 .08 
2 .96 
2.82 
2.74 
2.73 
2 .74 
2.85 
2.95 
3 .09 
3.25 
3 .50 
3 .76 
3.99 
4 .30 
4 .60  
4.92 
5.30 
5.64 
6.02 
6.53 

(6) 

0 .0  
2.96 
2.73 
2 .50 
2.33 
2.23 
2.15 
2.14 
2.13 
2.14 
2.16 
2 .24 
2.31 
2.35 
2.42 
2.49 
2.55 
2.63 
2.68 
2.74 
2.84 

48.71 

TABLE 2 

FACE AMOUNT $20,000 

30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
t0. 
t l .  
t2. 
t3. 
14. 
t5. 
t6. 
t7. 
t8. 
t9. 
50. 

Age 

(1) 

Total .  

N e t  
Reserves  

(2) 

577.69 
578.07 
578.27 
578.49 
578.32 
577.18 
574.62 
570.02 
562.89 
552.73 
538.84 
520.07 
495.81 
465.44 
428.09 
382.63 
328.30 
264.26 
189.45 
102.12 

0 .0  

Exponen t i a l  
Reserves  

(3)/(2) 
(%) 

(3) (4) 

796.40 137.9 
791.36 136.9 
786.56 136.0 
782.27 135.2 
777.82 134.5 
772.36 133.8 
765.28 133.2 
755.68 132.6 
742.93 132.0 
726.43 131.4 
705.22 130.9 
677.84 130.3 
643.63 129.8 
601.79 129.3 
551.34 128.8 
490.91 128.3 
419.62 127.8 
336.56 127.4 
240.47 126.9 
129.20 126.5 

0 .0  . . . . . . .  

Release  of Risk 

(s) 

0.0 
14.44 
13.80 
13.10 
12.69 
12.55 
12.60 
12.90 
13.34 
13.86 
14.60 
15.62 
16.65 
17.77 
18.96 
20.31 
21.69 
23.04 
24.49 
26.23 
28.32 

(6) 

0 .0  
13.87 
12.73 
11.60 
10.79 
10.26 
9 .89 
9.72 
9.65 
9.63 
9.73 
9 .99 

10.21 
10.45 
10.69 
10.98 
11.23 
11.43 
11.63 
11.92 
12.31 

218.71 
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TABLE 3 

FACE AMOUNT $40,000 

30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
t0. 
i l .  
t2. 
13. 
t4. 
t5. 
t6. 
t7. 
18. 
t9. 
50. 

Age 

(1) 

Net 
Reserves 

(2) 

1 155.37 
1 156.14 
1 156.55 
1 156.98 
1 156.65 
1 154.36 
1 149.25 
1 140.04 
I 125.77 
1 105.46 

Exponential 
Reserves 

(3) 

(3)/(2) 
(%) 
(4) 

Total. 

1 077.67 
1 040.13 

991.63 
930.89 
856.17 
765.26 
656.59 
528.53 
378.90 
204.23 

0.0 

Release of Risk 

(5) 

2,260.44 195.6 0.0 
2,226.00 192.5 i 80.75 
2,194.39 189.7 76.13 
2,166.37 187.2 71.23 
2,139.80 185.0 67.88 
2,111.76 182.9 66.35 
2,080.44 181.0 65.83 
2,043.26 179.2 66.60 
1,998.52 177.5 68.05 
1,944.57 175.9 70.07 
1,878.98 174.4 72.98 
1,797.91 172.9 77.31 
1,699.65 171.4 81.89 
1,582.48 170.0 86.65 
1,443.90 168.6 91.87 
1,280.62 167.3 97.83 
1,090.56 166.1 103.91 

871.56 164.9 110.06 
620.56 163.8 116.64 
332.34 162.7 124.42 

0.0 . . . . . . . . .  i 133.95 

(6) 

0.0 
77.55 
70.22 
63.10 
57.75 
54.21 
51 64 
50 17 
49 22 
48 65 
48 63 
49 43 
50 22 
50 97 
51 82 
52 88 
53 82 
54.60 
55.40 
56.55 
58.23 

1,105.05 

TABLE 4 

FACE AMOUNT $60,000 

30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
16. 
47. 
48. 
49. 
50. 

Age 

(1) 

Total. 

