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ABSTRACT 

The actuarial profession is faced with a problem of determining delta- 
ized reserves on a basis which will include appropriate provision for 
adverse deviations in mortality, lapses, interest rates, and expense rates. 
This paper describes briefly a method which could be used to solve this 
problem in a flexible manner. Initial research, using the suggested 
method, could take the form of a few computer runs to approximate the 
magnitude of ratios of (a) delta-ized reserve (that is, including appro- 
priate provision for the adverse deviations) to (by the corresponding 
reserve without provision for the adverse deviations. As additional 
information is gathered concerning variability of mortality rates, lapse 
rates, and interest rates, and as more computer runs become available, 
tables of the above-mentioned ratios, based on various bench-mark 
assumptions, could be published for use as a guide by the members of the 
Society' of Actuaries and other interested persons. 

INTRODUCTION 

E us assume that we are given a confidence level (k per cent) which 
the benefit reserves (tV~,l) are to meet; that is, the benefit reserve 
under a policy" is to be sumcient, together with future benefit 

premiums under the policy, to provide for the policy's share of the cost 
of benefits over the lifetime of the policy k per cent of the time. 

The benefit premium (pRy, payable under a policy" from issue to 
termination, would be defined to be the level premium which would, 
k per cent of the time, turn out to have been sufficient to provide for the 
policy's share of the cost of benefits over the lifetime of the policy. The 
benefit reserve at duration 0 would thus be zero. 

In a sense, once we decide to deal with stochastic assumptions rather 
than mean-value assumptions, we really are no longer interested in 
so-called "most likely" assumptions. The stochastic assumptions become 
the "most likely" assumptions, even though the)" give rise to a frequency 
distribution of results. We could, of course, speak of "most likely" 
premiunl (or reserve), in the sense of the mean of a frequency dis- 
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tribution of premiums (or reserves). I t  might be of some interest to 
express a benefit premium, calculated to achieve a confidence level of 
kl per cent, in terms of a ratio of such benefit premium to the corre- 
sponding benefit premium calculated to achieve a confidence level of 
k2 per cent (for example, 50 per cent). To the extent that these ratios 
exhibited some consistent patterns (with changes in parameters such as 
age at issue, duration, plan of insurance, and underwriting class, and 
changes in stochastic assumptions such as mortality, lapse, and invest- 
ment income rates), they might prove to be quite helpful to the actuary 
in establishing GAAP benefit reserves. 

In what follows, the main complicating factor is the handling of 
stochastic interest rates (new-money rates, old-money rates, rollover 
rates, and so on). The numerical processing would be considerably easier 
if a simpler model for interest rates could be used. However, a simpler 
model might be too unrealistic. 

BENEFIT PREMIUMS 

The Monte Carlo method (involving the generating of random num- 
bers) represents one approach to the numerical solution to questions as 
to the likelihood that a particular level of benefit premiums (pB) will be 
adequate to p~ovide for future benefits. Another method would be to use 
a convolution approach to calculate discrete 5-dimensional frequency 
distributions; the results are those which would be produced by an 
infinite number of Monte Carlo trials. However, for the purpose of under- 
standing the method in the first place, the Monte Carlo method may be 
more useful. 

If we run enough Monte Carlo trials, where each trial represents a 
possible outcome in the life of one policy, we can become reasonably 
certain of having constructed a frequency distribution of all the possible 
outcomes which have a reasonable probability of occurring. Consider 
now one such trial. 

Assume that a frequency distribution of mortality rates q~,l+t-1 is 
available for each attained age and a frequency distribution of lapse rates 
q~x~+t for each policy year. The new-money rate in any policy year is as- 
sumed to be a random variable depending upon the new-money rate in 
the previous year. Investments are assumed to roll over at the rate of 
r per cent of the outstanding investments each year. More complicated 
assumptions could be made, but the implications for the number and 
type of variables to be followed should be investigated carefully. (Con- 
siderable analysis and judgment will be involved in constructing the fre- 
quency distributions which in this paragraph are assumed to be available.) 
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A random number is generated. Knowing the new-money rate in the 
year preceding the first policy year, we can enter the frequency distribu- 
tion of new-money rates depending thereon and determine the new-money 
rate earned in the first policy year. 

Another random number is generated. The frequency distribution of 
mortality rates for the first policy year is entered, and the mortality cost 
determined for the first policy year. 

Another random number is generated. The frequency distribution of 
lapse rates for the first policy year is entered, and the surrender cost deter- 
mined for the first policy year. (Note that, in the case of both mortality 
cost and surrender cost, we assess such costs to each policy which is 
exposed in the policy year under consideration, regardless of whether the 
particular policy we are valuing terminates at the end of the policy year 
by death or surrender, or persists into the next policy year.) 

Another random number is generated. Using this random number and 
the same mortality rate that was determined above for the first policy 
year, we determine whether this particular policy terminates by death at 
the end of the first policy year. If not, then another random number is 
generated. Using this random number and the same lapse rate which was 
determined above for the first policy year, we determine whether this 
particular policy terminates by surrender at the end of the first policy 
year. 

Continued application of the procedure described above (as covered in 
detail below for the second policy year) enables one to develop for each 
policy )'ear a value for each of the following variables: 

(1) New-money rate/or the current policy year; 1 
(2) Old-money rate for (4) below, that is, an average interest rate being 

earned on (4) during the current policy year; 
(3) Old-money rate for (5) below, that is, an average interest rate being 

earned on (5) during the current policy year; 
(4) Value of $1 received at the beginning of each policy year and accu- 

mulated at generated interest rates to the end of the current policy 
year; 

(5) Benefit costs accumulated at generated interest rates to the end of the 
current policy year. 

We know whether this policy terminated by death or lapse in the 
first policy year or persisted into the second policy year. If the first trial 
ended by death or lapse in the first policy year, it produces the first entry 
in the 5-dimensional frequency distribution needed to calculate the benefit 

1 The current policy year is the particular policy year being processed at a given stage 
in the calculation process. 



98 ON CALCULATING DELTA-IZED RESERVES 

premium (pB). If this policy persisted into the second policy year, we 
continue as indicated in the next paragraph. 

A random number is generated. Knowing the new-money rate in the 
first policy year, we can enter the frequency distribution of new-money 
rates depending thereon and determine the new-money rate for the 
second policy year. Weight the old-money rate, (2) or (3), by (1 -- r/100), 
and the new-money rate just determined for the second policy year by r/ 
I00; the resulting interest rate is the new value for (2) or (3), respectively, 
for the second policy year. The new-money rate is the new value for (1). 
The previous value of (4) is brought forward for one policy year at the new 
value of (2), and the $1 received at the beginning of the second policy 
year is increased at the new-money rate, to produce a new value for (4). 
The previous value of (5) is brought forward for one policy year at the 
new value of (3); a mortality cost and a surrender cost will be added in 
to obtain the new value of (5). 

