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ABSTRACT 

This paper is presented in seven sections. Section I, "Purpose and 
Scope," indicates sources of the ideas and how we undertook to develop 
them. Section II, "The Model Pension Plan," gives a general mathemati- 
cal setting for studying pension funding under dynamic conditions. 
Section III  defines, and expresses the derivatives of, five basic functions 
of time that are utilized in pension funding theory. Section IV makes 
application to individual cost methods and Section V to aggregate cost 
methods, the latter being linked in each case to a corresponding individual 
cost method by means of an accrual function. Section VI, "The Expo- 
nential Growth Case," examines the special relations that exist when all 
the growth functions are exponential. The concluding section notes that 
oMy a foundation has been laid and there is much room for further 
mathematical exploration. 

I. PURPOSE AND SCOPE 

I 
N 1952 Trowbridge's paper "Fundamentals of Pension Funding" 

[13], utilizing a simplified mathematical model of a pension plan 
operating in a stationary population, greatly clarified the basic 

principles that underlie the funding methods employed by pension actu- 
aries. Since that time demographers have refined the theory of stable 
populations subject to fixed rates of fertility and mortality (see, for 
example, Keyfitz [7]). This theory may be used to provide a setting 
more general than stationary populations within which to study the 
operation of funding principles. During the same period inflation of 
prices and wages has had profound effects on the actuarial management 
of pension funds and social security systems. A number of actuaries have 
touched on these matters in various publications [3-6, 8-11, 14, 16], but 
an overall mathematical exploration has not appeared. The purpose of 
this paper is to provide an introduction to mathematical principles ap- 
plicable to pension funding under dynamic conditions of population 
growth, inflation, and automatic adjustment of benefits. 

177 



178 INTRODUCTION TO THE DYNAMICS OF PENSION FUNDING 

The introductory aspect of this paper will be sought by restricting the 
presentation to basic ideas. The model that will be developed will be 
deterministic, with no attention paid to contingency margins, to ex- 
perience deviations from the assumptions, or to estimation of the param- 
eters of the model. There appear to be many branches from the ideas of 
this paper that could be explored in discussions or future papers. In 
particular, with some complications, the theory could be extended to the 
case of pensions expressed in units which are tied to some time-dependent 
index such as the consumer price index. In the simplified model presented 
here, the adjustment of pensions may depend on duration since retire- 
ment but not intrinsically on time of payment. 

Generality will be obtained by using the concept of the cumulative 
pension purchase function, developed by Cooper and Hickman [2]. At 
the same time, by this approach simplicity is gained for expressing the 
accrued liability of the model plan. For ease of mathematical develop- 
ment, a continuous rather than a discrete model will be presented. 

The presentation will be mathematical throughout, including the ap- 
plications. This is for the convenience of readers who want to follow in 
detail the mathematical developments. However, it is hoped that readers 
who seek only a general understanding of the paper can achieve this by 
selective skipping of mathematical details. The mathematics is elemen- 
tary, and many of the mathematical statements lend themselves to 
immediate verbal interpretations, which will be supplied. Other authors 
have worked on or are developing numerical illustrations of these and 
related concepts [1, 6, 9, 16]. In contrast, this paper sets up a basis for 
the mathematical discussion of pension funding under conditions of 
growth. 

I I .  THE MODEL P E N S I O N  PLAN 

In this section the model plan that will be used in our development 
will be described. For this purpose, certain functions expressing the 
dynamic economic and demographic forces influencing the plan will be 
defined. Some typical actuarial functions for the valuation of individual 
unit benefits will be introduced to serve in the development of the basic 
actuarial functions for the plan as a whole. 

For the model plan, entry is fixed at age a and retirement at age r. 
As in Trowbridge's paper [13], only retirement benefits will be considered, 
that is, no account will be taken of death, disability, or withdrawal 
benefits. (A slightly different approach was taken by Humphrey et al. 
[6], C.3, p. 212.) Participants are assumed to survive as members of the 
plan according to a time-independent survivorship function l,, which 
applies to both the active period from age a to age r and the retired 
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period from age r. Further,  the radix of the function l~ is chosen so that  
I, represents at time 0 the density of participants at  age r, that  is, at 
time 0 the number of participants between ages r and r + dr is approxi- 
mately lrdr. 

Growth in the number of participants will be measured in terms of 
growth in the density of participants at age r by means of a function 
gx(t), with gx(0) = 1. Then the density of participants aged r at t ime t is 
given by the expression gt(t)lr, and the density of part icipants aged x 
at time t by the formula 

g1(t + r - x ) l , ,  a < x ,  (1) 

since such participants will reach (or have reached) age r at time 
t + r - - x .  

The density of participants aged x at time 0 is, from formula (1), 
equal to g~(r - x)l,. For x = r this density is l,, but  for other ages x it 
may  differ from l,. As an example, if the density of participants at age r 
is growing at the annual rate a, so that  gt(t) = e ~t, then the density of 
participants aged x at time t is e~(t+r-~)l, = e~te~('-~)l~, where e~(~-x)l~ 
is the density of participants aged x at time 0. I t  should be noted that ,  if 
the density of participants at age r is growing at the annual rate a, then 
the density at all other ages x >_ a, and hence the total covered group, 
is also growing at rate a. This is a consequence of the survivorship func- 
tion l,  being invariant  over time. 

I t  is assumed further that  the annual rate of salary for a participant 
aged x at time 0 is s(x), a <_ x < r, and that  s(x) remains as a base 
factor for salary at age x at times t >_ 0. The function s(x) describes the 
pat tern  of salary over a working lifetime if we ignore the impact of 
dynamic economic forces (compare Humphrey  et al. [6], p. 212). 

Growth in salaries over time will be represented by means of a function 
denoted as g2(t), with g~(0) = 1. Then the annual rate of salary for a 
part icipant aged x at time t is 

g , ( t ) s ( x )  , a < x < r .  (2) 
Formula (2) indicates that  salaries at  any given point of time vary by 
age in proportion to the function s(x). 

I t  is important  to note the difference between formulas (1) and (2). 
In formula (1) the age interval r -  x enters, the calculation, but  in 
formula (2) it does not. This is due to the fact tha t  g x ( r -  x)l,,  not 
l~,, represents the density of participants at  time 0, while s(x) does repre- 
sent the actual salary rates at  t ime 0. In the case of participants,  growth 
is determined on a generation basis, in fact, by the generation reaching 
age r at time t. In the case of salary rates, growth is determined on a 
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year-of-experience basis, the fixed pattern at time 0 defined by s(x) being 
amplified over time by the factor g~(t). A generation pattern for partici- 
pants and a year-of-experience pattern for salaries was our choice of 
model, but  under some circumstances one might choose other models 
using, say, a generation pattern for both participants and salaries. 

The density of salaries at age x and time t is given by combining for- 
mulas (1) and (2) to obtain 

gl(t + r -  x)g~(t)lxs(x) , a < x < r ,  (3) 

and the total annual payroll W(t) at time t is then expressible as 1 

W(t) = f g~(t + r -  x )g2( t ) lxs (x)dx .  (4) 

Further  description of the model plan and its actuarial aspects re- 
quires three key functions, which will be defined and explained in turn. 

The Pension Incurrence Density Function h(t) 

The symbol h(t) represents the density at time t of the amount of 
newly incurred age r pensions. Thus h(10) = 1,000 implies that  in the 
moment  (10, 10 + dt) the amount of new age r pensions which come 
into effect under the model plan is approximately 1,O00dt. 

From formula (1) the density of new retirees at time t + r -- x from 
participants aged x at time t is 

g,(t + r -  x ) l r ,  (5) 

and from formula (2) each of these t 'ill, at time t + r - x, have annual 
salary rate 

g~(t + r -  x)s(r)  . (6) 

It will be assumed for the model plan that pensions are a flat percentage, 
represented by b, of final salary. Then the definition of h(t) and formulas 
(5) and (6) shot" that  the density of net" pensions incurred, that  is, 
entering benefit status, at time t + r - x for those who at time t are 
aged x (x < r), or who at time t + r -- x were aged r (x >_ r), can be 
expressed as 

h(t + r -- x) = gl(t + r -- x)g~(t + r --  x ) L s ( r ) b .  (7) 

For x = r equation (7) becomes 

h(t) = g,( t )g ,( t ) l ,s(r)b (8) 

and represents the density of net, pensions incurred at time t. 

