
T R A N S A C T I O N S  OF SOCIETY OF ACTUARIES 
1 9 7 8  VOL. 30  

A L I N E A R  P R O G R A M M I N G  A P P R O A C H  
T O  G R A D U A T I O N *  

DONALD R. SCHUETTE 

ABSTRACT 

The Whittaker-Henderson Type B method of graduation, in which the 
weighted sum of the squares of the deviations of graduated values from 
observed values plus a parameter times the sum of the squares of the ~th 
differences of the graduated values is minimized, is modified by using 
absolute values instead of squares. The resulting problem is expressed as 
a linear programming problem, and the nature of the soiution for various 
values of the parameter is discussed. Two theorems concerning the 
optimality of the perfect-fit and perfect-smoothness graduations are 
proved. Two examples are then presented, and some difficulties are seen 
to exist in regard to computational feasibility. 

INTRODUCTION 

L students of actuarial graduation eventually become familiar with 
the difference-equation method of graduation [9]. In that method, 
graduated values u,, a" = 1, 2, . . . ,  n, are sought corresponding 

to a given set of observed or ungraduated values u'-' and nonnegative 
weightsw, that minimize the quantity F -]- OS, where F = Y~"x.1 w,(u ,"  --  

u,) 2 and S = Y.~Ei (A*u,) 2. F is an expression that measures the degree of 
fit (actually, lack of fit) of the graduated values to the observed values, 
and S is an expression that measures the degree of smoothness (lack of 
smoothness) exhibited by the graduated values. The order of differences 
used in the measure of smoothness is denoted by z. The values of z 
commonly employed are z = 2 and z = 3. The parameter 0 is a non- 
negative constant that indicates the weighting assigned to smoothness as 
a desirable characteristic of the graduated values relative to how well 
they fit the observed values. The larger the value of 0, the smaller S will 
be and the smoother will be the graduated values. 
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T. N. E. Greviile and James C. Hickman in the course of preparing this paper. 
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408 A LINEAR PROGRAMMIN'G APPROACH TO GRADUATION 

The method is called the difference-equation method because the 
values u, for which the minimum of F + OS is achieved can be shown to 
satisfy the difference equation 

w~u~ + @ ' u ,  = wzu'-', 

where 3 denotes the difference taken centrally. Whittaker [15] first pro- 
posed the method, and Henderson [6] developed practical procedures for 
obtaining the graduated values based on a factorization of the difference 
equation. The formulas that result in the case where w, = 1 for all x 
are called Whittaker-Henderson Type A graduation formulas, and those 
in the more general case of variable weights are called Whittaker-Hender- 
son Type B formulas. Greville [5] has developed very elegantly the general 
case employing matrix and vector notation, making use of results known 
in the field of linear algebra. 

Basic to the difference-equation method are the choices in the objective 
function, F + 8S, of the measures of fit and smoothness. Used as the mea- 
sure of fit is the weighted sum of the squares of the deviations, u'-' - -  uz,  

of the observed values from the graduated values and, as the measure of 
smoothness, the sum of the squares of the zth differences of the graduated 
values. 

Other choices are available, however. The objective is that in some 
sense the deviations and the zth differences be small. A direct and obvious 
measure is the unsigned magnitude, or absolute value, of those quantities. 
In his monograph, Miller [9] included the sum of the absolute values of 
the third differences of the graduated values as one of the "usual" 
measures of the smoothness of a graduation. Thus, there is precedent for 
considering absolute values rather than squares. The fact remains, 
however, that graduation methods based on minimizing sums of squares 
have been developed extensively, while those based on minimizing sums 
of absolute values have not. 

A first and perhaps minor reason why squares have received more 
attention than absolute values is that the absolute-value function 
presents an algebraic sign difficulty similar to the one encountered in 
statistics in connection with the problem of defining a measure of disper- 
sion in a frequency distribution. Using squares provides one simple 
solution to that difficulty, a solution that leads to the variance-standard 
deviation measure of dispersion in the case of the statistical problem 
and to Whittaker-Henderson methods in the case of graduation. 

Fortunately, a method of coping directly with the absolute-value 
function is available in linear programming. For example, the problem of 
fitting a line, uz = a + bx, to a given set of observed values so as to 
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minimize the expression 

S(a,b) = ~ w , [ u " - -  (a + bx) l 
ZD1 

can be formulated as a linear programming problem (see, e.g., Wagner 
[13], Barrodale and Roberts [2], Armstrong and Frome [1], and Schuette 
[11]). In fact, the problem of finding the best-fitting linear combination 
of any given set of functions so as to minimize the weighted sum of the 
deviations in absolute value can be formulated as a linear programming 
problem [2], and polynomials of any degree can be so fitted. 

A second and undoubtedly more important reason why methods based 
on minimizing sums of squares have been favored in graduation is the 
preeminence of the principle of least squares in statistical theory, which 
in turn can be traced to the normal distribution. In regression theory, 
when the errors of observation about the regression curve are assumed to 
be normally distributed, application of the principle of maximum likeli- 
hood leads directly to least squares as the criterion to follow in estimating 
the parameters of the regression curve. In fact, Whittaker and Robinson 
[16] gave a Bayesian rationale for the Whittaker procedure, in which the 
minimization of the sums of squares follows from their assumptions that  
(1) the true underlying values have a multivariate normal prior distribu- 
tion and (2) the observed values are independently and normally dis- 
tributed about the true underlying values. 

In recent years, however, statisticians have become concerned that 
least-squares methods may not give the best results in cases where 
errors of observation follow distributions that tend to generate "outliers" 
more frequently than the normal distribution. That  concern has led to 
studies of "robust" estimation methods [10], in which the problem is to 
develop alternatives to least squares that are less sensitive to outliers. 
The use of least absolute deviations is one of the alternatives that appears 
to give better results than least squares when the error distribution has 
heavier tails than the normal distribution [7]. 

In view of the misgivings that statisticians are having with respect to 
least squares and the fact that  they are examining least absolute values 
as an estimation procedure, it is appropriate that actuaries do the same 
with respect to graduation methods. Hence, this paper will be devoted to 
the task of adapting linear programming to the graduation problem so 
that  absolute values may be employed in place of squares. 

At the outset, it should be noted that the following are involved: the 
general notion of the distance between two vectors, the distance between 
the vector of observed values and the vector of graduated values in the 
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case of fit, and the distance between the vector of zth differences of the 

graduated values and the null vector in the case of smoothness. The 

concept  of distance between two vectors or elements of a linear space has 
been generalized by  mathemat ic ians  to include an infinity of possible 

measures. A closely related idea is tha t  of the norm of a vector  or element  
in the space. For  example, if X = (xl, x~., . . . ,  x,)  is a vector  of real or 
complex numbers,  the  lp norm of tha t  vector,  denoted by [[X][~, is 
defined as 

[Ixll,, = (1~11" + I~1 ~ + . . .  + I~.l'O *'" 
for p > 1 (see Davis  [4]). If  X = ( X l ,  x 2 ,  • . • , x t = )  and Y = (yt, y2, • • • , 
y ,)  are two n-component  vectors, then the p-dis tance between them is the 
l~ norm of their  difference, tha t  is, IIX - FI[ p. The  l~ norm of X --  Y is 

which is the famil iar  Euclidean distance between the two points  in 

n-dimensional space. The  li norm of X - Y is 

l l x -  vii, = ~ I ~ , -  y,J', 
i . 1  

which may  be described as the rectangular  distance between X and Y, 
or the distance between them when movement  is constrained to be 
always parallel  to one of the coordinate  axes. 

In  the Whi t taker -Henderson  T y p e  A graduat ion problem with the 
object ive function 

n - w  

F + O S  = ( u "  - -  u=) ~ , = + 0 ~ (a 'u=) ~ , 
Z = I  X ~ I  

the terms F and S are the squares of the 12 norms of the vectors u "  - 

u = (u~' --  ul, u~" --  u~, . . . ,  u "  --  u,)  and A 'u  = (a 'u l ,  . . . ,  A=u,_z), 
respectively. In  the corresponding object ive function to be considered in 
this  paper ,  

F + oS = l u ; '  - -  u=[ + o~_,[a'u~l, 
z m l  X ~ I  

the terms F and S are the ll norms of those vectors. When the weights w= 
are added to the problem, the resulting expressions for F are not  as clearly 
identifiable as norms of the vector  u"  - u, bu t  for the purposes of this 
paper  it will be convenient  to refer to the t radi t ional  Whi t taker -Hender-  
son development  as being in the l.. norm and to refer to the development  
in this paper  as being in the l, norm. 
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LINEAR PROGRAMMING FORMULATION OF THE 

ll NORM GRADUATION PROBLEM 

The key item in the formulation of the Ii norm graduation problem is 
the device for coping with absolute values. That  device is the separation 
of any function into its positive and negative parts. For example, for the 
function f(x), let 

P(x) = f (x)  i ff(x) > 0 

= 0 if f (x) < 0 ,  

and let 
N(x) = -- f (x)  i ff(x) < 0 

= 0 i ff(x)  ~ O. 

Then f(x) always may be replaced by P ( x ) -  N(x), and [f(x)l by 
P(x) + N(x). The components P(x) and N(x) each must be constrained 
to be nonnegative, and they must not both be positive simultaneously if 
the structure of the problem is to be reflected properly. Fortunately, the 
simplex algorithm of Linear programming is ideally suited to comply with 
those requirements. 

For the graduation problem, let 

u ' , ' -  uz = P ~ -  Nx, (1) 

w i t h P ~ > _ 0 a n d N ~ > _ 0 f o r x =  1 , 2 , . . . , n ,  andle t  

A'u ,  = R~ --  T~ ,  (2) 

w i t h R . > _ 0 a n d T z > _ 0 f o r x =  1 , 2 , . . . , n - - z .  Then 

~,~ = u " -  (P~ - N~) (3) 
and 

A'u~ = a ' ( u ; '  - -  e ~  + N~)  = R~ - -  T z .  (4) 

Also, lug' -- uzl = e .  + N. and ] h'u.] = e .  + T.. 
The complete problem then is to find values of P., N~, R~, and T.  so 

as to minimize 

F + OS = ~ ~,(P, + N,) + 0 ~ (e ,  + T~) (S) 
x ~ l  a - . l  

subject to the constraints 

A ' ( p . - -  N~) + R ~ - -  T~ = A'u! ' ,  x = 1,2 . . . .  , n - -  z ,  (6) 

and P .  >__ 0, N. >_ 0, R. >__ 0, and T. _> 0 for all appropriate values of x. 
It  should be noted that the constraint equation (6) is obtained by 
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rearranging equation (4) so as to place all the unknowns or decision 
variables on the left-hand side and the known or directly computable 
quantit ies on the right-hand side. Because the operator z~ * is linear and 
the variables appear  linearly in all terms in equations (5) and (6), the 
problem is a linear programming problem. The  problem involves 2n q- 
2(n - z) variables and n - z constraints. For values of n large enough 
to span the range of relevant ages in a mortal i ty  table, say n >__ 80, the 
problem tha t  results is quite large. 

I t  will be convenient to express the problem in matrix and vector 
notation similar to tha t  employed by Greville [5]. Let  u",  u, P, N, R, 
and T denote column vectors with components u" ,  u,, Pz, N, ,  R,,  and T,, 
respectively. Also, let W denote the column vector of weights w,. The  
differencing matrix K .  is the (n - z) X n matrix such that  K , u  is the 
column vector with components  Azu, for x = 1, 2, . . . ,  n -  3. For 
example, 

K 2  ~-- 

'1 - -2  

0 1 

0 0 

1 0 . . . . . . .  0 -  

- -2  1 0 . . . 0  

1 - - 2  1 . . . 0  

0 0 0 . . .  1 - -2  1 

The  problem then may  be writ ten as follows: 

Minimize  F + OS = W t ( P  + N)  + O_t(R + T) (7) 

subject  to K , ( P  -- N)  + I , _ , (R  -- T) -- K , u "  , (8) 

where 0 is a column vector  of n -- z components  all equal to 0, the super- 
script t denotes the transpose of a vector or matrix,  and In_, is the 
identi ty matr ix  of order n -  z. All variables are constrained to be 
nonnegative.  

