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ABSTRACT 
 
 

This paper demonstrates the calculation of the moments of the distribution of aggregate 

life insurance claims from seriatim inforce data, assuming that each record represents an 

independent Bernoulli trial with its own known probability of a claim, q.  Continuous 

distributions matching the first three or four moments are identified. 
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INTRODUCTION 
 
 

With the adoption by the National Association of Insurance Commissioners of the 

Valuation of Life Insurance Policies Model Regulation, commonly referred to as “Regulation 

XXX”, life insurance valuation actuaries gained the option to use their own company’s product-

specific mortality assumptions in the calculation of life insurance deficiency reserves.  This 

flexibility is achieved through the application of “X factors” to the statutory valuation mortality 

tables.  Actuaries who exercise this option must not only justify their selection of X factors 

before they use them, they must also assess their appropriateness in light of emerging mortality 

experience. 

In order to assess the appropriateness of any particular mortality assumption, it is useful 

to understand the distribution of aggregate life insurance claims implied by this assumption.  The 

question of the distribution of aggregate life insurance claims was most recently addressed two 

decades ago in the context of stop-loss reinsurance.  In a paper published in TSA XXXII (1980) 

entitled, “The Aggregate Claims Distribution and Stop-Loss Reinsurance”, Harry Panjer 

described a method for approximating the distribution of aggregate claims for a group life 

insurance contract.  Panjer found that a compound Poisson process appropriately modeled the 

aggregate claims distribution, based on the collective risk assumption, which states that each life 

which leaves the group by death claim is immediately replaced by a life with identical mortality 

characteristics.  The resulting method produces accurate and useful results, and is relatively easy 

to use as long as the number of distinct amounts of insurance in the group is not too great.  In 

practice, this condition is achieved simply by rounding all face amounts to be integral multiples 

of some convenient unit. 
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In spite of its usefulness, the reliance of the Panjer method on the collective risk 

assumption is not intuitively appealing.  Peter Kornya attempted to eschew the collective risk 

assumption in his paper, “Distribution of Aggregate Claims in the Individual Risk Theory 

Model”, published in TSA XXXV (1983).  The method he presented was not as computationally 

tractable as the Panjer method, so the Panjer method is still the one most widely used today. 

This paper presents an alternative to the Panjer method for estimating the distribution of 

aggregate life insurance claims that does not depend on the collective risk assumption and can be 

used without first rounding and grouping the face amounts.  This method can be used to 

construct hypothesis tests of mortality assumptions (both one-sided and two-sided) as well as 

estimate appropriate premiums for stop-loss coverage.  In the method of this paper, the moments 

of the distribution of aggregate life insurance claims are calculated from seriatim inforce data, 

given a mortality assumption.  The mortality assumption provides a mechanism by which each 

record is assigned its own known probability of a claim, q.  The moments of the distribution of 

aggregate life insurance claims are then used to estimate the percentiles of that distribution by 

identifying closed-form continuous distributions with matching moments.  An extra advantage of 

this method is that moments of the distributions of aggregate claims associated with various 

subsets of the inforce data can be calculated simultaneously by using database techniques. 
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MODEL ASSUMPTIONS AND FORMULAS 
 

 
In order to use the approach described in this paper, we assume that the actuary has 

access to a seriatim inforce dataset that provides a complete and accurate accounting of the 

exposure to be studied.  In particular, we assume that there is a one-to-one correspondence 

between the exposed lives of interest and the records in an identifiable subset of the dataset.  We 

further assume that each record in the subset of interest contains accurate information about the 

birth date, gender, smoker status, and underwriting rating of the corresponding insured life and 

about the issue date, face amount, and amount at risk of the corresponding life insurance policy.  

We posit the existence of an appropriate mortality model that assigns a mortality rate to each 

exposed life of interest.  Furthermore, we assume that any data fields necessary either to identify 

the exposed lives of interest or to assign a mortality rate to an exposed life are accurately coded.  

Finally, we assume that all of the exposures are independent. 

For the jth policy record, the probability of a death claim occurring during the time period 

of interest is qj, the mortality rate assigned by the mortality model.  The amount of the death 

claim (if it occurs) is Aj, which is a constant for policy j.  Now let Cj be the Bernoulli random 

variable representing the occurrence of a claim on policy j (i.e., Cj = 1 if there is a claim on 

policy j during the time period of interest, and Cj = 0 otherwise).  If we let L be the aggregate 

claims liability arising from the exposed lives of interest over the time period of interest, we see 

that ∑ ⋅=
j

jj CAL .  If we denote the means of Cj and L by ( )jCµ  and ( )Lµ , and their kth central 

moments1 by ( )jk Cµ  and ( )Lkµ , respectively, it can be shown that: 

                                                 
1 Recall that the kth central moment of a random variable x is defined as the expected value of ( )( )kxx µ− . 
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Note that all of the moments of L can be calculated from sums of quantities that depend 

only on the amounts Aj and the moments of Cj, which in turn are dependent only on qj.  These 

quantities and sums can be calculated with a single pass through the data. 