1 Boldface functions such as W(t) relate to the whole group rather than to a unit of 
initial pension. This convention is followed throughout the paper. 
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Equations (7) and (8) embody a key idea and deserve some discussion. 
In a stationary population model with no inflation or other growth of 
salaries over time, gx(t) = g~(t) = l, and h(t) is the constant l,s(r)b. The 
stationary population model can be replaced by one relative to a stable 
population. The latter is the steady state realized in a group with con- 
stant but unequal rates of entry and of termination applicable to the 
existing population. In this steady state the percentage distribution by 
age is fixed, but the size of the group can be growing at a fixed rate a. 
Then gl(t) can be taken in the form e ~t, g2(t) is again assumed to be 1, 
and the density (7) becomes 

e"('+r-x)trs(r)b . (9) 

If the population is stationary but salaries have been increasing over 
time at the annual rate % then gl(t) = 1, g~(t) = e "t, and 

h(t  + r -  x) = e'~('+r-x)l,s(r)b. (10) 

Note that the right-hand side of equation (10) is of the same form as 
(9) but has developed from different growth assumptions. 

Equations (7) and (8) may also apply to some simple cases of immature 
groups. Such a case is that in which gl(t) = O, t < O, g~(t) = 1, t > O, 
and g2(t) = 1 for all t. Then h(t) is the constant Irs(r)b for t >_ 0. 

In general, it will be assumed that the density function h(t) is dif- 
ferentiable. However, as seen in the immature case, h(t) may have points 
of discontinuity, but in such cases it will be assumed that sufficient one- 
sided differentiability remains to carry out the purpose on hand. 

The simple observation that 

O h(t  + r _ x) = l i m h ( t + r - -  x + A) --  h(t  + r --  x) 
Ot ~--,o A 

_ o h ( t  + r - x )  ( 1 1 )  
Ox 

will be much used in the theory to follow. 

The Pension Ad jus tmen t  Funct ion [3(x) 

This function expresses the annual rate of pension payable at age x 
per unit of annual pension rate at the initial retirement age r. Thus 
/~(x) = 1, x --- r. If/3(x)--1, x > r, then pensions remain fixed at their 
age r levels. If /3(x) = e ~(*-r), then pensions are adjusted continuously 
by a constant rate of increase/3. This latter form for the rate of benefit 
payment function is plausible for several types of postretirement adjust- 
ments. 
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If the adjustment of pensions were tied to a time-dependent index, 

say I(t), then a function ~(x, t) of two variables would be required, with 

~ ( x , t ) =  1 ,  x = r ,  

= l ( t ) / I ( t  + r -  x ) ,  x > r .  

The theory developed on the basis of the two-variable function O(x, t) 
is more complex than when only the single-variable function O(x) is 
used. Its applications would require more detailed assumptions about 
the future than one might choose to make. If I(t) is taken as the expo- 
nential function ke at, then /~(x, t) becomes the single-variable function 
e a(x-r). In view of these observations, the theory will be developed in 
terms of the simpler function O(x). 

The Accrual (of Liability) Function M(x) 

To express the accrual of liability for pensions from age r under the 
actuarial cost method to be employed, the accrual function M(x) will 
be used. M(x) is a nondecreasing, right-continuous function of only the 
age variable and is such that 0 < M(x) < 1 for all x >_ a. I t  will be 
assumed that M(a) = 0 except for initial funding, and that M(x) = 1, 
x >_ r, except when pay-as-you-go funding is considered. This accrual 
function is identical with the cumulative pension purchase function de- 
scribed by Cooper and Hickman [2]. Their function was defined in 
terms of a pension purchase density function re(x) such that 

M(x) = f m(y)dy .  (12) 

In some cases, statements may be more understandable in terms of 
re(x) rather than M(x), and for such cases re(x) will be utilized. In 
general, it will be assumed that re(x) is continuous for a < x < r and 
is right-continuous at a and left-continuous at r, and that re(x) = O, 
x > r. For initial and terminal funding, all funding is concentrated at a 
single age, and for such cases some easy adaptations of formulas are 
required. For the continuous case it is clear from formula (12) that 

re(x) = M'(x) , a < x < r ,  (13) 

and is the right derivative at x = a and the left derivative at x = r. 
The advantage of introducing the accrual function M(x) is that thereby 

one can develop pension funding theory simultaneously for a whole 
family of actuarial cost methods instead of working out the theory sep- 
arately for each method. From the general theory, one can obtain the 
theory for various cost methods by specializing M(x). Thus pay-as-you- 
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go funding is given by taking M(x)  = O, a ~ x; terminal funding by 
M(x)  = O, a ~ x < r, and M(x) = 1, x ~ r; unit credit funding by 

x r 

and entry age normal cost funding by 
Z }* 

M(x)  = f s(y)Ds, f s(y)Dz, dy .  

The last two formulas for M(x) are based on the fixed salary pattern 
described by the function s(x). When salaries are growing according to 
the function g~(t) = e* ~ (compare formula [2]), one can redefine M(x) 
to have s(y)e "rv in place of s(y) in the two formulas. Thereby, M(x) 
remains independent of the time variable t, and level costs in relation 
to salary emerge for individual entry age normal cost funding. If gg(t) 
is other than an exponential function, one might revert to the M(x) 
formulas based on the fixed salary pattern given by the function s(x), 
but then one would lose some of the level character of entry age normal 
cost funding. 

Additional Functions Relating to a Unit of Initial Pension 

In this subsection statements in pension funding terminology will be 
made regarding a unit pension. The theory is essentially that of in- 
dividual life annuities (generally deferred) and notations A, V, and P 
will be used to express concepts analogous to present value, reserve, and 
annual premium rate for a unit benefit. All functions are on a continuous 
basis, and, since this is a general assumption throughout, it will not 
normally be specified in the notation. 

The present value of future payments for each unit of initial pension 
from age r payable while a participant aged x survives is denoted by 
A (x), where 

D, a~ x < r ,  (14) A(x)  = r e - "  ,,p:B(x + u)du = --fix , _ 
and "-~ 

¢o  

A(x)  = f e -a" ,,px#(x + u)du = a sx, x >__ r .  (15) 
o 

Here ~ denotes the assumed force of interest, and the superscript/~ on 
the annuity value indicates that annuity payments are adjusted by the 
function #(x). 

The accrued liability for a unit of initial pension from age r in regard 
to a participant aged x is denoted by V(x), where 

V(x) = A ( x ) n ( x ) .  (16) 
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For x >_ r, M(x)  = 1 (except for pay-as-you-go funding) and V(x) = 
A(x).  

The normal cost rate P(x) in regard to a participant aged x for a unit 
of initial pension from age r is given in the continuous case by the rela- 
tions 

P(x)  = A ( x ) m ( x )  , a ~ x ~ r ,  (17) 

P ( x )  = o ,  x > r .  (18) 

For initial funding a single premium A (a) is payable at age a, and for 
terminal funding a single premium A (r) is payable at age r. In the case 
of pay-as-you-go funding, P(x) = O, x < r, and P(x) = B(x), x >_ r. 

The present value (Pa)(x) of future normal costs in regard to a par- 
ticipant aged x for a unit of initial pension from age r is given by the 
expression 

r-~ D~+~ P ( x  + u)du 
(Pa)(x) = o f 

fr-" D.+,, Dr a~m(x + u)du 
"~ Dx D~+,, 

r - - X  

= A(x) f dM(x+u)  
0 

= A ( x ) [ 1 -  M(x) ]  = A ( x ) -  V(x). (19) 

In other words, 
V(x) = A(x)  - ( P a ) ( x ) ,  (20) 

which expresses the accrued liability for a unit of initial pension from 
age r for a participant aged x as the present value of t ha t  unit of pension 
less the present value of future normal costs for the unit pension. This 
is the usual prospective principle for a benefit being purchased by annual 
premiums, while formula (16) expresses the liability in terms of single 
premiums. Formula (16) will usually be the simpler one to employ, but 
there will be some occasions when it will be convenient to use formula 
(19) or formula (20). 

The derivatives of A (x), V(x), and P(x) will be needed. From equa- 
tion (14), for a < x < r, one finds 

dA(x )  = A(x) (vx  + ,5) (21) 
dx 

and from equation (15), for x >__ r, 

dA (x) d N{  
dx dx Dx ' 
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where D, a = D,B(x) and N~ = f ~  D~vdy. Then, for x >_ r, 

d x ~ -fix -~ n x d x 

= f J  + 8) 
D. D. 

= A(x)(vx + 8) -- 3 (x ) .  (22) 

Formulas (21) and (22) indicate that  A(x) increases through the forces 
of termination and interest and, for x _> r, decreases by outgoing pay- 
ments at rate/~(x). 