Another random number is generated. The frequency distribution of 
mortality rates for the second policy year is entered, and the mortality 
cost determined for the second policy year. 

Another random number is generated. The frequency distribution of 
lapse rates for the second policy year is entered, and the surrender cost 
determined for the second policy year. (Note again that we assess mor- 
tality costs and surrender costs against each policy which is exposed in 
the second policy year, regardless of whether the particular policy we are 
valuing terminates at the end of the second policy year by death or sur- 
render or persists into the third policy year.) 

Another random number is generated. Using this random number and 
the same mortality rate that was determined above for the second policy 
year, we determine whether this particular policy terminates by death at 
the end of the second policy year. If not, then another random number is 
generated. Using this random number and the same lapse rate that was 
determined above for the second policy )ear, we determine whether this 
particular policy terminates by surrender at the end of the second policy 
year. If the policy terminated by death or surrender in the second policy 
year, we have obtained the next entry in the 5-dimensional frequency 
distribution required in the calculation of the benefit premium (pB). If 
this policy persisted into the third policy year, we continue the procedure 
essentially as indicated above for the second ,,'ear. 

We move through the "current" policy years of a particular policy 
until the end of the policy .year in which the policy terminates by death 
or surrender. At that time, the entire procedure is repeated, corn- 
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mencing with the first policy year, in order to make another trial. 
This procedure continues until a sufficient number of trials have been 
completed. Of course, if the number of trials were to be, say, a million, 
it would probably be impractical to keep all the individual results. A 
practical solution would be to set up some arbitrary intervals and to 
capture each of the results in its appropriate interval, retaining the 
number and average of the values which end up in each interval. 

When the desired 5-dimensional frequency distribution has been ob- 
tained, we proceed to transform such frequency distribution into a 
1-dimensional frequency" distribution, where the amount is (5)/(4) and 
the frequency is the same as in the 5-dimensional frequency distribution. 
Thus we would have a 1-dimensional frequency distribution of benefit 
premium levels. The amounts would be tabulated in ascending order in the 
1-dimensional frequency distribution. The amount opposite a cumulative 
frequency of k per cent would be the benefit premium (pB) at the k 
per cent confidence level. 

Having determined ps  so as to be in a positive position k per cent of the 
time when the policy terminates, we may wish to examine the size of the 
positive and negative values of [PB(4) - (5)]; note that the values of 
[ps(4) - (5)] represent accumulated values as of the end of the policy 
year of termination, not present values as of issue of the policy. Under 
most circumstances the determination of the benefit premium by the 
above method should be acceptable; however, if positive values of 
[PB(4) - (5)] to be experienced k per cent of the time were $1, and if the 
negative values to be experienced ( 1 0 0 -  k) per cent of the time were 
$1,000,000,000, then obviously this would be an inadequate benefit 
premium, even though the k per cent confidence level is satisfied. 

The benefit premium (pB), otherwise calculated, probably should be 
increased by the net annual stop-loss premium at the pB stop-loss level, 
in order to provide for the possibility of needing larger benefit premiums, 
in spite of the fact that the k per cent confidence level has been met by the 
benefit premium (pn). This net annual stop-loss premium can be cal- 
culated in a straightforward fashion from the 1-dimensional frequency 
distribution of (5)/(4) described above. 

BENEFIT RESERVES 

Once the benefit premium has been established for a policy, one can 
proceed to calculate benefit reserves at any valuation date, given the 
new-money rate in the year preceding the valuation date and given the 
old-money rate-- the initial value of (2) below--being earned on existing 
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assets as of the valuation date. The procedure described above for use in 
determining benefit premiums would apply, except that the variables 
would be as follows: 

(I) New-money rate for the current policy year; 
(2) Old-money rate for (4) below, that is, an average interest rate being 

earned on (4) during the current policy year; 
(3) Old-money rate for (5) below, that is, an average interest rate being 

earned on (5) during the current policy; 
(4) Value of $1 of invested assets as of the valuation date, accumulated at 

generated interest rates to the end of the current policy year; 
(5) Benefit costs less benefit premiums, such net amounts from the valua- 

tion date to the end of the current policy year being accumulated at 
generated interest rates to the end of the current policy year. 

The old-money rate (2) is initially the old-money rate being earned 
on existing assets as of the valuation date. (Perhaps the value of (2) 
as of the valuation date should be generated from actual new-money 
rates and roUover rates for the policy years between issue and the valua- 
tion date, together with experienced mortality and lapse rates during 
the same period.) Once again, the actual numerical processing could be 
done using a convolution approach. 

Having obtained the desired 5-dimensional frequency distribution, 
we proceed to transform it into a 1-dimensional frequency distribution, 
where the amount is (5)/(4) and the frequency is the same as in the 5- 
dimensional frequency distribution. Thus we would have a 1-dimensional 
frequency distribution of present values of benefit costs less benefit 
premiums. The amount would be tabulated in ascending order in the 
1-dimensional frequency distribution. The amount opposite a cumulative 
frequency of k per cent would be the benefit reserve (iVY, l) at the k 
per cent confidence level. 

I t  may be appropriate to add to the benefit reserve (tV~zl), otherwise 
calculated, the net single stop-loss premium at a stop-loss level equal to 
tV~=l, in order to provide for the possibility of large losses being incurred, 
in spite of the k per cent confidence level having been met by both the 
benefit premium and the benefit reserves. This net single stop-loss pre- 
mium can be calculated in a straightforward fashion from the 1-dimen- 
sional frequency distribution of (5)/(4) derived in the preceding paragraph. 

EXPENSE PREMIUMS AND EXPENSE RESERVES 

The procedure outlined above for use in determining benefit premiums 
would be followed to determine expense premiums, except that the fifth 
variable would be 
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(5) Expense costs accumulated at generated interest rates to the end of 
the current policy year. 

A frequency distribution of expense rates (er,l+t) for each policy year 
would be required. 

Similarly, having established the expense premium for a policy, one 
can proceed to calculate expense reserves at any valuation date by using 
the procedure previously outlined for benefit reserves, except that the 
fifth variable would be 

(5) Expense costs less expense premiums, such net amounts from the 
valuation date to the end of the current policy year being accumulated 
at generated interest rates to the end of the current policy year. 

RESERVES AND THE RUIN PROBLEM 

The method outlined above enables the actuary to determine delta-ized 
reserves on any given policy, without reference to any other policy in the 
portfolio of policies or any other line of business. This approach retains a 
huge advantage over alternative approaches which treat the determina- 
tion of delta-ized reserves as a ruin problem in the traditional sense. 
Using the ruin approach, either an entire line of business or all lines of 
business treated together would have to be considered in making the 
calculations. 

Admittedly, in the approach suggested, frequency distributions of 
mortality rates and of lapse rates must be derived either empirically or 
theoretically (or both), to represent experience which can be expected 
from selected portfolios of policies. Once these frequency distributions 
have been developed, however, one can focus on one policy at a time. 

