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ABSTRACT 

A mathematical model is constructed to study the deviations of 
claims, investment performance, operating expenses, and lapse expenses 
as random (stochastic) processes. The model does allow for interde- 
pendence among the processes. It  is primarily concerned with random 
deviations, but one section is concerned with provisions for a deter- 
ministic trend. An expression for the global variation is given in terms of 
the component variations, and the covariances between the processes. 
Under certain assumptions, these quantities are expressed in very simple 
terms. This model is one attempt to quantify the loading for adverse 
deviations. 

I. INTRODUCTION 

T 
HE Committee on Financial Reporting Principles of the American 
Academy of Actuaries asked the Joint Committee on the Theory 
of Risk to help develop more knowledge and techniques for 

measuring the risk of adverse deviation--that is, the quantification of the 
"deltas" in Richard Horn's paper "Life Insurance Earnings and the 
Release from Risk Policy Reserve System" [16]. After benefiting from 
some excellent memoranda and conversations with members of the 
joint committee, and with other actuaries (see Acknowledgments), the 
author devised a mathematical model which attempts to describe and 
analyze the random components which contribute to adverse deviations. 

I1. A NEW COLLECTIVE RISK MODEL 

After a premium is set for a new policy, its performance over time 
t >_ 0 begins. It  has long been recognized that the evolving patterns of 
claims, investment income, operating expenses, and lapse expenses are 
somewhat random in nature. Not only is the aggregate performance 
over a fixed number of years (say five) random, but the aggregate per- 
formance at any intermediate time point is random. Thus the perfor- 
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mance viewed over time is a random (stochastic) process. I t  is becoming 
more common now to view the claims process as a stochastic process. 
One exposition of this idea is given by John A. Beekman, in "Collective 
Risk Results" [2]. A stochastic process is an infinite collection of random 
variables {X(t): t C A ] .  Frequently the set A = [0, T] or [0, ~o) and the 
process are thought of as describing some natural phenomenon evolving 
in the time interval A. To discuss the adverse deviations of claims, 
investments, expenses, and lapses, one must quickly admit that these 
deviations vary from one time to another. Although one may be forced 
to settle for simple measures of each deviation, and simple relationships 
between the deviations, at least initially a model should be considered 
that treats the four random processes equally--that  is, one that recog- 
nizes that  the four components are subject to random deviations at each 
point of time. 

One of the functions of collective risk theory is to determine the 
loading for the net premium applicable to a set of policies. We will now 
repeat some of reference [2]. Assume that {Xil is a sequence of inde- 
pendent, identically distributed random variables with a common distri- 
bution function P(z). The Xi's represent the claims. Assume that E{Xi} = 
pl. Assume that {N(t), t >_ 0] is a Poisson stochastic process, independent 
of IXi}, with E{N(t)} = t. This describes the random number of claims 
over time. The collective risk stochastic process 

i 
N( t )  

is a model for the aggregale claim randomness. The aggregate gross pre- 
mium equals p~t + Xt, where pit is the aggregate net premium and ~,! 
is the aggregate security loading. The loading X for one unit of operational ...... 
time can be determined so that the probability that the greatest of the 
differences at each point in time between aggregate claims and aggregate 
premiums is greater than the initial reserve u is e, where ~ = 0.001 or 
some other appropriately small number. In symbols, this is expressed as 

Pt su0P emum X, -- t(t,, + X)] > . I  = 

The "initial reserve u" may be considered to be an amount of money 
which management has assigned (perhaps informally) to the develop- 
ment of this class of policies. 

Actuaries have long recognized that the kt term provided a measure of 
safety against adverse deviations from their assumptions, and have 
expressed this in various ways. To at tempt to split ), into several parts, 
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we must back up and create three new processes to accompany the claim 
process. Let 

N(t) 

c ( t )  = ~ x , ,  o < t < co 
i = 1  

This stochastic process describes the evolution of claim patterns, recog- 
nizing both the random number of claims, N(t) ,  in time t, as well as the 
random nature of the claims, the X~'s. Let C*(t) = C(t) - tpt, 0 <_ l 
< o~. I t  is apparent that  this process describes the claim deviations over 
time. Note that  its mean function E{C*(t)} is equal to zero for all t > 0. 
Let {I(t), 0 _%< t < ~ } be a stochastic process describing the investment 
performance deviations over time. Just  as a claim pattern may vary in 
either direction, we will allow the investment deviations to be both 
adverse and favorable, but  we will assume that E{I ( t ) }  = 0 for all t. 
Let {O(t), 0 _< t < co ] be a third process describing the deviations from 
the operating expense assumptions. Again, we will assume that  E{O(t) I = 
0 for all t. Finally, let {L(t), 0 < t < m } be a fourth random process 
describing the deviations from lapse expense assumptions. Although we 
will assume that  ElL(t)} = 0 for all t, actuaries are well aware that  this 
process may deviate greatly from their assumptions. 

Let us now define a new collective risk process as 

R(t)  = C(t) -- I ( t )  + O(t) + L(t) ,  0 < t < o~ (1) 

This time-ordered set of random variables recognizes the randomness of 
claims, investment deviations, operating expense deviations, and lapse 
expense deviations. We use - - I ( t )  rather than + I ( t ) ,  since adverse 
investment results would be valued negatively. Since it is natural to 
determine gross premiums from expected values, and deviations from 
those expected values, let us now determine E{R(t )}  and Var {R(t) l. 

