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ABSTRACT 

The subject of this paper is a mathematical model for insurance com- 
pany risks formed by a linear combination of four stochastic processes. 
The first process models the evolution of claim patterns, recognizing both 
the random number of claims in a time period and the random nature of 
the claims. The other three processes serve as models for random devia- 
tions from assumptions about investment performance, operating ex- 
penses, and lapse expenses. 

The paper has four purposes. First, we wish to share with readers 
refinements in the risk model published in four recent papers. Second, we 
wish to improve the model further to consider deviations in assumptions 
that have allowed for inflation. The third purpose is to i~lustrate the 
model with more realistic and detailed examples than were considered 
previously. The fourth purpose is to furnish tables and suggestions that 
readers can use in applying the multirisk model to planning projects for 
their companies. 

I. THE MULTIRISK PROCESS 

SU~E that {X~} is a sequence of independent, identically distributed 
random variables with a common distribution function P(x). 
Assume that E(X~) = Pl > 0. The X~'s represent the claims, 

and p, is the expected value of an individual claim. Consider a stochastic 
process {N(r), r >__ 0} that models the random numbers of claims in 
time. We no longer require this to be a Poisson process. Instead, we 
assume that {N(r), r > 01 is a nonnegative, integer-valued stochastic 
process, independent of the {Xi}, with N(0) = 0. Thus, the claims process 
can be described as 

N 0") 

C(r)  = ~ X~, r > O,  
i l l  

where r is calendar time. 
Let {I(r), 0_< r < oo}, {O(r), 0_< • < oo], and {L(r), 0_< r < ¢0 } 

be stochastic processes modeling random deviations from actuarial as- 
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372 A MULTIRISK STOCHASTIC PROCESS 

sumptions about investment performance, operating expenses, and lapse 
expenses. As explained in [3], we assume that each process enjoys the 
Gaussian and Markovian properties. This means that all finite-dimen- 

sional distributions are multivariate normal, allowing both adverse and 
favorable deviations in a symmetrical manner about the mean functions. 
We will assume that 

E{I (~ ) }  = E { 0 ( r ) }  = E{Z(r)}  = 0 ,  0 < r < 

In general, future values for the three processes are dependent on the past 
results. I t  is difficult for a mathematical model to recognize those de- 
pendencies completely. However, if we assume that, as a first approxima- 
tion, probabilities about future events depend only on the present values, 
our models are Markovian stochastic processes. As explained in [3], the 
Wiener stochastic process is the most widely studied and used process 
with the Gaussian and Markovian properties. However, its variance 
function is unbounded with evolving time. This was the main reason for 
using another Gaussian Markov process called the Ornstein-Uhlenbeck 
process. 

Our collective multirisk process is defined to be 

R(r)  = C(r) -- I (r)  + O(r) + L(r)  , 0 < r < co , (1) 

where r is calendar time. We use - I ( r )  rather than + I ( r )  because 
adverse investment results would be valued negatively. 

Actuaries would be interested in the expected values and the variances 
of the R(r)  process for use in determining gross premiums. 

E{R(,-)} = .~{C0")} -- E{ I ( , - ) }  + E{O0")}  + .~{.L(T)} (2) 

= p x E { N ( r ) } ,  0 < r < o0 

To obtain Var {R(r)}, we must describe the other three processes more 
completely, utilizing results that have evolved in the five previously 
cited papers. 

For the Ornstein-Uhlenbeck process, the transition density function 
(s < t) is 

0 P { x ( t )  < ylX(s)  = x} p(x, s; y, t) = -~y 

u.n-- {y - • exp [ - ~ ( t -  s)l}'-n,_v (3) 
[ 21r A (s, t) ]-l12 exp 

• 2 A  ( s ,  t )  

where A(s, t ) =  ~2{1- -exp  [--2/~(t--s)]},  and cr 2 > 0 ,  ~ > 0 .  The 
variance function equals a ~ for all t >_ 0, and the covariance E{X(s)X( t ) }  
= ~2 exp [ -B( t  - s)] for s < t. 
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We shall assume tha t  the four processes are independent. Denoting the 
variances of the three Ornstein-Uhlenbeck processes by a~, a~, and a~, 
we obtain the result 

Var  {R(r)} : Var  {C(r)} -t- ~ + 4 + a~ (4) 

o < < = , 

where p2 = E{ X] }. 
I t  would be convenient to have some knowledge of the probabil i ty 

s tructure of the multirisk process. Assume that  the initial reserve is de- 
noted by u and tha t  (for simplicity) premium income flows in at  a s teady 
rate. Then the ac tuary  is interested in a gross premium G such tha t  the 
probabil i ty tha t  the greatest  difference between R(r)  and rG at  any 
point  in t ime is greater than u is appropriately small, say 0.001. 

Each sample function w(r) of the C( , )  process is of the form 

w(r)  = O, O < ~" < tl 

i i+1 

= a~, ~ ' ~ . r j < r  < ~ r j ,  i =  1 ,2  . . . .  
.;:1 j -1  

where ~ > 0  for i =  1, 2 , . . .  ; - - ,~ < a ; <  ~ for i =  1, 2 , . . .  ; 
a;+l -- ai ~ 0 for i --- 1, 2, . . . ; and Z,:.I ri = -4- ~ .  This  last condition 
allows a t  most a finite number  of discontinuities in any finite interval. 
Consider a positive constant  X such that  Pt A- ), < G. A sample pa th  of 
C(r)  -- r(pl  q- k) would have the appearance of the diagram in figure 1. 

+ 

i 
2 

- . . . . . j  , . r :  + r2 r:  + r :  + : :  

Fro. 1 
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Let S(r)  = - - I ( r ) - b O ( r ) q - L ( r ) ,  0_< r < oo, where each of the 
three processes has # = 1. Theorem 1 of Part  I of [2] proves that {S(r), 
0 _< r < oo } is also an Ornstein-Uhlenbeck (O.U.) process with fl = 1. 
Let a~ q- ~o + a~ = KS for K > 0. As explained on page 89 of [4], the 
sample functions of an O.U. process are continuous. As discussed on 
pages 578 and 588 of [3], the conditional mean function 

E{S( t ) [S ( s )  = x} = xe -e('-') for 13 > 0 .  

This implies a drift downward if the present position S(s) is positive and a 
drift upward if it is negative. For our purpose, "position" refers to a devia- 
tion from the expected value. A minigraph of the S(r) process thus would 
have the characteristics shown in figure 2. A sample path of S(r),  0 <_ 
r _< T, could have the appearance of the curve illustrated in figure 3. 

Let u be an initial allowance for adverse claims, and A K  a provision 
for deviations from assumptions about investment performance, operating 
expenses, and lapse expenses. Risk managers are concerned with proba- 
bilities of the following type: 

P{omaX r [ c ( r ) - r ( p , + x ) l > u  max S(r) > A K I S ( O )  = 0 } .  

In words, this is the probability that, in a future time interval 0 < r < T, 
the C(T) process exceeds and the S(r) process exceeds or equals allowable 
values. The assumed independence of the four processes allows us to factor 
the above probability into the following product: 

P{o<ma<xr [C(,') -- r(p, + X)] > u)P{o_<rna_< ~ S(r) >_ AK[S(O) : 0} 

I I 
$ ! 

Ill 
9" 

- - x  

tendency for - x  

FIG. 2 
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FIG. 3 

The actuary is interested in determining a gross premium such that this 
product is appropriately small, say 0.001. 

II. DISCUSSION OF PREVIOUS RESULTS, AND OTHER REFERENCES 

One of the purposes of the five previous papers on this subject was to 
develop a more realistic model and to illustrate it. Section llI of [3] was 
concerned partially with providing for inflation in premiums. This will be 
treated more extensively in a later section of this paper. Theorems 2 and 
3 of [2] obtained techniques for calculating 

P{ max S(~') > AKIS(O)  = 0} . 
0<,<T 

The third section of that paper illustrated the product probabilities, where 
the first factors (the ~b(u, T)'s) were drawn from [25] for various claim 
distributions. I t  was assumed that {N(r), 0 _< z < co } was a Poisson 
process and that operational time was in effect, that is, E{N(r)} = r. 
The Poisson restriction was removed in Part II of [2], and a theorem was 
proved that allowed the determination of O.U. probabilities for more 
realistic values of the parameter O. The elimination of the Poisson re- 
striction allowed the examples to utilize twice as many tables from [25]. 
Some of those numerical values will be repeated in a later section of this 
paper. 

