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ABSTRACT 

The paper discusses the optimal design of dividend (or premium 
reflmd) formulas that  occur in connection with group insurance contracts. 
Since the customer has full coverage for his liabilities, the claims, it is 
assumed that  he has a risk-neutral att i tude toward any dividends that  he 
may receive on top of the claim payments.  In contrast to this, the 
insurance company is supposedly a risk averter. As a consequence, the 
formulas described by Theorem 1 (for one-period contracts) and by 
Theorem 2 (for multiperiod contracts) are Pareto optimal. 

I t  is shown how a result of the theory of random walks can be used to 
reduce the evaluation of a multiterm formula to the evaluation of one- 
term formulas. The paper concludes with illustrative examples for a 
portfolio of two hundred lives. 

i .  INTRODUCTION AND SUMMARY 

T 
HE general idea of a policy featuring "dividends" or "premium 
refunds" can be summarize,i by noting two points. Compared with 
a nonparticipating policy, a participating policy requires higher 

premiums, on the one hand, but  leads to higher security and thus to 
lower expected net cost for the insured, on the other. 

What does the insured know about future dividends? In individual in- 
surance he is given at most a vague forecast, since his dividends will 
depend partly on the claim experience of other customers. In group in- 
surance many customers do not settle for such forecasts. They want to 
know exactly how their dividends are going to be a function of their claim 
experience. (We shall limit our discussion to one-year term insurance, 
since in the presence of actuarial reserves the dividends would of course 
depend also on the investment performance of the company.) Such a 
function is called a dividend formula. A very common dividend formula is 
of the form D -- (kP - S)+, guaranteeing dividends equal to the excess 
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78 DIVIDEND FORMULAS IN GROUP INSURANCE 

of a certain percentage, k, of the premiums, P, over the claims, S, when- 
ever this excess is positive ([1], p. 514). In  Section l I I  we shall see that  this 
kind of dividend formula is indeed optimal in a certain sense. In  Section 
IV the result is generalized for n-year formulas. Finally, Section V is 
devoted to an illustrative example. 

II. PRELIMINARIES 

We shall assume that  the insurer determines his preferences according 
to a risk-averse utility function, u(x), -- oo < x < oo, that  is, a continuous, 
nondecreasing function whose derivative is nonincreasing ([4], p. 36). 
Intui t ively,  u(x) is the util i ty that  the insurer assigns to an income x. 
When the income is a random variable, the insurer will be interested in 
the expected utility. 

A risk-averse uti l i ty function has the fundamental  proper ty  that  

u(x) -- u(y) < u'(y)(x -- y) for all x and y .  (1) 

A proof is readily formulated by distingafishing the cases x > y and x < y. 
If  u(x) is a risk-averse util i ty function, then also u*(x) = u(ax + b), for 
a > 0, is a risk-averse uti l i ty function. As a consequence of this and the 
fact tha t  we will consider the premiums as given constants, we will omit  
premiums in our considerations of Section IV. 

I f f (x)  is a real-valued function, then we shall denote its positive par t  by 

f ( x )+=f~(x )  if f(x) > 0 

if f(x) < O. 

I I I .  O N E - Y E A R  CONTRACTS 

3.1. Formulation of the Problem 
In  this section we consider a one-year term contract,  for which the 

premium P is given and the distribution of the random variable  S (ag- 
gregate claims) is known. The dividend D, payable  after S has been paid, 
is another  random variable tha t  m a y  assume only nonnegative values; 
tha t  is, the insurer may  not assess premium in addition to P even if 
claims are high. If D is a function of S, we may  write, symbolically, D = 
D(S) ; however,  this is not required. We are interested in various designs 
for D. 

We assume tha t  the insurer is interested in the expected uti l i ty of the 
income tha t  results from such a contract,  namely, E[u(P -- S -- D)]. On 
the other hand, we assume that  the insured has a risk-neutral a t t i tude 
toward dividends, that  is, he is only interested in E[D]. (There is some 
practical evidence tha t  the customer is pr imari ly concerned about  E[D] 
without  regard to Var (D). For example, prominent  consumer advocates 
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compare only expected net costs.) We say that  a dividend D is Pareto 

optimal if it cannot be improved for both sides at the same time. 
Definition: A dividend D* is Pareto optimal if, for any other dividend 

D with E[D] > E[D*] and E [ u ( P  -- S -- O)] _> E [ u ( P  -- S - h*)], we 
must have E[D] = E[D*] and E [ u ( P  -- S -- D)] = E[u(P  -- S -- D*)]. 