~{R(01 = E{C(0} - Elf(t)} + E{O(t)} + E{L(t)I 
(2) 

= pi t ,  O < t  < o o ,  

by the linearity of the E operator. For each fixed t, 

Var {R(t)} = Var {C(t)} + Var {I(t)} + Var {O(t)} + Var {L(t)} 

- 2 Coy {c(t), I (0}  + 2 Coy {c (o ,  0 (0}  
(3) 

+ 2 Coy {c(t), L(0)  - 2 Coy {r(t), O(t)) 

+ 2 Coy {O(t), L(t)} -- 2 Coy {I(t), L(t)} , 

where Coy {X, Y} = E { ( X  -- u x ) ( Y  -- ur)} = E { X Y }  - uxur .  This 
formula for the variance of a sum of random variables may be found in 
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many  probabil i ty and/or  statistics books. For example, it appears on 
page 230 of Feller's textbook [11]. We have made use of the fact that  
Coy {--X,  Y} = - - C o v  {X, YI. In the above formula we know that  
Var {C(t)} = p~t, where E { X ~ }  -- p2. 

We may also define a deviations stochastic process as 

D(t)  = C*(t) - I ( t )  + O(t)  + L( t ) ,  0 < t < oo (4) 

Since E{C*( t )}  = 0, we quickly see that  

E { D ( t ) }  = 0, 0 < t < ~o (5) 

Now Var {C*(t)} = Var {C(t)l, and 

Cov {C*(t), I(t)} = E I [ C ' ( t )  --  E lC*( t ) } ] [ I ( t )  - -  E { I ( t ) } ] }  

= E{[C( t )  --  tpl  --  0][I(t) -- E { I ( t ) l ] I  

= C o v  {c ( t ) ,  z ( t ) } .  

Furthermore,  Cov {C*(t), O(t)} -- Coy {C(t), O(t)} ,  and Cov {C*(t), 
L(t)}  = Coy {C(t), L(t )  I. Combining these results, we see that  

Vat {D(t)] -- Var {R(t)l, 0 < t < oo (6) 

The actuary is interested in a gross premium G such that  the prob- 
ability that  the greatest  difference between R( t )  and I(7, at each point in 
t ime is greater than the initial reserve u (as interpreted earlier) is ap- 
propriately small, say 0.001. Thus  one chooses G so that  

P {supremum [R(t) 
0_<t < oo 

Obviously G --- pa + ), for some X 

P {su0Premum [D(t) 

In  words, we seek the loading 

- -  t a ]  > u} = 0 .001 .  (7) 

> 0, so equation (7) is equivalent to 

- tx] > u}  = 0 . 0 0 1 .  (8)  

such that the probability that the 
greatest timed difference between the random deviations and the pro- 
vision for deviations is greater than the initial reserve is appropriately 
small. 

I t  has frequently been assumed that  {N( t ) ,  t >_ 0} is a Poisson process, 
for two reasons: (1) in many cases this fits the facts fairly well, and (2) 
it leads to fairly simple mathematics.  If  one is to capitalize on the con- 
siderable amount  of research recently completed on stochastic processes, 
similar considerations must be acknowledged in choosing models for the 
other three processes. Available da ta  and general reasoning would 
suggest that  the other three processes are Gaussian (normal) and hence 
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symmetrically distributed around a mean function. With respect to 
investment deviations, we shall assume for an illustration of the theory 
that the investment income deviations are normally distributed. The 
total investment deviations will also swing either way because of the 
changing values of the portfolio. Although individual items in the port- 
folio may change drastically in value, for simplicity we shall assume that 
the aggregate of the items enjoys normal deviations. Thus, at each time 
point, the total investment deviation will be the sum of two normally 
distributed random variables representing investment income deviations 
and portfolio value deviations. Although these random variables are 
(in general) not independent, it is still reasonable to assume that the 
total investment deviation at each time point has a normal distribution. 
(See the Appendix for a more technical exposition.) In general, future 
values for the processes are dependent on the past. I t  is quite difficult to 
recognize that dependence in complete detail. However, if we assume 
that, as a first approximation, future values can be predicted on the 
basis of present positions, our models are Markovian processes. I t  must 
be emphasized that the Markovian property is more of an approximation 
than is the normality. (See the Appendix for a more technical exposition.) 

The most widely studied and used stochastic process with these proper- 
ties is the Wiener process {w(t), 0 _< t < ~o } with mean function E{w(t)} 
= 0 and covariance function E{w(s)w(t)} = rain (s, t). A very readable 
account of the Wiener stochastic process will be found on pages 27-29 
of reference [21]. I t  is appropriate to work with a process with a zero 
mean function. However, Var {w(t)} = t, which implies unbounded 
variation with evolving time. This seems unrealistic and is the main 
reason for using another Gaussian Markov stochastic process called the 
Ornstein-Uhlenbeck process. This was developed in references [25] and 
[26], when physicists decided to build a mathematical model for the 
velocities of Brownian motion because the Wiener process does not 
describe such velocities. These two papers, along with four others, 
appear in reference [27], which was compiled to serve those electrical 
engineers and physicists interested in learning how stochastic processes 
might be applied in their disciplines. Gaussian Markov processes have 
proved useful in mathematical statistics; reference [10] is an early paper 
on this subject. Reference [3] is concerned with the Ornstein-Uhlenbeck 
process and with other Gaussian Markov processes. The recent paper [1] 
lists sixteen papers dealing with this process. A further source is reference 
[14], which builds a Monte Carlo approximation to the process for the 
purpose of modeling meteorological phenomena. Reference [5] is devoted 
to the collective risk and Gaussian Markov processes and their applica- 



578 A NEW COLLECTIVE RISK MODEL 

tions in insurance, physics, statistics, and electrical engineering. The 
Ornstein-Uhlenbeck process has a constant variance function a s, as 
opposed to Var {w(t)] = t. Moreover, the Ornstein-Uhlenbeck process 
has the advantage tha t  it models phenomena which react to offset 
excessive movements  in any one direction, which is true of many  eco- 
nomic phenomena is a free society. I t  is shown in the Appendix that  the 
conditional mean function E { X ( t )  I X ( s )  = xl = xe -~ct-~ for ~ > 0. 
This implies a drift  downward if the present position is positive and a 
drift upward if the present position is negative. Le t  us point out that  
the word "posit ion" here will refer to a deviation from the expected 
value. By contrast,  the conditional mean function for the Wiener process 
is E { X ( t )  ] X ( s )  = x I = x, which does not reflect the stabilizing in- 
fluences one would expect. Thus, if we use three Ornstein-Uhlenbeck 
processes, we have Vat  {l(t)} = a~, Var {O(t)} = Cr~o, Var {L(t)} = ~ .  
Empirical  evidence would have to give us statistical estimates (confidence 
intervals) for the three constants. Luckily, we would not have to estimate 
variance functions evolving over time. 