For V(x), with a < x 

dV(x) d 
d'-x [A (x)M(x)l  

A(x)(g .  + 8)M(x) + A(x)m(x)  

V(x) + 8) + _p(x) . (23) 

Formula (23) holds also for the right derivative at a and the left deriva- 
tive at r. For x > r and M(x) = 1, dV(x)/dx = dA(x)/dx is given by 
formula (22). Formula (23) indicates that, for a < x < r, V(x) increases 
under the forces of termination and interest and also increases by reason 
of incoming normal cost. 

For a < x < r, and for the right derivative at a and the left derivative 

dP(x) d 
dx = d'--x [A(x)m(x)] 

= A(x) (v .  + 8)re(x) + A(x)m' (x )  

= P(x)(~,  + 8) + A ( x ) m ' ( x ) .  (24) 

When x > r and M(x) = 1, then P(x) = 0 = re(x) and no derivative is 
required. 

The model plan can now be summarized as follows. The active group 
extends over the ages a to r, with all new entrants coming in at age a 
and all retirements occurring at age r. Only retirement benefits are con- 
sidered. For both the active and the retired participants survivorship is 
in accordance with the function l,, which does not depend on the time 
variable t. At time 0 the density of participants aged r is lr, and there- 
after this density increases by a factor gl(t). This establishes a generation 
pattern of growth for the participants. Salaries at time 0 are represented 

at r, 
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by the function s(x), and thereafter they increase by a factor g2(t), which 
establishes a year-of-experience pattern of growth for salaries. Initial 
pensions are a fixed percentage of final salaries and increase during re- 
tirement by a factor 13(x) dependent on age x. For a < x < r, the density 
of new pensions to be incurred at time t -k- r - x in respect to the sur- 
vivors of participants aged x at time t is given by the function h(t + 
r -- x). For x > r, h(t + r -- x) is the density of new pensions incurred 
at time t for those who were then aged r and who may or may not be 
surviving at age x at time t. The function h(t + r -- x) is proportional 
to the product gl(t + r -- x)g2(t + r -- x). The stage is now set to develop 
the theory of pension funding under conditions of growth expressible 
by the functions g~ and g2. 

III. BASIC FUNCTIONS OF TIME AND THEIR DERIVATIVES 

In this section there will be discussed five basic functions of time re- 
lated to the valuation of the model pension plan subject to growth in 
accordance with the functions gl and g2. A sixth function, W(t), the total 
annual payroll at time t, has appeared already, in equation (4). 

B(t), the Annual  Rate of Pension Outgo at Time t 

The density of pensions for participants aged x at time t, x >_ r, is 
determined by the density of new pensions at time t -- ( x -  r) = t + 
r -- x, bv survivorship from age r to age x, and by the adjustment factor 
/3(x). Hence this density is given by the formula 

h(t + r -  x) lx L t~(x), (25) 

and it follows that the annual rate of pension outgo at time t is 

o o  lx 
B(t) = f + r -- x) ~ O(x)dx . (26) 

The derivative of B(t) is obtained as follows: 

dB(t) 

By use of formula (11), this can be rearranged as 

dB(t) 
d---r = , m ~ L 

y lxo(x)dh( t  + r -- x ) ,  
m r L 
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where dh(t + r -- x) denotes the differential of h(t + r - x) with respect 
to x. Then 

or  

dB(t)  
dt 

= - l--, O ( x ) h ( t  + r - x )  , + , ~, 

h(t + x) r 
= h(t)  + J "  [l~dt~(x) - ~(x)l~,,~dx] 

7" ll" 

dB(t)  
= h(t) - f h ( t  + r - x ) O ( x ) ~  ~,~dx 

dt , (27) 

+ fh(t, + r - x)~ d~(x). 

Each term of the right-hand member of formula (27) can be interpreted 
with regard to the rate of change of the pension outgo function B(t). 
The first term (see formula [8]) is the density of new pensions incurred 
at time t. The middle term represents the pensions terminated by deaths 
among the retirees. The first two terms can be considered to comprise a 
replacement effect, such that pensions terminated by death are replaced 
by new pensions represented by h(t). The third term in the right-hand 
member of equation (27) expresses a pension adjustment effect. 

A(t), the Present Value of Future Pension Payments to Participants 
Covered by the Plan at Time t 

While only a single expression was developed for the pension outgo 
function B(t), there are several ways of expressing ,4(0, depending on 
the starting data and on the discount factors employed. A direct formula 
for A(t) is given by 

" ,_._~ ~ t ,  ~ d x  (28) A(t) = f + r -- x)v a, dx q- , f  h(t + r -- x) 7, " 

In the first term h(t + r -- x)aO, dx represents the value at time t h- r -- x 
of new pensions incurred momently at that time for survivors from those 
aged x at time t, and v "-x brings this value down to time t. The second term 
represents the value of future pension payments for those participants 
already retired at time t. 

Alternatively, one can consider the density, 

l, 
h(t .q- r -- x ) ~  = gl(t q- r -- x)l,,g2(t .q- r -- x)s(r)b , 

(29) 
a ~ x < r ,  
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of potential new pensions to be incurred at time t + r - x in regard to 
participants aged x at time t, where such potential new pensions are to 
be discounted for survivorship from age x to age r. Then, by use of for- 
mulas (14) and (15), 

" l .  oo l .  
A(t) = f h ( t  + r -- x) ~ A(x )dx  + J"h( t  -b r - x) ~ A (x )dx  

= f h ( t + r -  x) l* o T, A ( , ) d , .  (30) 

One could also bring in salary growth factors from age x to age r to get 
additional expressions for A(t), but formulas (28) and (30) are possibly 
the most useful ones. 

Each of the formulas for A(t) leads to an expression for the derivative 
dA(t)/dt. The expression coming from formula (28) can be obtained by 
procedures similar to those for dB(t)/dt. Thus 

" ix ~ d h ( t  + r - x)  dA(t) _ f v'-*a~dh(t + r -- x) -- £ 
dt a 

= - ¢ - x a ~ h ( t  + r - x)  + f h ( t  + r - -  x ) ~ ¢ - ~ g d x  

g~h(t 
! 

+ ,  - x)[ 
l r  r 

o [ ? J "k- f h(t n u r - x) ~ d (1 + i)* D~[3(y)dy 

7" 

. . . .  ~ x)v,-~ g d x  = h ( t + r - -  a)v ar + 6 f h ( t + r - -  
a 

o ~  o o  h( t  + r - x)  [ + f ,  ~ L6(1 -b i)" f Du~(y)dy 
z 

-- (1 4- i )=DxB(x)]dx  

= h( t  + r - a~v a,  + a a ( t )  - s ( t )  , 
o r  

da(t) 
dt = h(t + r - a) ~ A(a)  + 8A(t) -- B(t) . (31) 

Here the first term in the right-hand member of equation (31) repre- 
sents the present value of future pensions for new entrants, the second 
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term takes account of assumed interest, and the third term expresses 
the rate of pension outgo. 

Starting from formula (30), one obtains 

l. i ~ o~ h(t + r -- x) 
dA(t)dt = --h(t  + r -  x)7 ,  A(x)  I ~ + "f~ l, d[l .a(x)] 

l. A (a) = k(t + r -  a) 

p h(t + r - x) + O r  
a lr  

[l,dA (x) -- A (x)lxl~.dx] 

l~  O0 l x  
= h ( t + r - - a ) ~ A ( a )  + fh(ta + r -  x ) ~ d A ( x )  

-- f h ( t  -t- r -- x )A(x )  ~ u ,dx .  (32) 

Here the first term in the right-hand member is the same as for formula 
(31), the second term represents the change in the present value through 
aging, and the third member represents present values released by termi- 
nations. The equivalence of formulas (32) and (31) can be shown by 
substituting from formulas (21) and (22) for dA(x). 

P(t), the Annual Rate of Normal Cost for the Plan at Time t 

As for A(t), alternative forms are available for P(t), the annual rate of 
plan normal cost at time t; for example, 

r 

P(t) = f h(t + r -  x)v"-xa~m(x)dx, (33) 

or, by using formulas (14) and (17), 

" lx P(x)dx  (34) P(t) = f h(t + r -- x)-[, 
G 

Differentiation of formula (33) by the procedures previously utilized 
for B(t) and A(t) leads to 

de(t)  = h(t + r -- a)v'-"a~m(a) -- h(t)a~,m(r) + ~e(t) 
dt (35) 

t" 

+ f h ( t  + r -- x)v'-~'a~dm(x), 
a 
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while differentiation of formula (34) produces 

= lo P ( a )  - h ( O P ( , )  dP(t)dt h(t + r -  a) 7~ 

l*u=P(x)dx (36) -- f h ( t T r - -  x)-[, 
l1 

* l :  dP(x) + fh(t, + r - - x ) ~  . 