Net 
Reserves 

(2) 

1,733.06 
1,734.21 
1,734.83 
1,735.47 
1,734.97 
1,731.54 
1 723.87 
1 710.06 
1 688.66 
1 658.19 
1 616.51 
1 560.20 
1,487.44 
1 396.33 
1 284.26 
1 147.89 

984.89 
792.79 
568.35 
306.35 

0.0 

Exponential (3)/(2) 
Reserves (%) 

(3) (4) 

Release of Risk 

(s) 

4,895.65 282.5 0.0 
4,772.09 275.2 255.06 
4,661.06 268.7 236.90 
4,563.89 263.0 218.46 
4,474.85 257.9 205.21 
4,386.76 253.3 197.82 
4 295.25 249.2 193.70 
4 194.43 245.3 193.66 
4 080.72 241.7 195.67 
3 950.76 238.3 199.36 
3 799.65 235.1 205.54 
3 619.44 232.0 215.94 
3 407.10 229.1 226.91 
3 159.54 226.3 238.38 
2 872.01 223.6 ~ 251.25 
2 538.18 221.1 266.25 
2154.32 218.7 281.61 
1 716.41 216.5 297.36 
1 218.68 214.4 314.40 

650.96 212.5 334.97 
0.0 . . . . . . . . .  360.32 

(6) 

0.0 
244.96 
218.51 
193.53 
174.58 
161.62 
151.97 
145.89 
141.51 
138.41 
136.96 
138.06 
139.17 
140.22 
141.70 
143.93 
145.86 
147.51 
149.32 
152.24 
156.63 

3,162.56 

140 



TABLE $ 

FACE AMOUNT $80,000 

30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 

¢1. 
¢2. 
43. 
64. 
45. 
46. 
47. 
¢8. 
49. 
50. 

Age 

(t) 

Total. 

Net 
Reserves 

(2) 
2 310.75 
2 312.29 
2 313.11 
2 313.96 
2 313.30 
2 308.72 
2 298.50 
2 280.08 
2 251.55 
2 210.92 
2 155.35 
2 080.27 
1 983.26 
1 861.78 
1 712.34 
1 530.52 
1 313.19 
1 057.05 

757.80 
408.46 

0.0 

Exponential 
Reserves 

(3) 

9 404.92 
9 081.23 
8 793.60 
8 544.11 
8 319.93 
8 105.58 
7 891.88 
7 666.94 
7 423.82 
7 156.29 
6 855.28 
6 506.16 
6 103.81 
5,642.93 
5,115.21 
4,509.53 
3,819.34 
3,037.44 
2,153.46 
1,149.03 

0.0 

(3)/(2) 
(%) 
(4) 

407.0 
392.7 
380.2 
369.2 
359.7 
351.1 
343.3 
336.3 
329.7 
323.7 
318.1 
312.8 
307.8 
303.1 
298.7 
294.6 
290.8 
287.4 
284.2 
281.3 

ii ...... 

Release of Risk 

(s) 

0.0 
617.64 
567.52 
517.52 
480.50 
457.85 
443.33 
438.52 
438.70 
442.85 
452.78 
472.17 
493.03 
515.25 
540.82 
571.29 
603.02 
636.24 
672.86 
717.87 
774.30 

I (6) 

0.0 
593.19 
523.47 
458.45 
408.80 
374.07 
347.82 
330.34 
317.28 
307.44 
301.69 
301.88 
302.40 
303.09 
305.02 
308.82 
312.33 
315.62 
319.57 
326.27 
336.58 

7,094.11 

TABLE 6 

FACE AMOUNT $100,000 

Age 

(I) 

Net 
Reserves 

(2) 
Exponential (3)/(2) 

Reserves (%) 
(3) (4) 

2 888.44 
2 890.36 
2 891.39 
2 892.45 
2 891.62 
2 885.90 
2 873.12 
2 850.10 

16,481 
15,815 
15,223 
14,711 
14,255 
13,827 
13,409 
12,981 

49 
25 
55 
44 
47 
16 
73 
76 

Total. 

