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Abstract
This paper presents a methodology of pricing the guaranteed minimum death benefit of a variable annuity
in a market model with jumps. Recent developments in the stock market make variable annuities very
attractive products from the insured point of view, but less attractive for insurers. The insured still has the
possibility of investment benefits, while avoiding the risk of a stock market collapse. The insurer wants to
minimize its risk and yet sell a competitive product.
The financial market model consists of one riskless asset and one risky asset whose price jumps in proportions
J at some random times τ which correspond to the jump times of a Poisson process. The model describes
incomplete markets and there is no perfect hedging.
In the second part of the paper, we describe a possible method of risk analysis for binomial tree models.
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0. Introduction
In the Black-Scholes model, the share price is a continuous function of time. Some rare events (which
are rather frequent lately), can accompany ”jumps” in the share price. In this case the market model is
incomplete, hence there is no perfect hedging of options.
We consider a market model with one riskless asset and one risky asset whose price jumps in proportions
J1, J2, . . . , Jn, . . . at some random times τ1, τ2, . . . , τn, . . . which correspond to the jump times of a Poisson
process. Between the jumps the risky asset follows the Black-Scholes model.
The mathematical model consists of a probability space (Ω,F , P ), a Brownian motion (Wt) and a Poisson
process (Nt)t≥0 with parameter λ. The jumps Jn are independent and identically distributed on (−1,∞)
and (Ft)t is the filtration which incorporates all information available at time t. The price process (St) of
the risky asset is described as follows:
On [τj , τj+1), dSt = St(µdt + σdWt) i.e. Black-Scholes model;
At time τj , the jump of (St) is given by ∆Sτj

= Sτj
− Sτj

− = Sτj
− Jj ;

In other words, Sτj
= Sτj

−(1 + Jj); As defined, (St) is a right-continuous process.
It is straightforward to see that we have the following formula for the price process:

St = S0(
Nt∏
j=1

(1 + Jj))e(µ−σ2
2 )t+σWt (1)
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1 Guaranteed minimum death benefits

A variable annuity is an investment wrapped with a life insurance contract. The convenient tax deferral
characteristic of the variable annuities makes them a very interesting and popular investment and retirement
instrument. The average age at which people buy their first variable annuity is 50. There are a few different
types of GMDB options associated with variable annuities. The most popular are:
1. Return of premium - the death benefit is the larger of the account value on the date of death or the
sum of premiums less partial withdrawals;
2. Reset - the death benefit is automatically reset to the current account value every x years;
3. Roll-up - the death benefit is the larger of the account value on the day of death or the accumulation of
premiums less partial withdrawls accumulated at a specified interest rate (e.g. 1.5% in many 2003 contracts);
4. Ratchet (look back) - same as reset, except that the death benefit is not allowed to decrease, except for
withdrawals.
Let ω be the expiry date for a variable annuity with a return of premium GMDB option associated with (St).
Let T be the random variable that models the future lifetime of the insured (buyer of the contract).Then
the payoff of the product is:

P (T ) =

{
H(t) if T ≤ ω

S(ω) if T > ω

where H(t) = max(S(0), S(t)) = S(t) + max(S(0)− S(t), 0) = S(t) + (S(0)− S(t))+
Basically, the value of the guarantee at time 0 is given by the price of a put option with stochastic expiration
date. It can be shown that in discrete settings and when the benefit is paid at the end of the year of death,

PV (GMDB) =
ω−x∑
m=1

m−1|qxP (m,S0) (2)

where P (m,S0) is the price of the put option with expiry m and strike S0, in the Black-Scholes model.
If the benefit is paid at the moment of death, then

PV (GMDB) =
∫ ∞

0

fT (t)P (t, S0)dt (3)

where fT (t) is the pdf of the future lifetime random variable. Closed form expressions can be obtained for
appropriate assumptions on T (constant force, UDD, Balducci etc).
Next we want to determine the price of the put option associated with GMDB in the market model described
in the introduction, which minimizes the risk at maturity.
Suppose E(J1) < ∞ and let S̃t = e−rtSt for s ≤ t. Then