The first two terms of the right-hand members of equations (35) and (36) 
are equal and represent the normal cost for new entrants offset by the 
normal cost for retirees, while the remaining terms differ. The equivalence 
of the right-hand members can be demonstrated by substituting for 
dP(x) from formula (24). The right-hand member of formula (36) is 
possibly the more meaningful, with the first three terms representing a 
replacement effect of normal cost for new entrants offset by normal cost 
for those retiring and for those terminating, and with the fourth term 
representing the result of change with age of the normal cost rate P(x). 

V(t), the Accrued Liability of the Plan as of Time t 

The accrued liability of the plan at time t can be expressed as 
7" 

. f i  l: dO.dx, (37) V(t) = f h(t + r -- x)vr-=~OM(x)dx + h(t + r -- x) 
¢1 7" 

or, since M(x) = 1, x >_ r, V(t) can, by use of formulas (14)-(16), be con- 
densed to 

V(t) = f h(t + r -- x) ~ V ( x ) d x .  (38) 

Differentiation of formula (37) may be performed directly or by ob- 
serving that the first integral is similar to the right-hand member of 
(33), but with re(x) replaced by M(x),  and the second integral is the 
second term of formula (28) for A(t). Formulas (35) and (13) and the 
calculations for dA(t)/dt then indicate that 

dV(t) = vr_ah(t + r -- a)aOM(a) + ~V(t) + P(t) -- B(t) (39) 
dt 

Unless initial funding is involved, M(a) = 0, and the formula simplifies to 

dV(t) = P ( t ) - + - ~ V ( t ) -  B(t) ('40) 
dt 
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Differentiation of the alternative formula (38) yields 

I, i 3 h(t + ,- x) dr( t )  = _ h(t + , -  x) ~ V(x) I + d[l,,V(x) ] dt a ,1~ lr ' 

and, if M(a) = V(a) = O, 

dY(t)d.__t_ = O + f.~ h(t + lr" -- x )[ l .dV(x)  - V(x)l:u:dx] 

= f h(t + r -  x)-{,l" dV(x) - f h ( t  + r -  x) V(x)~ u.dx . ( 4 1 )  

The first term of the right-hand member represents the change in the 
accrued liability through aging, and the second term indicates the accrued 
liability released by terminations. Substitution for dV(x) from formulas 
(23) and (22) transforms formula (41) into formula (40). 

There are many comments that can be made about formula (40). 
First, its interpretation could be foreseen--namely, that the rate of change 
of the plan accrued liability is expressed by the rates of inflow of plan 
normal cost and assumed interest less the rate of outflow of pension pay- 
ments. I t  should be emphasized that the concepts of the accrued liability 
and its derivative are mathematical and that no mention has been made 
yet of the actual fund which the plan has developed. One can consider 
the accrued liability to represent the fund that should be on hand under 
the chosen funding method and actuarial assumptions, but, in practice, 
equality of the accrued liability and the actual fund on hand may not 
be maintained. At this stage, only the mathematical concepts are under 
discussion. 

A second comment is that formula (40) generalizes to a model plan 
subject to growth factors the equation of maturity stated by Trowbridge 
for a model plan in a stationary condition [13]. This equation (40) plays 
a key role in both theory and applications. In Trowbridge's mature case, 
V(t), P(t), and B(t) are constant, and the equation reduces to 

P T ~ V =  B.  (42) 

In this paper, V, P, and B can vary with t, and 

dV (43) e( t )  + ~v(t) = ~(t) + d--i ' 

which demonstrates that the inflow of plan normal cost and assumed 
interest suffices to meet the outflow of pension payments and the growth 
in the accrued liability. Also, equation (40) applies in some immature as 
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well as in mature or stable cases. For this reason, equation (40) will be 
called the "liability growth equation," rather than the "equation of 
equilibrium" or "equation of stability," which might be appropriate in 
special cases. 

(Pa)(t), the Present Value at Time t of Future Normal Costs of the Plan 

Various expressions can be obtained for (Pa)(t). The simplest pro- 
cedure for this purpose may be to start with 

lx (Pa)(x)dx (44) (Pa)(t)' = f + r -- x) 

and, by use of formula (19), convert this to 

r lx 
(Pa)(t) = f h ( t  + r -- x) ~ [A(x) -- V ( x ) l d x .  (45) 

a 

From formulas (30) and (38), it then follows that 

(Pa)(t) = A ( t ) -  V( t ) .  (46) 

Also, substitution from formulas (28) and (37) in formula (46) gives 

(Pa)(t) = f h(t + r -  x)vr-xa~[1 -- M ( x ) ] d x .  (47) 
c~ 

Since the derivatives of A(t) and V(t) are known already, formula (46) 
can be used to obtain the derivative of (Pa)(t). Thus, from formulas 
(31) and (40), 

d(Pa)(t)  = l .  
h(t + r - a) L A(a)  + 6(Pa)(t) -- P(t) (48) 

dt 

Formula (48) indicates that the present value of future normal costs 
increases by the present value of the future pensions for new entrants at 
age a and by assumed interest, and decreases by the normal cost cur- 
rently being received. 

This completes the discussion of the five basic functions B(t), A(t), 
P(t), V(t), and (Pa)(t). In the following two sections individual and 
aggregate cost funding methods will be analyzed in terms of these func- 
tions and three additional functions, namely, F(t), the fund on hand for 
the plan at time t; C(t), the annual rate of contribution at time t to the 
fund of the plan; and U(t), the unfunded accrued liability of the plan at 
time t. 

From these definitions, it follows that 

U(t) = V ( t ) -  F( t ) .  (49) 
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The five basic functions B(t), A(t), P(t), V(t), and (Pa)(t) have in- 
dicated a theoretical structure for the funding of the model plan. The 
classical problem is that initially, and perhaps for a long time thereafter, 
there are not sufficient funds on hand to match the accrued liability. 
The new functions F(t), C(t), and U(t) are needed to describe the building 
up of funds to meet the requirements of the theoretical structure. The 
discussion will remain at the level of basic theory and, for instance, it 
will be supposed that the actuarial assumptions are exactly realized. 
In practice, gains and losses occur and a series of adjustments is required 
to bring the funding into congruence with the actual experience. 

IV. INDIVIDUAL COST METHODS 

By an individual cost method is meant one under which a normal cost, 
accrued liability, and possibly contribution can be determined for each 
individual participant. In contrast, an aggregate cost method determines 
the contribution on a group rather than an individual basis, and there 
may not be explicit determination of a normal cost or accrued liability. 
By means of the accrual function M(x), a whole family of individual 
cost methods can be defined, and the preceding theory has been essentially 
in terms of individual cost methods. In this section, some further com- 
ment will be made concerning individual cost funding, and in the next 
section aggregate cost funding, defined by means of the accrual function, 
will be considered. In practice, funding may follow a mixture of indi- 
vidual and aggregate concepts because of the amortization of unfunded 
accrued liability and the adjustments for gains and losses. 

For an individual participant of the model plan, aged x at time t and 
with salary at the annual rate g2(t)s(x), the normal cost rate defined by 
the accrual function M(x) is 

bg2(t + r -  x)s(r)A (x)m(x) , (50) 

and the accrued liability is 

bg2(t + r -- x)s(r)A(x)M(x)  . (51) 

The contribution with respect to this individual may then be fixed by the 
normal cost rate (50) and by some amortization process for the unfunded 
accrued liability. 

The fund on hand for the plan at time t will be defined by the equation 

d F ( t ) =  C(t) + $ F ( t ) -  B(t) (52) 
dt 
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and an assumed initial value ¥(0). 2 Here, as always in this paper, it is 
supposed that  the actuarial assumptions are realized exactly; in particular, 
interest is earned at the force ~f and benefit outgo is given by equation 
(26). If it is assumed further that  the contribution rate C(t) is maintained 
at the level 

C(t) = P(t) -b 6U(t) , t > to, (53) 

that  is, C(t) covers the normal cost rate and interest on the unfunded 
accrued liability, then 

dF(t)  = P(t)  + 6V(t) -- B(t)  (54) 
dt 

Subtraction of equation (54) from equation (40) gives dU(t) /dt  = O, 
which can be solved as 

v ( t )  = V( to) .  (55) 

Formula (55) is the actuarially obvious statement that  the unfunded 
accrued liability remains stat ionary if the contribution rate equals the 
normal cost rate plus interest on the unfunded accrued liability (and the 
actuarial assumptions are realized exactly). In particular, if U(to) = O, 
then C(t) = P(t),  t ~ to, will maintain F(t) = V(t). 