2 814.43 
2 763.65 
2 694.19 
2 600.34 
2 479.08 
2 327.22 
2 140.43 
1,913.15 
1,641.49 
1,321.31 

947.25 
510.58 

0.0 

12,531 06 
12,046.70 
11,513.07 
10,905.12 
10,214.18 
9,431.21 
8,541.96 
7,527.18 
6,375.03 
5,072.10 
3,599.30 
1,923.40 

0.0 

570.6 
547.2 
526.5 
508.6 
493.0 
479.1 
466.7 
455.5 
445.2 
435.9 
427.3 
419.4 
412.0 
405.3 
399.1 
393.4 
388.4 
383.9 
380.0 
376.7 

Release of Risk 

(s) 

0.0 
1,228.44 
1,125.61 
1,021.61 

942.67 
891.92 
857.35 
841.99 
836.56 
839.25 
853.38 
885.88 
921.86 
961.25 

1,007.81 
1,064.87 
1,125.79 
1,191.42 
1,265.65 
1,358.52 
1,477.18 

I (6) 
0.0 

1,179.81 
1,038.24 

905.01 
801.99 
728.72 
672.64 
634.29 
605.02 
582.64 
568.61 
566.39 
565.42 
565.44 
568.40 
575.64 
583.09 
591.03 
601.10 
617.44 
642.12 

1,35930, 
141 





DISCUSSION OF P R E C E D I N G  PAPER 

HARRY H. PANJER: 

Dr. Gerber provides a probabilistic cash-flow model that is most 
intriguing. The notation corresponds to that of Btihlmann. 1 Since no 
reference is made to the distributions of the random variables, the model 
can be applied in situations not involving life contingencies. 

The model when applied to life contingencies can be also formulated 
using the approach of Hickman, 2 which, of course, will be equivalent to 
Gerber's formulation. This is demonstrated as follows (in the continuous 
case, for convenience): 

Consider, for simplicity, (a) an ordinary life policy, (b) an n-year term 
policy, and (c) a single premium immediate life annuity with an n-year 
certain period, each issued to a life aged x. The probability density 
function of the random variable T, the time of death of the individual 
aged x, is 

f ( t )  = ,p, u,+,, t > 0.  

The net premium for the above three plans is P, which satisfies the 
equation 

E[g(r)] = 0 ,  

where g(T) is the random variable of the following form for each of the 
above cases: 

a) g(t) = v t -  P a ~  , t > O,  

b) g(t) = v' -- P a ~  , 0 < t < n 

= 0 ,  t > _ n ,  

c) g(t) = a,-- I - P ,  O < t < n 

= a ~ - - P ,  t >  n .  

Note that, as in Gerber's paper, the function whose expected value is 
taken is just the present value of future cash flow. The expectation is 
taken with respect to the distribution of g(T) or, equivalently, with 

, H. Btihlmann, Mathematical Methods in Risk Theory (New York: Springer-Verlag, 
1970). 

J. C. Hickman, "A Statistical Approach to Premiums and Reserves in Multiple 
Decrement Theory," TSA, XVI (1964), 1-16. 
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respect to the distribution of T. For example, in case b above, the net 
premium P satisfies 

{v' -- P~-/-i} tP, t,*,+, dt = O. 
0 

With respect to net reserves, the same model can be used, except, of 
course, that the distribution is now conditional on the individual aged x 
being alive. For the three plans, the net reserves at time s are E[g(T)], 
where g(t) can be expressed as: 

a) g(t) = v ' - -  Pa  R ,  

b) g(t) --- v ' -  P a N ,  

- - 0 ,  

c) g ( t )  = a.-~.  , 

-- dt_-7-2Ti, , 

t > O ,  

O < t < n - - s  

t > _ n - - s ,  

O < t < n - - s  

t > _ n - - s ,  

and where the associated probability density function is 

/(t) = ,px+~ u ~ + . + , .  

Gerber's exponential reserves in the above three cases are then of the 
form {In E[e'O~T)]}/a. It  is particularly interesting to interpret this 
function from a statistical point of view. The function In E[e ao~T)] con- 
sidered as a function of the variable a is the cumulant generating function 
of the random variable g(T). When it is divided by a, it can be written 
as an expansion of the form 

~-]Kh ah_ t 
h=l ~ 

where the Kfls are the cumulants. The cumulants are simply functions 
of the moments, with 

K1 = E[g(T)],  K2 = Var [g(T)], e tc . ,  

and with each higher cumulant taking into account the corresponding 
higher moments. Since a distribution is determined uniquely if all its 
moments are known, it can be argued that the exponential reserving 
principle takes into account all characteristics of the underlying distribu- 
tion. The expected value principle takes into account only the first 
moment, while the variance principle takes into account the first two. 
If a distribution is particularly skewed, adding higher moments may add 
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valuable information. When a small value of a is used, it is clear from the 
above series that a decreasing emphasis is placed on successively higher 
moments, which is natural. 