The simulation of R(r) sample paths with resulting approximate 
probabilities was performed in [5]. The Monte Carlo technique for the 
C(r) process was based largely on [22], while the simulation technique for 
the S(r) process was patterned after [12]. As a by-product of implement- 
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ing the latter method, it was observed that the correlation between S(r) 
observations separated by one unit of time is e-~. Observations of the 
S(r) process can be used to estimate e -a. Thus, e -~ can be regarded as the 
theoretical autocorrelation function for lag k = 1 in equation (5) of [19]. 
An observed series can be used to calculate the sample autocorrelation 
coefficient with lag 1: 

( z ,  - 2 ) ( z , _ ,  - 2 )  
i=2 

( z ,  - 2 ) '  
i=1 

where n is the number of observations and 2 = ~,'..~ Z,/n. This is formula 
(1) of [19] with k = 1. The sample paths for {C(r) + S(r) - r(pt + X), 
0 < r < T} were simulated, and a count was kept of those that exceeded 
the quantity u. If n such financial histories (sample paths) are simulated 
and k exceed u in the time interval [0, T], the estimate of the desired 
probability is k/n with an estimated standard error of [(k/n) (1 -- k/n)/ 
n] 1/2. Five examples with different claim distributions and claim time 
distributions were considered, and tables of results were included. 

The fact that this paper has been phrased in terms of calendar time 
rather than operational time is a reflection of some of the results of [6]. 
Operational time is very convenient for the claims process, since it 
measures time by the expected number of events during the period, but it 
is not natural for the O.U. processes. This became apparent in the exam- 
ples of Parts I and I I  of [2] in which T = 100 or 1,000, and the proba- 
bilities of excessive deviations for the S(r) process became inappropriately 
large. For the S(r) process, calendar time is more appropriate, and logical 
choices of T are 1, 2, . . . , 10. One of the purposes of [6] was to derive 
techniques and tables of O.U. distributions for such choices of T. The 
second purpose was to reconsider the examples in [2] and make them more 
realistic by an improved consideration of the time variables. 

The multirisk model is directed toward the same problem as SOFASIM 
[24]. SOFASIM is a computer model simulating a stock life insurance 
company and is a tool for the study of adverse deviations. John C. 
Wooddy, chairman of the Committee on Theory of Risk, had a major role 
in its development, refinement, and dissemination to members of the 
Society of Actuaries [26]. SOFASIM is a very thorough and practical 
solution to the problem. The multirisk model should provide readers with 
a global view of the problem and a stimulus for viewing the problem in 
different manners. 
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Richard W. Ziock's paper  [27] relates to the process {I(r) ,  0 _< r < ~ }. 
The  purposes of tha t  paper  were to present and justify a t ime series 
model for interest rates, and hence to quantify the interest rate delta. The  
time series model presented (p. 5) is 

y,+l = yt + a t ,  or zXyt = a t ,  

"where a, is white noise: a random selection from some known distribution 
which may  or may  not vary  with t ime."  As indicated on page 18 of [4], 
a frequent model for white noise is the O.U. process. On page 8 of [27] is 
the sentence: "I f  we are standing a t  the origin t and choose to forecast the 
value of yt+l, the variance of the forecast is the variance of at which is 
independent of t ime and equal to ~2.,, This  reinforces the choice of the 
O.U. process rather than the Wiener process for {I(r) ,  0 _< r < m } (see 
p. 577 of [3]). 

Obviously, Richard G. Horn ' s  paper  [14] is still an impor tant  reference. 
In  addition, references [1], [8], [9], [11], [13], and [18] contributed to the 
authors '  understanding of the subject and may  prove useful to readers of 
this paper. The  list is not exhaustive, and other references may  be more 
valuable for some readers. 

Ill. PROVISIONS FOR INFLATION 

As stated previously, Section I I I  of [3] was devoted part ial ly to 
allowing for inflationary assumptions. For example, assume that  an in- 
surance line expects 100 claims per year, tha t  is, operational t ime t = 100 
corresponds to calendar t ime r = 1. Let  us assume tha t  the ac tuary  ex- 
pects an inflationary trend of 4 percent of the average claim pl. This can 
be handled very easily by simply viewing par t  of the security loading ), 
as 0.04pv Thus  the collective premium for one year  would be 100(pl + X), 
or 100[pt + 0.04pi + (X -- 0.04pl)]. In  other words, no extra ma themat -  
ics is needed to handle a provision for inflation in claims. 

I t  is not tha t  simple with a provision for inflation in deviations from 
assumptions about  investment  performance, operating expenses, and 
lapse expenses. Our previous O.U. distributions 

P {0ma_<x S(r) >__ A K { S(0) = 0} 

have concerned themselves with deviations above a constant  boundary 
AK.  We now wish to replace A K  by a function AKe b', ~ > O, 0 < r < T, 
and derive values for the O.U. distributions 

D(T, A,  K,~)  = P { m a x [ S ( r )  -- AK# ' ]  > 0IS(0)  = 0}. (5) 
o<,<~ 
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This will measure probabilities of deviations exceeding a safety margin 
that explicitly provides for inflation. 

Let E(T, A, K, R) = D(T, A, K, ~), where D(T, A, K, 5) is defined by 
equation (5) and R is the annual rate of inflation defined by 1 + R = e a. 
Tables 1-20 were developed from the results in Section IV and the 

T A B L E  1 

R = 0.0300; 8 = 0.02955880; T = 1 

N / M  

A 

).50. 
1.00. 

.00.  
L00.  

6/0 

0.760464 
0.443515 
0.062152 
0.002572 

7/1 8/2 9/3 

0.760412 0.760403 0.760401 
0.443484 0.443473 0.443470 
0.062139 0.062135 0.062135 
0.002571 0.002571 0.002571 

1o/4 11/5 

0.760401 0.760400 
0.443469 0.443469 
0.062135 0.062135 
0.002571 0.002571 

C P U time, 191.4700 seconds 

T A B L E  2 

R = 0.0400; ~ = 0.03922071; T - -  1 

N / M  

A 

7/1 8/2 9/3 10/4 11/5 

), 50, 
L.O0. 
,~.00. 
~.00. 

6/0 

0,759290 
0.440245 
0.059968 
0.002354 

0.759237 
0.440213 
0.059954 
0.002354 

0,759228 0,759226 0.759225 
0.440202 0.440198 0.440197 
0.059951 0.059951 0.059951 
0.002353 0.002353 0.002353 

0,759225 
0.440197 
0.059951 
0.002353 

CPU time, 188.4050 seconds 

T A B L E  3 

R = 0.0500; 8 = 0.04879016; T = 1 

N / M  

7/1 8/2 9/3 10/4 11/5 

A 

6/0 

0.50.  0.758117 
1.00. 0.436992 
2.00.  0.057853 
3.00.  0.002154 

0.758064 0.758055 
0.436959 0.436948 
0.057840 0.057836 
0.002154 0.002153 

0.758053 
0.436945 
0.057836 
0.002153 

0.758052 
0.436944 
0.057836 
0.002153 

0.758052 
0.436944 
0.057836 
0.002153 

C P U time, 187.0690 seconds 



TABLE 4 

R = 0.0600; ~ = 0.05826891; T = 1 

N/M 

A 

0.50. .  
1.00..  
2.00. .  
3.00. .  

6/0 7/I 

0.756947 0.756893 
0.433758 0.433724 
0.055806 0.055792 
0.001971 0.001970 

8/2 

0.756883 
0.433713 
0.055789 
0.001970 

9/3 

0.756881 
0.433709 
0.055789 
0.001970 

1014 

0.756880 
0. 433708 
0.055789 
0.001970 

11/5 

0.756880 
0.433708 
0.055789 
0.001970 

CPU time, 187.9120 seconds 

TABLE 5 

R = 0.0700; ~ = 0.06765865; T = 1 

).50. 
L.O0. 
!.00. 

.00. 

N / M  

A 

6/0 

0.755778 
0.430541 
0.053825 
0.001802 

7/I 

0.755723 
0.430507 
0.053811 
0.001801 

8/2 

0.755713 
0.430496 
0.053808 
0.001801 

9/3 10/4 

0.755711 0.755711 
0.430492 0.430491 
0.053807 0.053807 
0.001801 0.001801 

11/5 

0.755710 
0.430491 
0.053807 
0.001801 

CPU time, 181.3300 seconds 

TABLE 6 

R = 0.0300; ~ = 0.02955880; T = 5 

N / M  

A 

). 50..  
.00. .  

2 .00. . .  
3 .00. . .  