PREMIUMS AND RESERVES FOR OTHER LINES OF BUSINESS 

Methods comparable to the one outlined in this paper can be developed 
for individual accident and health policies, for individual disability income 
policies (with or without cash values), for variable life, group life, 
group health, and other types of policies. However, the specific method to 
be applied within a given line of business should be designed carefully to 
reflect the characteristics of the particular line of business. 

COMPARISON W I T H  GAAP RESERVES 

I t  would be impractical to perform the type of analysis described in the 
body of this paper for every single policy in a company's portfolio of 
individual policies. However, research could be undertaken which would 
help the actuary (and other interested persons) acquire a feel for the 
size of the delta-ized premiums and reserves required to meet various 
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confidence levels for different types of policies and different sets of 
assumptions. The results of this research might be only a set of bench 
marks against which the practicing actuary could compare GAAP 
reserves calculated by using assumptions based on his own judgment. 
But even this amount of research would seem to go a long way toward 
helping him in this difficult area. 

A MARKOV PROCESS 

The multidimensional random walks described in the above sections 
can be considered to be Markov processes, where each state is defined by 
the values assumed by the five defined variables. The transition probabili- 
ties are defined implicitly by the random walk procedure, including the 
frequency distributions of mortality rates, lapse rates, new-money rates, 
and expense rates. (A Markov chain is a Markov process which involves 
transition probabilities which do not vary with duration; thus we are 
not dealing here with Markov chains.) 

For ease of description in the above sections, three of the random 
variables (mortality rates, lapse rates, and expense rates) have been con- 
sidered to be independent from policy year to policy year. The random 
variable of new-money rates has been assumed to be at least partially 
dependent upon the new-money rate experienced in the immediately 
preceding year. The random variables of mortality rates, lapse rates, 
expense rates, and new-money rates have been assumed to be independent 
of each other. The five defined variables 

(1) New-money rates, 
(2) Old-money rate for (4) below, 
(3) Old-money rate for (5) below, 
(4) Accumulated value of either a single $1 or a series of $1 per year, 
(5) Accumulated value of either cash outgo or cash outgo minus cash 

income, 

are severely interdependent, and this interdependence has been built into 
the process as described in the above sections. 

One simple modification of the process described in the above sections 
would be to combine benefit premiums and expense premiums into a 
single calculation process and, similarly, to combine benefit reserves and 
expense reserves into a single calculation process. This seems a logical 
step to take since the same random variables of mortality and lapse rates 
are involved in both the benefit and expense sides; that is, treating bene- 
fits and expenses independently is theoretically improper. If the random 
variable of expense rates is independent from policy year to policy year, 
then the process can still be defined in terms of the five defined variables; 
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on the other hand, if expense rates are assumed, as with new-money rates, 
to be dependent to some extent on the expense rate experienced in the 
preceding policy year, then a sixth defined variable would be "expense 
rate." 

Dependent relationships between mortali ty rates, lapse rates, expense 
rates, interest rates (new-money rates or old-money rates), and so on, 
can be built into the process; the degree of difficulty will depend on the 
form which such relationships take. Especially easy are those which 
relate one of the variables to another of the variables in the same policy 
5"ear; variables in this connection include both the five defined variables 
and the random variables such as mortali ty rates, lapse rates, and expense 
rates. To the extent that  the new- and old-money rates and accumulated 
monetary values reflect past experience, it is easy to build in dependencies 
of current random variables on past experience. More difficult are de- 
pendencies on past  experience where we have no variable currently and 
suitably reflecting such past  experience. In fact, if dependencies cannot be 
defined in terms of current variables (existing or yet  to be defined), we no 
longer can consider the procedure to be a Markov process, and we are 
then dealing with a much more difficult structure. 





DISCUSSION OF P R E C E D I N G  PAPER 

DAVID G. HALMSTAD 

I found Mr. Bailey's note extremely interesting, since it deals with two 
of my favorite subjects: the collective/individual computations debate 
and the use of simulation. I will restrict my remarks to these areas and 
leave any specific "delta-izing" or GAAP comments to others. 

I trust that those who use the results of any simulation conducted by 
the method suggested by Mr. Bailey will realize that the method is not 
the traditional actuarial premium and reserve calculation method. Mr. 
Bailey recognizes this in his brief comment that the use of his method 
"retains a huge advantage over alternative approaches which treat the 
determination of delta-ized reserves as a ruin problem in the traditional 
sense." We should realize that such traditional actuarial calculations are, 
in the fundamentals, collective in nature. 

This distinction is seen most easily if one concentrates on the simulation 
procedure used to obtain the "benefit premium," pB. Stripping such a 
simulation of the possibility of a distribution of interest rates (i.e., 
assuming a certain interest rate), forgetting the possibility that the 
" t rue" underlying mortality rate for an individual might be different from 
that indicated by a class "expected" mortality rate, and neglecting 
considerations of lapsation and ancillary benefits such as expenses, we 
can reduce the complexity of the problem to the classic actuarial problem: 
What premium do we charge an individual? 

My reading of this note suggests that, under the simple case outlined 
above (simple interest and mortality), the distribution of simulated results 
for a whole life premium for an individual aged x at issue will be (col. 
5) + (col. 4), where, with probability equal to d,+,_~ + l,, column 4 = 
(1 + i)* g~, and column 5 = (1 + i) t A':71. This distribution is illus- 
trated numerically in Table 1 of this discussion for age 25 on the 1958 
CSO Table with 5 per cent interest. In the illustration, it will be noted, 
the mean of the above distribution is $5.19 per $1,000, whereas the 
actuarial net premium is $7.54. In fact, if my understanding of Mr. 
Bailey's scheme is correct, it would be impossible to simulate any "in- 
dividual" premium as large as the actuarial net; the largest possible 
"individual" premium that could occur would be the $6.72 at durations 
67-69. 

Naturally there is an obvious problem here, and the solution to it lies 
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TABLE 1 

ILLUSTRATION OF AGE 25 WHO~ LIYE DIS~IBUTION STA~S 

TABLE '58CS0' 
I~TERES? 0.05 

W 
I00 

ACCUM+I.O5*tW-25 
COL4÷ACCUMxANDT ~W-25 
COL5÷ACCUMxAZIE 25 BY tW-25 
PREM~IOOOxCOL5÷COL4 
PRO@~(DX 24+~-25)÷LX 25 

X25÷(tW-25),PROB,COL4,COLS,[1.5]PREM 

5 BLOCK 'IS,PI5.8,3FI2.5' AFMT X25[,0 20 65 70o.et5;] 

DUR PROB. COL ~ COL 5 PHEM . . . . . . . . . . . . . . . . . . . . . .  
1 0.00193000 1.05000 0.00193 1.83810 
2 0 . 0 0 1 9 5 6 2 2  2 . 1 5 2 5 0  0 . 0 0 3 9 8  1 . 8 5 0 2 8  
3 0 . 0 0 1 9 8 2 2 7  3 . 3 1 0 1 2  0 . 0 0 6 1 6  1 . 8 6 2 2 0  
4 0.00201809 4.52563 0.00849 1.87607 
5 0 . 0 0 2 0 6 3 6 0  5 . 8 0 1 9 1  0 . 0 1 0 9 8  1 . 8 9 2 2 3  