Realizing this, one can then generate a whole range of reserving prin- 
ciples by successively adding terms of the expansion given above. Each 
reserving principle will have the additivity property postulated by 
Gerber, but each will suffer the defect that it does not satisfy the recur- 
rence relation of Gerber. The resulting sequence of reserves will converge 
to the exponential reserves proposed by Gerber; each will result in a 
different release from risk. It  can be argued that, since the exponential 
reserves take into account all characteristics of the mortality risk (via 
the distribution), the exponential reserving principle is the most reason- 
able one to use, at least from a theoretical standpoint. 

I thank the author for a most stimulating paper. 

GOTTFRIED BERGER :* 

In many elegantly written papers, Hans Gerber has advocated the 
exponential principle. Like the expected value principle, the exponential 
principle has the very desirable property of additivity. Unlike the former, 
the latter is not proportional; that is, exponential premiums and expo- 
nential reserves are not proportional to the corresponding face amounts. 
In my opinion, this restricts the application of the exponential premium 
principle to nonproportional covers like stop-loss reinsurance. 

The exponential principle is closely tied to risk theory, in that the 
parameter a is related to the available funds (capital plus surplus), depend- 
ing upon the ruin probability that the insurance company wishes to 
tolerate. This makes the exponential principle attractive to both parties 
of a reinsurance transaction, at least as far as nonproportional covers 
are concerned. 

However, the insurance market is different. A glance at Tables 3 and 5 
of the paper raises the question: Why should a prospect purchase from 
one company an $80,000 policy at the single premium of $9,405 if he can 
obtain from different companies two $40,000 policies at $2,260 each? 
Besides, nonproportional pricing would create a severe administrative 
burden to the direct insureruthink of the "exponential" size of tb~ 
ratebook that  would be needed! 

The foregoing arguments refer to some practical aspects of exponential 
premiums, but not necessarily to exponential reserves. After all, the 
choice between admissible reserving methods is an internal affair of the 

* Dr. Berger, not a member of the Society, is a member of the American Academy 
of Actuaries, and President, Cologne Life Reinsurance Company. 
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insurance company.  I feel t h a t  this  paper  opens excit ing new aspects. The  

following are some thoughts  t h a t  occurred to me while reading i t :  

1. Gerber defines prospective initial reserves under certain reserve principles. 
These reserves depend upon a vector of random variables X t  that  represent 
the balance of benefits less premiums. Thus, premiums are defined a priori, 
and the same (gross) premiums apply to any reserve principle. In that  case, 
the variance principle yields higher reserves than the expected value prin- 
ciple, provided that  a > 0. (For a similar statement with respect to exponen- 
tial reserves, see the last sentence of Sec. VI of the paper.) 

2. The numerical illustrations presented in Section IX of the paper refer to the 
special case of a single premium payment mode. Here Gerber departs from 
the concept of a priori premiums. Instead, he assumes that  pR = VR; that  
is, premiums pR depend upon the reserve principle R in such a way that  they 
equal the initial reserve Vn 0. 

3. To generalize, let R be any reserve principle and pR be a level premium 
(single or periodic) that satisfies the condition p n  = Vno. We may call such 
premium pR the "reserve premium" related to a given reserve principle R. 
Intuitively, if the reserve calculation is based upon a reserve premium, 
prospective reserves are equal to retrospective reserves. 

4. In the case of a single premium payment, the reserve premium pR under the 
exponential reserve principle equals the gross premium derived under the 
exponential premium principle. 

5. To my knowledge, the exponential premium principle has been applied so 
far to the single premium payment mode only. I t  seems to be a logical 
extension to define generally the exponential reserve premium pR as the 
exponential gross premium. 

6. If this idea is accepted, it would be necessary to study the properties of these 
generalized exponential premiums. I t  is intuitively clear that  the condition 
pR = V0 R has one unique solution pR for a broad class of policies. However, 
the computation is somewhat awkward, since trial-and-error methods seem 
inevitable. 

As an example,  consider a $100,000 three-year  endowment  policy wi th  

level annua l  premiums.  Assumed mor ta l i t y :  q0 = 0.005, ql = 0,010, q2 

arb i t ra ry .  As in the paper ,  i = 4 per  cent  and a = 0.00005. The  accom- 

p a n y i n g  tabu la t ion  corresponds to Tables  1-6 of the paper.  Added is a 

Time Net 
t Reserves 

(1) (2) 

0 . . . . . . . . . .  31,027.86 
1 . . . . . . . . . .  62,956.47 
2 . . . . . . . . . .  96,153.85 

Total . . . . . . . . . . . . . .  

