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ABSTRACT

Recurrence relations arise naturally in life contingencies for two reasons - the aggregate law of mor-

tality, which relates the distribution of the future life times of two insureds, is one of them and

the other is that most life insurance products can be constructed as a portfolio of two basic prod-

uct types (for e.g., deferred one year term and pure endowment). We use the above simple idea

and the extra freedom provided by the fractional age distribution to reveal a structure behind some

common recursions. The structure has obvious pedagogical value. More interestingly, a software

based on it has been implemented which facilitates actuarial computing. As one of its uses, it

can be used in a classroom setting to help students gain additional insight into actuarial quantities.

1 INTRODUCTION

It is difficult to think of a course on Life Contingencies without recurrence relations. The preva-
lence of recursions is due to two basic results. First, the aggregate law of mortality (ALoM),
which relates the distribution of the future life times of two insureds. ALoM facilitates recursions
for actuarial present value of products traversing different issue ages. Both the continuous and
discrete versions of it are stated in the Appendix. Second, that most life insurance products can
be decomposed into a portfolio of utmost two basic product types, for e.g., deferred one year term
and pure endowment, gives rise to relations between products with different terms. Of course, for
the latter, that the present value and expectation operators are linear (and hence so is the actuarial
present value operator) is crucial. Making explicit the use of the above two basic results in proving
the recursive formulae and hence demonstrating that they are the raı́son de être for the recursions
is one of the principal goals of this pedagogical article.

Texts on Life Contingencies work with three versions of each insurance product type - sum assured
payable at the moment of death, payable at the end of the mth period containing the moment of
death and payable at the end of the year of death. Even though the second version includes the last,
as the case when m equals one, they are mentioned separately as the last version, apparently, does
not require the specification of the fractional age distribution (FAD) unlike those with m greater
than one. By the FAD we mean the conditional distribution of T(x) minus K(x) given K(x). Since
insurances of the latter two types are inconceivable nowadays, there is no value to be gained by
treating them as separate products. We view the latter two types as special cases of the first, by
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2 RECURRENCE RELATIONS IN LIFE CONTINGENCIES

altering the fractional age distribution. Apart from unification, it makes clear that latter two types
are approximations to the first. In the case of annuities the value of separate versions is unarguable.
In this case our proposal is just a mathematical nicety. Exposition of this unification is the second
of our main goals.

Given that the term and whole life insurance can be naturally arranged in two dimensions implies
that just two recurrences should lead to all the others. Moreover, the above unification implies
that we can derive those for the insurances which pay at the end of the mth period containing the
moment of death from those that pay at the moment of death. These two observations lead to a
host of recursions from just two. Presenting this structure is the third of our important objectives.

The function a(·), defined as a(x) = E(T(x)|T(x) < 1), appears in recurrences involving complete
future life expectations. It has, in particular, two nice properties. First, the FAD enters into the
computation only through it. Second, in the case that the FAD is independent of K(x), i.e. has the
same distribution irrespective of the last age at death, then a(·) is a constant. Note that the condition
is sufficient but not necessary for a(·) to be a constant. An example where the condition is satisfied
is when we assume the uniform distribution on (0,1) for the fractional age. The natural analogue
of a(·) for actuarial present value of insurance products is E

(
exp{−δT(x)}|T(x) < 1

)
, which is the

Laplace transform of the FAD. We will use mδ(·) to denote it as a function of x, i.e.,

mδ(x) = E
(
exp{−δT(x)}|T(x) < 1

)
(1)

The letter m is chosen as the moment generating function is related to the Laplace transform and the
letter l would cause conflict with existing notations. Hence, a software providing these two func-
tions, for all the standard fractional age distributions, will make computation of actuarial present
value of an insurance product paying at the moment of death as simple as that of its version paying
at the end of the year of death. Such a software has been implemented on the Excel platform and is
being used in a classroom setting to help students gain additional insight into actuarial quantities
through computing. The software is available on request. This is the fourth on our list of goals for
this article.

A simple relation between endowments and life expectations makes all the recursions of the former
lead to ones for the latter. Moreover, as the present value random variable for endowments and
annuities are linearly related, we can derive the recurrences for the annuities too from those for
endowments. Finally that an endowment is a portfolio of a term and a pure endowment makes the
recursions for term insurance lead to all of those for endowments, annuities and life expectations.
This is the final objective of this article.