12/8 14/10 

. . .  0.975376 0.979820 
0.854065 0.865124 
0.292032 0.293196 
0.024142 0.023274 

16/12 

0.980858 
0.865831 
0.292024 
0.023153 

18/14 

0.980911 
0.865702 
0.291938 
0.023147 

20/16 

0.980907 
0.865693 
0.291935 
0.023147 

22/18 

0.980906 
0.865693 
0.291935 
0.023147 

CPU time, 127.2290 seconds 
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T A B L E  7 

R = 0.0400; ~ = 0.03922071; T = 5 

N/M 

A 

0 . 5 0 . .  
1 . 0 0 . . .  
! . 00 . . .  

3 . 0 0 . . .  

12/8 14/10 

0.974033 0.978743 
0.843876 0.855734 
0.266116 0.267303 
0.019085 0.018258 

16/12 18/14 

0.979841 0.979898 
0.856490 0.856351 
0.266089 0.266000 
0.018142 0.018135 

20/16 

0.979893 
0.856341 
0.265997 
0.018135 

22/18 

0.979892 
0.856340 
0.265997 
0.018135 

CPU time, 127.7010 seconds 

T A B L E  8 

R = 0.0500; 6 = 0.04879016; T = 5 

N/M 

A 

0 . 5 0 . . .  
1 . 0 0 . . .  
2 . 0 0 . . .  
3 . 0 0 . . .  

12/8 14/10 

0.972604 0.977596 
0.833115 0.845816 
0.241838 0.243046 
0.015180 0.014-395 

16/12 18/14 

0.978760 0.978820 
0.846625 0.846475 
0.241793 0.241701 
0.014283 0.014277 

20/16 

0.978814 
0.846464 
0.241698 
0.014277 

22/18 

0.978814 
0.846463 
0.241698 
0.014277 

C P U time, 128.1170 seconds 

T A B L E  9 

R = 0.0600; ~ = 0.05826891; T = 5 

N/M 

t l  

9.50. 
.00. 

2.00. 
3.00. 

12/8 14/10 

0.971083 0.976376 
0.821783 0.835374 
0.219325 0.220552 
0.012178 0.011435 

16/12 

0.977610 
0.836237 
0.219264 
0.011327 

18/14 

0.977673 
0.836076 
0.219169 
0.011321 

20/16 

0.977667 
0.836064 
0.219166 
0.011321 

22/18 

0.977667 
0.836064 
0.219166 
0.011321 

C P U time, 128.4790 seconds 
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T A B L E  10 

R = 0.0700; ~ = 0.06765865; T = 5 

A 

12/8 

.50. 0.969464 

.00. 0.809889 

.00. 0.198653 

.(30. 0.009870 

NIM 

14/10 16/12 18/14 

0.975079 I 0.976386 0.976453 
0.824416 0.825336 0.825163 
0.199897 0.198577 0.198479 
0.009168 0.009064 0.009059 

20/16 22/18 

0.976447 0.976447 
0.825150 0.825150 
0.198476 0.198476 
0.009059 0.009059 

CPU time, 128.8030 seconds 

T A B L E  11 

R = 0.0300; 8 = 0.02955880; T = 7 

). 50. 
.00. 
. 00  

3.00. 

18/14 

O. 992596 
..  0.921482 

. O. 354407 
O. 028061 

20/16 

0.993811 
0.926528 
0.354344 
0.027261 

N/M 

22/18 24/20 

0.994067 0.994075 
0.926704 0.926652 
0.353514 0.353456 
0.027173 0.027169 

26/22 

0.994074 
0.926648 
0.353455 
0.027169 

28/24 

0.994074 
0.926648 
0.353455 
0.027169 

CP U time, 243.7040 seconds 

T A B L E  12 

R = 0.0400; 8 = 0.03922071; T =  7 

N/M 

A 

18/14 

L S O . . . .  0.991834 
1.00. 0.911163 
kO0 . . . . .  0.314336 

3.00 . . . .  0.020979 

20/16 

0.993180 
0.916886 
0.314261 
0.020214 

22/18 

0.993464 
0.917084 
0.313380 
0.020129 

24/20 

0.993473 
0.917025 
0.313318 
0.020125 

26/22 

0.993472 
0.917020 
0.313317 
0.020125 

28/24 

0.993472 
0.917020 
0.313317 
0.020125 

CPU time, 244.4640 seconds 
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TABLE 13 

R = 0,0500;/~ = 0.04879016; T = 7 

~'IM 

t l  

[3.50 . . . . . . .  
1 .00 . . .  
2 .00 . . .  
3 .00 . . .  

18/14 20/16 

. 0.990979 0.992473 
0.899694 0.906170 
0.277791 0.277704 
0.016007 0.015276 

22/18 

0,992788 
0.906393 
0.276777 
0.015195 

24/20 26/22 

0.992798 0.992797 
0.906325 0.906320 
0.276712 0.276710 
0.015191 0.015191 

28/24 

0.992797 
0.906320 
0.276710 
0.015191 

CPU time, 245.2280 seconds 

TABLE 14 

R = 0.0600; 8 ~ 0.05826891; T ~ 7 

NIM 

A 

D.50. 
.00. 

2.00. 
3.00 . . . .  

18/14 20/16 22/18 

0.990019 0.991680 0.992029 
0.887032 0.894342 0.894592 
0.245156 0.245061 0.244093 
0.012488 0.011793 0.011714 

24120 

0. 992041 
0. 894515 
0. 244024 
0.011711 

26122 

0.992040 
0.894509 
0.244023 
0.011710 

28/24 

0.992039 
0.894509 
0. 244023 
0.011710 

CPU time, 249.9180 seconds 

TABLE 15 

R = 0.0700; ~ = 0.06765865; T = 7. 

A 

18/14 

D . 5 0 . . . .  0.988942 
1 .00 . . .  0.873166 
! .00 . . .  0.216549 

3.00 . . . . . .  0.009951 

NIM 

20116 22/18 24/20 26/22 

0.990790 0.991179 0.991192 0.991190 
0.881390 0.881670 0.881583 0.881576 
0.216446 0.215442 0.215371 0.215370 
0.009292 0.009216 0.009213 0.009213 

28/24 

0.991190 
0.881576 
0.215370 
0.009213 

CPU time, 254.4850 seconds 
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TABLE 16 

R = 0.0300; ~ = 0.02955880; T = 10 

A 

26/22 

) . 5 0 . . . . .  0.998475 
.00. . 0.963344 

2.00. 0.408850 
3.00. 0.030715 

NIM 

28/24 

0.998796 
0.966934 
0.412455 
0.029858 

30/26 

0.998884 
0.967377 
0.411070 
0.029640 

32/28 

0.998892 
0.967329 
0.410948 
0.029627 

3 4 / 3 0  

0.998892 
0.967325 
0.410942 
0.029627 

36/32 

0.998892 
0.967326 
0.410941 
0.029626 

CPU time, 468.9470 seconds 

TABLE 17 

R = 0.0400; ~i = 0.03922071; T = 10 

~r/M" 

A 

26/22 28/24 30/26 32/28 

3.50. 
.00. 

2.00..  
3.00..  

0.998144 0.998536 0.998645 0.998654 
0.953497 0.958060 0.958622 0.958561 
0.348417 0.352342 0.350817 0.350683 
0.021935 0.021124 0.020912 0.020899 

34/30 36/32 

0.998654 0.998654 
0.958556 0.958556 
0.350676 0.350675 
0.020899 0.020898 

CPU time, 481.3370 seconds 

TABLE 18 

R = 0.0500; $ = 0.04879016; T = 10 

~).50 . . . . . .  
1.00. 
2 .00 . . .  
3 .00 . . .  

N/M 

26/22 28/24 30/26 32/28 34/30 

0.997730 0.998212 0.998345 0.998357 0.998356 
0.941410 0.947169 0.947878 0.947801 0.947795 
0.296430 0.300619 0.298975 0.298830 0.298823 
0.016379 0.015616 0.015412 0.015399 0.015399 

36/32 

0.998356 
0.947795 
0.298821 
0.015399 

CPU time, 488.0750 seconds 
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TABLE 19 

R = 0.0600; 8 = 0.05826891; T = 10 

:).50... 
.00... 

2 . 0 0 . . .  
3 . 0 0 . . .  