Now we approach the covariances. Assume that  the evidence allows 
us to set I ( t ) =  a ( t ) O ( t ) +  b(t), 0 < t < ~ .  This  says that  for each 
fixed time t, I ( t )  is a linear function of O(t). In  some cases the a and b 
functions would not depend on time. If  a(t) should be positive (as in an 
inflationary period), then the correlation coefficient p{ I( t) ,  O(t) } = + 1; 
since, for any random variables X and Y, p [X,  Y} = Cov {X, g } /  
axar ,  this tells us tha t  Coy {I(t), O(t)} = ~rx,~ao,~. If  two random 
variables X and Y are linearly related (Y = a X  + b), then o{X,  Y} = 
_+ 1, where + 1 is obtained if a > 0 and -- 1 is obtained if a < 0. This can 
easily be shown, start ing with the definition of Coy {X, Y}.  For each 
fixed time t, I( t)  and O(t) are random variables, which could be designated 
X and Y. Furthermore,  o[X,  Y} = _+ 1 only i f  X and Y are linearly 
related (see Feller [11], pp. 236--37). I t  is to be emphasized that  we do 
not require a(t) and b(t) to be linear functions. If  we assume that  O(t) = 
c(t)L(t) + d(t) for a positive function c(t), this would reflect the fact that ,  
as lapse expenses grow, so do operating expenses. Thus  Cov {O(t), 
L(t) I = aoaL. By contrast,  if lapse expenses diminish with rising interest 
rates, it may be possible to express L(t) = g(t)I( t )  + h(t) for some func- 
tion g(t) taking only negative values. Thus o{L(t), I(t)} = - 1 ,  and 
Coy {L(t), I(t) } = -- aLax. So far we have said nothing about  the relation 
of the C(t) process to the other three processes. At least in theory, one 
would hope that  this process is independent of the other three. For 
simplicity we will make this assumption, and hence the other three 
covariances are all zero. Combining these several results, we obtain 
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Var {R(t)} 

= p2t + Var I + VarO + VarL -- 2aI~o + 2ao~L -- 2aLat. (9) 

Furthermore, we do not have to determine the functions a(t), b(t), c(t), 
d(t), g(t), h(t) explicitly. However, evidence must support (1) the three 
linear relations and (2) the positive nature of a(t) and c(t) and the nega- 
tive nature of g(t) if we are to enjoy the simplicity of the correlation 
coefficients of + 1 ,  + 1 ,  and - 1 ,  respectively. Obviously, one can still 
measure adverse deviations by expression (3), the previous linear com- 
bination of variances and covariances, if evidence does not support the 
simplifying assumptions. 

We have now succeeded in obtaining Var [R(t)} for each t. Professor 
Hans Btihlmann has explained several principles for obtaining premiums. 
These premiums involve a loading for contingencies but no loading for 
expenses. Thus they exceed net premiums but are less than gross pre- 
miums. If  a risk involves an accumulated claim process S ,  then the 
premium P, for the assumption of the claim experience depends on the 
distribution of St. One way to express this dependence is 

P, = E{S,I + t~ Var {S,l (10) 

(see pp. 85 and 86 of ref. [8]). Btihlmann calls this the variance principle 
for calculating premiums. He also states a standard deviation principle 

Pt = E{Stt + a(Var {St]) ~I2 . (11) 

Let us return to the simple mortality model C(t). Since Vat {C(t)} = 
p2t, if one is concerned with premiums for risks over a time interval 
[0, T], premium -- p i t  + ~p~T. This capitalizes on the monotonically 
increasing nature of the mean and variance functions, that is, 

max E{C(t)}  = E{C(T)}  , max Var {C(t)} = Vat  {C(T)} . 
O<_t<_T o ~ t ~ T  

Mathematically, this need not be the case for the R(t) process variance. 
Thus a more conservative form of the variance principle would be 

Premium over [0, T] = Mean value at T + /3  max Vat {R(t)) . (12) 
O<t<_T 

From a practical point of view, max0<t_<7. Var {R(t)} probably can be 
approximated in most cases by Var {R(T)}. Since the variance measures 
dispersion in squared units, obviously/3 is of dimension unit -1 , so that 
the premium is not a mixture of units and squared units. The standard 
deviation principle seems more natural, and we will use it in an example 
in Section V. 
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III. PROVISION FOR A TREND 

Edward A. Lew has observed that the deltas added for adverse 
deviations should allow for a possible trend as well as for random oscilla- 
tions. This suggests that  one may wish to consider a model which is 
partially random and partially deterministic. This could be accomplished 
by modifying the R(t)  process as follows: 

R ' ( t )  = f ( t )  + R(t) ,  0 _< t < ,~ , (13) 

where thef(t)  term gives one method of allowing for a trend, for example, 
inflation if f ( t )  > O, for t > 0. We quickly see that 

E{R ' ( t ) }  = f ( t )  + pat,  (14) 

Var {R*(t)} -- Var {R(t)} . (15) 

Let us also modify the deviations process: 

D*(t) = f ( t )  + D(t) ,  0 < t < ~o (16) 

One obtains easily 
E{D*(t)  I = f ( t ) ,  (17) 

Var {D*(t)} -- Vat {D(t)} = Var {R(t)l . (18) 

If we assume that thef( t)  term is monotonically increasing, the addition 
of the trend term increases the premiums for T units of time to 

Net  premium = Tpa + f ( T ) ,  (19) 

Gross premium (G') -- TpI + f ( T )  + X T .  (20) 

