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ABSTRACT 

This paper investigates a technique for developing investment assump- 
tions for pricing that are consistent with the investment practices of the 
company. An investment strategy is defined to be a specific allocation of 
investable funds among given representative fixed-income instruments. 
The investment strategy problem consists of two parts: how to invest 
funds initially received on a block of new issues and how to reinvest any 
excess of investment cash flow over the cash-flow needs of the block of 
business at later durations. 

Since capital market conditions are known at the time of issue but are 
largely uncertain for the future, the initial-investment problem is con- 
siderably easier to analyze than is the reinvestment problem. Also, for 
single premium business, the amount of investable funds at issue is 
significantly larger than the amount of investable funds at later times. 
Thus, the initial-investment strategy is more important than the rein- 
vestment strategy for single premium business. 

This paper analyzes initial-investment strategies that produce asset- 
liability matching for specified durations. I t  shows how to express a 
subset of the entire region of feasible initial-investment strategies in a 
way that can be visualized easily and communicated to investment de- 
partment officers. Practical applications of the theory to the pricing of 
single premium immediate annuities are given. 

I .  INTRODUCTION 

EVERAL papers have been written on the matching of assets and 
liabilities. One criticism often aimed at theoretical papers on this 
subject is that the 3, ignore the realities of the actual operation of 

the investment department of an insurance company. Another criticism 
is that the investment strategies that result from the application of these 
theoretical approaches are so restrictive that  they lead to uncompetitive 
rate structures. Furthermore, it is often claimed that investment vehicles 
with an appropriate pattern of contractual interest and principal repay- 
ment to effect a proper matching of assets and liabilities do not exist. 
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This paper attempts to examine the practical aspects of the relation- 
ship between actual investment strategies and investment assumptions 
for the pricing of single premium immediate annuities. The ideas pre- 
sented also should find application in the pricing of other single premium 
products and of "accumulation" products to which investment income is 
allocated by an investment-generation method. 

I t  is important to understand some of the difficulties in specifying in- 
vestment assumptions for the pricing of new-money products. The 
following discussion centers on a new block of single premium immediate 
annuity business. 

At the time business is written, the capital market conditions are 
known--in particular, the yield curves for various investment vehicles 
and the yield spreads between different types of investment. The invest- 
ment department can formulate appropriate policy for the investment of 
funds arising from the single premiums less the state premium taxes, 
commissions, and acquisition expenses. The major difficulty in setting in- 
vestment strategy and assumptions for pricing is the uncertainty of 
future money market conditions. A model of the block of new issues 
could be used to project the expected cash-flow requirements in each 
future year--annuity benefit payments, maintenance expenses, and 
federal income taxes. Ignoring bond calls, mortgage prepayments and 
refinancings, and the sale of assets prior to maturity, one could project 
the scheduled interest and principal payments from the portfolio of assets 
acquired through the initial investment of the single premiums less 
commissions, expenses, and taxes. Upon comparison of the cash-flow 
requirements of the block of annuity business with the investment cash 
flow from the portfolio of assets, it generally will be found that there is 
either a surplus or a deficiency of investment cash flow in each future 
year. Any surplus of investment cash flow over cash-flow requirements 
must be reinvested, ttowever, the capital market conditions at the time of 
reinvestment are not known at issue, and neither economists nor ac- 
tuaries currently possess the ability to predict interest rates accurately 
beyond a very short period. 

What to do with a deficiency of investment cash flow compared with 
cash-flow requirements constitutes an even more difficult problem. 
Should the investment department liquidate assets to meet the deft- 
ciency? If so, which investments should be liquidated? If capital gains 
are realized as a result of liquidation in a period of declining interest rates, 
are they to be offset by liquidating other investments at a loss to minimize 
the federal income taxes on capital gains? How are capital gains and 
losses to be allocated equitably among blocks of business? In actuality, 
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the flow of investable funds from the entire company's operations or 
from the entire line of single premium annuity business may be positive, 
so that it is possible to superimpose the deficiency arising in one block of 
business on the overall positive flow of investable funds. This is known as 
"constructive liquidation"--there is no liquidation of any actual asset, 
merely a decrease in the amount of investable funds. 