The use of floors and ceilings has been motivated by Shiu (1982). By it’s nature a pedagogical
article is bound to have some of its ideas presented before in some of the texts. This is the case
here too; see for e.g. Bowers et al (1997). We have not made an effort to search the literature in
order to trace the first exponent of every idea that has been repeated here.

Notations, unless specified otherwise, are those found in the text by Bowers et al (1997). A discrete
uniform random variable over the integers between m and n, both inclusive, would be denoted by
DU(m,n). Moreover, for any random variable X we shall denote by φX(·) its moment generating
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function. Always, x will denote a non-negative integer. For a mortality table, ω will denote the age
such that qω−1 = 1.

2 UNIFIED VIEW OF INSURANCE PRODUCTS

A typical life contingencies course contains three versions of, for e.g., a whole life insurance. They
vary in the moment at which the sum assured is paid to the beneficiary - payable at the moment
of death, payable at the end of the mth subperiod of year containing the moment of of death and
payable at the end of the year of death. Nowadays, the existence of the products of the latter two
types is inconceivable. Nevertheless, the products of the latter two types serve as approximations
to the first. Moreover, given that the FAD has to be specified for valuations of the first two types,
the charm of the last has yet to fade away, especially vis a vis the regulators. In the spirit of
approximations, we show that the last two versions can be thought of as the first but with different
specifications of the FAD. Since the last type is included in the second as the case m equals one,
we will work with only types one and two.

Following Shiu (1982), we will be using floor’s and ceiling’s in the following. We start with the
expressions for the actuarial present values in terms of expectations of the present value random
variables. They are,

A(m)
x = E

(
exp

{
−δ

(
dT(x) ∗me

m

)})
, ∀m≥ 1 (2)

and

Āx = E
(
exp{−δT(x)}

)
. (3)

Using the basic properties of ceiling and floor, we have

dT(x) ∗me
m

= bT(x)c +

⌈
(T(x) − bT(x)c) ∗m

m

⌉
= K(x) +

⌈
(T(x) − K(x)) ∗m

m

⌉
.

(4)

Recalling that the FAD is the conditional distribution of T(x)−K(x) given K(x), the above implies
that E

(
exp{−δT(x)}

)
evaluated, instead, under the FAD given by the conditional distribution of⌈

(T(x) − K(x)) ∗m
m

⌉
given K(x) (5)

would result in E
(
exp

{
−δ

(
dT(x)∗me

m

)})
evaluated under the original FAD.

In the case of the uniform FAD, using Lemma 3, the above reduces to saying,

E
(
exp

{
−δ

(
dT(x) ∗me

m

)})
under uniform FAD = E

(
exp{−δT(x)}

)
under

DU(1,m)

m
for the FAD. (6)

More generally, Lemma 3 implies that
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exp

{
−δ

(
dT(x) ∗me

m

)}
under uniform FAD

d
= exp{−δT(x)} under

DU(1,m)

m
for the FAD, (7)

which in turn implies that the product version that pays at the end of the mth subperiod of year
containing the moment of death is financially identical to the version that pays at the moment of
death, as both the present value random variables have the same distribution, albeit under different
fractional age distributions.

Same
FAD

E
(

exp
{
− δdT(x)∗me

m

})
E(exp{−δT(x)})

U(0,1)
DU(1,m)

m

Same
Product

Āx A(m)
x

A(m)
x

Figure 1 The Two Approaches

The above, summarized in Figure 1, holds for two reasons. First, that⌊
dT(x) ∗me

m

⌋
= K(x) = bT(x)c . (8)

Second, that any two positive real random variables, having the same distribution for their integer
parts, can possibly differ only in their conditional distributions of their fractional part given their
integer part.

The conclusion of the above is that we can consider just one version of the whole life insurance
- that which pays at the moment of death. Whole life insurance has been used for the above
discussion for the sake of clarity. It is important to observe that any other insurance product,
whose cashflows occur at a time point which is a function of the moment of death and whose
sum assured is a function of the time of payment, could have replaced it. We end this section by
summarizing the above using the theorem below.

Theorem 1 Let us consider an insurance product such that it pays at ψ (T(x)) a sum assured of
α (ψ (T(x))). Further, let ψ(·) be such that
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bψ (T(x))c = K(x), with probability 1. (9)

Then, under the FAD denoted by FK(x)(·),

α (ψ (T(x))) exp{−δψ (T(x))} (10)

has the same distribution as

α (T(x)) exp{−δT(x)} (11)

but the latter under the FAD of GK(x)(·). GK(x)(·) is defined as the distribution of bψ (T(x))c − K(x)
conditioned on K(x), where the distribution of T(x) − K(x) conditioned on K(x) is taken as the
original FAD of FK(x)(·).