I t  is clear that insurer and insured should agree upon a Pareto-optimal 
dividend, at least as far as their preferences are accurately reflected by 
the above assumptions. 

3.2. Pareto-optimal Dividends 

TREOREM 1. For any  real number c, the dividend D*(S)  = (c -- S)+ is 

Pareto optimal. 

Proof: 

If D is an arbitrary dividend, we have 

u ( P - -  D - -  S)  -- u ( P - -  D* -- S )  <_ u ' ( P - -  D*  -- S ) ( D *  -- D) 
(2) 

<_ u ' ( P  --  c ) ( D *  --  D ) .  

The first inequality follows from relation (1) and the second from the 
special form of D*. The expected values of the members of relation (2) 
may be rearranged to obtain 

E [ u ( P  -- D* -- S)] + u ' ( P  -- c)E[D*] 
(3) 

> E [ u ( P  - D - S)] + u ' ( P  - c)E[D], 

which proves the theorem. 

1. The theorem says that, for each value of c, D*(S )  is Pareto optimal 
for any P. I t  does not say how c should be chosen. The choice of c, 
which might be the subject of bargaining between insurer and insured, 
is influenced by factors such as the security loading contained in P and 
competitive aspects. In any case, c should be some fraction of P such 
that E[S] + E[D*] < P. Note that g(c) = E[(c --  S)+] is a continuous, 
nondecreasing (strictly increasing for c's such that P ( S  <_ c) > O) 

function such that g(0) = 0 and g(~o) = oo ; hence, for given d > 0, 
there is a unique c such that E[(c -- S)+] = d. 

2. If the utility function is strictly concave and the claim distribution is 
not degenerate, inequality (3) is strict whenever D # D*, in which case 
all Pareto-optimal dividends are of the form described in Theorem 1. 

3. Theorem 1 says that D*(S)  is Pareto optimal for any underlying risk- 
averse utility function. In the special case of a quadratic utility func- 
tion, this means that D*(S)  minimizes Var (S + D) for a fixed E[D]. 
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3.3. Geometrical In terpre ta t ion  

The "value" of any dividend D may be conveniently represented by a 
point in the plane which has coordinates y = E [ u ( P  - -  S - -  D)] and 
x = E[D]. The northeast boundary of the set of all such points which 
correspond to arbitrary dividends is the set of Pareto-optimal dividends. 
Inequality (3) shows that, at the point corresponding to D* = (c -- S)+, 
the slope of the boundary is - - u ' ( P  - -  c). 

3.4. In terpre ta t ion  as Re insurance  

A dividend formula of the form D* = (c - S)+ is equivalent to a stop- 
loss coverage with deductible c. The insured's gain under the dividend 
contract is 

- - P + D * =  - - P  + (c -- S)+ 
(4) 

= - - ( e - -  c) --  S q -  ( S - -  c ) + .  

The right-hand side allows the following interpretation : the insured pays 
a stop-loss premium, P - -  c; then he pays total claims, S ;  and then he is 
reimbursed under the stop-loss coverage for claims in excess of c, (S -- c)+. 
Similarly, the insurer's gain under the contract with dividend can be 
written to allow the interpretation of a stop-loss coverage: 

P - -  S - -  D* = P -  S - -  ( c - -  S)+ = ( P - -  c ) - -  ( S - -  c)+. (5) 

This interpretation of the dividend contract is somewhat surprising. I t  
is well known that a stop-loss coverage is a Pareto-optimal reinsurance 
contract for an insured  with a risk-averse utility function and an insurer  

with a l inear  utility function ([2], p. 969, or, for the special case of a 
quadratic utility function, [7], p. 267, or [3], p. 104). We have found that 
an equivalent dividend contract is Pareto optimal for an i n sured  with a 
l inear utility function and an insurer  with a risk-averse utility function. 