V. AGGREGATE COST METHODS 

The accrual function M ( x )  may be used in defining a family of aggre- 
gate cost methods which by proper choice of M ( x )  are equivalent (at 
least asymptotically) to some of the familiar funding methods. For this 
purpose one defines a mean temporary annuity value ~i(t) by the formula 

a( t )  = ( P a ) ( t )  (56) 
P(t)  " 

The M ( x )  for initial funding is excluded as it is not applicable. As an 
example of formula (56), if gl(t), g~(t), s(x) are all constant and equal to 
1, and if M ( x )  = (~'~, -- .~=)/(A-~a - l~'r), then from formulas (34), (17), 
(44), and (19), one finds 

7" lr  

In this stat ionary case, d(t) does not depend on t. The expression (57) 
also illustrates d(t) as a mean temporary annuity. 

2 For convenience it is assumed that  inception of the plan occurs at  time 0. 
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The aggregate contribution rate C(t) is determined by the relation 

C(t)a(t) = A ( t ) -  F(t) ,  (58) 

which implies that a mean annuity of C(t) per year is to provide the 
difference between the present value of future pension payments (for 
participants covered at time t) and the fund on hand. By use of formula 
(56), formula (58) can be rearranged as 

c(t)  a ( t ) -  F(t) e ( t )  
= (Pa)(t) 

or, on substitution from formula (46), 

C(t) = , 4 ( t ) -  F(t) P(t) 
a ( t ) -  v(t)  " 

(59) 

It follows immediately from formula (59) that, if F(t)--> V(t) from 
below, then C(t)----> P(t) from above. 

Formula (52) now takes the form 

dF(t) A(t) -- F(t) P(t) -k-6F(t) -- B ( t ) .  (60) 
at = a(t)  -- V(t) 

Subtraction of formula (60) from formula (40) yields 

dr ( t )  F ( t ) -  V(O 
d----i-= A(t) -- V(t) P(t) -k-6U(t) ,  (61) 

which can be rearranged as 

dv(O 

or, replacing t by u, 

dt 
u(t) P(t) -k- ~u(t) 

(Pa)(t)  

[' ] = - v(O ~ - ~ , 

d ln  U(u) [ 1 ] 
du = - -  -d--(~ - ~  " 

Integration and exponentiation give 

0 

or, on use of relation (49), 

(62) 

(63) 

(64) 
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Equation (64) shows that if F ( 0 ) =  V(0), then F ( t ) =  V(t), t >  0, 
and from formula (59), C ( t ) =  P(t) (under the assumptions for the 
model plan). 

Typically, F(0) < V(0), and convergence of F(t) to V(t) depends upon 
the integral f ~  [1/a(u) -- ~]du becoming large as t increases. If a(u) _< 
1/5 - m = a ~  t - m, m some positive number, then 1/a(u) -- ~ will have 
a positive lower bound, and exp { - f ~  [1/~(u) - ~]du} becomes small 
as t grows large and F(t) --~ V(t). Since the funding will usually be chosen 
so that ~(u) < ~r---~ < a~l, the condition for convergence of F(t) to V(t) 

is usually satisfied. 
Note that V(t) can be interpreted as the accrued liability under an 

individual cost funding method determined by the accrual function 
M(x), and that the aggregate cost funding method defined by formulas 
(58) and (59) is asymptotically equivalent to such individual cost method 
in the sense that F(t)--~ V(t) and C(t)--~ P(t) (it being assumed that 
convergence occurs). 

Some common funding methods involve a modification of the aggregate 
cost method. General treatments of such methods are to be found in 
papers by Trowbridge [15] and Taylor [12] and in the accompanying 
discussions. 

At the inception of a plan using some of these modified aggregate 
cost methods, the present value of future benefits, A(0), is divided into 
two parts. Some arbitrariness is permitted in this division, to be denoted 
by L(0) and A(0) -- L(0). The quantity L(0) will usually be capable of 
interpretation as a measure of initial accrued liability. 

The unfunded portion of this initial accrued liability will be denoted 
by L(t), 0 < t. The cost of funding L(0) may be kept, in the absence of 
experience gains and losses, separate from future normal costs. The 
differential equation for L(t) is 

dL(t) = 6L(t) -- E(t) 0 < t (65) 
dt ' - ' 

where E(t) is the payment rate used to amortize L(0). The amount 
E(t) is often chosen as the constant L(O)/dN~, where L(m) = 0 and m is 
typically equal to 20 (with time measured in years). 

The remaining present value, A(t) -- L(t), is funded by the aggregate 
cost method. If the contribution rate for this purpose is denoted by 
C*(t), then 

C*(t)a(t) = [A(t) -- L ( t ) ] -  ¥ ( t ) ,  (66) 
so that 

c * ( t )  = a ( t )  - L ( t )  - p ( t )  P ( t )  (67) 
a ( t ) -  v ( t )  
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The differential equation for the fund F(t) must be modified with C(t) = 
C*(t) + E(t) and becomes 

dF(t) 
dt 

= ~p(t) + c*(t) + e( t )  - B( t ) .  (68) 

With U*(t) defined as V(t) - L(t) -- F(t), that is, with the remaining 
unfunded initial liability taken as part of the assets of the plan, the use 
of equations (40), (65), and (68) produces 

dU*(t) = ~U*(t) -Jr" P(t) -- C*(t) .  (69) 
dt 

Simplifying by use of formula (67) gives 

,.*<0 _ _.<,> .] 
dt 

This is of the same form as equation (62), and the solution is formula 
(63) with U*(t) in place of U(t). Substitution for U*(t) leads to 

¥(t) = v ( t ) -  z . ( t ) -  [v(0) -  L(0)-  p(0)] 
(70) 

x e'. • .  

Convergence arguments can be adapted from those following formula 
(64). In essence, the theory is the same as for the aggregate cost method 
with the inclusion in the fund assets of an amortization arrangement for 

L(0). 
Several observations are in order. If L(0)= V(0), and F(0)= 0, 

then, in the absence of gains and losses, the fund would equal the accrued 
liability minus the unfunded initial liability. If V(t) were valued by the 
entry age normal funding method, and L ( 0 ) =  V(0), the resulting 
method is called entry age normal funding with frozen initial liability, 
and involves a spread adjustment of experience gains and losses. 

If L(0) < V(0) and F(0) = 0, the fund will have more characteristics 
of aggregate funding. Subject to the usual conditions on the exponent, 
F(t)--~ V(t) as L ( t ) ~  0 and t--* Qo. The value of F(t) would depend on 
the accrued liability function employed in evaluating V(t). 

This would be the case if V(0) were valued by the entry age normal 
funding method and L(0) were set equal to V(0) as determined by unit 
credit funding. Such a combination is called attained age normal funding. 

VI. THE EXPONENTIAL GROWTH CASE 

A simple way to represent long-term growth is by exponential func- 
tions, and there are various circumstances that make such representation 
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reasonable. In this section we will discuss the case where 

gl(t) = e" ' ,  (71) 

g2(t) = e "t , (72) 
and 

~(x) = e ~(*-r) , (73) 

where in the right-hand member/3 represents a constant rate of increase. 
The e -at factor in formula (73) is introduced to simplify the writing of 
formulas. A constant factor could be applied to the various functions, 
but again for simplicity of formulas such factors will be omitted. 

Introduction of expressions (71)-(73) in the formulas of the preceding 
sections leads to a great many  special formulas and interpretations for 
this exponential growth case, and the reader is invited to explore some of 
these. In  the first subsection some general observations will be made, and 
in the second subsection the special case where the force of interest 
equals the total force of growth will be discussed. 

General Observations 
a) Effect of growth rates.--Substituting from equations (71) and (72) 

into equation (8) yields 

h(t) = e~"+'y)qrs(r)b. (74) 

It  is convenient to set 

r = a + 3' ,  (75) 

and then equation (74) becomes 3 

h(t) = e '%s(r)b.  (76) 

Here r is a total force of growth composed of a force a applicable to the 
covered population and a force 3" applicable to salaries. It  is to be noted 
that  a and 3" enter h(t) in the same way and that a change in a is equiva- 
lent to the corresponding change in 3" as far as h(t) is concerned. Since 
the functions B(t), a(t), P(t), V(t), and (Pa)(t) are defined by means of 
h(t), the same remark applies to them. However, from formulas (4), (71), 
(72), and (75), the total payroll function W(t) takes the form 

t" 1" 

W(t) = f e~a+'r)'ea~"-=)lxs(x)dx = f e'te"~*-x)l,s(x)dx, (77) 

and for this function a change in a, the population growth rate, is not 
equivalent to a corresponding change in % the salary growth rate. 