Proof

α (ψ (T(x))) exp{−δψ (T(x))} (under FAD of FK(x)(·))
d
=α (K(x) + (ψ (T(x)) − K(x))) exp{−δ (K(x) + (ψ (T(x)) − K(x)))} (under FAD of FK(x)(·))
d
=α (T(x)) exp{−δ (T(x))} (under FAD of GK(x)(·)) §

3 DECOMPOSITION OF INSURANCE PRODUCTS

Life contingent cashflows, hence products, can be classified into two pure types and a hybrid.
Cashflows which occur at a time point which is a function of the moment of death represent the
first pure type. Those occurring at fixed time points and contingent on the insured being alive
represent the other pure type. Cashflows of the hybrid type are composed of both the pure types;
for e.g., cashflows of an endowment. We will call products of the first type as pure insurance
products and the second type as pure annuity products. In the following, we will work only with
products that have a constant sum assured between successive integral ages.

Due to the theorem of the previous section, among pure insurance products, we can restrict our
attention to only those that pay at the moment of death. Hence, continuous deferred one year term
(DOYT) serves as a basic product type for pure insurance products and pure endowments for pure
annuity products. Hybrid products can be decomposed into a portfolio containing both DOYTs and
pure endowments. For example, below we give a list of products whose portfolio representation
is given in terms of their actuarial present values. In the case of the increasing and decreasing
sum assured products it is important to maintain the same sum assured between successive integral
ages, i.e. to consider products like

(
IĀ

)
x
1
:n

and not
(
ĪĀ

)
x
1
:n

.

Ā
x
1
:n
=

n−1∑
k=0

k|1Āx n year Term
√

Āx =

∞∑
k=0

k|1Āx Whole Life
√
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(
IĀ

)
x
1
:n
=

n−1∑
k=0

(k+ 1)k|1Āx Increasing Term
√

(
DĀ

)
x
1
:n
=

n−1∑
k=0

(n− k)k|1Āx Decreasing Term
√

m|nĀx =

m+n−1∑
k=m

k|1Āx m - Deferred n year Term
√

4 RECURRENCE - TERM AND WHOLE LIFE
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Figure 2 Valuation Problems : Term & Whole Life

This and the next section deal with the main top-
ic of this article, recurrence relations. Recursions,
specifically for term and whole life insurances form
the content of this section. These would lead to re-
currences for endowments, which in turn to those
for annuities and life expectations. The recursions
for endowments, annuities and life expectations are
dealt with in the next following section.

An arrangement of all possible term and whole life
insurances, along with the four type of valuation
problems, is depicted in Figure 2. Being a two-
dimensional arrangement, we should be able to de-
rive all recurrences from just two - one traversing
vertically and the other horizontally. The first prin-
cipal result of this section affirms this. The other
principal result shows that recurrences for insur-
ances payable at the moment of death, lead to those
for insurances payable at the end of the mth period
containing the time of death.

The recurrences make use of the function mδ(·), which we recall was defined in (1) as,

mδ(x) = E
(
exp{−δT(x)}|T(x) < 1

)
. (12)

Hence,

Ā
x
1
:1
= E

(
exp{−δT(x)}I{T(x)<1}

)
= qxE

(
exp{−δT(x)}|T(x) < 1

)
= qxmδ(x) (13)

In the recursion formulae we use mδ(·) instead of Ā
x
1
:1

as the former is a constant when the FAD

is independent of K(x) whereas the latter would still be a function of qx. The choice is not only a
matter of aesthetics but is important from the software design point of view.
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Ā
x+k

1
:n−k

= qx+k mδ(x + k) + νpx+kĀ
x+k+1

1
:n−k−1

for k = 0, 1, 2, . . . , n− 1. Ā
x+n

1
:0

= 0.

Ā
x
1
:n

= νn−1
n−1|qx mδ(x + n− 1) + Ā

x
1
:n−1

for n = 1, 2, . . . . Ā
x
1
:0

= 0.

Āx = qx mδ(x) + νpxĀx+1

for x = 0, 1, . . . , ω − 1. Āω = 0.