Constructive liquidation can produce inequities in the allocation of 
investment income among blocks of business unless care is taken. Sup- 
pose that  interest rates have fallen since the time of issue of a block of 
single premium immediate annuities and that this block is currently 
experiencing a negative flow of investable funds. If a constructive liquida- 
tion approach is used in lieu of actual liquidation, this block will be per- 
mitted to retain its high-yielding assets while effectively taking a low 
interest rate loan from the blocks of new business that are providing the 
net positive flow of investable funds. I t  might be argued that the new 
block of business should "lend" its funds to the old block at an interest 
rate in excess of the current new-money rate in recognition of the fact 
that the old block (and the entire company) is spared from having to in- 
cur a taxable capital gain and transaction costs for liquidation as well as 
the loss of high-yielding assets. Alternatively, it could be argued that new 
business should not expect to earn more by investing in an old block of 
business than through conventional fixed-income instruments. If the 
latter philosophy is adopted, it makes no difference to the new block of 
business whether constructive liquidation or actual liquidation is utilized, 
since only the old block is affected. 

The previous considerations indicate some of the difficulties en- 
countered in deciding upon investment assumptions for single premium 
immediate annuities. Since most business is written on a nonparticipating 
basis, there is no opportunity to adjust payments to annuitants for dif- 
ferences in actual investment performance from that assumed in setting 
the annuity rates. Nevertheless, it is possible to reduce the importance of 
the reinvestment strategy by adopting for the initial-investment strategy 
an approach known as "matching." Matching essentially means choosing 
an initial asset mix and maturity distribution so that in any year the 
investment cash flow (after investment expenses) from the resulting 
portfolio of assets equals or exceeds the cash-flow needs of the block of 
annuity issues. The theoretical idealization in which these two cash flow-s 
are exactly equal is known as "absolute matching." The following sec- 
tions of this paper investigate a practical approach for matching asset 
~tnd liability cash flows for blocks of single premium annuity business. 
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II. DETERMINING INVESTMENT STRATEGY 

In determining how funds are to be invested, the insurance company's 
investment department will make commitments to various borrowers to 
lend specified amounts of money at certain times in the future, based on 
projections of investable funds arising from insurance operations and of 
investment cash flow. One of the functions of the investment department 
is to determine the allocation of investable funds among the various 
classes of assets, and within each class among credit-risk/maturity-date 
categories. The primary objectives of investment policy are to satisfy the 
liquidity needs of the insurance operation and to optimize overall yield at 
an acceptable level of risk. A further objective is to achieve consistency 
between the maturity structure of the asset portfolio and the terms of the 
company's obligations under the contracts it issues. Absolute matching 
of the investment cash flow with the cash-flow requirements of the in- 
surance operation fulfills the third objective completely ;however, abso- 
lute matching is unattainable for practical investment operations and, 
even if attainable, would probably be undesirable, since it is so restrictive 
that uncompetitive rates would result. 

Since fixed-income investments provide contractual payments of 
principal and interest at specified intervals, they are used to back the 
obligations under conventional fixed-income annuities. Only mortgages 
and bonds will be considered in this paper. The pattern of principal and 
interest payments is fundamental to achieving a matching of assets and 
liabilities, so this is discussed first. 

Mortgages typically require periodic level payments (comprised of 
principal and interest), with the size of the level payment determined by 
the contractual interest rate, the amount of the initial loan, and the 
period of amortization of the loan. There is often a maturity date before 
the expiration of the amortization period, at which point a "balloon" 
payment of the remaining outstanding principal is made. In current 
markets, ten-year protection against prepayment of the mortgage is 
common, with the penalty for prepayment assessed as a percentage of 
the outstanding principal. The penalty actually forms a decreasing scale 
of percentages, highest at the date of earliest prepayment and zero at the 
maturity date. 