Exponential (3)/(2) Release 
Reserves 

(3) (4) (5) 

62,577.12 I 99.4 2,308.95 
96,153.85 ] 100.0 544.95 

. . . . . . . . . . . .  I 

of Risk 

(6) 

0.00 
2,209.04 

496.31 

Alternative 
Release 

(6') 

943.46 
902.64 
859.25 

2,705.35 2,705.35 
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new column (6'), which shows, alternatively, the effect of a uniform 
release of the premium loading. The latter is $31,971.32 -- $31,027.86 = 
$943.46. Note that columns 6 and 6' should have the same total, namely, 
the present value of the loading contained in the assumed gross premium. 

Finally, let us consider the effect of different assumed gross premiums 
on the exponential reserves and on the corresponding reserve release: 

EXI~ONENTIAL RESEItVES, 
]~ GEOSS PEEmU~ EQUALS 

TIME 
t 

31,027.86 
(1) (3a) 

0 . . . . . .  33,500.89 
1 . . . . . .  63,439.65 
2 . . . . . .  96,153.85 

31,971.32 
(3b) 

31,971.32 
62,577.12 
96,153.85 

33,000.00 
(3c) 

30,324.07 
61,638.84 
96,153.85 

RELEASE OF RISK 

(6a) 

--2,473.03 
2,010.76 

462.27 

(6b) 

0.00 
2,209.04 

496.31 

(6c) 

2,675.93 
2,443.64 

535.48 

Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.00 2,705.35 5,655.05 

As expected, the totals of columns 6 equal the present values of the 
respective premium loadings. Test: 

2,705.35/(31,971.32- 31,027.86) 

= 5,655.05/(33,000.00- 31,027.86) = 2.8675. 

Furthermore, it appears that under the exponential reserve principle a 
substantial portion of the present value of the difference between the 
assumed gross premium and the reserve premium (i.e., $31,971.32) is 
recognized immediately as profit or loss. 

(AUTHOR'S REVIEW OF DISCUSSION) 

HA~S U. GERBER: 

It  was a pleasure to read the discussions by Dr. Panjer and Dr. Berger. 
The first part of Harry Panjer's discussion is an excellent illustration of 

how probabilistic methods can be used in the theory of life contingencies. 
If this point of view is adopted, formulas like the one in problem 7, 
chapter 2, of Jordan's Life Contingencies become trivial. In the second 
part Dr. Panjer shows how exponential reserves can be approximated in 
terms of the first n cumulants of a given distribution. The quality of such 
an approximation for a fixed n is not uniformly good for all distributions. 
This means that the number of terms used should depend on the dis- 
tribution. 

Gottfried Berger points out the practical difficulties in connection with 
nonproporfional premiums. I agree that it would be difficult to explain to 
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the public (or the agents) why the premium rate for an $80,000 policy 
should be different from that for a $40,000 policy. However, the situation 
is different if an $80,000 policy is compared with an $8,000,000 policy. 
An insurer may refuse to sell the latter policy under the same conditions, 
at least in the absence of reinsurance, since a claim could jeopardize the 
financial stability of the company. Of course, if reinsurance is available 
at that rate (for example, from one large reinsurer who uses a smaller 
value of a or from ninety-nine friendly insurance companies that use the 
same rates), it may still be possible to offer the $8,000,000 at the said rate. 

The numerical example at the end of Dr. Berger's discussion is very 
instructive. In the case of annual premiums, the ratio of exponential 
reserves to net reserves may be less than 1 (see col. 4 of his first table), 
which is somewhat surprising. Obviously, the explanation is that the 
future premiums will be higher in the case of exponential reserves 
($31,971.32) than in the case of net reserves ($31,027.86). 

I would like to add a word of caution to item 3 of Dr. Berger's discus- 
sion, and also to Appendix I of the paper. While the formulas of Appendix 
I are valid, generally they are not sufficient to define the reserves retro- 
spectively. I t  seems that "prospective reserves" are more generally 
applicable than "retrospective reserves." 

In conclusion, I would like to thank the two discussants for their very 
competent remarks. 