I t  must be stressed that  expressions (13) and (16) are models which have 
random and deterministic components. Presumably one could obtain a 
reliable trend function from observed data, using various numerical 
analysis techniques. I t  should be observed that the nonrandomness of the 
trend function provides a pleasant reduction in various probability 
statements. Thus, assume that one wants the gross premium G" such 
that the probability that  the greatest timed difference between R*(t) and 
tG* is greater than the initial reserve u is appropriately small, say 0.001. 
This means that one seeks G* such that 

P{supremum [R*(t) -- tG*] > u} -- 0.001. (21) 
0 ~ t <  

But 

R' ( t )  -- tG* = f ( t )  + R(t )  - tpl - f ( t )  - Xt = D(t) - Xt , (22) 
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and hence equation (21) reduces to 

P { s u p r e m u m  [D(t) -- tk] > u} = 0.001 . (23) 
0 < t < : ~  

The reader will see that  this agrees with equation (8). 
Let  us consider two examples of f(t). Let us assume tha t  an insurance 

line expects 60 claims per year, tha t  is, t = 60 corresponds to one >,ear. 
Let  us assume tha t  past  statistics lead the ac tuary  to expect an inflation- 
ary trend of 2 per cent of the average claim. This  amounts  to expecting 
0.02p~ X 60 as the aggregate cost of inflation for one year. Mathematical ly ,  
this can be achieved by letting ./(t) = 0.02p~t, 0 < t < 60. The  same 
example can be refined to include a cycle added to the linear trend. 
Thus,  let f(t) = 0.02pit + 0.075pl sin (~rt/30), 0 < t < 60. The  graph 
of this f(t) appears in Figure 1. As t increases from 120 through 180, 

2.4p i 

1.8p~ 

1.2pT 

0.6pl 

3O 

/ 

J l J [ 1 I . 
60 90 120 f 

Fzo. 1 

sin 0rt/30) will again grow from zero through + 1, then down through 
zero to - -1  and up again to zero. Indeed, one can refine f(t) even more 
by adding a t 2 or t 3 term, or a cosine term, and so on. However,  as far as 
the premium calculation is involved, only the function value a t  the last 
t ime point, namely, f (T) ,  is involved. 

The  process of obtaining f(t)  f rom observations D*(t) which involve 
deviations is similar to what  the ac tuary  does in the graduation of 
collected data.  For example, on page 4 of Mor ton  Miller 's monograph 
[20], the process of graduation involves striving for the true values V, 
from the observed values u." which contain error terms e,. 

u." -- V .  + e~ .  (24) 

This is analogous to our equation 

D'(t) = f(t) + D(t). (25) 
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For the regular R(t) process, the variation or standard deviation 
gives a precise expression for a "unit of risk deviation." The addition 
of a or B of these units transforms a net premium into a gross premium. 
When one also considers a trend, equation (12) becomes 

Premium over [0, T] = Mean value at T + B max Var {R*(t)} 
0 < J ~ T  

"--. Tp~ + f(T) +/3 Vat {R(T)} 

= Tp~ + B[f(T)/B + Var {R(T)}]. 

Thus f(T)/# + Vat {R(T)} orf(T)/13 + std. dev. {R(T)} would be the 
unit of adverse deviation for T units of time. 

It  should be observed that one can adopt the view that f(T) is part 
of the net premium rather than part of the provision for adverse devia- 
tions. Obviously, the mathematics remains unchanged. There are cases 
where the provision for an inflationary trend should be larger than the 
provision for adverse random fluctuations. This is possible in our mathe- 
matical model for adverse deviations. Even though B would usually be 
an integer greater than unity, the provision for an adverse trend, namely, 
f(T), could exceed the provision for adverse random fluctuations, namely, 
/3 Vat {R(T)}. The reader is referred to Gordon D. Shellard's Discussion 
on Underwriting the Catastrophe Accident Hazard [23] for an interesting 
discussion involving a trend in claims and one usage of collective risk 
theory. The constant c~ or /3 will always have to be determined by a 
combination of actuarial judgment and competition. 

This paper has attempted to quantify one basic unit "risk dispersion," 
a multiple of which equals the sum of the deltas in Horn's paper. The 
theoretical multiple is that number k such that the probability that the 
greatest difference between R(t) and the gross premium is greater than 
the initial reserve u is appropriately small, say 0.001. John Wooddys 
monograph [30] contains techniques used to calculate the probability 
distributions for the C(t) process by itself. The bibliography in reference 
[30] contains references to papers on that subject by Dwight Bartlett, 
Newton Bowers, Harald Cram6r, Paul Kahn, Hilary Seal, and the 
present author, as well as twenty other references to risk theory. It  will 
be some time before researchers can develop comparable techniques for 
the R(I) process. As Cram6r has pointed out [9], the C(t) process enjoys 
the advantages of having stationary and independent increments. This 
proved most beneficial in deriving probability distributions of functionals 
of the C(t) process. Ornstein-Uhlenbeck processes do not have indepen- 
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dent increments, as demonstrated by Beekman ([4], p. 791). Mercifully, 
we do not need to know the probability distributions to calculate the 
basic unit "risk dispersion." 

1V. LENGTH OF PREMIUM-PAYING PERIOD AND EFFECTS OF INTEREST 

Despite the fact that the probability statements are phrased in terms 
of an infinite observation period or infinite planning horizon, frequently 
one may think of a relatively short period of time, and no sizable error 
will be committed. There are now at least six references on this point: 
Olof Thorin, "Analytical Steps towards a Numerical Calculation of the 
Ruin Probability for a Finite Period when the Risk Process Is of the 
Poisson Type or the More General Type Studied by Sparre Andersen" 
[24] ; Nils Wikstad, "Exemplification of Ruin Probabilities" [29]; John A. 
Beekman and Newton L. Bowers, "An Approximation to the Finite 
Time Ruin Function" [6, 7]; David G. Halmstad, Discussion on Under- 
writing the Catastrophe Accident Hazard [15]; and Hilary L. Seal, 
"Numerical Calculation of the Probability of Ruin in the Poisson/ 
Exponential Case" [22]. In essence, these references show that, if a line 
of business has a reasonable number of claims per year, then probability 
statements with respect to a relatively few calendar years are little 
different from probabilities based on an "infinite" planning horizon. 