Public bonds commonly provide semiannual coupons. Full principal 
repayment occurs at the maturity date. The call-protection period is 
usually five or ten years, the latter associated with the longer-maturity 
public bonds. Call premiums are assessed as a percentage of the par value 
of the bond, according to a scale that decreases from its highest value at 
the date of earliest call to zero at maturity. 
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The provisions of a private placement bond are somewhat flexible and 
are usually negotiated by the lender and the borrower. A particular 
issue may be so large that several insurance companies participate. The 
contractual provisions currently found in typical private placement bond 
indentures are as follows: 

1. There is often a moratorium on repayment of principal for a specified num- 
ber of years, followed by provision for equal principal repayments at par 
(regardless of the level of new-money rates at time of payment) each year 
thereafter until the final maturity date. 

2. As with public bonds, coupons usually are paid semiannually at a stated 
rate applied to the outstanding principal. 

3. Ten-year call protection is common. 
4. Call premiums are assessed as a percentage of outstanding principal accord- 

ing to a decreasing scale similar to that described for public bonds. 

Practicality is built into the theoretical treatment that follows. In- 
vestment department officers are allowed to decide upon an appropriate 
number of investment "cells" that represent typical investments that  
exist in sufficient quantity to be acquired readily. For example, there may 
be nl mortgage cells and n: bond cells for a total of nl + n2 = n cells. 
Within each broad class, the different cells would have variations in the 
parameters that define the pattern of principal and interest payments:  
contractual interest rate, amortization period, maturity date, and so on. 
The analysis presented in this section assumes that there are no calls, 
sales, or prepayments prior to the maturity date; in real life, of course, 
these will occur. Because of the preponderance of call provisions in bond 
indentures and prepayment clauses in mortgage agreements, it is un- 
realistic to a t tempt  to extend an initial-investment matching strategy 
beyond fifteen years. (Matching can be achieved after the fifteenth year 
by taking account of the investment cash flow arising from the r e i n v e s t -  

m e n f  of funds during the first fifteen years.) If a matching strategy can be 
achieved for the first fifteen years by using only assets that have at least 
a ten-year call protection, it can be assumed that any calls or prepay- 
ments occurring from the eleventh to the fifteenth year can be reinvested 
in such a way that matching or near-matching for this five-year period 
still exists. Practical applications of the theory presented in this paper 
have borne out this assumption. 

An investment strategy is defined to be an n-component vector 
(pl, p2 , . .  • , p,) that specifies the partition of one dollar of investable 
funds among the n cells into amounts of p l ,  p2 ,  . • • , p n ,  respectively, 
where X~=l p j  = 1. For each investment cell j, let a ij represent the total 
amount of scheduled principal and interest payments in year i after 
acquisition. Any payments to be received during year i are assumed to be 
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reinvested to the end of the year at a specified short-term interest rate. 
The investment cash flow in year i arising from the initial investment of 
one dollar is thus 

A~ = ~ a~jpj. (1) 
y=l 

A model office can be used to project annual cash outflow from a block 
of annuity contracts on the basis of assumptions about the volume 
(amount of single premium) and the distribution of new business by 
issue-age/sex/contract-type cell. The initial amount of investable funds 
is assumed to be the total single premiums received, less all state premium 
taxes, commissions, and acquisition expenses. If the model office assumes 
that the block of issues is written over a one-year period, the premiums, 
premium taxes, commissions, and acquisition expenses would be dis- 
counted at the short-term interest rate to the beginning of the first year. 
Similarly, in the determination of the annual cash-flow demands of the 
block of annuity business, any benefits or maintenance expenses incurred 
during the year are accumulated to the year-end at the short-term 
interest rate. The division of the annual cash-flow requirements by the 
initial amount of investable funds results in a vector of annual cash-flow 
requirements per initial do|lar invested, {B i}. 

The mathematical statement of a "matching" strategy is 

A~ _> Bi (2) 

for some specified set of years i. In the following discussion it is assumed 
that the matching condition is applicable to m years, and these are 
labeled 1, . . . , m for convenience, even though it may not be intended 
that matching apply to the first m consecutive years. The solution of the 
investment problem is the (n -- 1)-dimensional region R of feasible in- 
vestment strategies that consists of all points P = (p~, . . .  , p~) satis- 
fying the constraints 

Pi>-- 0 ,  1 < j  < n ;  (3a) 

p,. = 1 ; (3b) 
j=l 

~ aiipj >_ bi , 1 < i < m . (3c) 
i=1 

Expression (3c) is derived by substituting equation (1) in expression (2) 
and making the change of notation b~ -= B~ for all i. 