The  constraint  equations and the matr ix  of coefficients by means of 
which those equations are represented play important  roles in linear 
programming.  The  system of equations (8) may  be expressed in the form 
A X  = K , u  ~', where A is the (n -- z) X (4n -- 2z) matrix of coefficients 
tha t  in part i t ioned form is 

', z~_, ', - i n_ , ]  (9) A = [ K ,  iI - - K ,  I I 

and 

[i] X =  N 
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is the vector of all 4n - 2z variables that appear in the problem. Each 
column of A is associated with one of the variables of the vector X, in 
that it contains the coefficients of that variable in the system of equations 
(8). The blocks K , ,  - - K , ,  I , ,_, ,  and - - I , _ ,  are associated respectively 
with the variables contained in the vectors P, N, R, and T. 

LINEAR PROGRAMMING THEORY 

With the graduation problem in the l, norm expressed as a linear 
programming problem, the theory and results known in that field can be 
exploited in the examination of the problem and its solutions. Because 
some readers may not be familiar with linear programming, this section 
contains certain definitions and a review of some of the principal theorems. 

Linear programming, a special case of the more general field of mathe- 
matical programming or constrained optimization, has been developed 
extensively since its first appearance during World War II .  Many excellent 
treatments of it are available; see, for example, Dantzig [3], Hillier and 
Lieberman [8], Simonnard [12], and Wagner [14]. The following is taken 
mainly from Simonnard and pertains to the standard form problem 

Minimize Z = ~ .  c ix i  (10) 
i - I  

subject to ~. .  a q x i  = bl , i = 1, 2, . . . , m , (11) 
i - I  

and x i  > _ 0 ,  j =  1 , 2 , . . . , n .  (12) 

In matrix and vector form the same problem is written 

Minimize Z = CtX ( 1 3 )  

subject to A X  = b ,  (14) 

x >_ Q, (15) 

where X is the n-component column vector of unknowns or decision 
variables; C is the corresponding column vector of objective function 
coefficients, so that C t is a row vector; Z is the objective function to be 
minimized; A is the m X n matrix of constraint-equation coefficients; 
and b is the m-component column vector of constants that appear on the 
right-hand side of the constraint equations. X _> 0_ is a compact way of 
writing xi >_ 0 for j = 1, 2, . . . ,  n. The symbol 0 represents a column 
vector with all components equal to zero. I t  is assumed that m < n 
and that the rank of A is m, which means that the system of equations 
(14) is nonredundant. 
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A basis B is a submatrix of A consisting of m linearly independent 
columns of A. The variables associated with the columns of N are called 
the basis variables and constitute a subvector XB of X. The corresponding 
subvector of elements of C is denoted by CB. When the remaining or 
nonbasic variables, Xn, are arbitrarily assigned zero values, the system 
of equations (14) reduces to BXB = b, which has the unique solution 

Xn = B- lb .  (16) 

The solution XB = B-ab and XR = _0 is called a basic solution, and the 
value of the objective function Z corresponding to this basic solution is 
Z = CgX~, which from equation (16) becomes Z = C~B-1b. 

The values of the basic variables given by equation (16) may or may 
not be all nonnegative for an arbitrarily selected basis; if they are, the 
solution is called a basic feasible solution. If the value of Z corresponding 
to a basic feasible solution is less than or equal to the values of Z for all 
other feasible solutions, the solution is an optimal solution. 

What Simonnard calls the fundamental theorem of linear programming 
may be stated as follows: 

For the standard form linear programming problem, (a) if  it has at 
least one finite feasible solution, then it has at least one basic feasible 
sohaion; (b) if  it has at least one finite feasible solution that is optimal, 
then it has at least one basic feasible solution that is optimal. 

The importance of the fundamental theorem is that it justifies procedures 
that confine the search for optimal solutions to the set of basic feasible 
solutions. The simplex algorithm is one such procedure. I t  progresses 
iteratively from one basic feasible solution to another that is better until 
no further improvement in the value of the objective function can be 
achieved. An optimal basic feasible solution then has been found. 

Because the feasible region or set of all feasible solutions is the inter- 
section of linear half-spaces, it is a convex set. Moreover, when the 
feasible region is bounded, the following theorem applies: 

I f  the feasible region for the standard linear programming problem is 
bounded, there is at least one basic feasible solution that is optimal. 

LINEAR PROGRAM1VIING THEORY APPLIED 

TO THE GRADUATION PROBLEM 

For the lx norm graduation problem given by equations (8) and (9), a 
number of conclusions may be drawn immediately in light of the preceding 
discussion. First of all, a finite feasible solution exists, namely, u~ = u'~' 
for all x, which is the solution in which there is no graduation at all. In 
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tha t  case, F = 0 and F -b OS = O Z~.l"-" [A,ux" [. Furthermore, the no- 
graduation solution is a basic feasible solution, the basic variables being 
Rx if A*u'.' > 0 and T. if &*u~' < 0, x = 1, 2, . . . ,  n -- z. Then P ,  = 
N,  = 0 for all x; R, = azu~' if A'u'. ' >_ 0, and R, = 0 if Azu" < 0. T, = 
--A*u" if Azu'-' < 0, and T, = 0 if AZu'-' >_ 0. 

Thus, the graduation problem has at least one basic feasible solution. 
Moreover, the existence of that  solution leads to the conclusion that  an 
optimal basic feasible solution exists, because, al though the feasible 
region for the original problem is unbounded, that  problem can be 
revised by the addition of the constraint 

n--B n--z 

w~(P, + N,) + 02~, (R, + T,) < 0~_, I,~'u"l • 
z - I  zml  z-- I  

Since all the coefficients w, and 0 are nonnegative, the effect of the added 
constraint is to bound each of the variables and, hence, to bound the 
feasible region. In view of the theorem stated at the end of the preceding 
section, it may be concluded that  the revised problem has an optimal basic 
feasible solution, from which it follows that  the original problem has one 
as well. 

A second conclusion is that, in any basic solution, u, = u'-' for at least 
~. values of x. This follows from the fact that  in any basic solution at most 
n -- z of the variables P ,  and N~ are basic and can have positive values. 
Hence, for at least z values of x, both P ,  and N,  are nonbasic and have 

t !  " because, in general, u ,  - ,~ P ,  - value zero, in which case u~ = u~ = 
N,. I t  also should be observed that,  for any value of x, P ,  and N ,  will 
not  both be positive in any basic solution, because the associated columns 
in A are the negatives of each other and cannot both be contained in a 
set of linearly independent columns forming a basis. 

T W O  C R I T I C A L  V A L U E S  O F  0 

Miller [9] has observed that  for the graduation problem in the 12 norm 
the optimal solution when 0 = 0 is the no-graduation solution, and that  
as 0 grows very large the optima] values of u= approach values lying on 
the fine fitted to the values of u! '  by the method of weighted least squares 
when z = 2. The result for general values of z is that  as 0 grows large the 
graduated values approach those given by a polynomial in x of degree 
z - I fitted by the method of weighted least squares. 

In  the case of the I~ norm the situation, although similar, is different 
in a way that  might be said to characterize the l~ norm and its linear 
programming formulation. In  this case it will be shown that  there are 
two critical values of 0, 0L and 0u, such that  for 0 < 0 < 0L the no- 
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graduation solution is optimal, while for 0 > Ov the optimal values of u, 
are those lying on the polynomial of degree z -- 1 fitted to the observed 
values by the method of least total absolute deviations. The determination 
of those critical values, 0L and Or, is one of the principal objectives of this 
paper. Formulas for OL and 0tz are embodied in the two theorems that 
will be proved. The proofs, however, require knowledge of some of the 
details of the simplex algorithm of linear programming, which will be 
discussed now. 

A critical element in the simplex algorithm is the notion of the reduced 
cost or evaluator of a nonbasic variable in a basic feasible solution. The 
reduced cost of a nonbasic variable may be described as the reduction in 
the objective function per unit increase in the variable that currently 
has value zero. (Some authors prefer to deal with the negative of the 
quantity described here, that is, the increase in the objective function 
per unit increase in the variable.) By examination of the reduced costs 
of all nonbasic variables it can be determined whether or not further 
improvement in the objective function can be achieved. If all reduced 
costs for nonbasic variables are zero or negative, no improvement can 
be made in a minimizing problem and the current solution is optimal. If 
the reduced cost of at least one nonbasic variable is positive, that variable 
possibly can be made basic and the objective function reduced. The 
process of deciding which variable to make nonbasic, of determining the 
new values of the basic variables so as to maintain feasibility, and of 
recomputing the revised reduced costs for the nonbasic variables consti- 
tutes one iteration of the simplex algorithm. 

The task of computing the reduced costs for the standard problem of 
equations (10)-(12) now will be examined. Consider the constraint matrix 

[ ~/11 ~/12 • • • ~ l n  ] 

ml a m 2  • • • (/m 

Suppose that a linear combination of the rows is obtained by multiplying 
the first row by yl, the second row by y2, and so on, and adding. Let 
zj = F.~.~ yiali  be the quantity obtained for the j th  column. Furthermore, 
suppose that multipliers yl have been determined so that for a preselected 
set of m basic columns the equations zj. = cj- hold. Such a set of multipliers 
indeed can be found whenever the columns are linearly independent, 
which they must be to form a basis. Then for a nonbasic column the 
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quantity z~ -- c~ is the reduced cost for the associated nonbasic variable 
x;. Notice that for the basic variables zj -- cj = 0. 

The argument that z~ -- G can be interpreted as the decrease in the 
objective function per unit change in the variable xj proceeds as follows. 
Let B denote the matrix of basic columns of A. Then, as seen previously, 
XB = B- Ib  is the vector of values of the basic variables and Z = C ~ X  s 

is the value of the objective function. Let Aj denote the column of A 
corresponding to xi, and let Ai  = BT~, which means that Ts is the vector 
of coefficients in the expression for Ai as a linear combination of the 
columns of B. If xi becomes positive in value, the values of the currently 
basic variables have to be modified in order that the equation A X  = b 

continue to hold. The previous equation was B X ~  = b. Since A j  = B T i ,  

the addition of the equation x i ( A i  - B T )  = 0 to the previous equation 
produces the result B ( X B  -- x j B - ~ A j )  + x i A j  = b. This result may be 
interpreted to mean that X '  B = XB  -- x ~ B - ' A j  is the vector of modified 
values of the basic variables. The modified value of the objective function 
is is 

Z !  t I = C B X B  + c i x j .  

Substitution for X B produces 

Z '  = C ~ ( X B  -- x i B - t A j )  + cjx 

= Z --  x y ( C ~ B - t A i  --  ci) 

= Z - -  x~(zi -- cj) 

because the vector of multipliers Y~ = (yl, y~, • • •, ym) must satisfy the 
equation Y ~ B  = C~ or Y~ = C ~ B  - t ,  and therefore zj. = CtnB-~Ai.  

Hence, zj - c i represents the change in the objective function value per 
unit change in the value of the corresponding variable xi. 

Readers who are familiar with the dual problem in linear programming 
will recognize the multipliers y~ as the dual variables. It  should be men- 
tioned that some of the later sections of this paper could have been 
presented in terms of the dual problem and its 9ariables, but the author 
has chosen not to do so. 