N/M 

26/22 

0.997211 
0.926859 
0.253383 
0.012683 

28/24 

0.997806 
0.934060 
0.257779 
0.011967 

30/26 

0.997970 
0.934947 
0.256037 
0.011771 

32/28 

0.997985 
0.934850 
0.255883 
0.011759 

34/30 

0.997984 
0.934842 
0.255876 
0.011759 

36/32 

0.997984 
0.934842 
0.255874 
0.011758 

CPU time, 507.2670 seconds 

TABLE 20 

R ~ 0.0700;/~ = 0.06765865; T = 10 

N/M 

A 

D.50... 
1.00... 
2.00... 
3.00... 

26/22 28/24 

0.996562 0.997299 
0.909735 0.918636 
0.218542 0.223093 
0.01009O 0.009422 

30/26 

0.997501 
0.919732 
0.221275 
0.009234 

32/28 

0.997519 
0.919611 
0.221113 
0.009222 

34/30 

0.997518 
0.919602 
0.221106 
0.009222 

36/32 

0.997518 
0.919602 
0.221103 
0.009222 

CPU time, 532.2070 seconds 

Appendix. The implementat ion of the algorithm is also described in the 
Appendix. In  all cases, the O.U. parameter 0 is equal to 1. Seldom would 

data produce 0 = 1, but  a method for handling this problem is discussed 

and illustrated in Section V. 
These twenty tables provide values for an O.U. stochastic process 

exceeding an upper boundary that grows with time and that depends on 
an assumed inflation rate. The key parameters for each table are R 
(assumed annual  rate of inflation) and T (number of calendar years in the 
future observation period). These parameters are indicated at the top of 

each table. 
In  Section IV we will resume a consideration of the theory needed to 

handle real data. We will obtain equations (6) and (7), which are also 
concerned with O.U. stochastic processes exceeding various upper  
boundaries that  reflect provisions for adverse deviations. 

The proofs of theorems needed to obtain values for the O.U. distri- 
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butions in equations (5) and (?) are given in the Appendix. They are 
presented in detail partially because the O.U. process may prove useful in 
different actuarial applications. The basis for this hope is the fact that the 
authors of [16] utilized the O.U. process in discussing a continuous time 
model for credibility formulas. Assume that P(t) is the premium density 
at time t, S(t) is the aggregate of the claims at time t, and c > 0. Then 
P(t) satisfies the stochastic differential equation 

dP(t) = c[dS(t) -- P(t)dt]. 

This is of the same form as 

dU(t) = --bU(t)dt + dW(t) , b > O, 

where U(t) is an O.U. process and W(t) is a Wiener process. (The Wiener 
process is discussed in many textbooks and papers; it is a Gaussian 
Markov process with mean function E{ W(t)} = 0 and covariance func- 
tion E{W(s)W(t)} = rain (s, t).) Formal integration of these equations 
leads to the analogous results 

t 

P(t) = e-aP(O) + c J 'e -c"-")dS(u)  
0 

U(t) = e-b'U(0) + f e b " - ' ~ d W ( s ) .  
0 

Although [16] did not use distributions for the O.U. process, it does sug- 
gest that the results and methods of proof contained in the Appendix may 
be useful in other actuarial applications. 

IV. PRELIMINARY RESULTS ]FOR EXAMPLES 

The reader will need additional theory to handle problems with real 
data. These results are put in a separate section for ready reference in 
future applications. 

First, it would be unusual if real data allowed the actuary to conclude 
that the 3's for the I(r),  L(r), and O(r) processes were the same. This 
precludes using the idea that S(r) = - - I (r)  + L(r) + O(r) is also an 
O.U. process with the same /3. The {S(r), 0 _< r < co } process is still a 
Gaussian stochastic process with E[S(r)I = 0, Vat {S(r)} = ,~ + cr~ + 
~ ,  for 0 _< r < co. However, Covar {S(s), S(t)} cannot be expressed in 
the factorable form (see p. 89 of [4]); therefore, the S(7) process is not 
Markovian and is not an O.U. process. Nevertheless, meaningful proba- 
bility expressions can be set up. Thus, the independence of the four 
processes allows us to write the probability of excessive adverse deviations 
in calendar time [0, T] for all four processes as the product of four in- 
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dividual probabilities. In symbols, 

P{o max-~_<r [C(r) -- r(p,  + X)] > u ,  max  [ - - I ( r )  - - / ( r ) ]  3> 0 ,  
_ O _ < ~ < T  

max [L(r) - g(r)] > O, max  [O(r) - h(r)] _> 0 
O<r<T OSrST 

[~(o) = L(O) = o(r) = o} 
= P{  max [C(r) --  r(p~ + ~)] > u} 

o<~<r (6) 

× e{om_<~r[-I(~) - / (~ )1  3> 0I t (o)  = o) 

X P{0maxr [L(r) - g(r)] > 01L(0) = o) 

x P(omax  [o(~) - h(~)] > 010(0) = 0} .  

Impor t an t  examples with equal boundary functions are f ( r )  = g(r) = 
h(r) = Aa  or Aae 6" for r > 0. Reference [6] used g(r) =- Aa. In order 
to consider inflation, we now will consider g(r) = Aoe ~" for r > 0. 

Second, it would be impossible to tabulate O.U. probabilities for all 
reasonable choices of 3. In  many  cases, this problem can be handled by 
the theorem tha t  follows. 

Let  {X(r), 0 < r < co } be an O.U. process with transition density 
function given by equation (3), and let 

F(T)  = P { s u p r e m u m  [X(r)  -- Aae ~] > 0 I X ( 0 )  = 0} . (7) 
O<~<T 

For practical purposes, the supreme of each sample function can he 
thought of as the maximum value over the time interval. 

TI-IEORE~ 1. Let { Y(r),  0 < r < o~ } be a second O.U. process with 
variance and covariance parameters of 1, that is, ~r ~ = 3 = 1 in equa- 
tion (3). Then 

F(T)  = P ( s u p r e m u m  [Y(r)  -- Ae ~'] >_ 0[ Y(0) = 0} . (8) 
O<r<BT 

Proof: This follows from Theorem 2 of Par t  I I  of [2]. 

V. EXAM[PLES OF DATA, AND M'ULTIRISK PROCESSES 

Fundamental  to the multirisk model is the use of data  to determine 
the four processes. We will show some fairly realistic da ta  to illustrate the 
procedures and formulas. Assumptions about  investment  performance, 
lapse expenses, and operating expenses can be expressed in monetary  
terms or relative percentage figures. I t  would be natural  to view invest- 
ment  performance in percentage terms. 

Let  us examine lapse expenses in greater detail. Assume that  there are 
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100,000 policies in a portfolio. This ensemble will be viewed as a stationary 
population in which 20,000 policies are in their first two policy years and 
80,000 are in their third or later policy years. Assume that a loss of c, 
occurs if a policy is lapsed in the first two years, and a loss of c2 occurs if a 
policy is lapsed in the third or later years. The random variable L repre- 
senting aggregate lapse loss can be viewed as follows: 

20.0~0 80,000 

L =  ~ X , +  ~ r , .  
i = 1  i ~ l  

The random variables [Xi} and [ Y~} are assumed to be independent. The 
probabilities for these random variables will be determined from the 
1974 Life Insurance Fact Book figures supplied by E. J. Moorhead in his 
discussion of the Brzezinski paper ([8], p. 299). Thus, each Xi equals c, 
with probability 0.195 and zero with probability 0.805, and each Y~ = c2 
with probability 0.045 and zero with probability 0.955. 

20,000 80,000 

Y.(L) = ~ E(x,) + ~ e(Y,) 
i - *  i = 1  

= 20,000(0.195c,) -Jr 80,000(0.045c2). 

By the assumed independence, 

Var (L) = 20,000(0.195c~) (0.805cx) + 80,000(0.045c2) (0.955c2). 

Although the random variables do not have the same distribution, the 
central limit theorem still applies (see, for example, [10]), and L is a normal 
(Gaussian) random variable. A logical delta for lapses would be an ap- 
propriate multiple of standard deviation (L). However, it would be just as 
meaningful for the actuary to consider relative deviations of the form 
i L l -  E(L)]/aL, and that is the way in which our data are presented. 
Similarly, operating expense deviations will be presented in the stan- 
dardized form [ O i -  E(O)]/cro. 

Table 21 displays observed deviations from assumptions about invest- 
ment performance, lapse expenses, and operating expenses at fifteen six- 
month intervals. For summary purposes, E(I(r)), E(L(r)), and E(O(r)) 
represent our assumptions. The deviations at time i are 

- i ( i )  = - [ / ,  - E ( I ( i ) ) ]  ; L(i) = [ L ,  - -  g(L(i))l/~L ; 

O(i) = [0, - ~ ( o ( 0 ) ] / ~ o .  