All constraints defining the region R are linear in the variables pj. 
Constraints (3a) and (3b) ensure that R is bounded. Constraints (3c) will 
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be referred to hereafter as the matching constraints. Let H0 denote the 
( n -  1)-dimensional plane defined by constraint (3b). Region R is 
bounded by a subset of all the (n -- 2)-dimensional planes formed by the 
intersections of H0 with the boundary planes defined by the nonnegativity 
and the matching constraints. Region R is known as a polytope. As a 
specific example of these statements, a possible region R is shown in 
Figure 1 for a three-dimensional problem. For this example, H0 is an 

R 

/ Ho: 

~ ( 0 ,  1, O) ' ~ "  

p,+P~+P3 = ! 

(1,0,0) 

Jp, 
FIG. 1.--Investment-strategy geometry for three investment cells. The five-sided 

polygon R lying in the plane p~ + P2 + p3 ~ 1 is bounded by three matching con- 
straints and two of the three nonnegativity constraints. 

ordinary two-dimensional plane, and R is a polygon bounded by five 
straight lines (one-dimensional planes). 

Unless the investment strategy is restricted further by demanding that  
yield be optimized, the region R, if it is nonempty, is the solution of the 
investment problem. This is the essence of the approach adopted in this 
paper: to allow the investment department to define representative in- 
vestment cells, to allow the actuary to specify the years for which a 
matching constraint is to be applied, and then to determine a region of 
feasible investment strategies that meets these constraints, if one exists. 
I t  is important to present the solution as a region of feasible strategies 
rather than as a single strategy or a small number of point strategies be- 
cause the investment department may not actually be able to meet a 
particular strategy but may be able to acquire a portfolio of assets falling 
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within a specified region. The trouble with claiming success as soon as 
the polytope R is defined is that a polytope is difficult to visualize. I t  
would be impossible to communicate the solution to the investment 
department or perhaps even to other actuaries. Moreover, it is desirable 
to perform a sensitivity analysis in which the mortality or expense as- 
sumptions underlying the cash flows b~ are changed. The resulting region 
R also would change, but since R is difficult to visualize it would be hard 
to characterize the change as a distortion, compression, expansion, 
translation, or rotation (or some combination of these) of the original 
region. Even though the polytope defined by the constraints (3a), (3b), 
and (3c) represents the solution of the investment problem, it is not a 
useful solution. 

Suppose that, in lieu of the polytope R, the boundary and interior of 
the largest (n - 1)-dimensional spheres  that  can be inscribed in R is used 
as the solution of the investment problem. Some of the investment strate- 
gies contained in R are not contained in S, so S represents only a part  of 
the full solution. However, S is much easier to visualize. A sphere is 
characterized completely by a center point and a radius. The results of 
the sensitivity analysis mentioned previously can be understood in terms 
of the translation of the center of the sphere and an expanding or shrink- 
ing of its radius. 

I t  is probably true that the officers of the investment department 
would understand a sphere no more easily than a polytope. Instead of 
examining region R and its maximal in-sphere S, it may be useful to look 
at the region R' obtained by projecting R onto the coordinate plane p,  = 
0. Let S '  be the maximal in-sphere of R'. By inscribing the largest 
(n - 1)-dimensional hypercube in S', it is possible to present the invest- 
ment strategy in a very understandable fashion. Let rm~x' and P'0 ~ 
( P o t , . . - ,  p6.,-1, O) denote the radius and center, respectively, of the 
sphere S'. The investment department should at tempt to invest annuity 
funds as follows: 

f tm ax t r m a x  

P~J v ' ( n - 1 )  < pj < p~j + v / ( n - 1 ) '  j = l ' 2 ' ' ' ' ' n - 1 ;  
,_, (4) 

p . = l -  ~pj .  
j = l  

The fraction of annuity funds to be invested in cell j ( j  = 1, 2, . . . , 
n -- 1) must lie within the range shown in formula (4), but can be chosen 
independently of the fractions invested in all other cells. Once it has been 
decided how much is to be invested in ceils 1 through n - I, the balance 
of investable funds goes into cell n. Of course, the hypercube of feasible 