The first of the two theorems follows: 

TIIEOREM 1. I f  0 < 0 < Oz, then the values of u~, x = 1, 2, . . . ,  n, 

for  which the quanti ty 

y + os  = w lu" - + Ia'u,I 
Z m l  Zm l  
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i s  a m i n i m u m  are  u= = u ? ,  x = I, 2, . . . , n ,  w h e r e  

Oz = minimum {w./ I A%_21} 
x m l , 2 , . . . ~  

a n d  the q u a n t i t i e s  A*v= are  the  z t h  d i f f e r e n c e s  o f  the  s e q u e n c e  v~ d e f i n e d  

a s  f o l l o w s :  

F o r x  = 1 , 2 , . . . , n - -  % 

v~ 1 " * " 0 = ifAu= > 
" • I! = -  / f a u .  < 0 .  

F o r  x = - - z  + l ,  - - z  + 2, . . . , O a n d  x = n - -  z + l ,  . . . , n ,  

v = =  O.  

Before the proof of Theorem 1 is presented, the procedure for computing 
0z that is implied by the theorem will be illustrated in connection with 
the example employed by Greville [5, p. 59]. 

EXAMPLE: CALCULATION OF 0z FOR z = 2 

m l  . . . .  

0 . . . .  

1 . . . .  

2 . . . .  

3 . . . .  

4 . . . .  

5 . . . .  

6 . . . .  

7 . . . .  

8 . . . .  

9 . . . .  

i0 . . . .  
11 . . . .  

u;' 

34 
24 
31 
40 
30 
49 
48 
48 
67 
58 
67 

3 --10 
5 7 
8 9 

10 --10 
15 19 
20 -- 1 
23 0 
20 19 
15 -- 9 
13 9 
11 . . . . . . .  

17 
2 

--19 
29 

--20 
1 

19 
--28 

18 

9= 

0 
0 
1 
1 

--1 
I 

--1 
1 
1 

--1 
1 
0 
0 

A~Z--I 

0 
I 
0 

--2 
2 

--2 
2 
0 

--2 
2 

- - i  
0 

A2VZ__I 

1 
--1 
--2 

4 
--4 

4 
--2 
--2 

4 
--3 

1 

3 
5 
4 
2.5 
3.75 
5 

11.5 
10 
3.75 
4.33 

11 

T h e  va lues  of vx are  mere ly  the  signs of ~zu'-' wi th  z add i t iona l  zero 

va lues  a p p e n d e d  a t  the  b e g i n n i n g  and  a t  the  end.  In  th is  example  the  

m i n i m u m  va lue  of w f f [ A * v ~ _ 2 [  occurs  for x = 4. T h u s  0z = 2.5. 

P r o o f  o f  T h e o r e m  1: Cons ider  the  c o n s t r a i n t  ma t r ix  for the  p rob lem,  

P '  N '  R '  T* 

[ ' - - K ,  ' ' ] I I n - ,  I - -  I n _ ,  , A =  K ,  ] , I 

W '  W '  8_* 0_' 

where the variables associated with each block of A are indicated as a row 
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vector above that block and the corresponding objective function coeffi- 

cients as a row vector below that block. Let yx, y2, • • •, y,-~ be multipliers 

for the respective rows. Because the blocks with which the variables Rs 

and T~ are associated are the identity matrix and its negative, the 

reduced costs for those variables are 

Z n  i - Cni  = Y i - - 0  and  Z r  I -  C~, i = - y j -  O. 

I t  should be noted tha t  for any set of mult ipl iers  the sum of the reduced 
costs for Rj  and Tj  equals --20. Suppose tha t  the values of the mult ipl iers  
are determined so tha t  the reduced costs of the basic variables corre- 
sponding to the no-graduat ion solution equal zero, tha t  is, 

Yi = 0 if A ' u "  >__ 0 and  Ri  is bas ic  (17) 

= - -0  if h 'u~ '  < 0 and  Ti is b a s i c .  (18) 

The  reduced costs for all of the variables Rj  and Tj  then have values 
equal to ei ther  zero or --20. 

Consider next the reduced costs for the variables P i  and Ni.  Except  
for j =  1, 2 , . . . , z a n d j =  n - z + l , n - z +  2 , . . . , n ,  the reduced 
costs have the form 

Z P  i -- Cp i = ( - 1 ) ' h ' y s _ ,  - wi (19) 

and 
ZN i - -  CN/ = (--1)*+XA'yi_, - -  w i .  (20) 

However,  if values yj  = 0 are assigned f o r j  = - z  + 1, - -z  + 2, . . . ,  0 
a n d j  = n - z "t- 1, n - z + 2, . . . ,  n, equat ions (19) and (20) hold for 
j = 1, 2, . . . ,  n. However,  in view of equations (17) and (18), 

Z e  i --  Cp i = O(-1)'A*vj._, - -  w~' (21) 
and  

Z~r t --.  Cn i = 0 ( - -  1)'+'A*vj_, - -  wi , (22) 

where the values v i are defined as indicated in the s ta tement  of the 
theorem. The  condit ions for this basic solution to be opt imal  are Ze  i - -  
Cp i <_ 0 and Ztcj -- Cu  i <_ 0 for j = 1, 2, . . . ,  n. In  view of equat ions 
(21) and (22), the la t ter  condit ions are equivalent  to 

- -ws < O(--1)~A'vs-, < wi  or [OA*vi_,[ < w i .  (23) 

But  inequal i ty  (23) will be satisfied if 0 _< 0L, where 

Or, = m i n i m u m  { w i / [ A ' v i _ ,  [} . (24) 
j~ l ,2 , . . . , n  

Hence, if 0 < 0 < Or, the no-graduat ion solution u,  = u'-' is the opt imal  
solution. 
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The second of the two theorems will be approached from what will be 
called a polynomial basis, that  is, a basis for which the associated basic 
variables are all selected from the variables Pj and Nj, j = 1, 2, . . .  , n. 
Such a basis is called a polynomial basis because none of the variables R~ 
and T s are basic; therefore, their values all equal zero, all zth differences 
of the graduated values equal zero, and the graduated values lie on a 
polynomial of degree z - 1 or lower. Since there are only n - z basic 
variables, there must be at least z values of j such that  neither Pj nor 
Nj is basic. For those values of j,  uj = uj', and the polynomial of degree 
z -- 1 passes through those points. 

Suppose that, for a polynomial basis, multipliers ya, yo, . . . ,  yn- ,  are 
determined so that  the reduced costs for the basic variables equal zero, 
tha t  is, 

( - -  1)'k'y~'_: = ws if P~. is basic (25) 
and 

( - -  1)*+'A'y~_, = wj if Nj is bas i c ,  (26) 

with Y i = 0 f o r j =  - - z + l ,  - - z + 2 , . . . , 0 a n d j - - n - - z + l ,  n - -  
z + 2, . . . ,  n. The reduced cost for N~. is --2wj if P i  is basic, and the 
reduced cost for P j  is --2w~. if Ni  is basic. 

Suppose further that  the reduced costs for all other nonbasic P j  and 
Nj are also nonpositive, that  is, (--1)zA*yj_z _< wi and (-1) '+LA'yj_,  < 
wj, or, in other words, 

--w~ < A'ys_: < wi  , j = 1, 2, . . . , n . (27) 

The basic solution so determined represents the solution to the problem 
of fitting a polynomial of degree z -- 1 or lower to the observed values 
u',' so as to minimize g~.l  w, ]u" -- u,  [. Tha t  solution is also the solution 
to the graduation problem if 8 is sufficiently large. The question of how 
large 0 must be is answered by the following theorem. 

THEOREM 2. Let yl, yo_, . . . ,  y~_, be multipliers corresponding to a 

polynomial basis and satisfying conditions (25), (26), and (27). Let 

0v = max imum {lY~'[} • 
j~l ,2, . . . ,n--~ 

Then, i f  0 > Or, the associated basic solution, is optimal for  the gradua- 

tioJr problem. 

Proof: By hypothesis the optimality conditions for the variables Pi  
and Ns, j = 1, 2 , . . . ,  n, are satisfied, so all that  remains to be shown is 
tha t  the reduced costs for the variables Ri and T~, j --- 1, 2 , . . .  , n - z, 
are nonpositive. Those reduced costs are ZR -- CR ---- yj -- 0 and ZT i -- 
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CTj ---- - - Y i  - -  8. The conditions for all to be nonpositive are - 8  _< Ys -< 
8, or lYJ[ < 8, j = 1, 2 , . . . ,  n - z .  Those conditions are satisfied if 

8 > max imum {[Yi[} • 
- -  j =  1 ,2 , . . . , n - - z  

L I N E A R  PROGRAVi~'~I'NG GRADUATION STRATEGY 

Striking a balance between fit and smoothness is the central issue in 
graduation. In the difference-equation method, that problem takes the 
form of selecting an appropriate value for 0. Heretofore little guidance 
has been given the graduator as to how the value of 8 might be chosen. 
The two theorems of the preceding section perhaps offer some help in the 
case of ll norm graduation. The value of OL can be computed directly from 
the data that are originally available. The value of 8e is not obtained 
quite so readily, however. First it is necessary to solve the problem of 
fitting a polynomial of degree z -- 1 or lower to the data by the method 

w " u,]. As of least total deviations, that is, so as to minimize Z~.t , u,  - 
indicated earlier, the latter problem could be formulated as a separate 
linear programming problem and solved. However, the linear program- 
ming formulation of the graduation problem can be employed just as 
well. One simply selects a very large value for 0 and then runs the gradua- 
tion problem program. For a value of 8 sufficiently large, the variables 
R t and Ti all will be nonbasic at optimum. From their reduced costs, 
which most computer linear programming routines generate, the values 
of Yi can be obtained. Theorem 2 then can be employed to compute Be. 

One way to proceed after Or. and 8v are known is to solve the linear 
programming problem for a number of values of 8 between Or. and Ou. I t  
is very likely that the resulting graduations will permit the user to select 
a suitable set of graduated values. No single criterion can be offered for 
the selection of one final set of graduated values. However, the methods 
that ha~-e been proposed provide the graduator with guidelines that can 
be helpful in exploring the range between perfect fit and perfect smooth- 
ness, and also provide control over the problem of striking a balance 
between those extremes. 

EXAMPLES OF THE TECHNIQUE 

Example I is that given by Miller [9, p. 39], in which there are nineteen 
values to be graduated. The first eleven of those values form the example 
that  was employed by Greville [5] and for which the value of Oz was 
computed earlier. A computer program that first computes 0z and then 
solves the linear programming problem expressed by equations (7) and 
(8) for 0 = 105 was employed for z = 2, 3, and 4. For z = 2 the problem 
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contained 17 constraints  and 72 variables,  for z = 3 it contained 16 
constraints  and 70 variables,  and for z = 4 there were 15 constraints  and 
68 variables.  In  each case the result ing graduated  values were those 
given by  a polynomial  of degree z - -  1. The  program utilized a linear 
programming routine t tha t  made available the reduced costs of the 
variables Rj and T i from which the values of ev were obtained.  

The  next step was to divide the interval  from eL to eu into ten sub- 
intervals  and to solve the l inear programming problem for those inter- 
mediate  values of 0. The  result ing graduated  values for z = 2, 3, and 4 
are shown in Tables  1, 2, and 3, respectively,  along with the measures of 
fit, Z w,(u"  - u,) 2 and Z w , [u"  - u,[, and the measures of smoothness, 
Z (&*u.) 2 and Z [&*,~[. The values of eL and 8e are as follows: 

, 0~ 0 u 

2 . . . . . . . . . .  1.00 79.00 
3 . . . . . . . . . .  0.75 62.36 
4 . . . . . . . . . .  0.50 11.31 

The  th i r ty  graduat ions,  including the computa t ion  of measures of fit and 
smoothness, required 58.495 seconds of CPU t ime for compilat ion,  collec- 
tion, and execution on the UNIVAC 1110 system. 