This observation on the dividend contract does not imply that the 
equivalent stop-loss cover is a Pareto-optimal reinsurance contract for the 
risk-averse insurer and the insured with a linear utility function. In fact, 
if the reinsurance payment is required to be nonnegative and not in 
excess of total claims, then there is an interchangeability between the 
insured and the insurer which implies that in a Pareto-optimal contract 
the insured would issue a stop-loss cover on the insurer. Such a reinsurance 
agreement is not realistic, so some additional restrictions on the rein- 
surance payment may be made to obtain a more realistic contract for the 
Pareto-optimal solution. For example, if the ratio of the reinsurance pay- 
ment, T, to some continuous, nondecreasing, positive function g of the 
total claims S is required to be nondecreasing, then a contract with 
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reinsurance payments  propor t ional  to g(S) would be Pare to  opt imal  for 
the r isk-averse insurer and the insured with a linear u t i l i ty  function. 
Miller  [8] has shown this for g(S) = S. 

IV. n - Y E A R  CONTRACTS 

4.1. Formulation of the Problem 

We assume tha t  the aggregate claims S,, $ 2 , . . . ,  S .  for an n-year  
period are independent  random variables  with known distr ibut ions,  and 
the premiums P1, P~, P3, • • • ,  P ,  to cover these claims are given. An 
n-year  dividend D consists of n nonnegat ive random variables D,, D~, 
• . .  , D .  such tha t  D~. is independent  of Se+l, Se+2 . . . .  , S ,  (k = 1, 
2 , . . .  , n - -  1). In tu i t ive ly ,  De is the premium refund at  the end of year  k, 
and this is of course independent  of fu ture  claims. 

For  the moment ,  we assume that  the insurer is interested only in the 
expected ut i l i ty  of the over-all  income result ing from the n-year  operation.  
Since the premiums are given constants,  it  is sufficient and convenient  to 
consider E [ u ( - E ~  (Sk + Dk))] ra ther  than E[u(X~ (Pk --  Se --  De))]. 
We also assume tha t  the insured is interested only in E[Dx], E[D2],. . .  , 
E[D,,]. Consequently,  we s ta te  the following definition: 

Definition: A dividend D* = (DI', D*, . . . , D*) is Pare to  opt imal  if, 
for an)" other dividend D = (D,, D ~ , . . .  , D,) ,  the inequalit ies 

E[D*I <_ E[Dk] for k -- 1, 2 , . . .  , n 
i m p l y  

n 

Thus,  for given expected values of the premium refunds, a Pare to-  
opt imal  dividend maximizes the expected ut i l i ty  of the insurer 's  income. 

4.2. Pareto-optimal Dividends 

THEOREM 2. For any n-tuple of real numbers c,, c2 . . . . .  c,, the dividend 
defined recursively by 

D ~  = (c  I - -  $ 1 ) + ,  

D~ = (c, - S, - D~ - S , ) + ,  

(6) 

. =  S k - -  D D* c" --  1 + 

is Pareto optimal. 
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R E M A R K S  

1. E[D~] is a continuous, nondecreasing, unbounded function of ck which 
is zero for ck = 0 and is independent  of ok+l, . . . ,  c,. I t  follows that ,  
for any  n- tuple  of nonnegat ive numbers  (dl, d~, . . . , d , ) ,  there exists a 
d ividend D* of the form (6) such tha t  E[Dt]  = dk, k = 1, 2, . . . , n. 
Thus, for an), dividend D, we can find one of form (6) which is at  least 
as good as D. 

2. I t  is remarkable  that  the dividends defined by equations (6) are inde- 
pendent  of n. Thus,  for given E[D*] . . . .  , E[D*], this d iv idend maxi-  
mizes s imul taneously  E[u(--F.~ (Sk + D~))] for j = 1, 2 . . . . .  n. Also, 
the specific form of u is un impor t an t  as long as it  is r isk-averse.  

3. The proof of the theorem will be by induction and will show tha t  an 
a rb i t r a ry  n-year  dividend is no be t te r  than one of form (6). First ,  the 
n-year  s i tuat ion will be reduced to n - 1 years by  combining the 
claims of the first two years  with the first year ' s  a rb i t r a ry  dividend,  
DI, to form a new "first  yea r ' s "  claim. This  is permissible,  since the 
claims are not  required to be identical ly dis t r ibuted.  The  induct ive 
hypothesis  then implies tha t  the last  n --  1 premium refunds should be 
of form (6). Then an analysis  shows tha t  the first year ' s  refund 
should also be in tha t  form. 