Dr. Hans Gerber added a multiple of the Wiener process to the 
collective risk process [13]. He stated that this allowed another dimension 
of variability. Gerber has also studied the effects on the potential manage- 
ment decisions when the collective risk process is modified to discount 
all future claims for interest [12]. Possibly the effects of interest could be 
recognized here also, although it would make this presentation more 
complicated. The author has some preliminary results in this area. 

v. PRACTICAL Im'LE~EN~ATIO~r 

First, what does all this mean for the practicing actuary charged 
with computing premiums which provide for the adverse deviations of 
mortality, investment performance, operating expenses, and lapses? 
Second, does the actuary have to think in terms of stochastic processes, 
operational time, and the like? The reader undoubtedly suspects what 
the answers to these questions are. However, let us pause a moment to 
reflect on some of the values of mathematical models. An excellent 
statement in this regard is given by the noted probabilist Mark Kac 
[18]: "Models are, for the most part, caricatures of reality, but if they 
are good, then, like good caricatures, they portray, though perhaps in 
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distorted manner, some of the features of the real world. The main role 
of models is not so much to explain and to predict--though ultimately 
these are the main functions of science--as to polarize thinking and to 
pose sharp questions." The collective risk model which Filip Lundberg 
created in 1903 [19] has forced many actuaries to see some of their 
problems in a different light. Furthermore, it is now generally accepted 
that the model provides more accurate answers to some of the actuary's 
problems. This is partially due to the great amount of research which 
has been done in various countries to refine the collective risk model and 
obtain distributions for the functionals of the C(t) process. The reader 
may consult John Wooddy's work [30] for the results of some of this 
research. 

The answer to the second question above is no. With respect to the 
first question, the actuary should go through some thinking and research 
on the ingredients in equation (3) as well as a possible trend function. 
This does not mean that he has to think about variance (aggregate claims) 
as p~t, which involves the operational time t. I t  does mean that he must 
think about and study, and form an estimate for, the variance of aggre- 
gate claims over a reasonable amount of time. With respect to the invest- 
ment income deviation, he does not have to think about its variance as 
the variance of an Ornstein-Uhlenbeck process. However, if one obtains 
a single number for the variance over time, that single number may also 
be interpreted as the constant variance function of an Ornstein-Uhlen- 
beck process. Similar remarks apply to the operating expense and lapse 
expense deviation. If one obtains a single number close to + 1 or - - I ,  
where the "closeness" is judged by the usual statistical tests for sample 
correlation coefficients, for the correlation coefficient of the investment 
income deviation and the operating expense deviation, that single 
number may also be interpreted as the correlation coefficient function of 
two Ornstein-Uhlenbeck processes which are linearly related for each 
member of the time interval. As stressed earlier, the basic relation (3) can 
be used whether or not the various correlation coefficients are "close" to 
+ 1  or - 1 .  

These preparations of estimating variances, covariances, and a possible 
trend will provide the actuary with an estimate of the basic risk dispersion 
unit. A multiple of this unit is the actuary's quantification of the pro- 
visions for adverse deviations. 

Let us assume that the actuary has some information on lapse, in- 
vestment, and operating expense deviations. For example, we shall 
denote the lapse expense deviations by Li ,  i = 1 , . . . ,  nL with frequencies 
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f(i), i = 1 , . . . ,  nL. These can be used to compute 

nL n L 

re(l ,  L) = ~~L, f ( i ) ,  m(2, L) = ~ L ~ f ( i ) .  
i= l  i ~ l  

Although we have assumed that the theoretical mean is zero, the sample 
mean rn(1, L) probably will not equal zero. We may now estimate the 
quantity cr~ by ~ = rn(2, L) -- [m(1, L)] 2. One may use observed devia- 
tions and frequencies to obtain also the estimates ~ = m(2, I ) -  
[m(1, I)] 2 and ~ = m(2, O) - [m(1, 0)] 2. I t  will prove convenient to 
express these estimates as multiples of p,: #~ = kips; ~ = k2P2; ~2o = 
ksp2. For simplicity, assume that the distribution of claims consists of 
equal 0.25 weights at the values 5, 10, 25, and 50. We are measuring in 
$1,000 units. Then the average claim p~ = 22.5 units, and p2 -- 812.5. 
Let us assume that we expect 100 claims per year. Then the aggregate 
net premium for one year without provision for deviations is pxt = 2,250. 
Let us assume that we have computed 6~, 8~, 62o and that kx = 75, 
k~ = 25, and k3 = 10. We must now examine our evidence about the 
correlation coefficients. The simplest case would be that for which they 
are all zero. Then, for a one-year period, Var {R(100)} = 812.5(100 + 
75 + 25 + 10). If  existing evidence allows us to use the simple correlation 
coefficients involved in expression (9), we obtain Var [R(t)} = p2[t + 
k2 + ks + kl -- 2v/(k2ks) + 2x/(kskl) -- 2x/(kxk2)]. For our values of 
ki, ks, ks, Var {R(100)} = 812.5(146.6). As a provision for trend, let us 
use 0.05pxt = 112.5. Combining these quantities, a net premium would 
be pit + f(t) + an/[Vat  {R(t)}] = 2,250 + 112.5 + a(344.85). 