Some observat ions concerning the graduated  values can be made. 
Firs t ,  different values of 0 produce the same graduat ions  in a number  of 
instances. For  z = 2 the graduat ions  are the same for 0 = 24.40-55.60, 
inclusive, and also the two graduat ions  for 0 --- 63.40 and 0 = 71.20 are 
the same. For  z = 3 the ten values of 0 employed result  in only four 
different graduations.  For  z = 4 three of the graduat ions  are identical.  

A second poin t  is tha t  the higher the value of z the relat ively far ther  
on the interval  from 0L to 0u the value of 0 must  be in order to achieve an 
acceptable graduat ion.  For  z = 2, only the second graduat ion,  corre- 
sponding to 0 = 16.60, appears  acceptable.  For  z = 3 each of the two 
in termedia te  graduat ions,  corresponding to 0 = 13.07-56.20, appears  
reasonable. For  z = 4 the last  three graduat ions,  corresponding to 0 = 
9.15, 10.23, and 11.31, appear  to be good. The same poin t  also can be 
made in ei ther of the following ways:  (1) the lower the value of z, the 
more quickly do the graduated  values react to the smoothness require- 
ment  and tend toward values lying on a polynomial  of degree z - -  1 as 0 
increases over the interval  from 0L to Or, and (2) the higher the value of 
z, the be t te r  fi t t ing is the graduat ion corresponding to 0 = Ov and the 

1 SIMPLX, a FORTRAN callable subroutine available on the UNIVAC 1110 system of 
the University of Wisconsin--Madison. 



TABLE 1 

EXAMPLE I: GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS; ~ -~ 2 

b~ 

1 . . . . . .  34 3 
.~ . . . . .  24 5 
. . . . .  31 8 

t . . . . .  40 10 
. . . . .  30 15 
. . . . .  49 20 

T . . . . .  48 23 
. . . . . .  48 20 

) . . . . . .  67 15 
l0 . . . . .  58 13 
11 . . . . .  67 11 
12 . . . . .  75 10 
[3 . . . . .  76 9 
14 . . . . .  76 9 
15 . . . . .  102 7 
16 . . . . .  100 5 
17 . . . . .  101 5 
18 . . . . .  115 3 
19 . . . . .  134 1 

8=8.80 0~16.60 8=24.40 0=32.20 0--40.00 [ 0=47.80 6=55.60 8=63.40 0=71.20 8~79.00 

Graduated Value (uz) 

19.67 
25.33 
31.00 
36.67 
42.33 
48.00 
48.00 
48.00 
54.17 
60.33 
66.50 
72.67 
78.83 
85.00 
92.50 

100.00 
107.50 
115.00 
122.50 

w z ( u ; ' - u z )  2 . . . . . . .  7,412.89 
w, lu~ ' -u~ I . . . . . . .  756.67 

2; (a 'u , )  2 . . . . . . . . . . . .  71.92 
I ~ 1  . . . . . . . . . . . .  13.17 

22.50 
26.75 
31.00 
35.25 
39.50 
43.75 
48.00 
52.25 
57.17 
62.08 
67.00 
71.92 
76.83 
84.47 
92.10 
99.73 

107.37 
115.00 
122.63 

22.50 
26.75 
31.00 
35.25 
39.50 
43.75 
48.00 
52.25 
56.79 
61.33 
67.00 
72.67 
78.33 
84.00 
89.67 
95.33 

I01 .00  
106.67 
112.33 

22.50 
26.75 
31.00 
35.25 
39.50 
43.75 
48.00 
52.25 
56.79 
61.33 
67.00 
72.67 
78.33 
84.00 
89.67 
95.33 

101.00 
106.67 
112.33 

22.50 
26.75 
31.00 
35.25 
39.50 
43.75 
48.00 
52.25 
56.79 
61.33 
67.00 
72.67 
78.33 
84.00 
89.67 
95.33 

101.00 
106.67 
112.33 

22.50 
26.75 
31.00 
35.25 
39.50 
43.75 
48.00 
52.25 
56.79 
61.33 
67.00 
72.67 
78.33 
84.00 
89.67 
95.33 

101.00 
106.67 
112.33 

22.50 
26.75 
31.00 
35.25 
39.50 
43.75 
48.00 
52.25 
56.79 
61.33 
67.00 
72.67 
78.33 
84.00 
89.67 
95.33 

101.00 
106.67 
112.33 

21.33 
25.78 
30.22 
34.67 
39.11 
43.56 
48.00 
52.44 
56.89 
61.33 
67.00 
72.67 
78.33 
84.00 
89.67 
95.33 

101.00 
106.67 
112.33 

Measures of Fit and Smoothness 

6,358.39 
857.20 

7.82 
3.38 

7,164.92 
897.37 

1.35 
1.42 

7,164.92 
897.37 

1.35 
1.42 

7,164.92 
897.37 

1.35 
1.42 

7,164.92 
897.37 

1.35 
1.42 

7,164.92 
897.37 

1.35 
1.42 

7,228.36 
908.56 

1.49 
1.22 

21.33 
25.78 
30.22 
34.67 
39.11 
43.56 
48.00 
52.44 
56.89 
61.33 
67.00 
72.67 
78.33 
84.00 
89.67 
95.33 

101.00 
106.67 
112.33 

7,228.36 
908.56 

1.49 
1.22 

19.20 
24.00 
28.80 
33.60 
38.40 
43.20 
48.00 
52.80 
57.60 
62.40 
67.20 
72.00 
76.80 
81.60 
86.40 
91.20 
96.00 

100.80 
105.6O 

8 ,880.16 
1,001.20 

0 .00  
0 .00  



TABLE 2 

EXAMPLE I: GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS; z = 3 

wz 0 = 6 . 9 1  # = 1 3 . 0 7  0 ~ 1 9 . 2 3  0 = 2 5 . 4 0  # - - 3 1 . 5 6  0 ~ 3 7 . 7 2  # = 4 3 . 8 8  # ~ 5 0 . 0 4  0 = 5 6 . 2 0  J 0 - 6 2 . 3 6  
i 

Graduated Value (uz) 

2 . . . . .  

3 . . . . .  

4 . . . . .  

5 . . . . .  

7 . . . . .  

9. 

11 . . . .  
12 . . . .  
13 . . . .  
14 . . . .  
15 . . . .  
16 . . . .  
17 . . . .  
18 . . . .  
19 . . . .  

34 3 
24 5 
31 8 
40 10 
30 15 
49 20 
48 23 
48 20 
67 15 
58 13 
67 II 
75 10 
76 9 
76 9 

102 7 
100 5 
101 5 
115 3 
134 1 

20.67 
25.99 
31.00 
35.71 
40.11 
44.21 
48.00 
52.18 
56.73 
61.68 
67.00 
72.71 
78.80 
85.27 
92.13 
99.37 

1 0 6 . 9 9  
115.00 
123.39 

22.32 
26.68 
31.00 
35.29 
39.56 
43.79 
48.00 
52.18 
56.73 
61.68 
67.00 
72.71 
78.80 
8 5 . 2 7  
92.13 
99.37 

106.99 
115.00 
123.39 

22.32 
26.68 
31.00 
35.29 
39.56 
43.79 
48.00 
52.18 
56.73 
61.68 
67.00 
72.71 
78.80 
85.27 
92.13 
99.37 

106.99 
115.00 
123.39 

22.32 
26.68 
31.00 
35.29 
39.56 
43.79 
48.00 
52.18 
56.73 
61.68 
67.00 
72.71 
78.80 
85.27 
92.13 
99.37 

106.99 
115.00 
123.39 

22.32 
26.68 
31.00 
35.29 
39.56 
43.79 
48.00 
52.18 
56.73 
61.68 
67.00 
72.71 
78.80 
85.27 
92.13 
99.37 

106.99 
115.00 
123.39 

22.32 
26.68 
31.00 
35.29 
39.56 
43.79 
48.00 
52.18 
56.73 
61.68 
67.00 
72.71 
78.80 
85.27 
92.13 
99.37 

106.99 
115.00 
123.39 

23.13 
27.01 
31.00 
35.09 
39.29 
43.59 
48.00 
52.51 
57.13 
61.85 
67.00 
72.58 
78.58 
85.01 
91.87 
99.15 

106.86 
115.00 
123.57 

23.13 
27.01 
31.00 
35.09 
39.29 
43.59 
48.00 
52.51 
57.13 
61.85 
67.00 
72.58 
78.58 
85.01 
91.87 
99.15 

106.86 
115.00 
123.57 

23.13 
27.01 
31.00 
35.09 
39.29 
43.59 
48.00 
52.51 
57.13 
61.85 
67.00 
72.58 
78.58 
85.01 
91.87 
99.15 

106.86 
115.00 
123.57 

30.99 
32.87 
35.13 
37.77 
40.80 
44.21 
48.00 
52.18 
56.73 
61.68 
67.00 
72.71 
78.80 
85.27 
92.13 
99.37 

106.99 
115.00 
123.39 

Measures of Fit and Smoothness 

~ w z ( u ~ ' - - u , )  2 . . . . . . .  6,707.94 
2~ w~lu~'--uffi I . . . . . . . .  I 870.01 

(A,uz)~ . . . . . . . . . . . . .  0.47 
A,u . . . . . . . . . . . . . .  0.69 

6,557.30 
872.63 

0.17 
0 .4 l  

6,557.30 
872.63 

0.17 
0.41 

6,557.30 
872.63 

0.17 
0.41 

6,557.30 
872.63 

0.17 
0.41 

6,557.30 
872.63 

0.17 
0.41 

6,433.84 
876.08 

0.10 
0.32 

6,433.84 
876.08 

0.10 
0.32 

6,433.84 
876.08 

0.10 
0.32 

6,793.25 
896.17 

0.00 
0.00 



TABLE 3 

EXAMPLE I: GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS; z ~ 4 

, , / '  ,o,, 

1 . . . . . .  3 4  3 
. . . . . .  2 4  5 
. . . . . .  31 8 

t . . . . . .  40 10 
5 . . . . . .  30 15 
$ . . . . . .  49 20 
? . . . . . .  48 23 
. . . . . .  48 20 

) . . . . . .  6 7  15 
tO . . . . .  ! 58 13 
[1 . . . . .  67 11 
t2 . . . . .  75 10 
t3 . . . . .  76 9 
t4 . . . . .  76 9 
[5 . . . . .  102 7 
L6 . . . . .  100 5 
[7 . . . . .  101 5 
[8 . . . . .  115 3 
[9 . . . . .  134 1 

w . ( u " - u A  ~ . . . . . . .  

z w = l , , " - u . l  . . . . . . . . .  
(A'u~p . . . . . . . . . . . . .  

z I ,~,~, I . . . . . . . . . . . .  