3 Unfortunately r and r look alike, and the reader will have to distinguish them by 
the context. 
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Nevertheless, in this case 

so that 

Here 

dW(t) 
dt = r W(t) , (78) 

W(t) = W(0)e" .  (79) 

W(O) = ~ f  e'(*-*) l .s(x)dx , (80) 
a 

and the remark still holds that a change in a is not equivalent to a 
corresponding change in % 

b) Fixed ratios.--Formulas corresponding to (78) and (79) for W(t) 
are easily found for the basic functions B(t), A(t), P(t), V(t), and (Pa)(t). 
This implies that, if K~(t), K.~(t) are any pair from the six functions 
(including W(t)), then the ratio 

KI(__0 = ~c,(0___2) (8x)  
K,(t) K,(0) 

is independent of t. In particular, it can be calculated that 

B(t___~) = ba" (82) 
w(t)  % ,-~a ' 

where a[ is valued at the force of interest 6' = r --/3 and 

t" 

"s.:~--'~a = d"e"('-')a l.s(x)l,s(r) dx 

is calculated at force of interest a and takes the salary function into 
account. Also, another calculation shows that, for 

x t" 

we have 
e(t) ' . ( a ) (  o:~--~,/ .:~--~.) w(t) = .5 .~ , (83 )  

where *r(a) is the normal cost rate as a percentage of salary (based on 
s(x), l,, and 6) for an initial pension of bs(r) from age r. Equations (82) 
and (83) illustrate that, in the special case of exponential growth, benefit 
payments in relation to wages and normal costs in relation to wages do 
not vary over time. 

c) Aggregate cost funding.raThe key function here is a(t) = (Pa)(t)/  
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P(t), which now will be independent of t. To find a more specific expression 
for ~(t) in the exponential case, one can start with formulas (47) and (33) 
and simplify to 

l" 7' ] 

a ( t )  = f e - ( ' - ' ) ( ~ - ~ ) [ 1  - M ( x ) ] d x /  f e-(~-,),~-,)m(x)dx. (84) 

The numerator in the right-hand member of equation (84) can be inte- 
grated by parts to give 

1 [_e_(,_,)(~_~)+ /e_(,_,)(~_,~)m(x)dx] " 

Then 

= [ ,  - 1 . 

But, by the theorem of the mean for integrals, 

r 

f e(~-*)(~-a)m(x)dx = e ~6-~-~) f m(x)dx 
a a 

= e(~-r) (~-a) , 

since f ~  m(x)dx = 1, and hence 

a ( t )  = a~---~ ~_ ,  , (85) 

where, in general, a < ~ < r, and the annuity value is calculated at 
force of interest / i -  r. For M(x) leading to terminal funding, ~ = r, 
and the M(x) for initial funding is excluded. It now follows from equation 
(64) that 

F(t) = V ( t ) - - I V ( 0 ) -  F(0)] exp [ - -  ( 1 6)  t] (86) 
d~_-~_~ 

Convergence of F(t) to V(t) will require 8~_-~_, to be less than ~ = 1/5, 
and for r close to ~ a rapid funding method that will produce a small 
value of ~ -- a may be required. This result may be achieved by selecting 
a funding method characterized by a function M(x) that approaches 1 
rapidly as x goes from a to r. 

d) The liability growth equation.--Since now dV(t)/dt = rV(t), the 
liability growth equation (40) becomes 

P(t) + (6 - ~) v(t) = B ( t ) .  (87)  

This can be interpreted to mean that only (~i -- r)V(t) of the assumed 
interest is available to meet current pension outgo, the remaining assumed 



INTRODUCTION TO THE DYNAMICS OF PENSION FUNDING 201 

interest income, namely, rF(t), being required for the growth of liability. 
If r exceeds 6, then the growth of liability absorbs more than the assumed 
interest income and P(t) exceeds the pay-as-you-go cost B(t). This is not 
unexpected under conditions of growth, in particular, in the case of 
immature plans. I t  also suggests the need for study of more refined 
growth models in which the exponential factors are eventually dampened 
to some appropriate levels. 

The situation in which a pension plan has a long-term investment 
income rate 6, less than "r, the long-term growth rate over time in salaries, 
seems both artificial and unrealistic. Nevertheless, this is the short-term 
situation faced by some pension plans in recent years. The implication 
seems to be that if this condition persists, that is, if the long-term wage 
inflation rate exceeds the long-term investment income rate, pay-as-you- 
go funding will result in lowest cost. Related reasoning may be used by 
those convinced of the necessity for savings through pension funds, to 
argue that investments with indexed yield rates to keep 6 -- "r a positive 
constant are necessary to elicit savings and investments through pension 
plans in the face of wage inflation. 

The Special Case ~ = r 

A number of special and usually simple relations can be obtained for 
the crossover case where 6 = r. 

a) P(t) the same for all accrual functions.--If the force of interest is 
equal to the sum of the population and salary growth rates, 6 = r = a + 
~, the liability growth equation (87) reduces to 

e(t) = B ( t ) ,  (88) 

which implies that the plan normal cost is the same no matter what 
accrual function M(x) is used. This is an intriguing situation and seems 
to imply that all funding methods have come down to pay-as-you-go 
funding. To the contrary, all funding methods except pay-as-you-go 
define an accrued liability not equal to zero for the present participants, 
and, as indicated previously, the classical problem of pension funding is 
to establish and maintain a fund equal to the accrued liability. If this 
has been accomplished in the 6 = r case, then the investment income 
6V(t) suffices to match the growth rV(t) of the accrued liability, and the 
plan normal cost P(t) can be used for the pension outgo B(t). 

b) Formulas for A(t), V(t), (Pa)(t) .--From formulas (28) and (76) 
with 6 = r, it can be shown that 

A(t) = bl ,s(r)e*'[a'(r-  a) -]- (la) '],  (89) 
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where (i~)~r is at force of interest ~ -- /3 = r -- ft. A similar calculation 

for V(t), starting from formulas (37) and (76), yields 

V(t) = bl.s(r)e~'[a¢(r- ~c) + (lay], (90) 

where 
1" 

£ = f x m ( x ) d x .  (91) 

Subtraction of formula (90) from (89) then gives 

(Pa)(t) = blrs(r)eS'a¢(Sc -- a) . (92) 

Thus, although P(t) = B(t) for all accrual functions when ~ = r, the 
value of future normal costs for the current actives depends on the accrual 
function M(x) and can differ from A(t) so that V(t) # O. 

c) Aggregate funding.- -When ~ = r, formula (84) becomes 

1" r 

= f [ l o  - 

i t /  = [1 -- M(x)]x  + xm(x)dx  
a 

since f g  m(x)dx = 1. Then, by formula (91), 

a(t) = ~c - a .  (93) 

Now according to the discussion following formula (64), the convergence 
of F(t) to V(t) depends on exp { - - [ 1 / ( 2 -  a) - ~]t}. If 1 / ( 2 -  a) > ~, 
F(t)--~ V(t); if 1 / ( 2 -  a ) =  ~, then the unfunded accrued liability 
U(t) remains stationarv; and if 1 / ( 2 -  a) < ~, then U(t) increases by 
the factor exp {[~ -- 1 / ( 2 -  a)]t}. 

VII. CONCLUSION 

In this paper a foundation has been laid for the mathematical explora- 
tion of pension funding under conditions of growth which may arise from 
inflation or other sources. The theory has been applied to the relatively 
simple case of exponential growth. The theory itself could be developed 
further, and more complex applications are possible, for example, to 
cases of covered groups which have not reached maturity, to exponential 
growth with a dampening factor, or to situations where the actuarial 
assumptions are not realized in experience. It  is hoped that this paper 
will stimulate such further developments. 
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DISCUSSION OF PRECEDING PAPER 

HARRY M. SARASON" 

This paper has started me thinking. Since thinking is painful, I view 
the authors' effort with mixed emotions. What I have been thinking is 
this: What about a paper or two, or three, or more, to follow the "Intro- 
duction"? The titles could be "The Dynamics of Pension Funding," 
"Advanced Dynamics of Pension Funding," " A n  Analysis of Literature 
on the Dynamics of Pension Funding," and, finally (unless I am rein- 
carnated), "The Dynamics of Pension Funding in the Twenty-second 
Century." 

To get out of the "introductory" area, what about discontinuance of 
plans? What about discontinuance of the underlying economic entity 
that supports the plans? What about the economic entity moving away 
from the individual member, who does not like to move and who is not 
just a statistic, at least so far as he and his family are concerned? 