A
x+k

1
:n−k

= νqx+k + νpx+kA
x+k+1

1
:n−k−1

for k = 0, 1, 2, . . . , n− 1. A
x+n

1
:0

= 0.

A
x
1
:n

= νqx − νn+1
n|1qx + νpxA

x+1
1

:n
for x = 0, 1, . . . , ω − 1. A

ω
1
:n

= 0.

A
x
1
:n

= νn
n−1|qx + A

x
1
:n−1

for n = 1, 2, . . . . A
x
1
:0

= 0.

Ax = νqx + νpxAx+1

for x = 0, 1, . . . , ω − 1. Aω = 0.

Ā
x
1
:n

= νn−1
n−1|qx mδ(x + n− 1) + Ā

x
1
:n−1

for n = 1, 2, . . . . Ā
x
1
:0

= 0.

Ā
x
1
:n

= qx mδ(x)− νn
n|qx mδ(x + n) + νpxĀ

x+1
1

:n

for x = 0, 1, . . . , ω − 1. Ā
ω
1
:n

= 0.

mδ(·) = ν

mδ(·) = ν

mδ(·) = ν

mδ(·) = ν

n
→
∞

n
→
∞

n
→
∞

n
→
∞

Primary Relationships

Figure 3 Term Insurances

The four recurrences of Figure 2 are in the first column of Figure 3. Their discrete versions are in
the second column. The top two recurrences are designated as primary relationships as the others
can be derived starting from them. The first of the primary recurrences is that travelling vertically
down and the other is that going horizontally left. We start by giving a proof of these two primary
recurrences.

Theorem 2

Ā
x
1
:n
= νn−1

n−1|qx m(x+ n− 1)+ Ā
x
1
:n−1

(14)

for n = 1,2, . . .. The boundary condition is given by Ā
x
1
:0
= 0.

Proof We start by observing that, by the portfolio representation of term insurances, we have,

Ā
x
1
:n
=

n−1∑
j=0

j|1Āx. (15)

Hence,

Ā
x
1
:n
=

n−1∑
j=0

j|1Āx

=

n−2∑
j=0

j|1Āx + n−1|1Āx = ν
n−1

n−1|qx m(x+ n− 1)+ Ā
x
1
:n−1

§
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Theorem 3

Ā
x
1
:n
= qx m(x) − νn

n|qx m(x+ n) + νpxĀ
x+1

1
:n

(16)

for x = 0,1, . . . , ω − 1. The boundary condition is given by Ā
ω
1
:n
= 0.

Proof By definition of a term insurance, we have

Ā
x
1
:n
= E

(
exp{−δT(x)}I{T(x)<n}

)
. (17)

Hence, for n ≥ 1, we have

Ā
x
1
:n
= Ā

x
1
:n+1
− n|1Āx (Decomposition)

= E
(
exp{−δT(x)}I{T(x)<n+1}

)
− νn

n|qx m(x+ n)

= E
(
exp{−δT(x)}I{T(x)<n+1}|T(x) < 1

)
Pr(T(x) < 1)

+ E
(
exp{−δT(x)}I{T(x)<n}|T(x) ≥ 1

)
Pr(T(x) ≥ 1) − νn

n|qx m(x+ n)

= qxE
(
exp{−δT(x)}|T(x) < 1

)
+ pxE

(
exp{−δ (T(x+ 1)+ 1)}I{T(x+1)+1<n+1}

)
− νn

n|qx m(x+ n) (By ALoM)

= qxm(x) + νpxE
(
exp{−δ (T(x+ 1))}I{T(x+1)<n}

)
− νn

n|qx m(x+ n)

= qx m(x) − νn
n|qx m(x+ n) + νpxĀ

x+1
1

:n
§

The third relationship in the first column of Figure 3 can be derived using the above two, as shown
below. This is depicted in Figure 4.