0ml.58 0~2.66 [ 0=3.74 0=4.82 0 = 5 . 9 0 [ 0 = 6 . 9 9  0~8.07 0=9.15 0=10.23 0=11.31 

Graduated Value (uz) 

34. O0 
24. O0 
31.00 
40.00 
46.17 
49.00 
48.00 
48.00 
51.50 
58.00 
67.00 
74.37 
76.00 
78.54 
88.66 

100.00 
106.22 
115.00 
134.00 

34.00 
26.47 
31.00 
40.00 
45.89 
48.59 
48.00 
48.00 
52.47 
59.45 
67.00 
73.17 
76.00 
78.42 
83.33 
90.83 
[01.00 
1 1 5 . 0 0  
t34. O0 

34.00 
26.48 
31.00 
40.00 
45.94 
48.66 
48.00 
48.00 
52.69 
59.78 
67. O0 
72.08 
76.00 
79.82 
84.59 
91.34 

101.13 
115.00 
134.00 

34.00 
26.48 
31.00 
40.00 
45.94 
48.66 
48.00 
48.00 
52.69 
59.78 
67.00 
72.08 
76.00 
79.82 
84.59 
91.34 

101.13 
115.00 
134.00 

34.00 
26.48 
31.00 
40.00 
45.94 
48.66 
48.00 
48.0O 

i 52.69 
59.78 
67.00 
72.08 
76. O0 
79.82 
84.59 
91.34 

101.13 
115.00 
134.00 

34.00 
30.29 
31.00 
34.63 
39.68 
44.63 
48.00 
51.27 
55.96 
61.41 
67.00 
72.08 
76.00 
79.82 
84.59 
91.34 

101.13 
l l5 .00  
1 3 4 . 0 0  

34.00 
30.82 
31.00 
33.67 
37.96 
43.03 
48.00 
52.88 
57.67 
62.38 
67.00 
71.54 
76.00 
80.89 
86.73 
94.02 

103.27 
115.00 
129.72 

24.50 
27.53 
31.00 
34.84 
39.00 
43.41 
48.00 
52.72 
57.50 
62.28 
67.00 
71.59 
76.00 
80.78 
86.51 
93.75 

103.05 
115.00 
130.15 

24.97 
27.71 
31.00 
34.76 
38.91 
43.35 
48.00 
52.78 
57.59 
62.36 
67.00 
71.42 
76.00 
81.14 
87.22 
94.63 

103.76 
115.00 
1 2 8 . 7 3  

Measures o[ Fit and Smoothuess 

8,969.13 
623.63 
660.51 

66.61 

9,963.94 
712.40 
138.67 
26.07 

9,672.82 
725.69 
122.66 
21.21 

9,672.82 
725.69 
122.66 
21.21 

9,672.82 
725.69 
122.66 
21.21 

7,181.01 
822.59 

16.45 
6.83 

6,520.19 
861.87 

1.00 
1 . 3 7  

6,710.05 
868.06 

0.39 
0.63 

6,552.41 
869.49 

0.22 
0.47 

22.22 
26.68 
31.00 
35.24 
39.46 
43.69 
48.00 
52.43 
57.04 
61.88 
67.00 
72.45 
78.28 
84.55 
91.30 
98.60 

106.48 
115.00 
124.22 

6,485.78 
874.85 

0.00 
0.00 
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' better fitting are the graduations corresponding to values of 0 relatively 

close to Or. 
In Example II,  the data set to be considered is the 1955-60 ultimate 

experience from which the 1955-60 Ultimate Basic Mortality Table, 
Male and Female Lives Combined, was derived. The experience and the 
table are contained in the Report of the Committee on Mortality under 
Ordinary Insurances and Annuities appearing in T S A ,  1962 Reports. The 
observed, or crude, mortality rates per 1,000, denoted by u'-', are given in 
Table 8 of the report for x = 15, 16, . . . ,  95. The actual death claims in 
units of 1,000 are given in Table 10 of the report. The exposures were not 
published but can be inferred from the information given, although with 
considerable loss in the number of significant digits. If u'~' = q~' X 103 
denotes the entries in Table 8 and 0~ X 10 -3 denotes the entries in 
Table 10, and if w~ is the ratio of the latter to the former, one obtains 
w~ = E, X 10 -8. Hence, the weights w~ are the exposures in units of 
1,000,000. 

The first attempt to compute OL and ~v for z = 2, 3, and 4 and to 
obtain graduations at intermediate values of 0 ended in failure because 
the CPU time limit had been exceeded. I t  was discovered that each call 
of the linear programming subroutine required approximately three 
minutes of CPU time on the UNIVAC 1110 system. Hence, the project 
of obtaining ten graduations for each value of z was abandoned, and 
instead experimentation with z = 2 and z = 3 for various values of 0 
was performed. 

For z = 2 all the graduations obtained were discarded as being un- 
acceptable for one reason or another. For z = 3 several good graduations 
were obtained. Those graduations, along with the published mortality 
table from Table 2 of the report, were tested for smoothness and fit. The 
graduated values and the measures of fit and smoothness are shown in 
Table 4. The published table was obtained through Whittaker:Henderson 
Type A methods with 0 = 3 (a = 1) for x >_ 32 and 6 = 18 (a = 2) for 
x < 32. Compared with the published table, the table of graduated 
values obtained using the methods of this paper for 8 = 5 is better with 
respect to both measures of smoothness and one measure of fit; it is 
slightly poorer with respect to the measure of fit 2; w,(u': -- u,) 2, which, 
of course, ought to be small for Whittaker-Henderson graduated values. 

CONCLUSIONS 

A method of graduation based upon the minimization of the sum of 
the absolute values of the deviations and the sum of the absolute values 
of the zth differences of the graduated values has been presented. The 



"I'ABLP3 4---~XAMPLE 11: GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS; z = 3 
(1955-60 Ult imate  Basic M or t a l i t y - -M a l e  and Female Lives Combined) 

b~ 

Crude 
Morta l i ty  

Age 
Rate per 

1,000 

I5 . . . . .  0 .58  
16 . . . . .  0 .65  
17 . . . . .  0.71 
t8 . . . . .  0.83 
t9 . . . . .  0 .89  

,)0 . . . . . .  0 .93 
.~1 . . . . . .  1 .07  
!2 . . . . . .  0 .97 
.~3 . . . . . .  0 .84  
!4 . . . . . .  0 .90  

!5 . . . . . .  0 .88  
).6 . . . . . .  1.18 
!7 . . . . . .  1.05 
!8 . . . . . .  1.31 
!9 . . . . . .  0 .86  

~0 . . . . . .  1 .06  
51 . . . . . .  0 .99 
~2 . . . . . .  1.11 
53 . . . . . .  1.24 
~4 . . . . . .  1.14 

~5 . . . . . .  1.35 
~6 . . . . . .  1.46 
57 . . . . . .  1 .50  
~8 . . . . . .  I .  70 
~9 . . . . . .  1.79 

I0 . . . . . .  2.06 
1,1 . . . . . .  2.40 
1~2 . . . . . .  2.56 
~3 . . . . . .  3 .06 
I-4 . . . . . .  3.23 

Exposure 
in Units 

of 
1,000,000 

0 = 2  

2.69 0 .58  
2.91 0 .65  
2.35 0.73 
1.89 0.82 
1.62 0 .89  

1.27 0 .94  
0.94 0 .96  
0.89 0.97 
0.88 0 .95  
0.89 0 .96  

1.85 0 .98  
2.31 1.02 
2.89 1.05 
3.55 1.06 
4.26 1.05 

5.52 1.06 
6.67 1.08 
7.82 1.11 
9.28 1.14 

11.12 1.17 

13.19 1.35 
15.40 1.46 
17.97 1.50 
20.47 1.70 
22.91 1.79 

25.65 2.06 
28.72 2.40 
31.27 2 .56  
33.96 3 .06  
36.39 3.23 

0=3  8 = 4  0 = 5  0= 10 O= 15 0=20  8 = 3 5  

Graduated Value 

0.58 
0.65 
0.73 
0.81 
0.88 

0.93 
0.96 
0.97 
0.98 
1.00 

1.02 
1.04 
1.05 
1 .06  
1.05 

1 .06  
1.07 
1.11 
1.17 
1.25 

1.35 
1.46 
1.57 
1.68 
1.79 

2.06 
2.40 
2.56 
3.06 
3.23 

0.58 
0.67 
0.75 
0.82 
0.88 

0.93 
0.97 
1.00 
1.02 
1.03 

1.04 
1.05 
1.05 
1.04 
1.03 

1.04 
1.07 
1.11 
1.17 
1.25 

1.35 
1.45 
1 .56  
1.67 
1.79 

2.06 
2.40 
2.73 
3.06 
3.23 

0 .58  
0 .67  
0 .75  
0 .82  
0 .88  

0 .93  
0 .97  
1.00 
1.02 
I .  03 

1.04 
1.05 
1.05 
1.04 
1.03 

1.04 
1.07 
1.11 
1.17 
1.25 

1.35 
1 .43  
1.50 
1.62 
1.80 

2 .06  
2 .40  
2.73 
3 .05  
3 .23  

0.58 
0.67 
0.75 
0.82 
0.88 

0.93 
0.97 
1.130 
1.02 
1.04 

1.05 
1.05 
1.05 
1.04 
1.03 

1.03 
1.06 
1.11 
1.18 
1.26 

1.35 
1.45 
1.56 
1.70 
I.  86 

2.06 
2.29 
2.56 
2.87 
3.23 

0.58 
0.66 
0.72 
0.79 
0.84 

0.89 
0.93 
0.97 
1.00 
1.02 

1.04 
1.05 
1.05 
1.05 
1.05 

1.06 
1.09 
1.13 
1.19 
1.26 

1.35 
1.45 
1.56 
1.70 
1.86 

2.06 
2.29 
2.56 
2.87 
3.23 

0 .58  
0 .66  
O. 73 
O. 80 
0 .86  

0.91 
0.95 
0.99 
1.01 
1.03 

1.05 
1.05 
1 .05  
1.04 
1.04 

1.06 
1.09 
1.13 
1.19 
1.26 

1 .35  
1 .45  
1 .56  
1 .70  
1 .86  

2.06 
2.29 
2.56 
2.87 
3.24 

0.58 
0 .66  
0.72 
0.79 
0.84 

0.89 
0.93 
0.97 
1.00 
1.02 

1.04 
1.05 
1 .05  
1 .05  
1 .05  

1 .06  
1.09 
1.13 
1.19 
1 .26  

1.35 
1.45 
1.56 
1.70 
1.86 

2.06 
2.29 
2.56 
2.87 
3.23 

Published 
Mortality 
Rate per 

1,000 

0.61 
0 .68  
0 .74  
0.81 
0 .86  

0 .90  
0 .94  
0 .95 
0 .96  
0 .98  

1.00 
1.02 
1.04 
1 .05  
1.05" 

1 .06  
1.07 
1.10 
1.16 
1.22 

1.31 
1.42 
1.53 
1.68 
1 .85  

2.07 
2.33 
2.62 
2.95 
3.31 



Oo 

A g e  

t 5  . . . . . .  

~ 6  . . . . . .  

t7 . . . . . .  
~ 8  . . . . . .  

t9 . . . . . .  

5 0  . . . . . .  

51 . . . . . .  
52 . . . . . .  
5 3  . . . . . .  

5.4 . . . . . .  

5 5  . . . . . .  

56 . . . . . .  
57 . . . . . .  
58 . . . . . .  
59 . . . . . .  

~ 0  . . . . . .  

51 . . . . . .  
62 . . . . . .  

~ 4  . . . . .  

5 5  . . . . .  

~ 6  . . . . .  

57 . . . . .  
~ 8  . . . . . .  

5 9  . . . . . .  

7 0  . . . . . .  

71 . . . . . .  
72 . . . . . .  
73 . . . . . .  
74 . . . . . .  