E(S̃t|Fs) = S̃sE

(
e(µ−r−σ2

2 )(t−s)+σ(Wt−Ws)
Nt∏

j=Ns+1

(
(1 + Jj)|Fs

))

= S̃sE

(
e(µ−r−σ2

2 )(t−s)+σ(Wt−Ws)
Nt−Ns∏

j=1

(1 + JNs+j)
)

because Wt −Ws and Nt −Ns are independent of Fs.
Hence

E(S̃t|Fs) = S̃se
(µ−r)(t−s)E(

Nt∏
j=Ns+1

(1 + Jj))

But

E(
Nt∏

j=Ns+1

(1 + Jj)) = E(
Nt∏
j=1

(1 + Jj))− E(
Nt∏
j=1

(1 + Jj))
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and

E(
Nt∏
j=1

(1 + Jj)) =
∞∑

n=1

E(
n∏

j=1

(1 + Jj))P (Nt = n)

=
∞∑

n=1

(1 + E(Jj))ne−λt (λt)n

n!
=

∞∑
n=1

e−λt (λt(1 + E(J)))n

n!

= e−λteλt(1+E(J)) = eλtE(J)

So
E(S̃t|Fs) = S̃se

(µ−r)(t−s)eλ(t−s)E(J)

Hence (S̃t) is a martingale iff µ = r − λE(J). In our case, we want to price a put option with strike S0 and
expiry T.
Let f(x) = (S0 − x)x. The price of the put option which minimizes the risk at time t is given by:

E(e−r(T−t)f(St)|Ft) = E

(
e−r(T−t)f

(
Ste

(µ−r−σ2
2 )(t−s)+σ(Wt−Ws)

NT∏
j=Nt+1

(1 + Jj)
)∣∣∣∣Ft

)

= E

(
e−r(T−t)f

(
Ste

(µ−r−σ2
2 )(t−s)+σ(Wt−Ws)

NT−t∏
j=1

(1 + Jj)
))

= E

(
P

(
t, Ste

−λ(T−t)E(J)

NT−t∏
j=1

(1 + Jj)
))

where P (t, x) is the function that gives the price of the option for the Black-Scholes model. As NT−t is
Poisson with parameter λ(T − t),

E(e−r(T−t)f(St)|Ft) =
∞∑

n=0

E

(
P

(
t, Ste

−λ(T−t)E(J)
n∏

j=1

(1 + Jj)
))

e−λ(T−t)λn(T − t)n

n!

Let us now assume that J takes values in {u, d} and P (J = u) = p, P (J = d) = 1 − p. We will use the
following:

Lemma 1: Let N be Poisson with parameter λ.
Let S =

∑N
n=1 Vn with P (Vn = u) = p, and P (Vn = d) = 1− p. Then law(S) =law(uN1 + dN2), where N1

is Poisson λp and N2 is Poisson (λ(1− p)).

Proof: One method would be to show that the two random variables have the same moment generating
function.
Another method would be to re-write S =

∑N
n=1(u+(d−u)In), where In = 0 with probability p and In = 1

with probability 1− p. So,

S = uN + (d− u)
N∑

n=1

In = uN1 + dN2,

because
∑N

n=1 In is Poisson (λ(1− p)). This completes the proof of the lemma.
Now,

NT−t∏
j=1

(1 + Jj) =
NT−t∏
j=1

eln(1+Jj) = e
∑NT−t

j=1 ln(1+Jj),

and using the lemma we have
∑NT−t

j=1 ln(1 + Jj) has the same law as
ln(1 + u)N1 + ln(1 + d)N2 where N1 and N2 are iid with parameters λp and λ(1− p) respectively.
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So, the price of the option at time t is given by:

∑
n1,n2

∑
k1,k2︸ ︷︷ ︸

αk1+βk2=αn1+βn2

P

(
t, S0e

−λ(T−t)[pu+(1−p)d]eln(1+u)n1+ln(1+d)n2

)
e−λ λk1+k2pk1(1− p)k2

(k1)!(k2)!