Ā
x+k

1
:n−k
= qx+km(x+ k) − νn−k

n−k|qx+km(x+ n) + νpx+kĀ
x+k+1

1
:n−k

(Theorem 3)

= qx+km(x+ k) − νn−k
n−k|qx+km(x+ n)

+ νpx+k

(
νn−k−1

n−k−1|qx+k+1m(x+ n) + Ā
x+k+1

1
:n−k−1

)
(Theorem 2)

= qx+km(x+ k) − νn−k
n−k|qx+km(x+ n) + νn−k

n−k|qx+km(x+ n) + νpx+kĀ
x+k+1

1
:n−k−1

= qx+km(x+ k) + νpx+kĀ
x+k+1

1
:n−k−1

In fact, it requires the use of only the ALoM unlike the use of both ALoM and the portfolio
representation for the second. As any two of the first three relationships, together, give rise to the
other, we could have as well presented the first and the third as the two primary relationships from
which all the others derive. We chose the first two as they geometrically are more natural a choice
even though, conceptually, the first and the third would have been more appropriate as they use
only the portfolio representation and the ALoM, respectively.
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Ā
x+k+1

1
:n−k−1

Ā
x+k+1

1
:n−k

Ā
x+k

1
:n−k−1

q x+
k
m δ

(x
+k)

+νp x+
k
×

3
rd Rec

ur
ren

ce

qx+k mδ(x+k) +νpx+k×

2nd Primary

+

1
st

P
rim

ary

−νn−k
n−k|qx+k mδ(x+n)

ν
n
−

k−
1
n
−

k−
1| q

x
+

k
+

1
m

δ (x
+

n
)

Figure 4 Combining the Two Primary Relationships

By either the dominated conver-
gence theorem or the simple fact
that for mortality tables there ex-
ists a finite terminal age ω, we have
term insurances converging as n→
∞ to whole life insurances. This is
used to arrive at the last row of Fig-
ure 3.

The generality of the relationships in the first column of Figure 3, accorded to it by the theorem of
section 3, imply that we can derive recurrences for any mthly payable insurance as special cases of
it. For example, using the FAD of DU(1,m)

m , we have

mδ(·) =
d

i(m)
, ∀m≥ 1. (18)

Using the above, in particular, the first recurrence gives us,

A(m)

x
1
:n
= νn−1

n−1|qx

(
d

i(m)

)
+ A(m)

x
1
:n−1

, for n = 1,2, . . . ,∞. A(m)

x
1
:0
= 0. (19)

As an example of the above, the relationships in the case where the sum assured is payable at the
end of the year of death are given in the second column of Figure 3.

5 RECURRENCE - ENDOWMENTS, ANNUITIES AND LIFE EXPECTATIONS

A
x:n−1

1 A
x+1:n−1

1

A
x:n

1 A
x+1:n

1

×
ν
p

x
+

n−
1

νp
x
×

px
px+n

×

×
ν
p

x
+

n

px
px+n−1

×

Figure 5 Pure Endowments

To arrive at recurrence relationships for endowments (Figure 6)
from that of term insurances (Figure 3), we have to only add the
appropriate pure endowment component on either side of the re-
currence equation. Figure 5 gives the recurrences for pure endow-
ments that is required to implement those for the endowments.

Endowments and annuities are closely related as the random vari-
ables representing present value of cashflows under each product
are perfectly negatively correlated - one is a linear combination of
the other. This, in particular, implies that their actuarial present
values are linearly related. Using this linear relationship one can
derive the recurrences for annuities from those for endowments.

In the case of the annuities, we would not have a relationship exactly analogous to the equivalence
that exists in the case of a whole life payable at the moment of death under DU(1,m)

m FAD and one
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that pays at the end of the mth period containing the moment of death but under the U(0,1) FAD
(see Figure 1). Instead, we have the following, which is close enough;

āx under
DU(1,m)

m
=

(
d(m)

δ

)
ä(m)

x under U(0,1). (20)

The relationship of the above kind are valid for a n year deferred one year temporary life annuity
and hence any other product which can be decomposed into a portfolio of such annuities.

Āx:n = qx mδ(x) + νn
npx(1− νpx+n − qx+n mδ(x + n)) + νpxĀx+1:n

for x = 0, 1, . . . , ω − 1. Āω:n = 0.

Āx:n = νn−1
n−1px(νpx+n−1 + qx+n−1 mδ(x + n− 1)− 1) + Āx:n−1

for n = 1, 2, . . . . Āx:0 = 1.

Ā
x+k:n−k

= qx+k mδ(x + k) + νpx+kĀx+k+1:n−k−1

for k = 0, 1, 2, . . . , n− 1. Āx+n:0 = 1.

Āx = qx mδ(x) + νpxĀx+1

for x = 0, 1, . . . , ω − 1. Āω = 0.

Ax:n = νqx + νn
npx(1− ν) + νpxAx+1:n

for x = 0, 1, . . . , ω − 1. Aω:n = 0.