Crude 
Mortality 
Rate per 

1,000 

3.66 
4.34 
4.70 
5.14 
6.14 

6.66 
7.23 
8.05 
8.81 
9.64 

10.73 
11.73 
12.82 
14.20 
15.73 

17.47 
18.93 
20.74 
23.14 
25.03 

27.50 
30.19 
33.47 
34.12 
38.42 

43.58 
46.85 
49.76 
52.23 
56.45 

TABLE 4---Continued 

Exposure 
in Units 

of 
1,000,000 

0 ~ 2  0=3  0 = 4  # =  10 0~15 0 = 2 0  

Graduated Value 

38.79 
40.89 
43.23 
45.49 
47.54 

49.39 
50.86 
51.75 
52.44 
52.73 

52.29 
51.50 
50.78 
50.12 
49.57 

47.02 
46.04 
44.76 
43.41 
41.22 

36.75 
34.31 
31.90 
29.33 
27.18 

24.83 
22.36 
20.05 
17.82 
15.62 

3.66 
4.34 
4.70 
5.14 
6.14 

6.66 
7.23 
8.05 
8.81 
9.64 

10.73 
11.73 
12.82 
14.20 
15.73 

17.47 
18.93 
20.74 
23.14 
25.03 

27.50 
30.19 
33.47 
34.12 
38.42 

43.58 
46.85 
49.76 
52.23 
56.45 

3.66 
4.34 
4.70 
5.14 
6.14 

6.66 
7.23 
8.05 
8.81 
9.64 

10.73 
11.73 
12.82 
14.20 
15.73 

17.47 
18.93 
20.74 
23.14 
25.03 

27.50 
30.19 
33.47 
34.12 
38.42 

43.58 
46.88 
49.76 
52.23 
56.45 

3.66 
4.34 
4.70 
5.14 
6.14 

6.66 
7.23 
8.05 
8.81 
9.64 

10.73 
11.73 
12.82 
14.20 
15.73 

17.47 
18.93 
20.74 
23.14 
25.03 

27.50 
30.19 
33.10 
34.12 
38.42 

43.58 
46.88 
49.76 
52.23 
56.73 

3.66 
4.34 
4.70 
5.14 
6.14 

6.66 
7.23 
8.05 
8.81 
9.64 

10.73 
11.73 
12.82 
14.20 
15.73 

17.47 
18.93 
20.74 
23.14 
25.03 

27.50 
30.19 
33.10 
34.93 
38.42 

43.58 
46.88 
49.76 
52.23 
56.73 

3.66 3.66 
4.15 4.15 
4.70 4.70 
5.31 5.31 
5.99 5.99 

6.66 6.66 
7.33 7.33 
8.05 8.05 
8.81 8.81 
9.69 9.68 

1 0 . 6 9  10.67 
11.73 11.73 
12.82 12.87 
14.20 14.20 
15.73 15.73 

17.35 17.31 
18.93 18.93 
20.74 20.74 
22.78 22.78 
25.03 25.03 

27.50 27.50 
30.19 30.19 
32.67 33.10 
34.95 36.22 
38.42 39.69 

43.07 43.49 
46.85 46.85 
49.76 49.76 
52.43 52.50 
56.45 56.45 

0~35 

3.66 
4.15 
4.70 
5.32 
5.99 

6.66 
7.31 
8.03 
8.81 
9.69 

10.67 
11.73 
12.87 
1 4 . 2 0  
15.73 

17.31 
18.93 
20.74 
22.78 
25.03 

27.50 
30.19 
33.06 
36.13 
39.37 

42.80 
46.27 
49.76 
53.29 
57.49 

Published 
Mortality 
Rate per 

1,000 

3.66 3.73 
4.15 4.22 
4.70 4.74 
5.31 5.31 
5.99 5.96 

6.66 6.61 
7.33 7.29 
8.05 8.02 
8.81 8.82 
9.68 9.69 

10.65 10.66 
11.73 11.73 
12.92 12.91 
14.23 14.24 
15.67 15.71 

17.24 17.31 
18.93 19.02 
20.74 20.90 
22.78 22.95 
25.03 25.15 

27.50 27.52 
30.19 30.04 
33.06 32.71 
36.13 35.56 
39.37 38.88 

42.80 42.47 
46.27 45.99 
49.76 49.46 
53.29 53.19 
57.49 57.58 



TABLE 4- - -Cont inued  

t,o 

Crude Exposure 
Mortality in Units 

Age  Rate per of 
1,000 1,000,000 

o ~ 2  

75 . . . . . .  63.27 13.52 63.27 
76 . . . . . .  70.00 , 11.69 70.00 
77 . . . . . .  72.98 ! 10.00 73.40 
78 . . . . . .  79.62 8.54 79.62 
79 . . . . . .  88.65 7.27 88.65 

gO . . . . . .  99.90 6.09 99.04 
gl . . . . . .  106.70 5.00 106.70 
32 . . . . . .  111.64 4.01 111.64 
33 . . . . . .  116.93 3.23 119.86 
g4 . . . . . .  136.73 2.49 131.36 

}5 . . . . . . .  136.64 1.84 146.14 
36 . . . . . .  170.79 1.41 164.21 
37 . . . . . .  193.94 1.04 182.64 
g8 . . . . . .  177.85 0.75 201.44 
~9 . . . . . .  220.60 0.55 ] 220.60 

)0 . . . . . .  214.70 0.37 240.13 
)1 . . . . . .  260.03 0.28 260.03 
)2 . . . . . .  ! 2 8 5 . 4 0  0.19 280.30 
)3 . . . . . .  243.87 0.12 300.93 
)4 .I 264.48 0.07 321.93 
)51111111 367.91 0.05 343.29 

". ",v~(u "-u~)' 

': ( a * u , p  . . . . .  
~ l a ' u , I  . . . . .  

0 = 3  0 - - 4  0=10 0 = 1 5  0 = 2 0  

Graduated Value 

63.27 
68.79 
73.00 
79.62 
88.65 

99.04 
106.70 
111.64 
119.86 
131.36 

146.14 
164.21 
182.64 
201.44 
220.60 

240.13 
260.03 
280.30 
300.93 
321.93 
343.29 

63.27 
68,69 
72.98 
79.63 
88,65 

97,85 
106.70 
115.19 
125,20 
136,73 

149,78 
164,35 
180,45 
198,06 
217,20 

237,85 
260,03 
283,73 
308,95 
335.69 
363,95 

63.27 
68.69 
72.98 
79.63 
88.65 

97.54 
106.31 
114.96 
125.10 
136.73 

149.86 
164.48 
180.60 
198.22 
217.33 

237.93 
260.03 
283.62 
308.71 
335.30 
363.37 

61.83 
67.75 
74.19 
81.15 
88.65 

96.67 
105.22 
114.30 
124.81 
136.73 

150.08 
164.85 
181.04 
198.65 
217.69 

238.15 
260.03 
283.33 
308.06 
334.21 
261.78 

61.62 
67.42 
73.86 
80.94 
88.65 

97.00 
105.98 
115.59 
125.84 
136.73 

148.25 
160.41 
173.20 
186.63 
200.69 

215.39 
230.72 
246.69 
263.29 
280.53 
298.40 

62.37 
67.92 
74.16 
81.06 
88.65 

96.91 
105.85 

.115.47 
125.76 
136.73 

148.38 
160.70 
173.70 
187.37 
201.73 

216.76 
232.46 
248.85 
265.91 
283.64 
302.06 

Measures of Fit and Smoothness 

1,783.68 
115.51 
199.01 
58.73 

1,799.32 
128.63 
170.84 
52.60 

2,273.09 
184.56 
89.10 
37.17 

2,284.79 
211.39 

66.56 
31.68 

2,419.00 
358.45 

10.97 
9.01 

2,629.01 
428.56 

3.05 
3.88 

2,513.32 
466.34 

0.51 
1.56 

0~35 

62.37 
67.92 
74.16 
81.06 
88.65 

96.91 
105.85 
115.47 
125.76 
136.73 

148.38 
160.70 
173.70 
187.37 
201.73 

216.76 
232.46 
248.85 
265.91 
283.64 
302.06 

2,515.53 
477.15 

0.46 
1.19 

Published 
Mortality 
Rate per 

1,000 

62.73 
68.36 
74.35 
81.16 
88.79 

96.72 
104.38 
112.28 
121.68 
133.66 

147.69 
164.30 
180.32 
194.76 
211.14 

227.38 
244.54 
259.43 
274.05 
299.03 
334.98 

1,681.06 
464.91 
161.43 
35.76 
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procedures involve linear programming, an operations research tool with 
which some actuaries may not be familiar but which may very well be 
useful in areas other than graduation. The method enables the graduator 
to explore and to define quite precisely the expanse between perfect fit 
and perfect smoothness, and thereby to select a set of graduated values 
that  strike the proper balance between fit and smoothness. In the case of 
mortality data over a full range of ages, however, a complete project 
may not be practicable because of the amount of computer time required 
to make the calculations for many values of the smoothness parameter 8. 
Nevertheless, a graduation for a single value of # may not require any 
more time than a Whittaker-Henderson graduation and can be performed 
in any computer facility in which a linear programming subroutine is 
available. I t  is hoped that future research will lead to computational 
shortcuts that will enable the graduator to obtain a complete picture of 
the range between perfect fit and perfect smoothness even for large 
data sets. 
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DISCUSSION OF P R E C E D I N G  PAPER 

.]'AMES C. HICKMAN AND ROBERT B. MILLER: $ 

Professor Schuette has provided us with an ingenious formulation of 
the classical actuarial graduation problem and has shown how the theory 
of linear programming provides mathematical insights (Theorems 1 and 
2) and computational insights (Examples I and II)  into this problem. 
We particularly applaud the illustration of how the use of high-speed 
electronic computers can yield a "feel" for the data that  would not 
have been feasible even a few years ago. In fact, we feel that  Professor 
Schuette's treatment of the numerical examples is more modern in spirit 
than his traditional mathematical formulation of the graduation problem. 

Specifically, we believe that the F-.[-OS model is not an adequate 
theoretical foundation for graduation as it is actually performed, al- 
though the model is of great historical interest. This point is illustrated by 
the examples in the paper. The modernity of the examples stems from 
the treatment of the graduations as functions of the smoothing constant 0. 
Surely this treatment is sensible from a practical point of view, because 
whatever preconceptions the graduator may have about the smoothness 
of the true rates can be expressed only in a vague way. This means that  
he or she will want to inspect a spectrum of graduation until an ac- 
ceptable one is found. Professor Schuette follows such a plan in Ex- 
ample I, judging a variety of graduations to be "good" or "reasonable" 
on the basis of their (F, S) values. I t  is interesting to note that the "ob- 
jective function" F q- OS is not used to determine whether a graduation is 
acceptable. Indeed, some of the graduations deemed acceptable have 
higher F q- OS values than those deemed unacceptable. 

If 0 is fixed, the F Jr- OS function can be minimized. However, if one is 
also permitted to vary O, the objective function F Jr- OS always can be 
made equal to zero by choosing u, = u"  for all x and 8 = 0. Thus in fact 
another implicit "objective function" (function of 8) is being sought in 
the analysis of the data. Would it not be advisable to make explicit this 
additional function of F and S by which the graduations are being judged? 

From a Bayesian point of view; the F + 8S model flows from the 
following assumptions. Let the conditional density of u ", given u, be 
f (u"lu) ,  and let the marginal density of u, p(ulS), be a function of the 
parameter 8. Then the posterior density of u, given u", is proportional to 

* Dr. Miller, not a member of the Society, is associate professor of statistics and 
business, University of Wisconsin--Madison. 
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p(u[O) / (u"[  u). If we take 

f ( u " [ u )  o: exp --  w x u " - - u  x l '  , (1) 

where q > 0 and ~ , . . .  , w~ are known, and we take 

p ( u l O )  ~" O e x p  --0 [A'u~] q , (2) 

we obtain the kernel of the posterior density 

- )? exp E--  w ] u "  - -  u l q + 0~'~ IA~u~] q . (3) 

The mode of this posterior density is obtained by minimizing the ex- 
ponent,  so this result contains both Schuette 's (q = 1) and Whit taker ' s  

(q = 2) formulations. A number  of remarks need to be made at this point. 

1. The function P(uto)  is a singular density on u, that is, it assigns u to a 
subspace of n-dimensional space with probability 1. While singularity is 
not a disastrous quality for a prior distribution, the justification for its 
use in this case is not immediately apparent. Whittaker [7] may not have 
thought of p(ulO) as a distribution on u at all, but rather in terms of a 
prior density on S of the form Oe -es, where S could be any of a number of 
measures of smoothness. Naturally, many other candidates for P(ulO) 
functions come to mind that are at least as reasonable as Whittaker's 
choice, but his choice has been more or less enshrined in actuarial science. 