21 0 . 0 0 5 0 5 5 7 6  3 7 . 5 0 5 2 1  0 . 0 9 3 4 9  
22 0 . 0 0 5 4 7 9 8 9  4 0 . 4 3 0 4 8  0 . 1 0 3 6 4  
23 0.00594321 #3.50200 0.11477 
24 0.00645324 #6.72710 0.12696 
25 0.00700773 50.11345 0.14032 

66 0 . 0 1 1 1 5 4 2 7  5 0 4 . 6 6 9 8 1  3 . 3 8 8 4 2  
67 0 . 0 0 9 2 7 4 8 6  5 3 0 . 9 5 3 3 0  3 . 5 6 7 1 1  
68 0 . 0 0 7 5 6 9 1 9  5 5 8 . 5 5 0 9 6  3 . 7 5 3 0 4  
69 0 . 0 0 6 0 4 4 6 1  5 8 7 . 5 2 8 5 1  3 . 9 4 6 7 3  
70 0.00470218 617.95494 4.14877 

7 I  0 . 0 0 3 5 6 4 0 7  6 4 9 . 9 0 2 6 8  4 . 3 5 9 7 8  
72 0 . 0 0 2 6 3 6 9 1  6 8 3 . 4 4 7 8 2  # . 5 8 0 4 0  
73 0 . 0 0 1 9 2 7 3 7  7 1 8 . 6 7 0 2 1  4 . 8 1 1 3 5  
74 0 . 0 0 1 3 4 8 8 4  ? 5 5 . 6 5 3 7 2  5 . 0 5 3 2 ?  
75 0 . 0 0 0 6 5 9 9 3  7 9 4 . 4 8 6 4 0  5 . 3 0 6 6 0  

2 . 4 9 2 6 9  
2 . 5 6 3 4 9  
2 . 6 3 8 2 4  
2 . 7 1 7 0 6  
2 . 7 9 9 9 7  

6 . 7 1 4 1 3  
6 . 7 1 8 3 2  
6 . 7 1 9 2 4  
6 . 7 1 7 5 2  
6 . 7 1 3 7 2  

6.70835 
6.70190 
6.69480 
6.68728 
6.67928 

(LIPREII), ([/PBEH), PROB*.xpREM 
I.~381 5.71924 5.19166 

IO00×APX 25 
7.53727 

1000×(M 25)~H 25 
7.53727 
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in the accumulation of the reserve for the policy. Since this is the question 
Mr. Bailey, addresses, and I have not found a way of including reserve 
increases, I will drop the illustration. For those interested in continuing 
along these lines, I urge them to consider what happens in the case 
of an endowment benefit; as described, the simulation method treats 
those who die in the given term (except in the last year of it) just as it 
treats those who purchase a term policy. 

Instead of examining the point further, I would like to remind all of 
us of the statistical truth that, if we are dealing with random variates 
X and Y, in general E[X] + E[Y] # E[X + Y]. For those interested in 
pursuing the distribution of actuarial functions, including premiums, I 
suggest starting with the references indicated at the end of the discussion 
of Messrs. Fibiger and Kellison's recent paper (TSA, XXIII ,  150). I 
have found the Pollard and Pollard reference particularly pertinent. 

If we assume, for the time being, that we are interested in a distribu- 
tion of individual premiums, there remains the problem of conducting 
the simulation. Here we must use extreme care. Sidney Benjamin has 
shown quite clearly ("Simulating Mortality Fluctuation," Transactions 
of the International Congress of Actuaries [London/Edinburgh], III [1964], 
478-501) that a modicum of analytical work saves much random "grind- 
ing of wheels," and my own experience has confirmed this repeatedly 
(e.g., TSA, XXI, Dl15-Dl16).  In the present case the method used is 
essentially, "brute force," and the savings from a little bit of analysis will 
be large. 

One should, I think, design any simulation with the end product firmly 
in mind. For Mr. Bailey's case, the end product is (in the premium 
simulation) producing one value kps for each value of k studied; the 
number of such k's is likely to be small. These kpB values supposedly are 
higher than k per cent of the other simulated premiums, in order to be 
k per cent "confident." Since I am a bit unclear about the premium 
distribution desired for this note, I cannot be certain about the veracity 
of the following analysis, but I have tried to use "common sense" in 
the argument. 

The common-sense supposition would be that the longer a simulated 
policy persists, the larger the simulated premium generally' will be (for 
most level benefits, and with increasing mortality). If this is so, we will 
be doing much repetitive bookwork for those who lapse or die "early," 
and our feeling should be that this is perhaps unnecessary. In fact, such a 
feeling would lead us to realize that we repeat the bookwork (albeit with 
differing interest, mortality, and lapse assumptions) for the early part of 
each simulation. Wouldn't it be desirable to be able to continue each 
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simulation to reach the critical area of interest-- the later durations where 
the kpB values are being calculated anyway? 

If we ask ourselves a question like that,  we will realize that, by  using a 
mixture of analysis and simulation, we gain more accurate simulations 
more cheaply by modifying the "brute force" approach. Since the 
simulation essentially is meant  to mix possible interest, mortali ty,  and 
lapse streams of rates rather than to simulate a collective viewed over a 
period of time (for a total claim distribution), we can remove the ex- 
traneous simulation of mortali ty and lapse chance fluctuations. With  this 
viewpoint, I would suggest the following alternative scheme for the 
simulation of Pn: 

1. Choose a stream of new-money rates, possibly correlated, sufficient to carry 
the issue age to the end of the benefit period. 

2. Choose a stream of "underlying" mortality rates (possibly differing from 
the expected, or average, mortality for the class and possibly correlated 
heavily from one year to the next) of the same length as the interest rates. 

3. Choose an "underlying" lapse rate stream just as for mortality. 
4. If desired, choose an "experienced" expense stream and any similar variables 

of interest. 
5. Using the streams indicated above, do the bookkeeping (old-money, new- 

money, etc.) either as outlined by Mr. Bailey or with whatever GAAP 
accounting one may use. Do such bookkeeping for the entire stream of 
values, and give each value the probability indicated by the "underlying" 
mortality and lapse probabilities. 

6. Return to step I if necessary. 

This format almost always will return a sample point - -proper ly  
weighted of course--in the area of final interest; its cost is roughly the 
reciprocal of the expected life of a policy. The work that is done to obtain 
a value above would have been done under Mr. Bailey's scheme, but we 
have collected a whole stream of observations, stripped of the irrelevant 
chance fluctuations that  merely cloud the effects of the varying mixture 
of interest, mortality, lapge, and other factors. What  we really have done 
is to apply Mr. Benjamin's Method I I I  (the "forced death") principle, 
simply interjecting a small amount of analysis. 