An adverse deviation occurs if I~ < E(I(i)). For consistency, and in 
order to use our probability distributions about maximum values, we 
multiply through by minus one. The approximate equality of the theo- 
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retical and sample autocorrelation coefficients with lag i, that is, e -~ and 
r) permits the approximation B = -In~ r. 

Assume that the actuary is considering provisions for adverse devia- 

tions of A#~, A(rn, and Ago for A = 2 or 3 and inflation at an annual rate 
of R (instantaneous rate of 6). He  or she is then interested in 

P{om Xr [--1(r) --  A#,:'] > 0 } ;  

P{oma<xr [L(r) -- AaLe s'] > 0} ; 

[o ( , )  - >_ o } .  

E a c h  is a p robab i l i t y  of excessive adverse  devia t ions .  

T h e  provis ion  for  adverse  dev ia t ions  grows  f rom A#  to Aae  r~, wi th  an 

aggrega te  p rov is ion  of 

T 
f A#e~'dr = A~r(e T ~ -  1) /~ .  
o 

A reasonable procedure for the annual premium would be to add Aa(e r5 - 

1)/(T/f) as a provision for adverse deviations and inflation. 

TABLE 21 

OBSERVED DEVIATIONS FROM ASSUMPTIONS 

TIMX 

(0 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

] .5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Sample mean (Z) . . . . . . . . . . . . . . . . . . . . .  
z)L ( z , -  2) 2 . . . . . . . . . . . . . . . . . . . . . . . . .  

z'~=~ (Z~- 2) ( z ,_ , -2 )  . . . . . . . . . . . . . . . . .  
Sample r, lag of 1 . . . . . . . . . . . . . . . . . . . . . .  
Corresponding beta (approximately) . . . . .  

- l(i)  

0.00159 
0.00134 

--0.00463 
O. 00678 
0.00798 

-0.00645 
-0.00652 
--0.00768 
-0.00011 
-0.00180 
-0.01733 
-0.00671 
-0.01145 
-0.01975 
-0.01850 

- O.  00555 
10. 286X 10 .-4 
4. 773>< 10--* 
0.464 
0.768 

DEVIATIONS 

L(i) 

0.857 
--0. 143 
--0.743 

O. 230 
0.444 
0.439 

--0.087 
0.428 
0.177 

--0.877 
1. 967 
1. 989 
1. 698 
1 . 5 9 1  
1. 193 

0.611 
11.807 
5.401 
0.457 
0.782 

O(i) 

--0.213 
--0. 288 

O. 244 
2. 507 
2.092 
1. 962 
1.979 
1.394 
0.818 
1.116 
O. 026 

--0.351 
0.791 
0.115 
0.899 

0.873 
12.619 
6. 995 
0.554 
0.590 
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Consider a planning horizon of T = 10 calendar years. Since our da ta  
produced sample autocorrelat ion coefficients r, and not  true/~'s ,  we will 
round our /~ ' s  to the nearest  mult iple  of 0.01. We use relation (8) and 
linear interpolat ion.  Thus  the probabil i t ies  for fl = 0.77 are found by  
interpolat ing l inearly between values for ~ = 1, T = 7 and 10. The  
probabil i t ies  of excessive adverse deviat ion are shown in Table  22. 

I t  is recognized tha t  Tables  1-20 do not  consider all choices for B and T, 
bu t  there are sufficient tables to yield reasonable approximations.  Fur ther -  
more, the Appendix has been writ ten so tha t  readers can prepare their  
own tables for different values of T and/~. 

The  figures for R = 0.00 come from [6]. Linear  extrapolat ion was used 
for # = 0.59, assuming equal differences for B = 0.59-0.60 and/3 = 0 .60-  
0.61. Smaller values of /~ can be handled with the tables in [17[. The  
tables in [6] give probabil i t ies  of not exceeding Aa,  so these probabi l i t ies  
must  be subt rac ted  from 1. I t  should be reassuring to readers to see the 
s teady decrease in the probabil i t ies  of excessive adverse deviat ions as the 
assumed rate  R grows from 0.00 to 0.07. I t  should also be observed tha t  
the probabil i t ies  drop markedly  as R goes from 0.00 to 0.03. 

Probabil i t ies  for the claims process will be drawn from [25]. Assume 

TABLE 22 

PROBABILITIES OF EXCESSIVE ADVERSE DEVIATION 
A = 2  

. m 0 " 0 . _ _ _ ~  0 

l(r) probability, fl=O. 77... 10. 519705 
L(r) probability, $-~ 0.78... 10. 524446 
O(r) probability, # = 0.59.. 10. 429037 
Product . . . . . . . . . . . . . . . . .  0.116937 

R 

0.03 

0. 368782 
0.31961g 
O. 04324~ 

0.04 

0.32327g 
0. 287291 
0.029909 

0.05 

D. 282606 
D. 257453 
D. 020508 

0.06 0 . 0 7  

i- os 
0.2471830.216899 
0. 230352[0. 206078 
0.014052 0.009686 

A - 3  

0.00 

/(T) probability $=0 .77 . . .  0.077742 
L(r) probability, B--0.78.. 0. 078819 
O(r) probability, fl----0.59.. 0.058199 
Product . . . . . . . . . . . . . . . . .  0. 000357 

0.03 

0.027824 
O. 024957 
0.00001~ 

0.04 

0.020331 
0.019031 
0.000008 

0.05 

3.015246 
3.014688 
~). 000003 

0.06 0.07 

o.ol,723mo.oo92,5 
0.0114960.009128 
0.000OO2 0.0OOO01 
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that  N(0  has a Poisson distribution with E{N(0J  = t. This is equivalent 
to assuming that  the interoccurrence time between claims has a distribu- 
tion 1 - e  --t, t > 0. For the purpose of illustration, we assume that  
calendar t i m e ,  and operational time t are related by the simple equation 
100r = t. Assume that  the claim distribution P(x) equals 

5 

a,[1 -- exp (--blx)] 
i - I  

for ai's and bi's given on page 148 of [25]. We will use the values X = 0.10 
and u = 100. Since P(x) has a mean pl of 1, X = 0.10 means 10 percent 
of the average claim, and u = 100 means 100 monetary units. The ex- 
cessive claims probability 

P{  max [C(r) --  r(pt + k)] > u} 
0 < r < T  

equals 0.19972. By multiplying this number by the product probabilities 
we obtain the table that  follows. Each number is a probability that, in a 
future calendar time interval 0 < r < 10, the C(r) process exceeds 
allowable values and the I ( r ) ,  L(r), and O(r) processes exceed or equal 
allowable values. 

R 

A 

0.00 

. 0 . 0 2 3 3 5 5  
0 . 0 0 0 0 7 1  

0.03 0.04 0.05 

0 .  008636  0 .  005973  0 .  004096  
0.000004 0.000002 0.000001 

0.06 

0. 002806 
0. 000000 

0.07 

0.001934 
0.000000 

As in Table 8 of [25], we assume next that  the interclaim time dis- 
tribution function F(t) equals 1 -- 0.25¢ -°'*t -- 0.75¢ -~t, t >__ 0. The claim 
distribution is the same as in the previous example. We again use the 
values X = 0.10, A = 2 or 3, u = 100, and T = 10. The excessive claims 
probability equals 0.20929. Since the O.U. probabilities stay the same, the 
product  probabilities would equal those in the table multiplied by 
0.20929/0.19972. 

A Pareto distribution has been used for claims in [22], [23], [7], and 
[25]. We will use values of excessive claims probabilities from Tables 
5 and 6 of [25]. The individual claim distribution P(x) is equal to 1 - 
(1 + 2x) -3n, x > 0. Again, pl = 1. In view of the dangerousness of 
P(x), we will enlarge X to '0.30.  Assume A = 2 or 3, u -  100, and 
T = 10. We assume first that  the interclaim time distribution F(t) equals 
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1 - -  e --t, t > 0. The excessive claims probability then would be 0.11769, 
and the product  probabilities could be arrayed as follows: 

iiiiiiiill I R 0.00  0.03 0.04 0.0.5 0.06 0.07 

2 0.013762 0.005089 0.003520 0.002414 0.001654 0.001140 
3 0.000042 0.000002 0.000001 0.000000 0.000000 0.000000 

We now assume that  

F(t)  = 1 -- 0.25e -°.4. -- 0.75e -2e , t > 0 . 