2. There is no obvious reason why the q in formula (1) should be equal to the 
q in formula (2). A graduator convinced strongly of the smoothness of the 
u's might take q = 4 in (2) and a lower value of q in (1). There are limiting- 
distribution arguments supporting the choice of q = 2 in (l) (see [3], for 
example), but robustness considerations might lead one to consider q = 1. 

3. Robustness considerations are not new. In 1888 Edgeworth [1], following 
Laplace, considered the minimization of the sum of the absolute values of 
residuals (the method of situation) as an alternative to least squares. He 
even noted that such a procedure was less sensitive to outliers than least 
squares. For his minimization problem he also provided a solution that had 
a linear programming flavor (see especially the graph used to illustrate 
the solution). 

In  our review of the Bayesian approach, we have treated 0 as a fixed 
parameter  whose value is chosen a priori by the graduator, and this is the 
way Whit taker  originally treated it. How do we incorporate the idea of a 
variable 0? One approach is that  suggested by Lindley [5] and Lindley and 
Smith [6] in the context of Bayesian analysis of linear statistical models. 
Instead of specifying a prior distr ibution on the vector u, which has a 



DISCUSSION 435 

large number of elements, specify a prior distribution on 0 with density 
h(O). Then the joint prior density on 0 and u is 

h(o) p(ulO) , (4) 

the posterior density on 0 and u is proportional to 

h(o)p(u I o)/(u"l u), (5) 

and the posterior density on u is proportional to 

f h(o) p( u I o)/(u"l,,)ao. (6 )  
0 

Note that  specification of h(O) indirectly specifies a prior distribution on 
u. In this way the dimension of the parameter for which a prior distribu- 
tion must be specified directly is reduced. 

We will illustrate this idea with two examples. If we adopt assump- 
tions (1) and (2) and assume further that 0 has a degenerate (one-point) 
distribution, the traditional result, equation (3), follows. Since Whittaker 
interpreted 0 as the ratio of two variances, it might be plausible to 
quantify uncertainty about 0 in the form of a prior density such as 

h(O) " O"-le -a° , 0 > 0 ,  o~ > 0 ,  t~ > 0 .  (7) 

Then expression (6) is proportional to 

exp -- w lu", -- u [q fl + ~ ]A 'u ] "  . (8) 

Since our knowledge about 0 is likely to be vague, h(O) typically will be 
quite diffuse. As a ~ 0 and fl ~ O, h(O) becomes diffuse and expression 
(8) approaches 

- -  g n - - s  

Maximization of this function leads to minimization of 

w lu"  -- uzlq "4- ln)"] l ,vu=l  g 

which obviously involves a tradeoff between fit and smoothness, but 
finding the maximizing u, presents quite a challenge. 

We can sidestep the challenge by remarking that  if h(O) is very diffuse 
we can set it equal to 1 for practical purposes and simply maximize 

p(,, I O)/(u" I ,,) 
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with respect to 8 and u. The resulting u would be the vector of graduated 
values and would have been found by searching over a function of 0. 
Again using the assumptions (1) and (2), we are led to the maximization 
of the function 

exp E-- wxlu~z' u~lq + la'u=lq " ¢11) 0 

For ~xed 0, the exponent can be minimized and then the value of (11) 
computed. Repetition of these calculations for various values of e would 
lead to an "optimal" set of graduated values. 

We close by noting that Kimeldorf and Jones I41 and Hickman and 
Miller [2] suggested p(u[fl) functions that involved multidimensional 0. 
Such functions make the graduation modd more complicated but also 
much richer, and we believe that the search for realistic Pful 0) functions 
is the direction that future research in graduation should take. 
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STUART A. KLUG~AN: 

Professor Schuette is to be applauded for introducing the techniques of 
linear programming to an actuarial problem. I t  is hoped that more uses" 
for this powerful tool will be found in the future. 

I wish, however, to take exception to the particular application selected 
by the author. It  is clear that the Whittaker-Henderson method does not 
provide a robust solution to the estimation problem. It  appears to me 
that any robust improvement must attack the fit and smoothness com- 
ponents separately. The fit measure can be generalized as F = 2; p(sz), 
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where s= = (u"  -- uz)/~=, ~, = Var (u','), and p( ) is an arbitrary loss 
function. If the u',' are independent normal random variables, then 
p(x) = x 2 provides an "opt imal"  solution, and with w~ = 1/a~ the 
Whittaker-Henderson Type  B formulation results. Schuette has selected 
a robust alternative, p(x) = [x[. A compromise covering the range of 
possibilities between these two approaches was suggested by Huber [1]. 
He shows that  

p(:O = x~, I~1 -< 
= 2 c l x l - c  2, [xi > c  

minimizes the maximum asymptotic variance of the estimator, where the 
maximum is over all random variables s= of the form (1 - e)O + ell, 
0 < e < 1; • is the standard normal random variable, and H is any 
symmetric random variable. The parameter c is a decreasing function of e. 
If  ~ = 0 the normal distribution holds and c = ~ ,  leaving the Whittaker-  
Henderson form. If ~ = 1 the class contains all symmetric distributions 
and c = 0. As c---* O, p ( x ) ~  [x I and Schuette 's  form results. Huber  
recommends choosing c between 1 and 2. When applying this method, it 
turns out tha t  all observations more than c standard deviations from the 
mean are treated as "outliers" and their contribution to the estimator is 
reduced. One of the methods of evaluating the estimators is to determine 
iteratively weights (vl, ~2, • • .) such that  using 2; v=(s=) 2 produces the same 
solution as tha t  obtained by using 2; p(s,). This enables each iteration to 
be performed by the method used for obtaining the least-squares esti- 
mator. See [2] for a detailed description of the iterative approach. A 
major advantage of this method is that  the outliers are readily identified 
by their weights. By selecting c close to zero, it is possible to approximate 
Schuette 's form by this method. 

A more serious problem involves the determination of the robust 
smoothness measure. Smoothing is considered necessary in order to 
remove sampling fluctuations. The greater the fluctuations, the more 
smoothing is needed. Suppose a general smoothness measure were 
2; v(A=u=). I t  would seem that  large values of A'u= would indicate those 
ages at which extra smoothing need be done. Use of a loss function like 
Huber 's  p would produce the opposite effect, reducing the importance of 
g o o d  smoothness at those ages where it is not good initially. On the 
smoothness side, the use of v ( x ) =  x ~ seems very satisfactory, and 
v(x) = ]x] v for p > 2 may be even more appropriate. 

Table 1 of this discussion presents a graduation of the data used in 
Example I in Schuette 's paper. The function being minimized is X p(s=) + 
02~ (Aau=)2 with Huber 's  p function. The variances are estimated as 



TABLE 1 

A ROBUST GRADUATION OF EXAMPLEI 

x u~ " TABLE 2 ROBOST 

3 . . . . . . . .  

5 . . . . . . . .  

7 . . . . . . . .  

10 . . . . . . .  

11 . . . . . . .  

12 . . . . . . .  

13 . . . . . . .  

14 . . . . . . .  

15 . . . . . . .  

16 . . . . . . .  

17 . . . . . . .  

18 . . . . . . .  

19 . . . . . . .  

(0 = 25.4)  ~ u z  ASuz Amuz uz Auz A~uz Aauz 

34 22.32 27.33 
4.36 2.28 

24 26.68 --0 .04 29.61 0.57 
4.32 0.01 2.85 --0.15 

31 31.00 --0.03 32.46 0.42 
4.29 0.01 3.37 --0.01 

40 35.29 - 0 . 0 2  35.83 , 0.41 
4.27 - 0 . 0 2  3.78 --0.08 

30 39.56 --0 .04 39.61 0.33 
4.23 0.02 4.11 --0.13 

49 43.79 --0.02 43.72 0.20 
4.21 --0.01 4.31 --0.05 

48 48.00 - 0 . 0 3  48.03 0.15 
4.18 0.40 4.46 0.02 

48 52.18 0.37 52.49 0.17 
4.55 0.03 4.63 0.00 

67 56.73 0.40 57.12 0.17 
4.95 - 0 . 0 3  4.80 0.06 

58 61.68 0.37 61.92 0.23 
5.32 0.02 5.03 0.11 

67 67.00 0.39 66.95 0.34 
5.71 --0.01 5.37 0.06 

75 72.71 0.38 72.32 0.40 
6.09 : 0.00 5.77 0.11 

76 78.80 0.38 78.09 0.51 
6.47 0.01 6.28 0.04 

76 85.27 0.39 84.37 0.55 
6.86 --0.01 6.83 0.01 

102 92.13 0.38 91.20 0.56 
7.24 0.00 7.39 0.03 

100 99.37 0.38 98.59 0,59 
7.62 0.01 7.98 0.00 

101 106.99 0.39 106.57 0.59 
8.01 --0.01 8.57 0.01 

115 115.00 0.38 115.14 0.60 
8.39 9.17 

134 123.39 124.31 

r. w . ( u ~ - u ~ ) *  . . . .  

z w = l u ~ - * ~ l  • 

( ~ s u ~ ) 2  . . . . . . . .  

6,557 
873 

0.17 
0.41 

6,309 
883 

0.09 
0.95 
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~ = Ux(1 --  u~)/E~. Because the weights are different from those used in 
Schuette's graduation, the appropriate value for 0 will he different. A 
value of 0 = 2,000,000 was used in order to approximate Schuette's 
results with 13.07 < 0 < 37.72. The robust graduation used c = 1.5. I t  
will be seen that the two graduations are quite similar. The robust 
graduation indicated the presence of two possible outliers. A weight of 
0.64 was attached to u~' and a weight of 0.74 to u~'. In a general setting 
this would indicate that the experience at those ages should be examined 
carefully. The outlying values may be caused by clerical error, the 
presence of a claim for a large amount, or even a true mortality char- 
acteristic that is contrary to l:he smoothness objective. 

A surprising characteristic of Schuette's examples is that values of 0 
within an interval produce identical graduations. I believe this is con- 
nected with the use of the absolute value of the differences. For most 
mortality data, the differences can be expected to have the same sign 
over a wide range of ages. In that case their sum telescopes into the dif- 
ference of lower-order differences at the initial and final ages of this range. 
Changing the intermediate values will have no effect on S unless the 
change is large enough {o alter a sign in one of the differences. This re- 
stricts changes to the ends of such intervals. Such a lack of continuity in 
the available graduations is not appealing. Examination of the zth differ- 
ences in the various graduations of Example I shows that the method 
attempts to make most of the zth differences zero. This leads to good 
smoothness by the internal definition but often produces one or two large 
zth differences. For example, with z = 3 and 0 = 25.4, the Table 2 
graduated values consist of two quadratic polynomials, one running from 
x = 1 to x = 8 and the other from x = 8 to x = 19 (see the differences in 
Table 1 of this discussion). 

There is considerable work yet to be done in constructing a robust 
graduation method. Schuette's paper provides a start in that direction. 
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IIARWOOD ROSSER : 

For over a dozen years, whenever I have read a paper on graduation I 

have found myself wearing two hats. The first one I usually take off, as 
in this case, in admiration for anyone who can push back the frontiers of 
knowledge in such a technical area. Wearing the other hat, I ask myself: 
"Should this topic be added to the required reading and, if so, in what 
form?" 

My answer, for this paper, is: "Not  in the present form, at least." I t  
would seem to be a fairly simple idea to replace the squares of deviations, 
and of certain orders of differences, with absolute values in the graduation 
process. This project the author considers in the context of Whittaker- 
Henderson Type B graduation. The difficulties he encounters suggest why 
this had not been done before. 

Absolute values of differences have been suggested before as measures 
of smoothness. As the author notes, Miller mentions it, in section 1.7 of 
Elements of Graduation. This discussant used absolute values in his 1968 
paper "Interpolation by Computer" (TICA, Vol. XVIII ) .  The problems 
arise when a minimization process is attempted. 