where α = ln(1 + u) and β = ln(1 + d).
Replacing now the price of the put option in formula (2) we get the price for GMDB paid at the end of the
year of death or in formula (3) we get the price of the GMDB for continuous time model, with benefit paid
at the moment of death.
Most of the time, α and β are linearly independent over Z, so in this case the decomposition αn1 + βn2 is
unique, and the price of the option is given by:

∞∑
n1=0

∞∑
n2=0

P

(
t, S0e

−λ(T−t)[pu+(1−p)d]eln(1+u)n1+ln(1+d)n2

)
e−λ λn1+n2pn1(1− p)n2

(n1)!(n2)!

2. Other market model with jumps
The problem of the price jumps can be analyzed in other models too. Another model could be described as
follows: only one jump whose time occurance is uniformly distributed on the contract length. Let ω be the
expiration date of the contract and Tj the random variable modeling the time of occurance of the jump. Let
also Td be the random variable that models the lifetime of the insurer. Let’s assume for simplicity that Td

is exponential, i.e. fTd
= λe−λt.

The probability that the jump occurs before the death is

P (Tj < Td) =
∫ ω

0

∫ ∞

tj

1
ω

λe−λtddtddtj =
∫ ω

0

1
ω

e−λtj dtj =

=
1
ω

e−λtj

−λ
|ω0 =

1− e−λω

λω

Let τ be the random time of the jump. Then,{
St = S0e

(µ−σ2
2 )t+σWt for t < τ and

St = S0(1 + J)e(µ−σ2
2 )t+σWt for t ≥ τ

As in the first model, the discounted price process is a martingale for specific jump processes and the GMDB
price can be found similarly.

3. Risk analysis
We focus our attention now on a binomial tree model, and for simplicity we will assume that the price
process (St) of a risky asset follows a simple random walk, going up one unit with probability 1/2 and down
one unit with probability 1/2. For simplicity we will assume that S0 = 0, using a translation of the random
variable that models the stock price. Let τN = inf{k ≥ 0 : |Sk| = N} be the first time the random walk is
at distance N from the origin. If we think about the stock price, τN is the random time when Sn goes up or
down N units, for the first time. Hence, τN can be interpreted as a measure of risk.
First, it is quite easy to show that the distribution of τN has an exponential tail and hence has moments of
all orders. Let TN = inf{k ≥ 0 : Sk = N}. If ω ∈ {τN = n}, then ω ∈ {TN = n} ∪ {T−N = n}.
So P (τN = n) ≤ P (TN = n) + P (T−N = n) =︸︷︷︸

symmetry

2P (TN = n).

So, P (τN = n) ≤ 2P (TN = n). Now, P (TN = n) =
√

2
π

N√
n3 e−

N2
2n by [1], hence the conclusion.

Next we want to look directly at P (τN = n). Let k ∈ N be fixed, and l ∈ N such that −k ≤ −l ≤ l ≤ k.
Let yn

l be the probability of a path from (0, 0) to (n,±l) without passing through ±k.
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Note: (a, b) means getting to the value b at time a.
We have the following recurrence relations:

yn
0 = 1

2yn−1
1

yn
1 = yn−1

0 + 1
2yn−1

2

. . .

yn
l = 1

2yn−1
l−1 + 1

2yn−1
l+1 , for 2 ≤ l ≤ k − 2

. . .

yn
k−1 = 1

2yn−1
k−2

yn
k = 1

2yn−1
k−1

We want to find pn := yn
k = 1

2yn−1
k−1 . Then we will take k=N and get the distribution of τN .

Let


yn
0

yn
1

.

.

.
yn

k−1

 be a column vector.