The claims process probability would be 0.12251. Again the O.U. proba- 
bilities would remain the same, and product probabilities would equal 
those in the above table multiplied by 0.12251/0.11769. 

For each of the above examples, the aggregate annual net premium is 
100pl, and the aggregate annual provision for claim deviations is 100X. 
The annual provision for deviations in investment performance would 
consist of decreasing the assumed interest rate by A a1(e I°8 -- 1)/(10~). 
For our data, the square root of the unbiased estimate of a~ is 0.00857. 
If  A = 2 and R = 0.03, Aar(e  I°~ -- 1)/(105) - 0.020. The aggregate 
annual provisions for deviations in lapse expenses and operating expenses 
are Aa~(e I°t -- 1)/(10~), where ~1 = ~r. and as = go. Thus the aggregate 
annual provision for deviations from the four assumptions is 100X + 
Z~,I  Aa~(e l°~ -- 1)/(I08), coupled with an assumed lower investment 
earnings rate. A method for distributing the provision equitably among 
the members of the portfolio is discussed on pages 585-86 of [3]. 

Two comments should be made about the illustrative data. The 
presence of strings of plus values and strings of minus values is not in- 
consistent with the normality assumptions. An examination of tables 
of normal random numbers will confirm this. Also, pages 73-76 and 84-88 
of [10] pertain to comparable strings. Second, it may be bothersome to 
use a at generated by a favorable string of deviations, as was this case, 
but  the same ~r applies to the next set of data, which may not be favor- 
able. 

Many  more examples could be constructed. Thus, we have used only 
a few of the values in Tables 1-20. Other values could prove useful if we 
changed the relation between operational time and calendar time from 
t -- 100r to t = 50r, 200r, etc. Moreover, equation (6) allows us to use 
different A 's  and R's for the I (7) ,  L(T),  and O(r)  processes, thus allowing 
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various levels of conservatism and provisions for the effects of inflation. 
For simplicity, we used the same A's and R's in forming our product 
probabilities, but that was not necessary. Also, excessive claims proba- 
bilities are available in some of the other references listed at the end of 
this paper, and in other papers. I t  is hoped that readers will consider 
examples of interest to their own companies. This is one of the reasons 
for including the rather extensive set of tables. 
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APPENDIX 

The same assumptions as in Section IV will be made. We wish to de- 
termine the F(T)  given by equation (7). Significant use of result (8) will 
be made. 

THEOREM 2. Let { W ( r ) , r >__ 0} be the Wiener process with E{ W(r)} = 
0 for all r >_ O, and Covar {W(s), W(t)] = minimum (s, t). Then 

F(T)  = P { s u p r e m u m  [(x + (e 2at -- 1 ) - 0 - r o W ( x )  
0<X<l 

.-- A(1 + x(e ~ar -- 1)) 5121 > O} . 

Proof: We will transform O.U. probabilities into probabilities concern- 
ing the Wiener process. From page 138 of [21], 

L ( r ( r ) , O  < r < co} = L(e- 'W(e2") ,O < r < o~} , 
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where L stands for probabil i ty law. Thus  

L { Y ( r ) , r  > 01Y(O) = O} = L{e- 'W(e*') ,  r >_ 0[W(1)  = 0} 

= L(e - ' [W(e  2") -- W ( 1 ) ] , r >  0[ W(1) = 0} 

= L { e - ' W ( a "  -- 1), r > 0} , 

since the distributions of increments are stat ionary in time and W(0) = 0; 
see page 94 of [21]. Therefore, one obtains 

F(T)  = P { s u p r e m u m  [e- 'W(e 2" -- 1) -- Ae ~'] >_ O} . 
0 < r < B T  

We first transform r to BA, so that  

F(T)  = P { s u p r e m u m  [e-aaW(e zaa -- 1) -- Ae*aa] _> O} . 
0<A<T 

T h e n  let x --- (e z°a -- 1)/(e 2or -- 1). This yield~ 

F(T)  = P { s u p r e m u m  [(1 + x(e ~r  -- 1))-lt2W((e~ar -- 1)x) 
o_<x<t 

- -  A(1 + x ( e  2 a t -  1)) 5n] > 0 } .  

This probabil i ty now will be reduced by  using the following property:  
if W(u),  u >_ 0 is a Wiener process, then distributions for the process 
{W(u), u >_ 01 and the process {Oll~W(u/O), u >_ OI are the same. Thus  
F( T) becomes 

P { s u p r e m u m  [(x + (d  ar -- 1)-O-tl2W(x) 
0 < X < l  

- A (1 + ~ ( e ~  r - -  1))*hi > 0 } .  

TttEOREM 3. Subject to lhe previous assumptions, F(T)  = G(1), where 
the function G(t), t >_ O, is the solution of the integral equation 

t 

f¢ ,  {If(t) - f ( s ) l / ( t  - s)t12} d G ( s )  = ¢,[ f ( t ) / t ' n ]  , (9) 
0 

wheref(x) = A[1 + x ( e  2at  - -  1)]~/z[x + (e 2or - -  1 ) - q , n  and 

o~ 

~b(x) = (2 , ) - , t2  f exp ( - -  u2/2)du . 
x 

Proof: By Theorems 1 and 2, the original O.U. probabil i ty F(T) in 
equation (7) equals the last Wiener probabil i ty in Theorem 2. With f(x) 
as specified, tha t  probabil i ty can be rewritten as 

P { s u p r e m u m  [W(x) --  f (x)]  > 0} 
0<x<t 

and can be determined through Theorem 1 and section 4 of [20]. Since 
BT > O, f(x)  is continuous on [0, 1], and f(0) > 0. With the time end- 
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point of 1 replaced by t, the Wiener probability is denoted by G(t) and 
satisfies the integral equation 

t 

G(t) = ~k[f(t)/:t2] + f o { [ f ( t )  - f ( s ) ] / ( t -  s ) ' t2}da(s )  , 
o 

where ¢(x) = 1 - ~b(x). Because f(0) > 0 implies that  G(0) = 0, G(t) = 
f g  dG(s), and the integral equation may  be rewritten as in the conclusion 
of Theorem 3. 

Numer ica l  Results  

The theorem's  form of the integral equation is suggested by section 4 
of [20]. Divide the interval [0, 1] into subintervals of size h = 2-". The  
approximating set of equations is 

* h7-, ,2 
- :6":- - + t 

X [G(jh)  - -  G ( ( j  - -  1)h)] (10) 

= t p [ f ( k h ) ( k h ) - " 2 ] ,  k = 1, 2 . . . .  , 2  '~ , 

and t h e G ( j h ) ' s  in the sum are approximate  values of " rea l"  G ( j h )  values. 
Equat ion (10) uses the definition of a Stieltjes integral as discussed in 
various textbooks (see, e.g., pp. 21-22 of [4]). Since G(0) = 0, we can use 
equation (10) to find G ( j h )  as follows: 

G(kh)  = G( (k  --  1)h) + [ [ ~ [ f ( k h ) ( k h )  -'121 
W .  

k - 1  t 

- ] ~ ,  4~{[f(kh) - - f ( j h  --  h /2)][kh  --  ( j h  --  h/2) l  - ' '2} 
I j . l ' .  

× [a(jh) - a ( ( j -  1)h)] I]]  (11) 

X [[~{[ f ( kh )  - -  f ( k h  --  h / 2 ) ] ( h / 2 )  -u2} ]]-' 

f o r k  = 1 , 2 , . . . , 2  ~. 

The  set of tables was produced using basically this method. 
In [6], g(r) = A~,  and hence f ( x )  = A[x-{ -  (e 2trr - -  1)-~] I/2. In  order 

to consider inflation, we now are interested in the probabil i ty that  an 
O.U. process exceeds or equals Aae  8r for some time r0 in [0, T]. With 
g(r)  = A a e  ~', 6 > O, 

f ( x )  = A[1 + x(e  z~r - -  1)]5 /~[x  + (ezar  - -  I ) - ' ]  t/2 . 
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Implementation of the Algorithm 

The numerical approximating of G(1) using equation (10), f(x) = 
At1 + x(e 2~ -- 1)]~/2[x + (e 2m" -- 1)-1] '/2, A = 0.5, 1.0, 2.0, 3.0, and 
OT = 1, 5, 7, 10 leads to difficulties. Essentially, n must be around 15 in 
order to obtain reasonable approximations of G(1). Computational ex- 
perience using the FORTRAN language on the DEC system-10 indicated 
that  more than 150 hours of computing time would be required, with 
results that  would be uncertain. 