We know from experience that L cannot be negative and that the probability that L = 0 

becomes vanishingly small as the number of exposures increases.  Furthermore, we expect that 

the distribution of L will be positively skewed.   We are interested in continuous distributions 

that might approximate the distribution of L.  To investigate, we will compare the calculated 

moments of L with the moments of four different continuous distributions: a normal distribution, 

a gamma distribution, a mixture of a gamma distribution plus an exponential distribution, and a 

mixture of a gamma distribution plus two exponential distributions. 

The normal distribution provides a baseline of comparison for the other continuous 

distributions.  The gamma distribution and the exponential distribution are positively skewed 
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distributions with non-negative domains.  The gamma density function also has the appealing 

property of passing through the origin.  The use of a mixture of exponential distributions plus a 

gamma distribution was inspired by the paper, “Toward a Unified Approach to Fitting Loss 

Models” by Jacques Rioux and Stuart Klugman, which appeared in ARCH volume 37 number 1 

(2002). 

In order to match the first two moments of the distribution of L, the choice of parameters 

for the normal distribution is obviously ( )Lµµ =  and ( )L2µσ =  for the mean and standard 

deviation, respectively.  The gamma density function also has two parameters: the scale 

parameter, β , and the shape parameter, γ .  The gamma density function is expressed2 as: 

( ) ( )γββ

βγ

Γ⋅
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−− x
exxf

1

 .  The mean is γβ ⋅ and the variance is γβ ⋅2 , so we can match the first 

two moments of the distribution of L by choosing ( )
( )L

L
µ

µβ 2=  and ( )
β

µγ L=  . 

For a mixture of a gamma distribution plus an exponential distribution (the Mix 1 model), 

we consider a random variable that is the sum of a gamma distributed random variable (with 

parameters β and γ ) and an independent exponentially distributed random variable.  The density 

function for the exponentially distributed component is ( ) xexf λλ −⋅= .  The mean of the 

mixture random variable is γβλ ⋅+1 , the variance is γβλ ⋅+ 2
2

1 , and the third central 

moment is γβλ ⋅⋅+ 3
3 22 .  We can match the first three moments of the distribution of L by 

choosing λ so that it satisfies the cubic equation: 

                                                 
2 Recall that the gamma function ( ) ∫

∞ −− ⋅=Γ
0

1 dzezu zu ; for integers, ( ) ( )!1−=Γ nn . 
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For the mixture of a gamma distribution plus two exponential distributions (the Mix 2 

model), we consider a random variable that is the sum of three independent random variables: 

one gamma distributed with parameters β and γ , one exponentially distributed with 

parameter 1λ , and one exponentially distributed with parameter 2λ .  The mean of this mixture 

random variable is γβλλ ⋅++
21

11 , the variance is γβλλ ⋅++ 2
2
2

2
1

11 , the third central 

moment is γβλλ ⋅⋅++ 3
3
2

3
1

222 , and the fourth central moment is: 
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This author was unable to find a closed form solution for the system of equations 

resulting from setting these moments equal to the moments of L.  Instead, the “Goal Seek” 

feature of Microsoft Excel was used to find parameters that would result in a mixture random 

variable whose first four central moments matched the moments of L. 
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DATA DESCRIPTION AND RESULTS 
 

The dataset used for this analysis consisted of certain life insurance policies reinsured by 

Munich American Reassurance Company (MARC) at midyear 2002.  This dataset was organized 

as an Oracle table with about six million records.  SQL queries were used to match these records 

with mortality rates from three standard mortality tables: the SoA 75-80 Basic Table, the SoA 

90-95 Basic Table, and the SoA 2001 Valuation Basic Table.  The first five central moments of 

the Bernoulli random variable for a claim during the next quarter on each record were calculated 

along with the variance squared and the product of the variance and the third central moment.  

The amount constant for each record was the dollar amount of risk retained by MARC, scaled so 

that a medium sized policy would be about 1 unit.  The first five moments of the aggregate claim 

distribution for the next quarter for each client company included in the dataset and for the entire 

dataset were then calculated using the formulas presented above.  These moments were then 

copied into an Excel spreadsheet, and parameters were calculated for the continuous distributions 

as discussed above.  For each of these continuous distributions, percentiles of the cumulative 

distribution function (cdf) were then calculated for a confidence interval (CI) starting two 

standard deviations below the mean (or at zero, if greater) and ending two standard deviations 

above the mean. 