A
x+k:n−k

= νqx+k + νpx+kAx+k+1:n−k−1
for k = 0, 1, 2, . . . , n− 1. Ax+n:0 = 1.

Ax:n = −νn−1(1− ν)n−1px + Ax:n−1
for n = 1, 2, . . . . Ax:0 = 1.

Ax = νqx + νpxAx+1

for x = 0, 1, . . . , ω − 1. Aω = 0.

Āx:n = νn−1
n−1px(νpx+n−1 + qx+n−1 mδ(x + n− 1)− 1) + Āx:n−1

for n = 1, 2, . . . . Āx:0 = 1.

Āx:n = qx mδ(x) + νn
npx(1− νpx+n − qx+n mδ(x + n)) + νpxĀx+1:n

for x = 0, 1, . . . , ω − 1. Āω:n = 0.

mδ(·) = ν

mδ(·) = ν

mδ(·) = ν

mδ(·) = ν
n
→
∞

n
→
∞

n
→
∞

n
→
∞

Primary Relationships

Figure 6 Endowments

For recursions involving life expectations we would need the following relationship between mδ(·)
and a(·).

d
dδ

mδ(x)

∣∣∣∣∣∣
δ=0
= −E(T(x)|T(x) < 1) = −a(x). (21)

Similar to the above are the following relationships that will be needed below.

d
dδ

Ā
x:n

∣∣∣∣∣∣
δ=0
= −e̊x:n (22)

d
dδ

A
x:n

∣∣∣∣∣∣
δ=0
= −

(
e

x:n
+ nqx

)
(23)

To arrive at recurrences for future life expectations from endowments, we have a choice between
two routes. First, differentiating both sides of recurrences for endowments and using equations
(22) and (23) along with (21), we convert these to relationships involving future life expectations;
these are given in Figure 7. Second, by observing that analogous to equations (22) and (23), we
have
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e̊x:n = px(1− npx+1) + qx a(x)− npxqx+n a(x + n) + px̊ex+1:n

for x = 0, 1, . . . , ω − 1. e̊ω:n = 0.

e̊x:n = npx + n−1pxqx+n−1 a(x + n− 1) + e̊x:n−1
for n = 1, 2, . . . . e̊x:0 = 0.

e̊
x+k:n−k

= px+k + qx+k a(x + k) + px+k̊ex+k+1:n−k−1
for k = 0, 1, 2, . . . , n− 1. e̊x+n:0 = 0.

e̊x = px + qx a(x) + px̊ex+1

for x = 0, 1, . . . , ω − 1. e̊ω = 0.

e
x+k:n−k

= px+k + px+kex+k+1:n−k−1
for k = 0, 1, 2, . . . , n− 1. e

x+n:0
= 0.

ex:n = npx + e
x:n−1

for n = 1, 2, . . . . e
x:0

= 0.

ex:n = px(1− npx+1) + pxex+1:n
for x = 0, 1, . . . , ω − 1. eω:n = 0.

ex = px + pxex+1
for x = 0, 1, . . . , ω − 1. eω = 0.

e̊x:n = npx + n−1pxqx+n−1 a(x + n− 1) + e̊x:n−1
for n = 1, 2, . . . . e̊x:0 = 0.

e̊
x+k:n−k

= px+k + qx+k a(x + k) + px+k̊ex+k+1:n−k−1
for k = 0, 1, 2, . . . , n− 1. e̊x+n:0 = 0.

a(·) = 0

a(·) = 0

a(·) = 0

a(·) = 0

n
→
∞

n
→
∞

n
→
∞

n
→
∞

Primary Relationships

Figure 7 Life Expectations

lim
δ→0

āx:n = −e̊x:n (24)

and

lim
δ→0

äx:n = −
(
e

x:n
+ nqx

)
, (25)

implies that recursions for annuities will lead to those for life expectations by taking limits as δ
tends to zero. The above imply that a(·) is the analogue of mδ(·), for recursions involving life
expectations.

To arrive at curtate life expectations from complete life expectation, we assign the degenerate distri-
bution at zero (DU(0,0)) as the FAD. K(x) is equal to T(x) with probability 1 under this assignment
for FAD. In particular, the curate life expectation and complete life expectations coincide. More-
over, since a(·) being a constant zero characterizes the degenerate distribution at zero fractional age
distribution and the FAD appears in the recurrence relationships only through it, replacing a(·) by
zero and complete life expectations by corresponding curtate ones, yields recurrence relationships
for curtate life expectations. This is shown in Figure 7.