A study of the behavior of G(x) for A = 0.5 and OT = 1, 5, 7, 10 
indicated that  G(1) is near 1, and that  for x near zero, say 2 -2°, G(x) .~ 
0.94. Therefore, G(x) was calculated using small h for x near zero and 
larger h as we move away from zero. The following method with varying 
step size, which gave favorable results in reasonable computing time, was 
implemented. 

Assume that  we have fixed integers n and p, such that  n > p > 0. 
Let m =  n - - p  and k = k ( 0 ) =  2-". We find G(1) by using m + l  
different step sizes of 2-", 2-n+t, . . . , 2 -~-'~. By dividing the interval 
[0, 1] into subintervals with endpoints 0 = x0 < x, < x2 < . . . < x~ = 1, 
the approximating set of equations (10) becomes 

k 

~ { [ / ( x ~ )  - f((xi + x j_ l ) / 2 ) ] [x~  - (xi  + x i _ , ) / 2 ] - , / 2 )  

x [ a ( x ; )  - G ( x j _ O ]  
= ~[f(xk)x~Xn], k = 1, 2,..., N 

The subintervals are chosen in the following way: 

[0, 2-"] is divided into 2"-"  subintervals of size 2 - " ,  

[2 -=, 2 -~+l] is divided into 2 "-'"-1 subintervals of size 2 -"+1 , 

[2 -"+1, 2 -"+2] is divided into 2 "-'~-~ subintervals of size 2 -"+2 , 

[2 -1, 1] is divided into 2 " -~ - '  subintervals of size 2 -"+~ . 

Thus, we have N - - 2 " - ~ ( 1  + ra/2), and we require 2"-"(1 + ra/2) 
evaluations of G(x) in order to approximate G(1). 

By this method the tables in Section I I I  were produced. These results 
were produced with 88.22 minutes of central processor time on a D E C  
system-10. The time required for each table is shown in the table. The 
principal parameter 0T dictated the values of m and n so that  convergence 
was demonstrated as n increased. With the aid of relation (8), the tables 
in Section I I I  use merely the parameter T rather than/3T. Various other 
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tables were computed  for each T in order to determine reasonable range 
values for m and n. In  par t icular ,  tables were computed for each T with 
the indicated values of n and the various values of n --  m so tha t  there was 
l i t t le change as n --  m increased. 

All computing was done in FORTRAN" on the D E C  system-10 computer  
a t  Ball State  University.  The  function ~b(x) was approximated  by use of 
the error function DER~'. Since DERF was not  available in the D E C  
system-10 library,  the error function of the I B M  System/360 FORTRAN IV 
l ibrary was coded in FORTRAN" for use in this applicat ion [15]. 





DISCUSSION OF PRECEDING PAPER 

HARRY H. PANJER AND DAVID R. BELLHOUSE:* 

Professors Beckman and Fuelling are to be commended for their 
thorough treatment of the theory and of the corresponding simulation. 
We shall address ourselves not to any of the detailed calculations but, 
more generally, to the model that was used and to the numerous assump- 
tions that were made in order to simplify the mathematical and statistical 
results. Finally we shall present some alternative models and correspond- 
ing results. 

Simulation is a tool with which the actuary has great familiarity. 
Virtually all aspects of life insurance company operations have been 
analyzed with the use of simulation methods. Although simulation has a 
great many disadvantages (the most important being the large amount 
of computer time required to carry out a simulation to a high degree of 
accuracy), it has some significant advantages over analytic methods. 
First, the actuary who uses simulation methods need not have knowledge 
of high-powered mathematical and statistical results. Indeed, the 
actuary need only specify a model that he considers most appropriate 
for the real situation under study, pass the specifications to a computer 
programmer, and wait for the results. Typically the actuary will obtain 
a number of sets of simulation results, each based on a different set of 
assumptions. The actuary then can study the sensitivity of the results to 
the various assumptions. Simulation, then, is a "black box" that gives 
a set of numerical results as output for a set of numerical input. The 
actuary studies the relationship between the input and the output. 

Some actuarial problems lend themselves to analytic solutions. When 
problems are solved analytically, models of the "black box" are chosen 
and analyzed by the use of mathematical techniques. The emphasis is on 
the development of an understanding of the workings of the black box 
and of the way in which any set of input is processed to produce a set of 
output. Analytic methods are used to prove theorems, thereby producing 
a greater understanding of the model being studied. 

Frequently, the real situation being studied is felt to be too complex 
to be dealt with analytically. In such situations assumptions may be 
made that simplify the analysis. One then must examine the analytic 
results in the light of the simplifying assumptions. 

* Dr. Bellhouse, not  a member  of the Society, is ass is tant  professor, Statistics and 
Actuarial Science Group, University of Western Ontario. 

399 
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Professors Beekman and Fuell ing have in the first pa r t  of the paper  
made  a number  of simplifying assumptions to obta in  an expression for 
the probabi l i ty  of the occurrence of a certain risk. The p r imary  results 
are the numerical  values of this probabi l i ty  given in the large number  of 
tables in the paper .  The  numerical  results were obtained by  using simula- 
tion methods.  I t  is our feeling that ,  if s imulat ion is to be used, either the 
model should be made as realistic as possible ( tha t  is, the number  of 
simplifying assumptions should be minimized) or the effect of the various 
assumptions should be studied. Nei ther  is done in this paper.  The  authors  
introduce a simplified model and then proceed to carry  out  s imulat ions 

based on this model. 
We now examine these simplifying assumptions and have the following 

observat ions:  

1. The processes I(r) ,  O(r), and L(r) were assumed to be independent of one 
another. I t  is well known to any practical actuary that high interest rates 
signal inflation, which in turn results in high expense rates. Thus interest 
rates and expenses are highly correlated with each other. The assumption 
that the processes are mutually independent allows the variances to be 
added in the authors' equation (4). A high correlation between these three 
processes could have a significant impact on the numerical results obtained. 

2. We would like to question the Markovian property that the three interest 
and expenseprocesses are assumed to have. We have studied a large number 
of annual investment yield series and found many of them to be non- 
Markovian. We believe that this assumption also may have a significant 
impact on the numerical results obtained by the authors using simulation. 

3. We believe that the assumption that fl has the same value for each process 
also may be overly restrictive. I t  allows the process S(0 to be of the same 
type, which simplifies the analysis but may have a significant impact on 
the numerical results. 

4. We question the appropriateness of calculating probabilities of the type 
calculated by the author in Section I I I  of the paper. Inflation in claims will 
be highly correlated with inflation in expenses and in investment yields. 
I t  might be more appropriate to allow the barrier to be a stochastic process 
also. Probabilities of the type calculated in the authors' equation (5) then 
involve four, not three, stochastic processes and a constant boundary. 

5. We question the use of a continuous time model. Insurance companies deal 
almost exclusively in annual, semiannual, or quarterly bases. The invest- 
ment returns that would be appropriate for calculations are actual returns 
over the annual, semiannual, or quarterly period. These actual returns are 
themselves averages of the continuous time process. A "spike" at a single 
point in time could cause the process S(r) to exceed the bound AKe~L In 
practice, however, when the investment returns are averaged over the 
annual, semiannual, or quarterly periods, the rate of return may be such 
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that the bound is not exceeded. The periodic statements tell the real story 
to the company. On the basis of these arguments, we believe that it would 
be more useful to let S(r) and its component processes be discrete pro- 
cesses that reflect values obtained over the period in question. Similarly, 
the probabilities that are important are of the same type as equation (5) 
of the authors' paper, but the maximum need only be over a finite set of 
values of the time variable r. For example, if annual results are of interest 
and a ten-year period is used, only ten values need be generated and com- 
pared with the bound. This simplifies greatly the simulation problem. 

We now present  a class of a l ternat ive  models tha t  address each of the 
five criticisms of the authors '  model. The  models are the time-series 
models of [ll. Using the notat ion of Mil ler  and Hickman [4] to present  

the models, let 21,, 22~, and 2a,  denote I ( t ) ,  O(t), and L(t) ,  respectively,  
t = 1, 2, 3, . . . ,  T. The first-order autoregressive process AR(1) as 
described in [4] is of the form ;~,  = 4,i121. t-i + air, where alt, t = 1, 
2 , . . .  , T, are independent ly  and identical ly d is t r ibuted  normal var iables  
with zero mean and variance 0-,. Condi t ioning on Z,i.0 = 0 yields 
E(Z~,) = 0 and E(2,it2;. u-u) = 0.~i~b~l. On let t ing 3~ = - I n  qh~, we obta in  
the correlation s t ructure  of the Ornste in-Uhlenbeck (O.U.) process (but  
in discrete time). Note  also tha t  if in general Zio = x, then E ( 2 , [ 2 ~ ,  = 
x) -- x4~i -° = xe-0~(t-,), 3i > 0, as in the authors '  paper.  