What  a should be used? Theoretically, this could be determined from 
equation (7), but this would be very difficult at the present time. In 
view of the fact that Vat {C(t) l < Vat {R(t)], it should be conservative 
to approximate otx/[Var {R(t)}] by tix/[Var {R(t)}], where a is deter- 
mined by the condition that P { C ( t ) -  pit > av/(p~t)} = 0.001. This 
amounts to determining a such that F(p~t + aw/(p~t), t ) =  0.999. 
There are a variety of good techniques for doing so. Let us use the 
asymptotic expansion involving the normal distribution and its first 
six derivatives. This can be found in references [1] and [9] and elsewhere. 
We find that a = 3.30. Under the various assumptions we have made, 
the aggregate provision for deviations is now 1,138.01. Thus the net 
premium for one year with provision for deviations and trend is 3,500.51. 

The next problem is to distribute the provision for deviations and 
trend equitably among the various policyholders. One possible method 
(among several) is the following. Since the larger-risk policies contribute 
more to the mortality deviation, they should bear a greater proportion 
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of the provision for total deviations and trend. The accompanying 
tabulation shows a mathematical way of doing this, A second step would 

Proportion of 
Class of Policy Aggregate Provision 

$ 5,000 (5) . . . . . . . . . .  I(5/22.5) 
10,000 (10) . . . . . . . . .  I(10/22.5) 
25,000 (25) . . . . . . . . .  i(25/22.5) 
50,000 (50) . . . . . . . . .  I(50/22.5) 

Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Provision 

69,473 
138.946 
347,364 
694,728 

1,250.51 

be to divide these class provisions into individual premium provisions 
according to age at issue. I t  would seem logical that these should increase 
with age. One method of allowing for this would be to multiply the class 
provision by ratios r , ,  where r ,  is the net single premium for issue age x 
divided by the aggregate net single premiums for the class. The reader 
should be cautioned that the various numbers in this example are for 
illustrative purposes only. 
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APPENDIX 

In a Gaussian process {X(t), t ~ A} any finite collection of random 
variables has a multivariate normal distribution. This means that  for 
any integer n and any subset [tl, t~ . . . .  , In} of A, the n random variables 
X ( h ) ,  • • . ,  X ( t , )  possess a joint probability density given, for any real 
numbers xl, x ~ , . . . ,  x~, by 

(21r)~12 I CII/. 2exp - 2 k=l  i - 1  

where, for j ,  k = 1, 2 , . . . ,  n, mi -- E{X(I/)}, and Ci, = Coy {X(ti), 

x(t+)t, 
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C = I 
C11 Cl~ • • • C1,1 

C;1 C22 . . .  C.,,/ , 

587 

C--I ~_ 

Cll 0 2  . . . C 1"] 

• ° , 

I C.2 . . . i.n 

and ]C[ is the determinant  of the matr ix  C. Since the mult ivariate  nor- 
mal  density is completely determined by  the mj 's  and the Cik's, it is 
clear that  the mean-value function EIX( t ) } ,  t C A, and the covariance 
function Cov {X(s),  X(t)} ,  s C A, t ~ A, determine the complete prob-  
ability law of the process. A stochastic process is Markovian  if, for any 
integer n > 1, if h < h < • • • < t, are points in A, P IX( t , )  <_ XlX(tx), 
X ( h ) , . . . ,  X(t,_l)} = PIX( t , )  <_ XlX(t,_l)}. For a Gaussian process 
to be Markovian,  the covariance function r(s, t) = E I [ X ( s ) -  re(s)] 
[X(t) -- m(t)]l must  factor as follows: 

~u(s )v ( t )  , s < t 
, ( s , t )  = ~ u ( t ) v ( s ) ,  t <_ s ,  

where u(t) >_ O, v(t) > 0, and u(t)/v(t) is strictly increasing on A. The  
best-known examples of Gaussian Markov  processes are the following: 

1. The  Wiener process [28]: 

u(t)  = t, v(t) = l ,  o < t < ~, 

2. The  Doob-Kac  process (see refs. [10], [17]): 

u(t)  = t, v(t) = l - t ,  o < t < 1 .  

3. The  Ornstein-Uhlenbeck family of processes: 

u(t) = ,r*e e*, v(t) = e-n*, ,r* > O, a > O, O <_ t < ~, 

The Doob-Kac process is also referred to as the tied-down Wiener process 
or the Brownian bridge, because not only does X(0) = 0 as in the Wiener 
process but  also X(1) = 0. J. L. Doob used the process in computing the 
distributions of nonparametr ic  statistics, specifically Kolmogorov-Smir- 
nov statistics. 
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For the Ornstein-Uhlenbeck process, the transition density function 
(s < t) is 

p(x, s; y, t) = ~ P { X ( t )  <_ y l X ( s )  = x} 

' )]- ' /2 exp {--k, {y -- x e x p  [ - - ~ ( l -  s)]}e.'~ [2rA(s ,  
2A (s, t) ,) 

where A(s, t) = a 2 { 1 - - e x p [ - - 2 O ( t - - s ) ] } ,  and a 2 >  0, ~ > 0 .  This 
yields a conditional mean function 

c o  

E ~ X ( t ) ] X ( s )  = x} = f yp(x,  s; y, t)dy = xe-~"- ' ) .  
~ c o  

The variance function is u(t)v(t) = a~, for a/1 t 3> 0. 
For the Wiener process, 

o~  

E { X ( t ) I X ( s )  = x} = f y e X p  { - ( y  - x ) 2 / [ 2 ( t -  s)]} dy = x .  
-,~ ~v/ I2r r ( t -  s)] 

The transition density function is a dynamic method for describing 
the evolution of the process in time. 
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DISCUSSION OF P R E C E D I N G  PAPER 

RICHARD W. ZIOCK:  

This addition of investment, withdrawal, and expense processes to the 
traditional collective risk model is a welcome contribution to the ac- 
tuarial literature. I t  seems to me that modeling a portfolio of individual 
life policies with the new collective risk model may have a shortcoming. 
In the collective risk model, the four processes are given mean values. 
Yet on the individual policy all four processes vary by duration. In par- 
ticular, mortality increases with duration, lapse decreases, expense de- 
creases at first then may increase with inflation, and investment income 
increases substantially as the assets build up on permanent policies. 