6 SOFTWARE

The idea that computing leads to better insight made us search for means to facilitate computation
of actuarial quantities. Students, typically at ease with computing actuarial quantities in the case of
degenerate FADs, are diffident when it comes to non-degenerate FADs. The above results makes
it clear that a software, providing readily to the user the functions mδ(·) and a(·), would make the
non-degenerate case as easy as the degenerate case. Our search for a computing platform providing
such functions and access to standard mortality tables led us to a Microsoft Excel based solution.
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Excel Addin
Provides User Defined Functions

Excel Workbook
Created by a Template

ActiveX Component
Provides Access to SoA DB

SoA Mortality
Tables DB

Figure 8 Software Design

The software is described Figure 8. There are three basic components - a template, an Excel addin
and an ActiveX component. The Active X component facilitates access to the binary format mor-
tality database of the Society of Actuaries. The database contains close to a thousand different
mortality tables. The component is OOP based and can be accessed by other ActiveX enabled ap-
plications on the Windows operating system. The Excel addin apart from providing fractional age
distribution (FAD) and interest rate dependent functions like a(·) and mδ(·) also eases communica-
tion from a workbook to the ActiveX component by providing a host of (user defined) functions.
The choice of fractional age distributions includes all standard ones. Finally, the template avoids
repetitive task of creating the same look and feel for a workbook accessing the addin, hence reduc-
ing errors and saving time.

7 CONCLUSION

In Figure 9 we show the interrelationship between the recursions for term, endowment, annuity
and life expectation. This in particular implies that the two primary recursions for term lead to all
the other recursions through simple operations. Above, we did not address the stability of these
recurrences. The recursions with their stated boundary conditions can be shown to be stable - the
proof of their stability, though, is out of the scope of this paper.

Two prominent life contingency recursions missing are that of the Fackler’s formula and the Hat-
tendorf’s theorem. Reserves can be handled easily, as the reserve is the difference between the
actuarial present value of the future benefits and the future premiums. This suggests, from the
above recursions, the backward direction whereas the Fackler is a forward recursion formula. It is
interesting to note that the Fackler is not stable in the forward direction. The Hattendorf’s theorem
gives a recursive relation for the variance of the present value random variable. Since the focus
here has been on the actuarial present value of products, Hattendorf’s theorem has not been treated
here.
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Term Insurances Endowments

Annuities Life Expectations

Pure Endowments

δā
x
+
Āx

=
1

dd
δ |δ

=
0

lim
δ→0

Figure 9 The Interrelationships

For a good source for fractional age distributions which are independent of K(x), see Willmot
(1997). For these distributions, as mentioned above, both mδ(·) and a(·) are constants. In fact, the
discussions by Shiu E. and Tiong S. that follow the article is also a pertinent reference for the usage
of floors and ceilings in Life Contingencies.

Other insurance products like the continuously increasing term payable at the moment of death,
even though lying outside the scope of this paper, can be treated along the same principles as
above.

8 APPPENDIX

Here we state some results without proof: the results are either standard or their proofs follow
easily from first principles. The first result is the discrete version of the Aggregate Law of Mortality
(ALoM).

Lemma 1 The aggregate law of mortality states that

K(x)|K(x) ≥ m
d
= K(x+m) +m, ∀x,m≥ 0. (26)

holds when the distribution of {K(x)}x≥0 is derived from an aggregate mortality table.

A continuous version of ALoM also holds true under the condition that the FAD does not depend
on the issue age. For e.g., it may depend on K(x) + x, the last age at death, but not on the issue age
x.

Lemma 2 The continuous version of the aggregate law of mortality states that
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T(x)|T(x) ≥ m
d
= T(x+m) +m, ∀x,m≥ 0, (27)

when the FAD does not depend on the issue age and the distribution of {K(x)}x≥0 is derived from
an aggregate mortality table.

ALoM is a misnomer as it holds for even the ultimate portion of a select & ultimate table and is a
valuable tool in computations involving such tables.

Lemma 3 The following results hold true for two independent discrete and continuous uniform
random variables.

i.

dm∗ U(0,1)e
d
= DU(1,m), ∀m≥ 1 (28)

ii.

φDU(m,n)(t) =


exp{t(n+1)}−exp{tm}
(n+1−m)(exp{t}−1) , t 6= 0;

1, t = 0;
. (29)
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