Proof  by induction: 

Theorem 1 proves the assertion for n = 1. For  n > 1, let  (D~, D 2 , . . . ,  
D, )  be an a rb i t r a ry  dividend.  Define D~' = (cl --  S l ) . ,  where cl is chosen 
so tha t  E[Dt]  = E[DI]. Define 

O[ -- (1 --  , )O,  + , D * ,  0 < ,  < 1 ,  (7) 

Observe that ,  for 0 _< , < 1, the following relationships among events 
hold:  

{O* > Ol} ___ {S, + 3 I <  q } ,  

(D? < D,) c_ (S, + D: > c,~. 

Define recursively for k -= 2, 3, . . . , n, and 0 < , < 1, 

k k- -1  I- 

D'k(x) 
- x 5 , -  x 

l_ 2 2 • + 

where the cI's are such tha t  

E[D'k(St  + D[)] = E[Ok] .  
Let  

1 2 

(8) 

(9) 

(Io) 
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Nowf(e ,  e) m a y  be interpreted as the expected uti l i ty of the negative of 
the total claims and premium refunds for an (n - 1)-"year"  situation 
in which f i rs t -"year"  claims are S1 + D~ + $2 and kth-"year" claims are 
Sk+~, k = 2, 3, . . . ,  n -- l, and for which the n -- 1 premium refunds 
have been set by  equations (6). 

By the inductive hypothesis, 

f(e, 71) _< f(e, e) for 0 < ,7 < 1 ,  (11) 
and 

@ (. ,, - :(o, o>. 

Since f(1, 1) is also the expected util i ty of the negative of the total  claims 
and premium refunds for the n-year situation whose n refunds have been 
set by  equations (6), the proof will be complete if f(0,  0) _< f(1, 1). This  
inequality is an implication of the inequality dr(e, ¢)/de >_ 0 for 0 < ¢ < 1. 

":(~,~) = °:(~,'J 1 + °:(e,'---!L (~2) de 0~ ~., 0e I ,= ,"  

Inequal i ty  (11) implies tha t  the first term on the right-hand side of 
equation (12) is zero. The  second term is 

°s(',')l.. : ~[ . , ( -~  s. + . ; -  k .;(s, + .,)) (v,- ~)] 
For fixed outcomes of $2, $ 3 , . . .  , S, ,  

On(x) = x -F £ S ,  + £ O'k(x) (13) 
2 2 

is a nondecreasing function of x. (This is intuit ively clear when x is in- 
terpreted as the sum ($1 + D1), and it m a y  be verified by  induction.) 

In  the following list of inequalities, each is now an immediate conse- 
quence of its predecessor: 

D 1 < D* , 

& + DE < cl (see re la t ions [8]) , 

G,,(S1 + D~) <_ G,.(c,) ,  

u'(--G,,(S,  + DI)) < u'(--a,~(cO) , 

u ' ( - - C . ( S ,  + D~))(D, -- 19"11) > u'(--G,,(c,))(D, -- D*) . (14) 

A similar list s tar ted with Dt > D~' will again conclude with inequality 
(14), which thus holds for all outcomes. Since the expectation of the left- 
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hand side of relation (14) is 

of(~, ,7) , - .  

a~ 

and the expectation of the right-hand side is zero, the proof is complete. 

4.3 Connection with Random Walks  

Let D* be a dividend of form (6) for a set of values cl, c2, . . . , and let 
Co = 0. The random variables defined by 

X~ = ck -- c,_1 -- Sk,  k = 1, 2, 3 , . . . ,  (15) 

are independent, since Sb $2, • • . are independent. 
Let  Y0 = 0 and, for k > 1, 

k 

Yk = ~ X i  and M ,  = max (Y0, Y l , . . .  , Yk) • (16) 
1 

I t  is easy to show by induction that the premium refund at the end of 
year k is 

D~k = M k -  Mk-1,  k = 1, 2 . . . . .  (17) 

4.4. Appl icat ion  

In the special case where the Sk's have identical distributions and where 
ck = k * c for k = 1, 2 , . . .  , then the Xk's  are also identically distributed. 
The following classical combinatorial result of the theory of random walks 
is applicable to our sequences (see [5], p. 287, or [6], p. 573). 

E [ M , ] =  ~1 ~ E [ ( Y , ) + ] .  (18) 

From equations (15)-(18) we have 

EI D*] = ~ --  , . 