I must stress that the suggestion above is merely on the simulation 
aspects of Mr. Bailey's proposal, as it now stands. If called upon to 
conduct such an investigation myself, I would start from a very  different 
basis. I would study the possible short-term cycle, long-term cycle, and 
trend elements of the interest, mortality,  and other variables (lapses and 
expenses, for example), but on an overall class expected rather than an 
individual basis. I would then proceed to simulate as indicated above, 
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up to step 5. My new step 5 would simply calculate the usual gross 
premium, along with GAAP reserves, from the simulated streams of 
variables. This essentially produces one point of the simulated results, 
and the usual laying out of such results and choosing a level "k per cent 
safe" can be done. 

Even this proposal, however, probably is unnecessary. I t  is my belief 
t ha t - -by  using convolutions and other analytic tools with fast Fourier 
transforms and heavy numerical analysis--the simulation that remains 
can also be avoided. 

I would like to comment on one additional point. As I read this report, 
I was struck with the fact that Mr. Bailey proposes to simulate for each 
individual, each year's mortality rate around the tabular mortality rate, 
and that he also proposes that "the random variable of new-money rates 
has been assumed to be at least partially dependent upon the new-money 
rate experienced in the immediately preceding 5.ear." I find these two 
assumptions startling: as a "random walker," I would propose that new- 
money rates could be independent of one another, and I would think that 
if we are talking about truly "individual" simulations, the underlying 
mortality and lapse rates for each run would exhibit strong dependencies. 
However, the possibility of a "distribution of mortality rates" does raise 
a final question to Mr. Bailey: How should one conduct the study to 
determine the distribution of mortality rates within a particular under- 
writing class? I would find such a statistical algorithm fascinating. 

CECIL J. NESBITT: 

The author has tackled a difficult problem but unfortunately has not 
developed the underlying mathematics with sufficient clarity for me to 
follow, and I expect that many other readers have had similar difficulty. 
Presumably the author has been able to verify his ideas computationally, 
but he has not described those ideas in such a way as to convey mathe- 
matical understanding. 

I made several tries at reconstructing the author's ideas, without 
much success. One small result did emerge, and I will describe it briefly. 
A simplified model is considered, with interest fixed at a given rate and 
with mortality according to a given table. Lapses are not taken into 
account. The insurance considered is whole life insurance for sum insured 
1 issued at age x with net level annual premium P,. 

For this model the basic random variable is T, denoting the policy 
year of death. This random variable has probability function P ( T  = t) 
= t-~lqz, t = 1, 2, . . . .  The annual premium, PT-q = 1/:~E, will be exactly 
sufficient with probability t-a{ qz and will be at least sufficient with prob- 



110 ON CALCULATING DELTA=IZED RESERVES 

ability 0.01k = tp,. One might then think of the expected value E[P~], 
namely, 

p * =  
z 

and wonder how P* is related to the usual net annual premium P,. 
By a slight rewriting of formula (10) of David H. Berne's paper "Net 

Premiums Viewed as Averages of Compound Interest Functions" (TSA, 
XlII, 215), one has 

h=l az 

which exhibits 1"= as R I P ,  l, where H has probability function P(H = h) 
= (am/g,) ~-llq,. Then the variance, Var [P~], is given by 

Var [Pgi] = ~ (p~)2 0~ h-1 [q: -- (p=)2 
h O;z 

V h 

= ~ P ~  E h_, I q. - (P=)' 

= ~ m ~  - -  ~ - ,  I q:  - ( e = ) :  

= ! p .  _ d e  - (~)~ d x  x x 

1 p ,  
= T [  = - ~]. 

Thus 
P*: = P.  + a, Var [P~] .  

This little crumb of mathematics is one thing suggested to me by the 
author's approach. However, this is purely in terms of an individual 
policy, and groups of policies require consideration too. 

I believe that the Society and the author would have been better served 
if this actuarial note had been expressed in more rigorous terms. 

(AUTHOR'S REVIEW OF DISCUSSION) 

WILLIAM A. BAILEY: 
Introduction 

When actuaries produce or consider reserves, the)' seldom quantify 
their confidence in the adequacy of such reserves. Perhaps they recall the 
adage "Fools rush in where angels fear to tread." On the other hand, some 
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research with stochastic models may provide some insights of value to the 
practicing actuary. 

The fact that Mr. Halmstad and Mr. Nesbitt have had some difficulty 
in understanding the paper may be due in part to the ambiguity of the 
italicized portion of the following statement: "that  is, the benefit reserve 
under a policy is to be sufficient, together with future benefit premiums 
under the policy, to provide for the policy's share of the cost of benefits 
over the lifetime of the policy k per cent of the time." Mr. Halmstad 
assumes that death at the end of the tth policy year requires that policy 

• t t - -  to provide (1 + ~) :t5:t, whereas Mr. Nesbitt assumes that death at the 
end of the / th  policy 5"ear requires that policy to provide 1.00. The cor- 
responding function contemplated bv the method of the paper is 

"~ [qx+r-,(1 -3V i )  t - r ] .  

In each of these three cases the frequency corresponding to these amounts 
is t-llqx. Thus, expressed in square brackets as univariate frequency 
distributions we have, under Mr. Halmstad's assumption, 

(1 + i)tA~-~ A ~  I 
- -  I q ]  

] -~ .-7"~ t - l l q x  ; 
aTi 

and under Mr. Bailey's, 

[ ~-'~ ((1 + i)t--rq~+r_a) 
r ~ l  . .  

s~ 
= ' ~  ,-xl q~ 

aTl 

The relationships 
w-x  w -x  t 

Px ~ t= l  

e = 2 (a'Tt ,-tlq~) = ~ (a7 t ,-tlq~) 
t = l  t ~ l  

suggest that, although either Mr. Nesbitt's or my suggested frequency 
distribution (or both) may be appropriate, Mr. Halmstad's is probably 
not, because 

(A-:r t ,_, lq) e A .  
t = l  
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Mr. Ha lms tad ' s  " reminder"  is pertinent here; namely, that  the quotient 
of the means of two random variables is not (usually) equal to the mean 
of the quotient of the two random variables; thus 

t-l(q. # P: 

and 

,:1 , - l lq :  # P : -  

However,  the objective of calculating a premium (or reserve) at a k 
per cent confidence level does not require the mean of the constructed 
frequency distribution thereof to equal P= (or ~V~). 

So far in this discussion of frequency distributions of levels of net pre- 
miums, we have been assuming a given fixed interest rate, and a given 
morta l i ty  rate at each attained age (or for each age at issue/policy year 
combination). The following section treats the situation, contemplated in 
the paper, in which not only are new-money rates treated stochastically, 
bu t  also morta l i ty  and lapse are t reated stochastically in a somewhat  
novel way. 