We present here the results for the six million policies in the total dataset, for one large 

client company with about 400,000 policies in force, and for one small client company with 

about 1,000 policies in force.   
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TABLE 1 
Distribution of Aggregate Claims for Total Dataset Using SoA 75-80 Basic Table 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 4589.73 203.56 0.33 3.34 4182.61 4996.84
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 4589.73 sigma 203.56 0.00 3.00 0.0228 0.9772
   lambda beta gamma      
Gamma    9.03 508.39 0.09 3.01 0.0203 0.9749
Mix 1  0.0095 6.75 664.01 0.33 3.44 0.0156 0.9700
Mix 2  0.0118 6.13 721.60 0.33 3.36 0.0149 0.9695
    0.0118             
 

 

TABLE 2 
Distribution of Aggregate Claims for Total Dataset Using SoA 90-95 Basic Table 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 3186.61 166.57 0.40 3.50 2853.48 3519.75
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 3186.61 sigma 166.57 0.00 3.00 0.0228 0.9772
   lambda beta gamma      
Gamma    8.71 365.99 0.10 3.02 0.0199 0.9745
Mix 1  0.0108 6.19 499.66 0.40 3.58 0.0142 0.9688
Mix 2  0.0118 5.60 543.46 0.40 3.50 0.0137 0.9684
    0.0169             
 

 

TABLE 3 
Distribution of Aggregate Claims for Total Dataset Using SoA 2001 VBT 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 2525.83 151.09 0.45 3.64 2223.65 2828.00
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 2525.83 sigma 151.09 0.00 3.00 0.0228 0.9772
   lambda beta gamma      
Gamma    9.04 279.48 0.12 3.02 0.0194 0.9741
Mix 1  0.0114 6.20 393.46 0.45 3.69 0.0132 0.9679
Mix 2  0.0118 5.70 420.56 0.45 3.64 0.0128 0.9676
    0.0221             
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TABLE 4 
Distribution of Aggregate Claims for Large Client Using SoA 75-80 Basic Table 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 151.26 23.00 0.62 3.85 105.27 197.26
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 151.26 sigma 23.00 0.00 3.00 0.0228 0.9772
   lambda beta gamma      
Gamma    3.50 43.26 0.30 3.14 0.0140 0.9697
Mix 1  0.0689 2.33 58.70 0.62 3.99 0.0087 0.9649
Mix 2  0.0848 1.95 65.31 0.62 3.86 0.0079 0.9641
    0.0844             
 

 

TABLE 5 
Distribution of Aggregate Claims for Large Client Using SoA 90-95 Basic Table 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 103.85 19.55 0.78 4.28 64.74 142.95
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 103.85 sigma 19.55 0.00 3.00 0.0228 0.9772
   lambda beta gamma      
Gamma    3.68 28.21 0.38 3.21 0.0119 0.9681
Mix 1  0.0739 2.21 40.94 0.78 4.42 0.0059 0.9627
Mix 2  0.0798 1.79 46.12 0.78 4.28 0.0051 0.9619
    0.1135             
 

 

TABLE 6 
Distribution of Aggregate Claims for Large Client Using SoA 2001 VBT 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 81.61 17.51 0.88 4.62 46.59 116.63
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 81.61 sigma 17.51 0.00 3.00 0.0228 0.9772
   lambda beta gamma      
Gamma    3.76 21.72 0.43 3.28 0.0103 0.9670
Mix 1  0.0787 2.11 32.72 0.88 4.71 0.0043 0.9614
Mix 2  0.0810 1.78 35.28 0.88 4.62 0.0038 0.9610
    0.1530             
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TABLE 7 
Distribution of Aggregate Claims for Small Client Using SoA 75-80 Basic Table 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 2.02 1.80 2.58 16.19 0.00 5.61
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 2.02 sigma 1.80 0.00 3.00 0.1307 0.9772
   lambda beta gamma      
Gamma    1.60 1.26 1.78 7.76 0.0000 0.9511
Mix 1  4.2337 1.78 1.00 1.95 8.80 0.0000 0.9506
Mix 2  13.5996 1.79 1.00 1.97 8.89 0.0000 0.9504
    6.4390             
 

 

TABLE 8 
Distribution of Aggregate Claims for Small Client Using SoA 90-95 Basic Table 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 1.55 1.56 2.95 20.51 0.00 4.68
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 1.55 sigma 1.56 0.00 3.00 0.1605 0.9772
   lambda beta gamma      
Gamma    1.58 0.99 2.02 9.09 0.0000 0.9502
Mix 1  0.6445 49.07 0.00 2.95 103.05 0.0000 0.9479
Mix 2  10.0583 3.91 0.07 2.95 20.51 0.0000 0.9464
    0.8365             
 