The recurrence relations can be written as:
yn = Ayn−1

where A is a (k)x(k) matrix:

A =


0 1

2 0 0 . . . 0 0
1 0 1

2 0 . . . 0 0
0 1

2 0 1
2 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1

2 0


Let PA(t) = det(tI −A). Let Bk := tI −A and let Pk := det(Bk). Then, using the last row of matrix Bk,

detBk = det


t − 1

2 0 . . . 0
−1 t − 1

2 . . . 0
0 − 1

2 t . . . 0
. . . . . . . . . . . . . . . .
. . . . . . . . . . − 1

2 t

 = −(−1
2
)det(C) + tdet(Bk−1)

Then again, using the last row of matrix C,

det(C) = −(−1
2
)det(D) + (−1

2
)det(Bk−2) =

1
2
det(D)− 1

2
det(Pk−2).

But D has the last column 0, so det(D) = 0. Hence det(C) = − 1
2Pk−2 and so

Pk = −1
4
Pk−2 + tPk−1 (4)

The recurrence relation Pk − tPk−1 + 1
4Pk−2 = 0 has characteristic polynomial x2 − tx + 1

4 . The roots for
this polynomial are x1,2 = t±

√
t2−1
2 and so,

Pk = α1x
k
1 + α2x

k
2 .

But P1 = t, because A = 0 when k = 1 and P2 = t2 − 1
2 .

So we can identify α1 = α2 = 1. Hence:

Pk = xk
1 + xk

2 =
1
2k

(
(t +

√
t2 − 1)k + (t−

√
t2 − 1)k

)
.
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Let P (t) = (t +
√

t2 − 1)k + (t−
√

t2 − 1)k = 2kPk = 2kPA(t).
Then P (A) = 2kPA(A) = 0, by Cayley’s theorem. If P (t) = a0t

k + · · ·+ ak, then

a0A
k + · · ·+ akI = 0. (5)

Next, let’s multiply (5) to the right by yn−k, which is a column vector, for n ≥ k. We get

a0y
n + a1y

n−1 + · · ·+ akyn−k = 0

In particular, if we read only the last line we get:

a0y
n
k−1 + a1y

n−1
k−1 + · · ·+ akyn−k

k−1 = 0, ∀ n ≥ k.

But pn = 1
2yn−1

k−1 , so we get the recurrence:

a0pn + a1pn−1 + · · ·+ akpn−k = 0, for n ≥ k + 1

Let now Q(t) = a0 + · · ·+ aktk. Consider also the power series S(t) = p0 + p1t + p2t
2 + . . .

Let Q(t)S(t) = c0 + c1t + c2t
2 + . . .

For n ≤ k, cn = a0pn + a1pn−1 + · · ·+ anp0.
For n ≥ k + 1, cn = a0pn + a1pn−1 + · · ·+ akpn−k = 0.
But as p0 = p1 = · · · = pk−1 = 0, we get that c0 = c1 = · · · = ck−1 = 0 and ck = a0pk.
Hence Q(t)S(t) = cktk = a0pktk and so

S(t) =
a0pktk

Q(t)
(6)

We have:
Q(t) = a0 + a1t + · · ·+ aktk, and
P (t) = a0t

k + · · ·+ ak.
These two polynomials are reciprocal and

Q(t) = tkP (
1
t
) = tk

((
1
t

+

√
1
t2
− 1

)k

+
(

1
t
−

√
1
t2
− 1

)k)
(1 +

√
1− t2)k + (1−

√
1− t2)k.

In particular, a0 = Q(0) = 2k. Also, pk = 1
2k−1 (one gets to ±k after k steps iff there are k + 1′s or k − 1′s,

and any of these two events happen with probability 1
2k , hence pk = 2 1

2k ).
We then get a0pk = 2, so

S(t) =
a0pktk

Q(t)
=

2tk

(1 +
√

1− t2)k + (1−
√

1− t2)k
.

As a conclusion, P (τN = n) is the coefficient of tn in the Taylor series of

S(t) =
2tN

(1 +
√

1− t2)N + (1−
√

1− t2)N
(7)

4. Conclusions:
This paper has two parts. In the first part, a closed-form equation is deduced for the price of the GMDB
option that minimizes the risk at issue. In the second part, we make a risk analysis in a binomial market
model, by looking at the distribution of the first time a stock price goes up or down some fixed units of price.
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