Thus, in this special case, the computation of E[D*], k = 1, 2 . . . . .  n, 

reduces to the calculation of n one-year dividend formulas of the type 
discussed in Section I I I .  

V. A PRACTICAL EXAMPLE 

In  this section several dividend formulas for the following portfolio of 
two hundred lives are discussed. 
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MORTALITY RATE 
A~OIYNT 
AT RISK 

0 .01  0 . 0 2  

$1 ......... 20 40 
. . . . . . . . .  80 60 

Thus twenty  lives, each covered for $1, have a mor ta l i ty  rate  of 0.01, 
and so on. The  dea ths  are assumed to occur independent ly ,  and those 
lives who die are replaced at  the end of the year  by  identical lives. Fur ther -  
more, there is to be no "aging,"  so tha t  SI, $2, . . . are independent  and 
identical ly d is t r ibuted  random variables,  each being the sum of two 
hundred independent  Bernoulli  variables.  

The following four types  of dividends will be examined:  

a) D(SO -= (c -- SO+ (one-year formula).  
b) D b D2, D3 defined as in equations (6) with ck = kc ( three-year  formula).  
c) A five-year formula similar to type  b. 
d) Ds(S) = (5c - -  S 1 - -  $ 2  - -  $ 3  - -  3 4  - -  $ 5 ) +  ( a  one-period formula ap- 

plied to a five-year period).  

With  c = 10, formula  (19) produced the expected premium refunds 
shown in Table  1 wi thout  approximat ions .  Table  1 suggests that  for c = 
10 the lowest gross p remiums  can be offered with a formula of type  d. 
Of course, this type has the d isadvantage  tha t  no dividends are paid in the 
first four )'ears. If  this is not acceptable  to the customer,  he could be 
offered formulas  of t ype  b or type  c. All  three of these formulas have the 
common feature of losses being carried forward. If this feature is unac- 
ceptable,  then, a t  a higher  premium, the type  a formula is available.  

TABLE 1 

a 
I 

E[Dd . . . . . . . . . . . . .  2.852 
E[D~] ........................ 

EID~] . . . . . . . . . . . . . . . . . . . . . . .  
E[D,I. 
E[D~]. 

Average  per y e a r . . .  2. 852 

FOkKUT~ATYvz 

b I c 

2.852 2.852 
2.186 2.186 
1.895 1.895 
• .. 1 726 
. . . . . . . .  1.611 

I- 
2.311 2.054 

0 
0 
0 
0 
8. 056 

1.611 
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In  practice, the problem is often reversed. Given the premiums (by 
regulation or competition), design a dividend formula that  is at tract ive 
to the customer. To avoid the question of interest and acquisition costs, 
we reword the problem: Given an average expected dividend per year, 
say $1.611, what value of c can be used in each of the four types of 
formulas? The answers are shown in Table 2. 

TABLE 2 

c . . . . . . . . . . . . . . . .  7.664 
E[Dd . . . . . . . . . . . .  1. 611 
E [ ~ ]  . . . . . . . . . . . . . . . . . . . . . .  
E[D,I . . . . . . . . . . . . . . . . . . . . . .  
E[D,] . . . . . . . . . . . . . . . . . . . . . .  
E [ D s ]  . . . . . . . . . . . . . . . . . . . . . .  

Average per year.. 1. 611 

FOR~LA TYPE 

b ¢ 

8.783 9.265 
! 2.139 2.408 

.i 1.493 1.753 

. 1.201 1.456 
• l . . . . . . . . . . .  I 1.279 
. . . . . . . . . . . .  1.160 

1.611 1.611 

10 
0 
0 
0 
0 
8.056 

1.611 
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DISCUSSION OF P R E C E D I N G  PAPER 

JAMES c. HICKMAN: 

Each of us experiences moments of self-doubt. During such inevitable 
gloomy interludes, those of us who plan, manage, or study insurance 
systems sometimes ask ourselves whether these systems really contribute 
to the sum total of satisfaction in society. Do we simply push dollars 
around with no one really much better off for the effort? 

By building their paper on a foundation of utility theory, Professors 
Gerber and Jones have helped all of us feel a little more useful. Utility 
theory provides an intellectually satisfying foundation for insurance and 
a plausible economic justification for risk-sharing. I t  would be redundant 
to a t tempt  to augment in a short discussion the utility foundations that  
Professors Gerber and Jones provide in their exposition and reference 
list. However, it might be helpful to recall that in 1969 the Society of 
Actuaries held a stimulating session on utility theory which is recorded 
in TSA, XXI,  D331-D363. 