And what about the interrelationships, in what I like to call the "pay- 
as-you-go nonfunding method," of nonfunding with inflation and with 
plan discontinuance or partial discontinuance, which may involve either 
a reduction in benefits or a reduction in the number of plan participants? 

RICHARD K. KISCt tUK:  

The authors are to be congratulated on a paper that seems destined to 
be one of the landmark papers on the subject of pension mathematics. 
It seems appropriate, instead of offering specific criticisms of the paper, 
to enter into the spirit in which the paper was written and to offer some 
extension of the theory. 

Basic Functions of Time 

One technique that would appear to be useful in the context of some 
applications is the partitioning of some of the basic functions of time into 
two or more parts. As an example of what is meant, consider the formula 
for A(t) given by formula (28) of the paper: 

" ® l ,  a ~ a x  
a( t )  = f + r -- x )v ' - 'a~dx + f + r -- x) T~, . 

An obvious subdivision of formula (28) is the following: 
I* 

(aa ) ( t )  = f h(t + r - x ) v ' - * ~ d x  

205 
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and 

(Ar)(t)  = f h(t "b r -- x ) - ~  . 
T 

In these formulas, (Aa)(t) represents the present value at time t of future 
pension payments to currently active participants, and (Ar)(t) represents 
the present value at time t of future pension payments to those partici- 
pants already retired. 

Equations corresponding to equation (31) are 

d(Aa)( t )  
h(t --[- r -- a ) 7 -  A(a)  -- h( t )A(r)  -b 6(Aa)(t)  

dt ~r 
and 

d(Ar)( t )  _ h( t )A(r )  n t- 6(Ar)(t) -- B(t) 
dt 

The terms --h( t)A(r)  in the first equation and h(t)A(r) in the second 
represent the transfer of present vklue of future pension payments from 
(Aa)(t) to (Ar)(t) due to new pensions incurred at time t. 

Similar equations may be written relative to V(t) ,  the accrued liability 
of the plan as of time t. V(t) is defined by formula (37) of the paper as 

and 

7" 

V(t) = f h(t + r - x)vr-xarM(x)dx 
a 

I, a{dx + fib(t ,  + , -  . 

This may, in turn, be subdivided as follows: 

(Va)(t)  = f h(t + r -- x lv"-xa{M(x)dx 
a 

~' l~ ~ d x  , (Vr)(t) = f + r -- x)-f-~ 

where (Va)(t) represents the accrued liability attributable to future 
pension payments for participants currently active at time t and (Vr)(t) 
represents the accrued liability attributable to future pension payments 
for participants already retired at time t. 

Corresponding to equation (40), we have 

d(Va)( t )  = P(t) + ~(Va)(t)  -- h( t )A(r)  
dt 

and 
d(Vr)( t )  = h( t )A(r)  -F 6(Vr)(t) -- B(t) 

dt 
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Corresponding to equation (46), we have 

( ~ a ) ( 0  = (aa) ( t )  - ( V a ) ( O .  

In addition, it can be noted that  

(Vr)(t) = ( a t ) q ) .  

This type of partitioning of A(t) and V(t) makes sense for those accrual 
functions, M(x), where M(x) = 1 and x >_ r. This, of course, excludes 
pay-as-you-go funding. 

Thus, the actuarial cost methods under consideration include as an 
objective the full funding of the present value of future pension payments  
for all participants retired at time t. Assuming that  F(t) > (Ar)(t) = 
(Vr)(t), then F(t) can be subdivided as follows: 

d ( p a ) ( t )  = c ( t )  + ~ ( ~ a ) ( t )  - h ( t ) A ( , )  
dt 

and 

d(Fr)(t) = h ( t ) a ( r )  + n(Fr)(t)  -- n(t) 
dt 

where (Fa)(t) is the fund on hand for the plan at time t to offset (Va)(t), 
and (Fr)(t) is the fund on hand for the plan at  time t to offset (Vr)(t). At 
time t, an amount  k(t)A(r) is transferred from (Fa)(t) to (Fr)(t) because 
of new pensions incurred at time t. This transfer is sufficient to maintain 
(Fr) (t) = (Vr) (t). Consequently, 

u(t)  = (Va)(t)  - ( ~ a ) q ) .  

We may  summarize the development thus far as follows: 

(aa) ( t )  = (Pa)( t )  + (pa)( t )  + u(t)  , (a) 

(ar)(t)  = (Vr)(t) = (Fr)( t ) .  (b) 

In this situation, the funding problem concerns currently active par- 
ticipants only. Payments ,  C(t), to the active life fund, (Fa)(t), will 
consist of normal cost payments,  P(t), plus payments  toward the un- 
funded accrued liability, U(t). 

This refinement of the basic model is especially useful when one is 
considering the case where there are no retired participants at t = 0. This 
situation is more typical of the conditions present at  plan inception than 
is the basic model of the paper. For example, the following conditions 
may be defined to apply at t = 0: 

p(0)  = (pa)(0)  = (Fr)(0)  = 0 ,  

( a t ) ( 0 )  = (Vr)(0) = 0 ,  

U(O) = (Va)(O) = (Aa)(O)-  (Pa)(O). 
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For t > 0, a modified formula for (Ar)(t) is 

~+' l~ a~dx (ar) ( t )  = f ,  h(t + r - x ) ~  . 

Of course, formulas (a) and (b) still apply. The funding problem still 
relates only to the currently active participants; in other words, it is 
unaffected by the modified assumptions with respect to retired lives. As 
noted earlier, this is a useful refinement of the basic model because it is 
more typical of the usual situation at plan inception. 

Inflation, Interest, and the Exponential Growth Case 

It  is useful to consider the impact of certain economic interrelationships 
in the context of the exponential growth case of the basic model presented 
in the paper. First, it is necessary to restate the formula for (Aa)(t) in 
terms of the exponential growth case: 

where 
( A a ) ( t )  = e~ t (Aa) (O)  , 

(Aa)(O) = f e-n'~r-x~lrs(r)b f e - v ' "  ,,prdudx, 
a 0 

6 ! = 6 - - T ,  

and 
6"  = 6 - -  O .  

A popular concept in economics is that interest rates consist of a basic 
component, a risk component, and an inflation component. The inflation 
component represents the investor's expectation of inflation during the 
period of investment. The risk component represents the risk premium 
for the particular type of investment. The basic component represents 
the risk-free, inflation-free interest rate, and is generally assumed to be 
in the 2-3 per cent range. 

Assuming pension assets to be invested in risk-free securities, and the 
inflation component to be a perfect predictor of future inflation, one may 
assume that 

6 = 6 0 + 0 ,  

where 60 is the basic component of force of interest 6 and p is the inflation 
component of force of interest 6. 

Assuming further that salaries grow over time at the same rate as 
prices (i.e., there are no increases in wages due to productivity) and that 
there is no growth in the number of participants, then we have r = y = p. 
Similarly, it might be assumed that pensions increase after retirement at 
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the same rate as prices increase, so that B -- p. On the basis of these 
assumptions, it may be concluded that 

~ ' = ~ - - r  =~0=~--~=~" 
and that 

r co 

= fe-5,Cr-x Zrs(,)bfe-5."  ,prauax,. ( c )  
a 0 

This equation is independent of the absolute level of interest, ~, and 
inflation, p, assumed; it depends only upon the differential between 
these two assumptions, ~0. 

Units of Measurement 

The equations shown in the paper are expressed in terms of a basic 
unit of measurement, "dollars." The dollar is becoming meaningless as 
inflation becomes a permanent fixture in the economy. To perform any 
meaningful analysis of economic and cost variables, it has become 
necessary to transform them into some form of "real" or "constant" 
dollars. 

For example, one might consider expressing the basic pension cost 
functions in terms of "constant dollars of purchasing power." Specifically, 
the present value of future pension payments to active participants 
covered by the plan at time t may be expressed as 

= ( A a ) ( 0  
ept , 

where the notation (-),(t) indicates that a given function of t is being 
expressed in "constant dollars" with respect to variable y. Retaining the 
assumptions ~ = ~0 + p and r = 7 = /~ = p, we get 

( ~ ) , ( t )  = (Aa)(t) 
ep t 

e"(Aa)(o) 
ep t 

= ( A a ) ( O ) .  

Thus, although (Aa)(t) (in terms of "dollars") increases over time, 
(/~)p(t) (in terms of "constant dollars") is constant over time and equal 
to the initial value (Aa)(O), which, it may be recalled, is independent of 
the absolute levels of the inflation and interest assumptions used under 
the special set of assumptions selected here. 