 

TABLE 9 
Distribution of Aggregate Claims for Small Client Using SoA 2001 VBT 

      Mean Std Dev Skewness Kurtosis CI start CI end
Calculated Statistics 1.19 1.34 3.55 28.75 0.00 3.88
           
Distribution Parameters Skewness Kurtosis cdf CI start cdf CI end
Normal mu 1.19 sigma 1.34 0.00 3.00 0.1882 0.9772
   lambda beta gamma      
Gamma    1.52 0.78 2.26 10.67 0.0000 0.9496
Mix 1  1.0418 3.86 0.06 3.55 28.86 0.0000 0.9582
Mix 2  888.5242 3.83 0.06 3.55 28.75 0.0000 0.8927
    1.0482             
 



-12- 

DISCUSSION 
 

Looking at Tables 1, 2, and 3 above, we see that for the six million policies in the total 
dataset the confidence intervals by mortality table are disjoint, demonstrating the significant 
differences in the overall mortality levels of the three tables used in this study.  The confidence 
interval using the 75-80 table ranges from 91% to 109% of the mean; using the 90-95 table the 
range is 90% to 110%, and using the 2001 VBT the range is 88% to 112%.  The lower the 
expected claims, the wider the confidence interval, relatively speaking.  Each confidence interval 
includes about 95.5% of the distribution for all of the continuous distributions fitted to the 
moments calculated using that mortality table.  While the normal distribution estimates that the 
probability that aggregate claims will exceed the confidence interval is equal to the probability 
that they will not even reach the confidence interval, the mixture models show that in fact the 
probability of claims exceeding the range is at least twice the probability of an unusually 
favorable outcome.  For example, in Table 1 the “cdf CI end” for the normal model is 0.9772, so 
the estimated probability of aggregate claims exceeding the confidence interval is 1 – 0.9772 = 
0.0228, which is the same as the “cdf CI start”, the estimated probability that aggregate claims 
will not even reach the confidence interval.  But in that same table, the “cdf CI end” for the Mix 
2 model is 0.9695, leaving an estimated probability of aggregate claims exceeding the 
confidence interval equal to 1 – 0.9695 = 0.0305, which is more than twice the “cdf CI start” 
value of 0.0149. 

Comparing the percentiles of the confidence interval between the Mix 1 and Mix 2 
models, we see that the shift was fairly small.  It appears that for this group of policies, the Mix 1 
model provides a satisfactory fit for estimating the percentiles of the aggregate claims 
distribution. 

For the large client, we see from Tables 4, 5, and 6 that the confidence intervals are quite 
wide and overlapping.  Using the 2001 VBT, the confidence interval ranges from 57% to 143% 
of the mean.  This shows that it is difficult to draw conclusions about the mortality assumption 
even for a block of 400,000 policies using only one quarter of experience.  The mixture models 
again show that the probability of claims exceeding the range is significantly higher than the 
probability of an unusually favorable outcome, up to ten times as great when using the 2001 
VBT.  Again, the shift in the percentiles of the confidence interval was fairly small between the 
Mix 1 and Mix 2 models, suggesting that the Mix 1 model again provides a satisfactory fit. 

Tables 7, 8, and 9 illustrate the well-known fact that the experience of a small block over 
a short period is unlikely to reveal much information.  For the small client, the confidence 
intervals are one-sided and very wide.  Using the 2001 VBT, the range is up to 326% of the 
mean.  This case also tested the limits of this technique.  While it was simple to calculate the 
moments of the aggregate claims distribution for this small client simultaneously with the total 
dataset and all clients in the dataset, matching these moments with continuous distributions 
proved to be quite problematic.  While the equations for choosing the parameters of the Mix 1 
model are guaranteed to have real solutions, the solutions are not necessarily positive, as the 
parameters must be.  Also, even when all of the calculated parameters are positive, the values 
may be too extreme for calculating percentiles of the gamma distribution using Excel.  For the 
mixture models for the small client using the 90-95 Table and the 2001 VBT, it was necessary to 
use numerical integration techniques to estimate the percentile values of the confidence interval. 

 



-13- 

 
CONCLUSION 

 
The technique outlined in this paper appears to provide a useful method for constructing 

hypothesis tests of the mortality assumption for sufficiently large blocks of life insurance 
(apparently about a hundred thousand life years of exposure is sufficiently large).  For such a 
block, it appears to be satisfactory to approximate the aggregate claims distribution with a 
mixture of a gamma distribution plus an exponential distribution with parameters chosen so that 
the first three moments match.  For small blocks of business, this technique does not appear to be 
satisfactory.  More experience with this technique in practice will help define the conditions for 
which it is most appropriate.       