A Convolution Technique to Facilitate the Method Suggested in the Paper 

In this section we shall define special convolution operators which will 
enable us to perform the type of calculations contemplated, if not com- 
pletely described, in the paper. The  following two specific clarifications 
have been made:  

1. Mortality costs are distinguished from, although related to, mortality rates; 
similarly, lapse costs are distinguished from, although related to, lapse rates. 

2. Calculation of the rates of interest being earned on invested assets involves 
the weighting of old and new assets by the old rate of interest and the new- 
money rate, respectively, and also involves the rollover rate (r). 

Assume tha t  the matr ix  

[x~, yl, z~, t;, u;, pi] 

represents a discrete 5-dimensional frequency distribution, where i refers 
to the number  of the row (or line); xi, yi, zi, ti, and ui are real numbers;  
and p< is the probabil i ty or frequency of occurrence of the particular 
combination of xi, yl, zi, ti, and ui. We shall take the liberty of referring 
to such a matrix as a frequency distribution even when the sum of the 
frequencies (i.e., Z~=x pi, where n is the number of rows or lines) is less 
than unity. 



DISCUSSION 113 

Verbal descriptions of the variables in the matrices shown below are as 
follows: 

x} ') = New-money rate for previous policy year ; 
y}t) = Old-money rate for assets t! 1) ; 
z} l) = ,Old-money rate for assets u! 1) ; 
t!l)  

U! ') 

p}l) 

(Note 
X~2 ) 

(Note 
year.) 

X(3) = 

yk 3) .~_ 
p~3; = 

X~ 4) 

y~4) __- 

2:} 4) 

l} 4) = 

~}4) ~__ 

p~4) 

(Note 

X~ ) ~-- 
y2~ = 
p ~  = 

Value of $1 received at the beginning of each previous policy year 
and accumulated at  generated interest rates to the beginning of 
the current  policy year (t} ') = 0 at time of issue) ; 
Benefit costs, accumulated at generated interest rates to the 
beginning of the current policy year (u!"  = 0 at time of issue) ; 
Probabil i ty or frequency of occurrence of the particular combina- 
tion of x} ~, y~>, z! I), t} 1~, u~ l~ (p}l~ = 1.0 at time of issue) . 

that  t! ') is an "interest  only" type of function.) 

New-money rate for the current policy )'ear ; 
Probabil i ty or frequency of the occurrence of the value x~? ) given 
a value of x! ~) for the previous yea r .  

that  the values of x} 2) are independent of any particular policy 

This policy's share of the morta l i ty  cost for the current policy 
year ; 
Morta l i ty  rate for the current policy year ; 
Probabil i ty or frequency of occurrence of the particular combina- 
tion x~ 3' and y~ 3) . 

New-money rate for current policy year ; 
Old-money rate for assets t} *) ; 
Old-money rate for assets u} *) ; 
Value of $1 received at the beginning of each previous policy year 
and accumulated at generated interest rates to the end of the 
current policy year ; 
Benefit costs, accumulated at generated interest rates to the end 
of the current policy year ; 
Probabil i ty or frequency of occurrence of the particular combina- 
tion of x} 4), yl 4), z} ~), tI') , u~ ~' . 

that  i}4) is an "interest  only" type of function.) 

This policy's share of the surrender cost for current policy year  ; 
Lapse rate for current policy year ; 
Probabil i ty or frequency of occurrence of the particular combina- 
tion of x~ ) and y~).  
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The first convolution operator (designated as @ ) is a trinary opera- 
tor, which carries the values of the variables from the beginning to the 
end of a policy year. 

(~ { [ x~  ~), .,~,('),.,-('), t ('), , u (',, , p~')] , ,[x (~)j , . j h '= ) - -Prob  {y~2) I x~ ' }  ] , 

[x~',, y~,, p~:,]} 

= [x~" ,  y~", z~'), t~", u~ 4~, p~'q, 
where 

XI4) = X(2) • j , 

t~ *) = t~')(1 -- r)(1 -t- y~')) + t~')r(1 + x (2)) + 1.(1 + x (~)) 

(r = rol]over rate assumed operative at the beginning of the policy )'ear); 

[t?~(1 -- r)y~ '' + ,,'(')rxi ~' + 1. x~)](1 + ,}5;) yl  4) ----- /~,) ; 

u~ 4~ = u<,(1 - r)(1 + z!~) + u ~ r ( 1  + x~ 2~) + xp~ " 
i ~ t " $ " ' 

(1) (2) 1 / .  X(,3) X(~) [u?~(1 - r)z~ -1~ + u,  rxj Jti + x~ z~) + k , 

and 
p~) -- p(t)e(~),,,(3)y(3) for terminat ions by  death 

i r j  r k  k 

= ,~(1),5(2),~(~)(1 _ y(3)~ for surv ivors ,  
/ ' i  f j  t ' k  \ "  k / 

where i assumes each integer value from 1 to the number of lines in the 
first matrix, and, for each such value of i, j assumes each integer value 
from 1 to the number of lines in the second matrix; ~ and, for each pair of 
values (i, j ) ,  k assumes each integer value from 1 to the number of lines 
in the third matrix. The superscripts (1), (2), (3), and (4) merely indicate 
that the value is from the first, second, third, or fourth matrix, respec- 
tively. (To the extent that  the volume of calculations implied by this or 
other definitions in this discussion would be inordinate, suitable meshes 
can be superimposed on the coordinate axes and sufficiently small 
probabilities ignored; control can be maintained by  calculating various 
moments both before and after imposition of the meshes.) 

Mr. Halmstad and Mr. Nesbit t  assumed that 

[xC~) p~y] = [0.0s,  1.o1 j ~ * 

Mr. Halmstad assumed (incorrectly, I believe) that  

[~?', y?' ,  p~'J = [1 . , - , Iq , ,  q,+,-1, 1.01, 
a There  would be one "second mat r ix"  for each value of xm.  

t 
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whereas Mr. Nesbitt assumed that 

[x(~) ~o(a) p~31] = [1.00, q,+t-x, 1.0] 
k ) J k  

= [0.00,  q~-~-l ,  1.0] 
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where p[4~ = pa)p<'Z)y<~) 

where p}*) = p~t)pCz)(1 -- y~a)), 

and the corresponding assumption of the paper might have been that  

[*~, "'~ pT] yk , = [l'q,+t-1, q,+t-x, 1.0] 

Each of these constitutes a one-line frequency distribution, whereas the 
method of the paper provides for (and really expects) empirical or constructed 
multiline frequency distributions. 

Let the resulting 5-dimensional frequency distribution (5-d f.d.) for 
terminations by death in the tth policy year be represented by Dr, and 
the corresponding 5-d f.d. for survivors be represented by L-['. 