Nevertheless, it is quite common in practical actuarial work to replace 
a known variable with its mean or median and proceed with one's calcula- 
tions, in order to avoid undue complexity and detail. This is the great 
practical value of this model. 

Traditionally--in risk theory--alpha, the loading, has been determined 
so that the ruin probability, given an initial capital, is very small, say 
0.001. The loadings--or deltas--in the natural reserve premium under 
GAAP accounting are to serve another purpose. Their purpose is the as- 
surance that the reserves will be sufficient, with some large probability, 
say 75 per cent, to mature a given block of policies at a profit. Knowl- 
edgeable people tell me this. 

This requirement--to mature a block of policies--drives the collective 
risk model to the wall, since collectivization has destroyed the identity 
of individual blocks of business. However, if we can assume that the 
company possesses a fair number of such blocks of business which remain 
in a stationary relationship to one another through time, then it seems 
to me that an equivalent requirement is that 75 per cent of the time the 
collective of policies shows a profit (that is, alpha flows through as a gain 
and is not consumed by adverse experience). 

This leads me to propose that alpha be determined so that there is 
both a 75 per cent chance of a profit each year and not more than a 0.001 
chance that the capital and surplus are ever negative. 

E T H A N  STROH:  

The author has taken on the problem of dealing with risks other than 
mortality within the context of collective risk theory. In setting gross 

591 
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premiums, an insurer must make provision for unfavorable risks in the 
areas of investment return, expense rates, and lapse experience. On the 
other hand, excessive zeal in making such provision can lead to an un- 
favorable competitive position. For this reason the quantification of the 
risks associated with premium loading items is a useful enterprise. My 
comments are addressed to the consequences of introducing these elements 
into a "pure" collective risk model. 

Collective risk theory involves the making of two separate guesses 
about mortality experience. The first guess is about the rate of claim; 
the second concerns the amount of money which is paid on incidence of 
one claim. These two assumptions, or sets of assumptions, are then 
married by means of a compound Poisson process. 

I t  seems natural to suspect that, since investment risk, expenses, and 
lapse rate are related to the aggregate payout, they might be incorporated 
directly into the classical formulas of collective risk theory. 

Consider formula (1) of the paper: 

R(t) = C(t) - I(t) + O(t)  + L(t), 

where C(t) is the claim process, with probability distribution as con- 
ventionally derived, and I(t), O(t), L(t) are the net premium "loading" 
processes covering investment, expense, and lapse; if these are Gaussian, 
the probability distributions are normal distributions. Let F(x) be the 
probability distribution of the claim process for a unit of operational 
time, and let Nl(x), N~(x), N~(x) be the probability distributions of the 
loading processes; R(x) is the probability distribution of total insurer 
cost, including claims and expenses and including provision for invest- 
ment deviation and lapsation. Then, if the four processes are independent, 

R(x) = F(x) * N,(x) * N2(x) * X3(x) , 

where the operator * denotes convolution, that is, for two probability 
distributions G(x), H(x) with independent random variables g(t), h(t), 
the probability distribution of g(t) + h(t) is 

z 

a ( x )  • t l ( x )  = f a ( x  - s )dH(s )  . 
0 

I t  is well known that the sum of two independent normally distributed 
variables is again normally distributed. Accordingly, we may define 
N(x) = Nl(x)*N2(x)*N3(x) as the aggregate loading distribution, so that 

R(x) = F(x) * N(x) 
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Over a unit of operational time the distribution F(x) has a moment 
generating function (I,(s) = e-]+~('), where v(s) is the moment generating 
function of the probability distribution v(x) giving the likelihood that one 
death claim at random will be for the amount $X or less. The normal 
distribution N(x) has the moment generating function n(s)= exp 
(ms + ~2s~/2). The convolution R(x) of F(x) and N(x) has the moment 
generating function 

p(s) = exp [-- 1 + v(s)] exp (ms + cr~s~/2) 

= exp [--1 + v(s) + ms + ~r2s~/2] . 

If we define v*(s) = v(s) + ms + a~sU2, we see that p(s) = exp [ - 1  + 
r*(s)], which is the moment generating function of a compound Poisson 
process similar to that associated with net claims. 

I t  appears, then, that loadings of various sorts (positive and negative) 
may be introduced into the probability distribution of claims simply as 
adjustments to the individual claim amount distribution, provided that 
the loadings are governed by Gaussian processes. 

Turning to the question of determining the net premium loading needed 
in order to have an appropriately small probability of ruin, we see that 
the modified distribution described above has a mean value equal to the 
gross premium. 

This "net"  gross premium, so to speak, should be loaded to cover 
contingencies. Using the modified distribution discussed above, we may 
(a) compute the standard deviation in the usual manner for collective 
risk theory distribution and apply one of the principles for obtaining 
premiums cited by the author or (b) go directly to ruin function approxi- 
mations in order to obtain a rational loading formula. 

I am not sure that I agree fully with the author's Section I I I .  The whole 
question of introducing a claim trend into a collective risk theory model 
seems to me to be more complicated than is suggested. The classical model 
presupposes the independence of a mean number of claims over an in- 
terval of time and the exact instant at which the interval commences; 
for example, expected numbers of claims over the periods 1850-60 and 
1970-80 would be the same. This means that a single portfolio distribu- 
tion of insurance amounts for one claim may be constructed and extended, 
by convolution, to cover any number of claims in any time interval. The 
Poisson process is stationary in its nature in much the same way as a 
stationary population. Introducing the notion of a trend requires that 
the commencement of time intervals be identified, a concept inimical to 
the Poisson process. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

JOHN A. BEEKMAN: 

The author appreciates Mr. Ziock's and Mr. Stroh's discussions of 
his paper. 