Similarly, we may choose to select a unit of measurement which is 
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adjusted for growth in salaries and in number of participants. This may 
be accomplished by dividing a given function by e% For example, 

(2a),(t)  = (aa)(t)  
e r t 

Under the assumptions of the exponential growth case, and on the basis 
of the formula corresponding to (79) of the paper, 

(A---a),(t) = (Aa)(t) 
eVt 

e"(aa)(0)  
err 

= ( A a ) ( O ) .  

Thus, expressed in these terms, the present value of future pension 
payments to active participants covered by the plan remains constant 
over time. This observation corresponds to the stability of the basic 
functions B(t), A(t), P(t), V(t), and (Pa)(t), in relation to wages, which 
was noted by the authors. 

This may seem to be a theoretical consideration. However, it is very 
relevant. At first blush, it often seems that pension costs have increased 
substantially from one year to the next. However, after costs are expressed 
in "real" terms, it is often possible to demonstrate to a pension client 
that  his costs have not really increased to any great extent but have 
remained basically stable. 

Stated another way, "current dollars" is an appropriate unit of mea- 
surement when various cost alternatives are compared, all of which 
have been determined as of the same time t, or when one is determining 
how large a contribution should be made at time t, expressed in "current 
dollars." However, in comparing pension costs determined at two differ- 
ent points in time, it is almost always necessary to adjust costs to some 
form of "constant dollars," in order to gain a true perspective of the 
"real" change in cost. The units of measurement selected will, of course, 
depend on the type of perspective desired. 

General Comments 
This discussion has been limited mainly to the basic function A(t) 

and related special functions derived from A(t). Similar analyses can, of 
course, be performed with respect to other basic functions of time. 

The results of these brief examples will, it is hoped, give some idea of 
the interesting and useful perspectives that can be gained by exploring 
the model which the authors have developed. There is reason to believe 
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that the authors' expectations will be fulfilled and that this paper will 
prove to be a springboard for many future developments in the theory of 
pension funding. 

C. L. TROWBRIDGE" 

Professors Bowers, Hickman, and Nesbitt have produced a most wel- 
come, and sorely needed, addition to pension actuarial literature. 

It is my surmise that the efforts which culminated in this important 
paper had their beginnings at the 1973 Actuarial Research Conference, 
which all three authors (and this discussant) attended. Adjustments in 
pension funding for demographic changes and for conditions of inflation 
were matters of great concern to social security actuaries in 1973; but 
OASDI is essentially pay-as-you-go, and my social security presentation 
at Harvard did not involve the complications of pension funding. The 
three academic authors have now developed the necessary extension of 
theory for the private pension system. 

Although there is much of interest throughout the mathematical 
development, the eye of this discussant focuses first on equation (40) (or 
its equivalent, eq. [43]). This is a statement of the "equation of equilib- 
rium" known to actuaries (for a stationary population) for at least 
twenty-five years. In the generalized model introduced by this paper, 
the population is growing, as are salary levels and the pension fund. 
Contributions and investment earnings must provide not only the benefits 
but also the required fund growth. 

The authors have not attempted numerical illustrations of the impor- 
tant principles to which their mathematics leads. One reason they have 
given for not doing so is that such illustrations are being developed by 
others. One such attempt has been made by Charles E. Farr and this 
discussant. A rather complex set of computer-calculated illustrations will 
soon be published as a part of Theory and Practice of Pension Funding 
(Homewood, Ill.: Richard D. Irwin, 1976). The mathematical model 
underlying the Trowbridge-Farr (TF) illustrations is similar, but not 
identical, to the Bowers-Hickman-Nesbitt (BHN) model. Readers 
interested in seeing the BHN results in numerical form can study the TF 
illustrations, but as they do they should be aware of several differences in 
the models chosen. 

The BHN model is more general in that the function gx(t) makes 
possible the study of a population of participants changing in size. 
Trowbridge and Farr set gx(t) always equal to unity, and hence illustrate 
an active population of constant size. On the other hand, TF illustrations 
show an initially immature population gradually maturing, while the 
BHN paper discusses a population mature from its beginning. 
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Other differences arise because of two TF attempts to put more 
"realism" into the model. TF models presuppose a pension plan vested 
after ten years, and a pension benefit based on a final ten year average. 
The BHN paper considers a nonvested plan based on final pay. I t  has 
been found that these differences are responsible for what otherwise 
might appear to be certain conflicts between the BHN theory and the 
TF computer simulation. 

Drs. Bowers, Hickman, and Nesbitt are to be congratulated on their 
fine development of important theory. Although the demographic aspects 
of their theory extensions may have little practical use in the field of 
private plans (they will always be important in social insurance), the 
practicality of their treatment of wage and price inflation cannot be 
denied. 

I t  is now up to practicing pension actuaries to put to good use the new 
tools that our academic colleagues have provided us. 

(AUTHORS' REVIEW OF DISCUSSION) 

NEWTON L. BOWERS, JR., JAMES C. HICKMAN, AND CECIL J. NESBITT: 

One idea that emerges from review of the discussion is that we are 
only beginning to appreciate the flexibility and generality of the mathe- 
matical model presented in the paper. The function gl( t )  that controls 
the density of new retirees at time t can take on many forms to represent 
a variety of situations. For instance, some choices of gl( t )  could be made 
to denote discontinuance or partial discontinuance of a plan and, thereby, 
at least partially answer Mr. Sarason's questions concerning our theory. 
Further, as noted in the paragraph following formula (10) of the paper, 
choosing g~(t) = 0 for t < 0 will allow the model to handle immature 
cases despite the impression gathered by Messrs. Kischuk and Trow- 
bridge that the model relates to mature cases only. It  is true that the 
exponential case is defined for a mature situation, but, again, by use of 
the definition g~(t) = 0, t < 0, one could adapt the theory to an immature 
case. Thereby, one obtains Mr. Kischuk's modified formula 

,+t lx ~ d x  , ( l r ) ( t )  = fr h(t + r -- x) -~  

which, however, equals 

lx ~azd x , f ,  h(t + ,  - x) T 

since h(t  + r - -  x )  = 0 for x > r + t under the assumption regarding 
gl( t ) .  As far as we have verified, the formulas for the basic functions and 
their derivatives hold for immature as well as mature cases. 
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Mr. Kischuk's splitting of the function A(t) into components (Aa)(t) 
and (Ar)(t) relating to the active participants and the retired participants, 
respectively, is a natural idea which gives additional insights into the 
workings of the model. We note that his formula (c), which applies in a 
particular instance of the exponential growth case, can be condensed to 

( a ° ) ( 0 )  = ~ , ( , ) b ~ - - - - l a  r , 

where both annuity values are based on force of interest ~f0. 
We welcome Mr. Trowbridge's comments contrasting our model with 

that underlying the Trowbridge-Farr illustrations. In our model only 
retirement benefits are considered, and a variety of other models could be 
developed for death, disability, and vested benefits. The question then 
arises as to how one defines a composite model to cover all four types of 
benefits, including the retirement benefit. There are a number of mathe- 
matical ways of doing this which would lead to the same total functions 
but which would result in various decompositions into component 
functions for the individual benefits (see, for instance, W. S. Bicknell and 
C. J. Nesbitt, "Premiums and Reserves in Multiple Decrement Theory," 
TSA, VIII, 344, or J. C. Hickman, "A Statistical Approach to Premiums 
and Reserves in Multiple Decrement Theory," TSA, XVI, 1). A special 
subcase is that in which there is immediate and exact vesting of the 
total reserve. 

It seems to us that, in addition to extension of the model to include 
multiple benefits and more general retirement amounts, there is a second 
major project demanding attention. The developments in this paper have 
implicitly assumed that the actuarial assumptions are realized precisely. 
The decomposition of total gains or losses into components that rea- 
sonably may be interpreted as being associated with the various actuarial 
assumptions of the general model is the second project. To relate such 
gain and loss analysis to ordinary actuarial practice, a discrete form of the 
general model may be needed. 

For even the simple retirement benefit model there is much left to 
explore--for example, the effect on the basic functions and their rela- 
tionships if there is variation in the assumed rates of growth and decre- 
ment. The Trowbridge-Farr and other forthcoming illustrations will give 
insights regarding the effects of these variations. 

There is a plethora of ideas and alternatives, but, fortunately, there 
are also unifying principles such as those embodied in formulas (27) and 
(40) of the paper. 

We thank Messrs. Kischuk, Sarason, and Trowbridge for contributing 
their discussions. Special thanks are due Mr. Trowbridge, whose writings, 
ideas, and leadership helped to shape our thoughts in preparing the paper. 