Intrinsically, as is pointed out, least absolute values are at least some- 
times preferable to least squares, as when the error distribution has 
heavier tails than the normal distribution. 

Not being very familiar with linear programming, I shall have few 
comments on the theory involved. Apparently this technique supersedes 
the use of orthogonal polynomials, which previously served to reduce the 
amount of arithmetic in fitting curves of second or higher degree by a 
least-squares approach. 

Examples 
As to the author's numerical examples, I shall be more articulate. In 

his Example I he finds six graduations "acceptable": one in Table 1, two 
in Table 2, and three in Table 3. I am afraid I am a little more critical, as 
much of the method as of the results obtained. 

With the exception of the right-hand column of Table 3, which is by 
definition a fitted third-degree polynomial, all of the acceptable gradua- 
tions show that the lack of smoothness is concentrated at a single point 
(two points for the Table 1 graduation). This is also true of the "non- 
acceptable" graduations in Tables 1 and 2, and probably in Table 3 as 
well (excluding the right-hand columns, which are necessarily poly- 
nomials), except that roughness may appear at as many as three points. 

This phenomenon takes a form in which the sum of the absolute values 
of the zth differences is essentially equal to that of a single difference or, 
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at most, of two or three. Thus, in Table 1, the graduated values usually 
lie on a wide-angled V. For higher orders of differences, the graph of the 
graduated values would be represented by segments of two different 
curves, with unequal slopes at the point of junction (cf. Miller, Elements 
of Graduation, p. 20, Fig. 3a.) This is the type of situation that osculatory 
or tangential interpolation was designed to remedy. 

A little reflection serves to show how this can happen. If the sum of the 
absolute values of a certain order of differences is to be taken as the 
measure of smoothness, this criterion will find the following two situa- 
tions equivalent, among others: (a) one where all differences of that  
order, except one, equal zero, and (b) one where all such differences are 
nearly equal. Thus, internally, a choice between two or more competing 
graduations that meet this criterion will be resolved on other grounds, 
usually that  of fit. Obviously, a sum-of-the-squares criterion would find 
situations a and b markedly different. 

Practical compromises may be possible, however. One would be to 
use absolute values in connection with measuring fit and to retain the 
classical sums of squares to measure smoothness. The former would deal 
with the "outlier" problem and the latter would avoid the problem just 
described. 

Example I I  (Table 4) does not appear to follow the pattern of Example 
I. Any comparison with the published values is somewhat distorted, 
since these were obtained by an unweighted formula that  measured 
smoothness in terms of second differences. 

Whittaker-ttenderson Type A 
Speaking of unweighted formulas, I am disappointed but not sur- 

prised that Dr. Schuette makes no mention of a counterpart to the once- 
popular Type A formula, which can be employed without recourse to a 
computer. As a step in that  direction, I attempted unsuccessfully to find" 
a factorization of the second-order difference equation that would be 
analogous to Henderson's factorization of the fourth-order equation 
(cf. Miller, Elements of Graduation, sec. 10.7). Hence my lack of surprise. 

In the days before electronic computers, Type B calculations were 
se ldom performed, primarily because of the heavy arithmetic involved. 
Since then, there has been a sharp shift in emphasis from Type A to 
Type B, as reflected in the required reading. Type A now is often re- 
garded merely as a special case, with all weights equal, of Type B. 

I have no quarrel with electronic computers, but I am chary of be- 
coming completely dependent on them. The Education and Examination 
Committee should beware of this trap. There are still actuaries with small 
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companies or consulting firms who, because of time pressure, expense, or 
other reasons, may be reluctant to turn to a computer every time a small 
graduation problem arises. I t  would be unfortunate if they should acquire 
the impression that there is no middle ground and that they must resort to 
graphic graduation. 

Even in a large firm, there are questions of waiting in line, priorities, 
computer down-time, and the like. While time-sharing has improved the 
situation, these problems have not been eliminated completely. Thus, an 
intermediate alternative approach sometimes has much to recommend it. 
This is what a Type A graduation offers. 

T. N. E. GREVILLE: 

In this paper Donald Schuette has made a most interesting and valu- 
able contribution to the literature on actuarial graduation. He has given 
cogent reasons why the criterion of least absolute values should be con- 
sidered as an alternative to least squares and has adapted the Whittaker- 
Henderson graduation method to the former criterion. He has devised an 
ingenious computation scheme based on the simplex algorithm of linear 
programming. 

In the introductory section he discusses vector norms and defines the 
lp norm of a vector. In this notation, the usual "Euclidean norm" based on 
squares is called the/¢ norm, while that  based on absolute values is called 
the ll norm. The l~ and lq norms are called "dual" to each other if l/p -t- 
1/q -- 1. Thus the/¢ norm is dual to itself, while the 13 and 13/2 norms are 
dual to each other. The dual of the l, norm is the so-called l~ norm, also 
called the "uniform norm" or the "Chebyshev norm." The latter may be 
defined as the maximum of the absolute values of the components of the 
vector. 

The Chebyshev norm plays a very important role in mathematical ap- 
proximation theory. Thus, a polynomial of degree z that exhibits the best 
fit in the Chebyshev norm to a set of data points has the property that the 
maximum absolute deviation is smaller than for any other polynomial of 
the same degree. Such a polynomial is sometimes called the "minimax" 
polynomial. In the Whittaker-Henderson adaptation based on this norm, 
F would be the maximum absolute difference between a graduated value 
and the corresponding observed value, and S would be the maximum of 
the absolute values of the zth differences of the graduated values. 

I t  would be most interesting and worthwhile if someone would perform 
the same task for the Chebyshev norm that Schuette has done for the 
ll norm. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

DONALD R. SCHUETTE: 

Professors Hickman and Miller remind us that graduation can be 

viewed as a statistical estimation problem, and that a Bayesian formula- 
tion provides a very general structure that allows for inclusion directly in 
the model of prior opinion as to smoothness of the underlying values to be 
estimated and that yields as a special case the F + OS objective function 
for any norm or combination of norms. As they indicate, if the observed 
values are independently and randomly distributed about the underlying 
values according to the double exponential distribution, and 

p(u[O) = 0 exp --0Y~ IA*u, I '  , 

that is, the underlying values u. have a prior distribution such that 
• , I A'u,[q has the exponential distribution with parameter 0, then the 
posterior mode is obtained when the graduated values are selected as 
those that minimize 

n - I t  

v + os = - u,  lq + 0X ]  

Hickman and Miller remark further that (a) setting 

p(u]O) = 0exp --0 ]a 'u,[~ 

does not specify a complete prior distribution for the underlying values 
uz but only specifies a distribution for the univariate function 

s = ] E  
x m l  

(b) the norm selected for smoothness does not have to be the same as that 
selected for fit, and (c) suspicions that the square norm (p = 2) may not 
always be the best choice for fit were entertained a century ago. 

One point of disagreement that I have with them is over their state- 
ment that "a graduator convinced strongly of the smoothness of the u's 
might take q = 4 in (2) and a lower value of q in (1)." It seems to me 
that the choice of norm for smoothness has more to do with what com- 
binations of values of the u's the graduator considers to be smooth than 
it does with the degree of his conviction regarding smoothness. A gradua- 
tor convinced of smoothness, however he defines it, selects a larger value 
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of 0 than one who is not so strongly convinced of smoothness relative to 

fit. 

Hickman and Miller reject Whittaker's view that 0 in the F + 0S 
model is a parameter the value of which the graduator can set in advance. 
The Bayesian approach, of course, is to set a joint prior distribution on 0 
and the u's. They offer some suggestions as to how this might be done; 
some of those suggestions perhaps bear investigation. For example, setting 
a uniform prior distribution on 0 in the F + 0S model leads, as they in- 
dicate, to maximizing their expression (I 1), which in principle yields a sin- 
gle value of 0 and a unique graduation. However, the little experimenting I 
have performed with this suggestion has not led to any graduations I can 
accept. 

Hickman and Miller give me partial credit for viewing 0 as a variable 
and inspecting graduations over a range of its values. However, they 
disapprove of starting with F + 0S as an objective function even though 
it can be reached from a Bayesian starting point with 0 viewed as a 
parameter. Their preference is for the more complete Bayesian approach 
to graduation as presented by them and by Kimeldorf and Jones, in 
which prior opinion concerning more than smoothness may be specified. 
I will concede that if a graduator has prior opinion beyond notions of 
smoothness--for example, opinion as to approximate levels of the under- 
lying values themselves--then a full Bayesian approach provides an 
excellent model for the task. I believe that within the confines of the 
F + OS model my method offers the graduator a practical way of ex- 
ploring many options between perfect fit and perfect smoothness. 

Professor Klugman agrees that the Whittaker-Henderson 12 norm 
solution to the graduation problem is not robust. However, he takes issue 
with my choice of the l~ norm, especially in the case of smoothness. He 
points out that using the l~ norm for smoothness leads to graduations in 
which many of the zth differences are zero but in which one or two zth 
differences may be quite large in absolute value. Such a situation violates 
his notion of smoothness. He suggests using the Huber compromise be- 
tween the 11 and 12 norms for fit and the lp norm with p > 2 for smooth- 
ness. He describes a procedure for obtaining graduated values when the 
Huber norm for fit (c = 1.5) and the l~ norm for smoothness have been 
adopted. The procedure is iterative and at each stage employs the method 
used for obtaining/a norm values. The graduation he obtains is a good one. 
My questions to him are these: (1) how much experimentation did he 
have to perform before he decided upon the value 0 = 2,000,000, and (2) 
how much computer time was required to obtain graduated values for 
each value of 0? 



DISCUSSION ~5 

Professor Klugrnan expresses some surprise about different values of 8 
producing identical graduations under the methods of my paper. It is a 
characteristic of linear programming that one corner point of the feasible 
region can remain optimal over a range of values of an objective function 
parameter. 

I am not as ready as Professor Klugman to place the label "robust" on 
the graduated values obtained by his method. I agree that  considerable 
work remains to be done in obtaining robust graduation methods. 

Mr. Rosser makes the same point as Klugman regarding the smooth- 
ness of the graduated values under my method using the/1 norm, namely, 
that  the lack of smoothness tends to be concentrated at one or two points. 
I agree that  to anyone brought up under the influence of osculatory inter- 
polation formulas the l~ norm may not be acceptable for smoothness. 
Mr. Rosser suggests that  the ll norm for fit and the 12 norm for smooth- 
ness may produce good results. I agree, although the minimizing problem 
produced by that combination is not solved readily as far as I know. A 
linear programming formulation, for example, is no longer possible. 

A better solution may lie in following Dr. Greville's suggestion re- 
garding the Chebyshev or uniform norm. The I~ norm for fit and the 
Chebyshev norm for smoothness may very well be the combination that 
satisfies the smoothness objections that have been raised and that copes 
with the outlier problem. The minimizing problem that arises under that 
combination of norms can be formulated as a linear programming prob- 
lem. That  problem will receive my attention shortly. 

Mr. Rosser expresses concern over becoming completely dependent 
upon computers to perform graduations. He would like to have available 
a method that in an emergency could be implemented by hand or desk 
calculator. I believe that the methods of my paper and perhaps others 
that  are based upon linear programming'offer hope to Mr. Rosser. An- 
other project on which I am working is that  of developing a heuristic 
interpretation of each iteration in the linear programming procedure, 
which may be performable on a desk calculator. 

I want to express my appreciation to all the discussants for their inter- 
est and advice. The comments made in regard to the choice of norm for 
smoothness are well taken and perhaps suggest why the method ap- 
parently has not been perceived as practical and ready for implementa- 
tion. Possibly when the smoothness norm difficulty has been overcome, 
the method of my paper will be viewed differently. 