The second convolution operation (designated @ ) is a binary operator 
which carries the values of the variables from the end of a policy year to 
the beginning of the next policy year, in the sense that lapses ~ are taken 
into account. 

where 
X(6) _~. n 

t(n~) = 

[x} '), yl 4,, z} 'u, t}", u} 4), #4) l (~  [x(~ 5,, y~', p~5' l 

[x (~ , , ~  z ~ t ~ u~"~ p~6)], 
n ' / n  ~ n ' n l n ' 

X }  4) 

t~ 4~ , 

y ( 6 )  ___ y~4) 
n 

u(6) = u~*) + x (5) 
n m 

and 

(4) (4 ) /~  X(5)X(4) 
U l  Zl k* + X~ 4)) + m l g(6) 

n U(6) ' 
n 

p ( 6 )  = ~(4)~(6)~,(5) for terminat ions  by  lapse n f l  F ~  J m  

(4) (5) = Pz P,- (1 -- y~)) for su rv ivor s ,  

where l assumes each integer value from 1 to the number of lines in the 
first matrix; and, for each such value of l, m assumes each integer value 
from 1 to the number of lines in the second matrix. The superscripts (4), 

2 If lapse rates and mortality rates are not treated as independent random variables, 
then the convolution operator C) would not be used; rather, the definition of the 
convolution operator (~)would be recast to handle the dependent relationship between 
lapse rates and mortality rates. 
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(5), and (6) merely identify whether the value is from the first, second, or 
third matrix, respectively. 

Let the resulting 5-d f.d. for terminations by lapse (nonrenewal) at the 
beginning of the (t + 1)st policy year be represented by Wt, and the 
corresponding 5-d f.d. for survivors by L~ +'. As we proceed to perform the 
convolutions ( C )  and @ ) for the next policy year, the values of the 
variables in Lt +', 

X(6) .(6) g(6) l(~) U(6) ~(S) 

become 

respectively; that is, the recursive nature of the process comes into play. 
Merging (concatenating) D1, D2, . . .  , W1, W2, . . . , we have a 5-d f.d. 
which can be transformed into a univariate frequency distribution 
[u/t, p] of benefit premiums. Tabulating the results in ascending order 
of amounts and calculating the implied cumulative frequencies, the 
amount opposite a cumulative frequency of k per cent would be the 
benefit premium at the k per cent confidence level. 

The corresponding 5-d f.d.'s needed to calculate a l-d f.d. of reserves 
are developed in an analogous fashion, where, in the 5-d f.d., 

t~ ~) = Value of $1 of invested assets as of the valuation date, accumulated 
at generated interest rates to the end of the previous policy year; 

u! ~ = Benefit costs less benefit premiums, such net amounts from the 
valuation date to the beginning of the current policy year being 
accumulated at generated interest rates to the beginning of the 
current policy year; 

and 

t~ 4~ = Value of $1 of invested assets as of the valuation date accumulated 
at generated interest rates to the end of the current policy year; 

u~ 4~ = Benefit costs less benefit premiums, such net amounts from the 
valuation date to the end of the current policy year being ac- 
cumulated at generated interest rates to the end of the current 
policy year. 

A 2-Dimensional (Bivariate) Extension of the Frequency 
Distribution [1 /~ ,  ,-1] q,] 
As Mr. Nesbitt noted, the frequency distribution [1 /~ - -v t /~ i~ ,  

t-llqx] essentially considers a portfolio consisting of one single policy, 
whereas "groups of policies require consideration too." To extend this 
univariate discrete frequency distribution to handle multipolicy port- 
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folios, we shall find it convenient to define two operators on discrete bivar- 
late frequency distributions. For this purpose, assume that  the matrix 

[x~, y,, Pd 

represents a discrete bivariate frequency distribution, where i refers to 
the number of the row (or line); xi and yi are real numbers;  and p~ is the 
probabil i ty or frequency of occurrence of the particular combination of 
xl and y~. 

The binary operator is "Convolute  for Sums," designated by @ : 

ix m c') rxC2, ,,c~) '~) = [~1> x!2,, y~, y)~,, m ,2> , y ,  , p~l)] @ pj  ] + + p, pj ] t i  ,~, j , • 

where i assumes each integer value from 1 to the number  of lines in the 
first matrix;  and, for each such value of i, j assumes each integer value 
from 1 to the number  of lines in the second matrix;  thus the resulting 
matrix is obtained by  calculating the triplet of values (x!" + x~? ), y!l) + 
y}~), pipj) for each combination of i and j .  The superscripts (1) and (2) 
merely indicate whether the value originates from the first or the second 
matrix.  

The unary operator is "Trans form,"  designated by---*: 

[xi, y, ,  Pi] x / y  --* Z , [Zl, Pl] , 

NOW consider the following discrete bivariate frequency distribution: 

B o = [v', g~'l' ,-1 [ q,] , 

where t = 1, 2 , . . . ,  ~o -- x and represents both a policy year and the line 
(row) in the matrix. Then define 

B,  = B 0 ~ B 0 $ . . .  ~ ) B 0 ,  

n t~mes 

which is well defined since the Convolute for Sums operator @ is associa- 
tive (as can be easily verified). 

Transform B,  ( =  Ix, y, p]) from a bivariate (2-dimensional) frequency 
distribution into a univariate (1-dimensional) frequency distribution 
c .  (= Iz, p]): 

B ,  x / y - ' - * z  ~ C , ,  

and sort the rows of C,  into order by  z. Calculating the implied cumulative 
frequency, we have a univariate frequency distribution of net premiums 
for a portfolio of n identical ordinary life policies issued at age x. Table 1 
of this discussion shows mean values, s tandard deviations, and nearest 
percentiles of C,, for some selected values of n and the following assump- 



T A B L E  1 

NET PREMIUM PERCENTILES 

(Per $1,000 of Insurance) 

N U M B E R  
(n) 

5,536 

OF 

~OLICI~'$ 

1 12. 894 
2 . . . . . . .  8.651 
4 . . . . . . .  8. 082 
15 . . . . . .  7.787 
6 ~ . . . . . .  7. 723 
2 56 . . . . .  7. 708 
1 , 0 2 4 . . ,  7. 704 
4 , 0 9 6 . . .  7. 703 
16,394. .  7. 703 