My discussion will center on one question and an alternative model to 
that employed by Professors Gerber and Jones. These are advanced solely 
to elicit the comments of the authors, for it is abundantly clear that they 
have thought deeply on the issues involved. 

The question is very simple: Why does the model assume that the 
insured has a risk-neutral attitude? I t  would seem that the very fact that 
the insured has purchased insurance to cover his claims, S, is prima facie 
evidence that, in the interval of monetary values within which the 
insurance transaction may fall, the insured is risk-averse. Since an 
insurance premium must exceed the expected value of losses because of 
expense, contingency, and profit loadings, there would seem to be reason 
to assume that the insured's utility of wealth function has predominantly 
a negative second derivative on the relevant range of wealth. The 
contrary assumption is that the purchase of insurance would be an 
irrational action that would reduce the customer's expected utility. 

The authors' practical observation that consumer advocates have 
locked onto expected net costs in comparing insurance contracts is true. 
Yet, since the very essence of insurance is the spreading of risk, it would 
seem that this decision is more an indication of shallow thinking on the 
part  of some consumer advocates than an observation on the decision 
rule used by most purchasers of insurance. 

87 
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Perhaps the answer is that an insurance purchase has taken place 
because the insured and the insurer have different probability distribu- 
tions for the amount of claims. However, this possibility is not mentioned 
in the paper. In addition, this sort of inequality in probability distribu- 
tions is close]), related to the concept of "moral hazard" (the insured may 
know something that the insurer does not), and there are powerful forces 
at work in an open market to bring the two distributions together. 

Employing the authors' symbols P for premium, D for dividend, and S 
for claim amount, I would like to suggest an alternative model. We will 
assume that the customer for insurance has a utility of wealth function, 
to be denoted by uc(x), that is ever increasing (u '(x)  > 0) and concave 
down (u"(x)  < 0), at least on the interval of wealth that may be attained 
during the period of the insurance contract. These assumptions guarantee 
that  the customer will be willing to pay more than his expected losses for 
insurance. We will also assume that the insurance company, over the 
range of wealth levels that  may be reached as a result of this contract, 
has a utility of wealth function that may be approximated by a straight 
line. Concentrating on the dividend function, this means that the cus- 
tomer will seek to maximize m ( S  + D - -  P),  while the company will 
seek to maximize (P -- D -- S). 

Definition: A dividend D* is Pareto optimal if, for an)" other dividend 
D with 

E [ P - -  S - -  D] > E [ P - -  S - -  D*] and 

E[u~(S + V -- P)] > E[uc(S + D* -- P)] ,  
we must have 

E [ P - -  S - -  D] = E [ P - -  S - -  D*] and 

E[uc(S + D -- P)] = E[uc(S + D* -- P)] .  

THEOREM. For any real number, c, the dividend D*(S)  = (c -- S)+ is 

Pareto optimal. 

Proof: 

If D is an arbitrary dividend, we have 

uc(S + D -- P) - uc(S + D* - P) 

<_ u'c(S + D* -- P ) (O  - O*) <_ u'(c -- P ) (D  -- O*) . 

The first inequality is a result of the assumption that the second deriva- 
tive of the utility function is negative (eq. [1] in the paper). The second 
inequality may be proved by considering three cases: 

Case 1. If D* = D, then equality holds. 
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Case 2. If D* > D, then D* > 0, and D* -+- S = c. In this case equal- 
ity also holds. 

Case 3. If D* < D, then D -- D* > 0, and, since S + D*  - -  P >_ c - P ,  

u'~(S + D *  --  P )  <_ u ' ( c  - -  P )  

because the second derivative of the utility function is negative. From 
these two facts, the inequality follows. 

Much as in the paper, the expected values may be rearranged to yield 

E[u~(S  + D - -  P)] -- u ' ( c  - -  P ) E [ D ]  

<_ E [ u ¢ ( S  + D *  --  P)] -- u'~(c - -  P ) E [ D * ] .  

Adding u'~(c - -  P ) E [ P  - -  S] to each side of the inequality yields 

E [ u c ( S  + D - -  P)] + u ' ( c  - -  P ) E [ P  --  S - -  D] 

<_ E [ u d S  + D *  - P)] + u ' ( c  - -  P ) E [ P  --  S - -  D *  1 , 

from which the theorem follows. 