With respect to Mr. Ziock's first point, it should be stressed that the 
new collective risk model was designed for the devialions of the four pro- 
cesses, not for the processes themselves. Even though mortality, lapse 
risk, expenses, and investment income will vary in time for any one 
person, the collective deviations may not vary. The suggestion that alpha 
(or lambda) "be determined so that there is both a 75 per cent chance of 
a profit each year and not more than a 0.001 chance that the capital 
and surplus are ever negative" is most interesting. Let us express this 
in probability phrases similar to equations (7) and (8) of the paper. 
Assume that the expected number of claims in one )'ear is T. Then the 
first requirement on ~, is that P{p~ + ~) - R(T) > 0} --- 0.75. The 
second requirement is that 

P{supremum JR(T) -- t(pl + ~,)] > u} = 0.001 . 

The first requirement can be converted into the statement P{D(T) < 
XT I. The second (long-range) requirement is not so simple. However, a 
suggestion for making some of the calculations will be given briefly. 

Mr. Stroh has suggested several interesting ideas. In the formula R(l) = 
C(t) -- I(t) + O(l) + L(t), he refers to I(t), O(t), and L(t) as the loading 
processes. Under the assumption that the four processes are independent, 
he has derived the distribution of R(t) for one unit of operational time. I 
think that his derivation is very worthwhile. Since submitting my paper 
for publication, I have obtained various results about the distribution of 
R(t), which will be explained briefly. Mr. Stroh observes how the mean 
and standard deviation of the distribution of R(t) can be used in setting 
a premium which allows for adverse deviations. Mr. Stroh has ver b, ac- 
curately stated the implication of the stationarity of the compound 
Poisson process. However, I wanted the model to contain a deterministic 
component allowing for trend. This was so introduced that it does not 
affect the stationarity of the C(t) process. The trend function was added 
to allow for inflationary (deflationary) movements in any or all of the 
four processes. The over-all probability statements are not changed, as 
revealed in equations (21), (22), and (23). 

Motivated by Mr. Stroh's and Mr. Ziock's discussions, let us consider 
a further result about the D(t) process and its application to the example 
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in Section V of the paper. We will calculate the asymptotic distribution 
of D(t) as t -- ~ .  The deviations process D(t) is defined in equation (4). 
Using the independence of the four processes, the characteristic function 
reduces as follows: 

E{exp [iOD(t)] = exp (--ioptt)E{exp [iOC(t)]} 

× E{exp [--iOI(t)]}E{exp [iO0(t)]}E{exp [iOL(t)]} . 

I t  is shown in references [9], [1], and elsewhere that 
g r 

where P(y) is the common distribution of individual claims. Since I(t), 
O(t), and L(t) have been assumed to be normal variates with zero means 
and constant variances a~-, ~ ,  a~, the last three expectations are given 
by exp (--02a~/2), exp (02#~/2), and exp (02a~/2). 

Assuming that we can integrate term by term, 

t [ _ ~  exp (iOy)dP(y) - 1] = iOplt -- O2pd/2, - iO~p3t/3, 

+ 04p4t/4[ + i06pd/5[ + . . . .  

Combining these facts would give an expression for the characteristic 
function of D(t). 

Now consider the standardized random variable 

D(t) -- E[D(t)] D(t) 
{Var [D(t)]} "~ (p~t + ~ + a~o + a~) 'j~" 

This makes use of equations (5), (6), and (9) of the paper. This random 
variable has as its characteristic function E[exp [iO*D(t)]}, where 0* = 
O[p2t + ~ + ~2o + ~)-LI2. Using the previous results, 

E{exp [iO* D(t)l} 
( 0 , )  2 

= exp - T ( p 2 t - b a ~ + a 2 o - 4 - ~ r ~ )  

3! p,t + ~ p4t + ~ t"~" 

(0"? ] 
6l Pd + O(t-~t2) , 
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where the last term indicates that I Remainderl < At-S/2 for large t and 
for some positive constant A. I t  will prove convenient also to think of the 
series with (0") i replaced by O~/k', where k = ( p d  + a~ + a~o + a~) ~l~. 

If 

¢l'(x)-  1 j e x p ( - -  ~ ) d t  and cI,("(x)= d~(x----~) 

it is shown in many references that 

and 

c o  

f exp (iOx)d,~(x) = exp (--0~/2) 
- - c o  

/ e x p  (iOx)dOW(x) = (--iO)i exp (--02/2) . 

Thus our previous series expression for E{exp [iO*D(t)]} also equals 

exp (iOx)d[~(x) -- p3t p4t 
~k 3 ¢+(x) + ~k q ~.)(x) 

Pd ,I,+(x) + .] 5 !k 5 " " " 

Hence, by the complete equality of functions with the same Fourier 
transform, 

D(t) < xl 

¢(3)(x) + ,I,(')(x) + O(t-~n). 

This gives an easy method of computing the distribution of D(t), if the 
processes are assumed independent and t is fairly large. A readily avail- 
able source of ~l,<~)(x) values is Handbook of Tables for Probability and 
Statistics, edited by William H. Beyer (2d ed. ; Cleveland, Ohio: Chemical 
Rubber Co., 1968). 

Let us reconsider the example contained in Section V of the paper and 
now assume that the four processes are independent. Then k = [812.5 
(210)11;2 - 413.07, and 1Remainderl < A/1,O00 for the series approxi- 
mation to the probability. Let us determine x so that P{D(t)> 
x(413.07)} = 0.001. I t  is easy to calculate the needed constants: pJ/6U 
= 0.00838 and p4t/24k 4 = 0.00238. With a few trial calculations, one 
obtains x = 2.97. This says that, under the previous assumptions, there 
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is a probability of only 0.001 that the aggregate deviations will exceed 
X a D ( O  = 1,226.818. This number may be contrasted with ~aD<,~ = 
3.30(413.07) -- 1,363.131, produced by the Section V method for deter- 
mining a if the four processes are independent. This is further evidence 
for the statement that the Section V method for calculating ~ is conserva- 
tive. 

The author wishes to thank Mr. Stroh and Mr. Ziock for their thought- 
provoking discussions. 