7. 703 

STANDARD I 
DEVlATION~ I 

51. 188 
9. 727 
5.009 
2. 198 
1.069 
0.531 
O. 265 
O. 132 
0 .066 
0.033 

.O00t 

1.26 
1.70 
1.79 
3.37 
4.82 
6.00 
6.79 
7.23 
7.46 
7.58 

.0Ol 

1.32  
1,70 
2,22 
3.74 
5,15 
6,25 
6, 93 
7,30 
7,50 
7,60 

,Ol 

2.16 
2 .70  
4.27 
5.62 
6.57 
7.11 
7.40 
7.55 
7.63 

Nz~zsT PERCENI~LE 

.1o 

3.15 
3.72 
5.34 
6.42 
7.04 
7.37 
7.53 
7.62 
7.66 

.20 

3 .68  
4.23 
5.91 
6 .80  
7.25 
7.48 
7.59 
7.65 
7.67 

.3o 

4 .19  
4.75 
6.39 
7.10 
7.41 
7.56 
7.63 
7.67 
7.69 

.40 

4.09 
4.72 
5.80 
6 .88  
7.36 
7.55 
7.63 
7.67 
7.69 
7.69 

.50 

5.07 
5.79 
6.33 
7.38 
7.62 
7.68 
7.70 
7.70 
7.70 
7.70 

.60 

5 .96  
6,83 
7.38 
7.96 
7.90 
7.82 
7.76 
7.74 
7.72 
7.71 

.70 

7.45 
7.89 
8.45 

I 8.61 
8 .20  
7.96 
7.84 
7.77 
7.74 
7.72 

.8o 

9 .94  
10.50 
10.02 
9 .44  
8.58 
8.15 
7.92 
7.81 
7.76 
7.73 

.90 .99 

1 7 . 4 2 '  140.02 
15.82 47.03 
14.26 25.92 
10.69 14.47 
9.13 10.58 
8 .40  9.04 
8.04 8.34 
7.87 8.02 
7.79 7.86 
7.75 7.78 

I 
.999 

58 
84.66 
41.76 
17.94 
11.80 
9.54 
8.57 
8.12 
7.91 
7.81 

.9999 

952.38 
227.04 

59.18 
21.41 
12.91 
9.97 
8 . 7 6  
8.21 
7.95 
7.83 

* Note both that the mean approaches 1,000P= = 7.70 and that the standard deviation approaches zero, in each case as n approaches co. 
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tions: x -= 25; interest rate of 5 per cent; and probabilities of death 
according to the 1958 CSO Mortality Table (age last birthday). 

If we are given a fixed interest rate and a fixed probability of death for 
each issue age/policy year combination, and if the benefit premium has 
been established, we can proceed to calculate frequency distributions of 
benefit reserves, starting with the discrete univariate frequency distribu- 
tions: 

Do = [ {v" --  Pii~, , -1] '1~, ,  ,~, • 

Using a univariate Convolute for Sums operator (3, 3 we could then 
produce 

D , , =  D o ( 3  Do ( 3 . . . ( 3  Do.  

n times 

D~ would be sorted into order by reserve amount and the implied cumula- 
tive frequencies calculated, and the result would be a univariate frequency 
distribution of aggregate reserves for a portfolio of n ordinary life policies 
issued at age x. Given a valuation net premium for each policy, a separate 
Do could be constructed for each such policy. The univariate frequency 
distributions could be convoluted for sums ((3) to obtain frequency 
distributions of aggregate reserves for a whole portfolio of dissimilar 
policies. 

We could build in a frequency distribution of mortality tables (e.g., 
taking various percentages of a given mortality table) by performing the 
above calculations for each mortality table separately and then multiply- 
ing each of the resulting frequencies by the probability attached to that  
particular mortality table. This would be trea:ting the policies as partially 
dependent with respect to mortality. Similarly, we could consider a 
frequency distribution of interest rates, perform the above calculations 
for each interest rate separately, and then multiply each of the resulting 
frequencies by the probability attached to that particular interest rate. 
(The interest rates would not have to be level by policy year.) 

Further Remarks 

The questions and objections raised early in Mr. Halmstad's  discussion 
are answered by simply changing the function in his column 5 from 
(1 + i)tA~:~ to 2;,t=l [q,+~_t(1 + i)t-T]. His reference to treatment of 
endowment policies would be significant only if we did not follow each 
policy to its final disappearance from the portfolio, which we do. 

Mr. Halmstad is critical of the efficiency of the Monte Carlo simulation 

a x(l) ~(1)1 (t) ix (~) p~)] = [x (1) + x (1) ~(t)~,(2)l where i assumes each integer value 
from 1 to the number of lines in the first matrix; and, for each value of i, j assumes 
each integer value from 1 to the number of lines in the second matrix. 
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procedures outlined in the paper. I used the Monte Carlo approach only 
as a method for describing what would, in effect, be accomplished by the 
convolution technique described in this discussion. 

Mr. Halmstad's  intuitive ideas about streams of new-money rates, 
mortality rates, lapse rates, and so on, seem quite close, in concept, to 
the convolution approaches described above. However, use of "fast 
Fourier transforms and heavy numerical analysis" are unnecessary. In 
fact, use of fast Fourier transforms would probably require that the 
frequency f (corresponding to an amount x) be expressible as a mathe- 
matical function of x, whereas the convolution techniques described 
above are not restricted in this way. 

With regard to Mr. Halmstad's  final three points: 

I. My reference to assuming new-money rates to be at least partially dependent 
upon the new-money rate experienced in the immediately preceding year 
was merely to indicate that such a dependency could easily be built into the 
process; the assumption that new-money rates are independent from year 
to year would be even easier to handle. 

2. Near the end of the paper I indicated that dependent relationships between 
mortality fates, lapse rates, and so on, can be built into the process. 

3. With respect to distributions of mortality rates within a particular under- 
writing class, references [1] and [21 below may be of interest, since each 
considers the analysis of mortality by classes. 

My thanks and appreciation to Mr. Halmstad and Mr. Nesbitt for 
trying to understand the paper and for giving us the benefit of their 
thoughts. 

Questions for Further Discussion 
1. Under what, if any, circumstances is it appropriate to Convolute 

for Sums (@) either of the following bivariate frequency distributions? ......... 

1¢, ate, ,_~ [%]; (la) 
t 

2. Under what, if any, circumstances are either of the following assump- 
tions for [ x f ,  y f ,  p~)] appropriate in connection with the convolution 
operator @ defined previously in this discussion? 

[1.00, q ~ H ,  1.0] where p~') -- ~(a)~(2)~(3)v(,) l ' i  g j  ~k J k  

(2a) 
[0.00, q~t-p 1.0] where pl *) = ~(1)~(2)~(3)(1 -- yk °)) r i  r j  r k  

[1.q,+t_,, q,+t-,, 1.0]. (2b) 
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3. Should the values of x~ ~) and y ~  in the frequency distribution 
[x~3), y~3), p~3~] be constructed from mortality rates based on amounts 
of insurance and numbers of policies (or numbers of lives), respectively? 

4. Must the net valuation premiums be set at the same k per cent 
confidence level used for reserve purposes? Further, should net valuation 
premiums be set on some mean-value basis, without reference to fre- 
quency distributions, even though reserves are approached using fre- 
quency distributions? 

5. Does use of the frequency distribution [1/~71, t-llqx] (or its 2-d ex- 
tension) imply a closed portfolio? 

6. Does the approach described in the paper (and amplified in this 
discussion) imply an open portfolio? 

7. Is it possible to use a convolution approach to construct a frequency 
distribution of net valuation premiums for a portfolio of dissimilar 
policies? 
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