JOHN A. MEREU: 

Drs. Jones and Gerber are to be congratulated for disseminating the 
interesting term "Pareto optimal" in actuarial literature. This "every- 
body is happy" expression will be useful for livening up conversations. 

Their theorem that a pure stop-loss dividend strategy is Pareto optimal 
was not intuitively obvious to me. As their elegant proof seemed to settle 
the matter too easily, I decided to work out a concrete example to gain 
a better understanding. To bring the subject into a more familiar perspec- 
tive, I describe the dividend as the net premium less a claim charge and 
consider the problem as one of selecting a claim charge strategy. If we let 
C C  be the claim charge, the income derived by the insurer from the 
contract (P -- D -- S) reduces to ( C C  - -  S ) .  

By way of example, let us take a group life contract with the aggregate 
claim distribution described in Table I of this discussion. Let us assume a 
premium P of $18,000 and a value for C of $12,000. Under the Gerber- 
Jones (G J) dividend strategy, the claim charge is equal to P - (C -- S)+. 
As can be seen from the table, this has an expected value of $12,238. 

Let us postulate a second strategy, If, with a claim charge defined as 
P --  K ( P  - -  S)+,  with K so determined that the expected dividend and, 
as a consequence, the expected claim charge are the same as for the GJ 
strategy. The value of K turns out to be 0.589282, and the resulting 
claim charges are shown in Table I. 

Since both strategies have the same expected claim charge, the expected 
income to the insurer is the same, as well. Assuming a utility measure for 



TABLE 1 

COMPARISON OF GJ STRATEGY WITH STRATEGY I I  

AGGREGATE 
CLAIms 

S O  . . . . . . . . . . . . . . . . . . . . . .  

$ 4  , 0 0 0  . . . . . . . . . . . . . . . . . .  

$6,000 . . . . . . . . . . . . . . . . . .  
$8,000 . . . . . . . . . . . . . . . . .  
$10,000 . . . . . . . . . . . . . . . . .  
$12,000 . . . . . . . . . . . . . . . . .  
$14,000 . . . . . . . . . . . . . . . .  
$16,000 . . . . . . . . . . . . . . . . .  
$18,000 . . . . . . . . . . . . . . . . .  
Over $18,000 . . . . . . . . . . .  

PROBABILITY OF 
OCCURRENCE 

.405 

.056 
• 029 
• 049 
.042 
.041 
.048 
• 046 
.013 
.271 

Claim 
Charge 

$ 6,000 
10,000 
12,000 
14,000 
16,000 
18,000 
18,000 
18,000 
18,000 
18,000 

GJ STRATEGY 

Insurer 
Income 

$ 6,000 
6,000 
6,000 
6,000 
6,000 
6,000 
4,000 
2,000 

0 
18,000--S 

Utility 

.451 

.451 
• 451 
•451 
• 4 5 1  

•451 
• 330 
• 181 

0 
N.A. 

Claim 
Charge 

$ 7,393 
9,750 

10,929 
12,107 
13,286 
14,464 
15,643 
16,821 
18,000 
18,000 

STRATEGY 1I 

Insurer 
Income 

$ 7,393 
5,750 
4,929 
4,107 
3,286 
2,464 
1,643 

821 
0 

1 8 , 0 0 0 - S  

Utility 

• 523 
• 437 
• 389 
.337 
• 280 
•219 
• 152 
• 079 

0 
N.A. 

Expected values . . . . . . . . . . . . . . . . . . . . .  $12,238 . . . . . . . . . . . . . . . .  305 $12,238 . . . . . . . . . . . . . . . .  296 
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income I of [1 -- exp (--I/10,000)], the expected utility of the income 
under each strategy is computed and, as predicted by the paper, the GJ 
strategy has the greater utility. 

Under the GJ strategy the income to the insurer is constant if the 
aggregate claims are $12,000 or less. In moving from the GJ strategy 
to strategy II ,  the income, if the aggregate claims are zero, is increased 
and for other amounts it is decreased, in such a way that the expected 
income does not change. However, the gain in utility for the one con- 
tingency does not compensate for the loss in utility in the other con- 
tingencies. Additional dollars have diminishing utility under a risk- 
averse utility function. 