At  this point  we consider the correlations between the processes I ( t ) ,  
O(t), and L(t).  For  any t ime t, assume tha t  the vector  (alt, a2t, a3t) is a 
mul t ivar ia te  normal variable with zero means and covariance matr ix  

0.11 0.12 0"13 ) 
~ 0"12 0-22 O"28 , 

0-13 0.23 0"33 

where 0-~i represents  the covariance between a~t and a jr at  any t ime t. W e  
also assume tha t  the vectors (at,, a2,, a3,)'  and (al,, a.~,, a3°)' are indepen- 

dent  of each other for t ~ s. This  model is a direct  general izat ion of the 
model of Beekman and Fuelling. If we set aij" = 0, i ¢ j ,  and/31 = /32 = 
Oa - 3, we have (in discrete t ime) the three O.U. processes in the paper .  

I t  is now easy to see how to generalize this to more complex time-series 
models. The  second-order autoregressive model AR(2) is of the form 

2 ,  = ¢i,2,.,-1 + 4~22,.,-~ + a , .  

This is a process tha t  is non-Markovian,  since the current  value depends 
on two prior  values. Other time-series models can be generated in a 
similar fashion. By using the O.U. model, the authors  have restr icted 
considerat ion to models of a single type.  The use of time-series models 
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allows the three processes to be of different types, with their cross- 
covariances given by the matrix ~. 

The probabilities 

P{ max (--Z,,, + Z,2, + Za,) > ke*'} 
t = l , 2 , . . . , T  

can be simulated quite easily using the following algorithm: 

Step 1: Generate three independent standard normal variates, say art, 
~2,, and a3,. This may be done using the Box-MUller [2] transformation 
(see [5] for some cautionary remarks) or the method of Marsaglia and 
Bray [3]. 

Step 2: Calculate (o) (,) 
a2t = T, tn g2t , 
a3t aat 

where •1/2 ~1/~ _ ~. The determination of y tt2 will be considered later. 
Step 3: Calculate Z , ,  i = 1, 2, 3, for the time-series models used; for 

example, Z~t = ¢~x#.~.t-t + a ,  

o r  
Z, i t  "~- ¢ilZi,t-i -11- ¢ i 2 Z i . t - 2  "4- a i t  , 

where Z, io = Z~.-1 = O. 
Step 4: Calculate --Zt,  + Z2~ + Z3~ and compare it with the bound ke st. 

If it exceeds the bound, stop the simulation trial; if not, continue to 
the next time period. 

Step 5: Count the number of trials for which the simulation trial was 
stopped (that is, the bound was exceeded) and compare with the total 
number of trials. 

The matrix x*t~ is of the form QD, where 

D is a diagonal matrix with entries k]/2; 
k~ is the ith eigenvalue of Z; 
the ith column of Q is ~ri, the eigenvector associated with the ith 

eigenvalue. 

Eigenvalues and eigenvectors can be found for a general n X n symmetric 
matrix using standard mathematical and statistical computer packages. 
However, for a 3 X 3 matrix the eigenvalues and eigenvectors may be 
found directly. The eigenvalues are the solution of 

Iz- ,rl = o ,  
which yields 

Cs)J + C2~, 2 + C,;~ + Co = 0 ; 
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C3 = - 1 ;  

C2 = 0-33 + 0-22 -t- 0.1t ; 

2 2 
Cl = 0-~3 + 0-12 + 0-2~ - 0-220.~3 - ~n0-3~ - 0-n0-22 ; 

2 2 2 
CO = 0"110"220"33 ")W 20.~0.130.2~ - -  0-130-22 - -  0"230"11 - -  0"120"33 • 

The cubic can be solved numerically to find the three eigenvalues. If  
7r = (lrl, 7r~, 7r3)' is the eigenvector associated with any eigenvalue ~, 
then (Z -- kI)Tr = 0. The first two equations of this system of simulta- 
neous equations yield 

(0"11 - -  X)Trl  + 0"1271"2 -~- 0"1371"3 = O , 

~,2~,  + (0-~2 - X)~2 + 0-~,r3 = 0 ,  
o r  

~ [(~,,- ~)(~2 -- ~) -- ~] ~ --~2 

The third equation, 

is satisfied automatically. Since Z 7r~ = 1, we set #8 = 1, solve for ~ and 
#2, and obtain the 7r~'s from 

,~, = ~ , /V ' (~  + #~ + ~ )  . 

This can be done for each of the three eigenvalues, and ~/2 can be calcu- 
lated as QD. 

Up to this point we have not addressed the question of stochastic 
inflation, which would result in a stochastic barrier. If we let Z,4t be a 
corresponding stochastic process representing the boundary,  the proba- 
bilities will involve four stochastic processes tha t  are mutually correlated. 
The same algorithm (modified to four variables) can be used for the 
simulation, 

Any company considering this approach would have to estimate the 
elements in Y~ and the coefficients in the time-series models on the basis of 
its own data. There are standard statistical procedures available to 
handle the estimation. Calculation of the probabilities by simulation 
then can be carried out using these estimates. 

We would like to thank the authors for an extremely stimulating paper. 
I t  caused us to have many hours of fruitful discourse, resulting in the 
alternate model presented in this discussion. 
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(AUTHORS ~ REVIEW OF DISCUSSION) 

JOHN A. BEEKMAN AND CLINTON P. FUELLING: 

The authors are grateful that Professors Panjer and Be]lhouse have 
provided a stimulating discussion. There are some good suggestions 
contained in their remarks, and we will focus on them after several 
preliminary comments. 

Professors Panjer and Bellhouse state that the paper used simulation. 
However, the tables in the paper were derived by approximating nu- 
merically the solution of an integral equation. The authors used a large 
amount of computer time in the simulations reported in reference [5] of 
the paper. One of the main purposes of the present paper was to provide 
enough basic tables so that users of the model would not have to spend 
computer time in simulations. 

Professors Panjer and Bellhouse provide five criticisms of the assump- 
tions used in the model. Although four of these have value, the third 
criticism is not valid. Tables 1-20 are all for ~5-values of 1, but those 
tables are only basic tools in the application of the model. Beneath 
Table 20 is the sentence, "Seldom would data produce /~-- 1, but a 
method for handling this problem is discussed and illustrated in Section 
V." Section IV cautions the reader that it would be unusual if real data 
allowed the actuary to conclude that the three/~-values were the same, 
but utilizes the independence of the four processes in rewriting a four- 
process probability as a product of four individual process probabilities 
in'equation (6). Theorem I of that section provides the theory for handling 
probabilities where/~ ~ 1. Section V provides further theory for handling 
/~-values not equal to 1. Furthermore, the illustrative data produced 
different beta values for the investment, operating expense, and lapse 
expense stochastic processes, as shown in Tables 21 and 22. Tables 1-20 
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and equation (8) of Section IV provide readers with enough values and 
theory to approximate most of the probability values needed in risk 
managers' use of the model. 

The authors appreciate the concerns expressed in the other four 
criticisms. However, a few comments could be made to balance the 
discussion. Reference [3] provided some results applicable when the 
stochastic processes are not independent, especially on pages 578-79 and 
formula (3) on page 575. I t  was acknowledged on page 577 of [3] that the 
Markovian property is an approximation. However, the choice of the 
particular Markov process, namely, the Ornstein-Uhlenbeck process, had 
several advantages. Its conditional mean function helps to model phe- 
nomena that react to offset excessive movements in any one direction, 
which is true of many economic phenomena. I t  also tied in with time- 
series analysis, as mentioned in Section II of the paper. Professors Panjer 
and Bellhouse suggest a stochastic barrier for the multirisk process, and 
we agree that this would be an interesting project. A discrete time model 
has some advantages, but much of risk theory is done on a continuous 
time basis and has proved useful. 

The authors feel that the time-series models proposed by Professors 
Panjer and Bellhouse are useful alternative models for risk managers 
considering the fourfold risk problem. Their suggestion that stochastic 
inflation would result in a stochastic barrier is a challenging research idea. 
We hope that they pursue the idea further. 

In summary, the authors appreciate the time and effort given by 
Professors Panjer and Bellhouse to studying the multirisk problem and 
to advancing possible solutions for risk managers to use. 