Having now been convinced that the GJ strategy is Pareto optimal, 
what priority should an insurer give to adopting the GJ strategy? A 
couple of concerns on which the authors might comment come to mind. 

The assumption that the insured has a risk-neutral attitude toward 
dividends is questionable. The insured would expect his dividend to 
bear some inverse relationship to claims. The GJ strategy cannot be 
faulted on this score, but the insurer may wish to compare potential 
strategies from the point of view of acceptability to the insured. 

The insurer is interested more in the income derived from its whole 
portfolio. Does a strategy which is optimal for a single group continue to 
be optimal for a collection of groups, and how important is the difference 
in utility from one strategy to another? 

In conclusion, I would like to say how much i enjoyed this education in 
utility theory. 

(AUTHORS' REVIEW OF DISCUSSION) 

DONALD A. JONES AND HANS U. GERBER: 

Our thanks are due the discussants for their valuable contributions. 
We agree with Professor Hickman that an insured does not have a risk- 
neutral atti tude per se. However, our considerations are based on the 
insured's attitude toward dividends: Given full coverage, at a known 
premium, our assumption is that the insured is interested only in the 
expected value of the premium refunds. 

The theorem that Professor Hickman proved is closely related to the 
results of Kahn [7] 1 and of Arrow [2]. Further, it shows that there are 
at least two ways to define the insured's income, as illustrated in the 
tabulation at the top of page 92. 

In the first approach the claims are considered as a liability (that may 
be offset by the purchase of a policy). In the second approach there are 

1 Reference numbers  refer to the list given in the  authors '  paper. 



92 DIVIDEND FORMULAS IN GROUP INSURANCE 

Gerber-Jones . . . . . . .  
Hickman . . . . . . . . . . .  

IN SI.~IIF~D 'S INCOME 

Without With 
Coverage Coverage 

--P+D 
--P+S+D 

no "c la ims"  a priori.  A policy provides for cer tain payments  contingent 
on certain events. These  payments  are t rea ted  as gains. 

Mr. Mereu 's  example is an excellent i l lustrat ion for our Theorem 1. 
His s t ra tegy  I I  and the GJ s t ra tegy produce claim charges of the form 

P - (kP - aS)+ = Max [(1 --  k)P + aS, P], 

discussed by  Ammete r  [1]. The  r ight-hand side of the above formula 
shows tha t  for any member  of this family (a > 0) the claim charge is a 
nondecreasing function o~ the claims. We agree with Mr. Mereu that  this 
is a desirable p roper ty .  Paul  Kahn  developed the conditions on the 
coefficients to maximize expected (quadrat ic)  u t i l i ty  for the insured and 
again for the insurer (see "The  Appl icat ion of Ut i l i ty  Theory  to Group 
Experience Ra t ing ,"  Transactions of the Seventeenth InternationaJ Congress 
of Actuaries, pp. 578-91). 

We received some requests for details regarding our numerical  calcula- 
tions for the n-year  formulas. We hope tha t  the tabula t ion  below, which 
is a worksheet  summariz ing a computer  pr in tout ,  will be helpful. 

0 . . . . .  0.04854 0.04854 0.00236 0.00236 
1 . . . . .  0.09798 0,14652 0,00716 0,00951 
2 . . . .  0.12269 0.26921 0.01200 0.02151 

9. . .  0.60445 2.85199 0.14758 0.50884 

19 . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.60083 4.37255 

29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

F(x) ~oo F(y) F*~(x) ~o F*2(Y) F't(x) ~00 F*t(Y) 

0.000ll 
0.00046 
0.00099 

0.02417 

0. 23469 

0.62011 

0.00011 
0. 00058 
0.00157 

0.07113 

1.24006 

5. 68455 
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The  following formula for the expected value of D1 = ( c -  Sl)+ is 
useful: 

E[DI] = (c -- y)f(y) --- ~_, F(y) 
0 O 

(proof by summation by parts) .  From formula (19) we obtain, with 
c = 10, the figures shown in Table  1 of the paper:  

g 

E[D,] = ~_, F(y) = 2.85199 = 2 .852;  
0 

1 ~ F,2(y ) E[ D2] = -~ o 

1 ~ F,8(y ) E[ D3] = ~ e, 

= 1(4.37255) = 2 .186;  

= -~(5.68455) = 1.895. 