ASSUMPTIONS FOR SINGLE PREMIUM PRODUCTS 71 

investment strategies defined by (4) contains even fewer strategies than 
does the sphere S', but it is simple to communicate and easy to under- 
stand. 

One step that remains to be done in this section is to exhibit the method 
of finding the largest sphere S that can be inscribed in the region R defined 
by the constraints (3). Since the sphere is a quadratic surface, this may 
appear to be a difficult problem. As will be shown, however, the radius 
and center of the maximal in-sphere can be obtained as the solution of a 
standard linear programming problem. 

For a given center point P0 = (pol, • . . , po~) lying on the plane H0, 
the largest (n -- 1)-dimensional sphere S(Po)  lying within R can be found 
by geometrical construction. Let Hi denote the (n - 1)-dimensional 
planes p~ = 0 for 1 < i < n, and let H,+~ denote the (n - l)-dimen- 
sional planes Z" = i=1 aijpj bi for 1 < i < m. Let Ti represent the (n -- 2)- 
dimensional plane formed by the intersection of Ho with Hi for 1 < i < 
n + m. Construct lines from Po perpendicular to each of the planes Ti, 
and let these lines be of length l i(Po). As shown in Appendix I, l~(Po) is a 
l inear function of Po, that is, 

l~(Po) = ~ aiipoi - -  ~ ,  1 < i < n +  m ,  (5) 
j = l  

for a~j and Bi independent of Po. The largest (n -- 1)-dimensional sphere 
S lying within the region R and having given center P0 has radius 
r(Po) given by 

r(Po) = rain l ,(Po) , 1 < i < n + m .  (6) 

The largest (n -- 1)-dimensional sphere S inscribed in the region R 
has the center P0 that maximizes the function r(Po),  subject to the con- 
straint Po 6 R. This is a max-rain problem, and it is straightforward to 
convert it into a standard linear programming problem. Let rmax denote 
the radius of the largest sphere S. Then 

r . . . .  = max { rain li(Po)} • (7) 
Po C R l < i < n + m  

If we let 
y = min li(Po) , 

l<i<fs+m 
it is clear that 

y <_ li(Po) = ~ aijpos --  f3i, 1 < i < n + m ,  
j = l  

which can be rewritten as 

~ etiipoi --  y > B i ,  1 < i < n + m .  (8) 
j = l  
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The linear programming problem equivalent to the original problem is 
the following. 

Maximize y, subject to 

y > 0 ,  p0j > 0 ,  1 _< j < n ; (9a) 

~'~.Poi = 1 ; (9b) 
j = l  

~ a i j p o i  > bi ,  1 < i < m ; (9c) 

)-~a~jpoj -- y > 3 i ,  1 < i < n + m .  (9d) 
j = l  

The number of constraints can be reduced even further when the ex- 
plicit form of l,(Po) is considered. Let Ci represent the 2 X 2 matrix, 
defined in equation (A5) of Appendix I, that results from the problem of 
finding li(Po) for I _< i <_ n + m. 

C,=[1 11] 

C .  I = 
n 

C n + i  

n 

j n 1 
k j ~ l  jffil 

- 1  
C n + i  ~- 

j = l  j = l  

Di Di 

j ~ l  n 

Di Di 

E '  Di = n aij -- aij 

, 1 < i < m .  ( 1 0 b )  
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Using equations (10) and equation (A12) of Appendix [, the ex~pressions 
for li(Po) can be derived. 

t,(Po) = \ n  - t /  I po, I 
(11a)  

_ ( n V  
\~--Z-~_I/ Po~, 1 < i <  n ,  PoE R ;  

n ,~t/2 

j=l ( l i b )  

-- \ D i /  a#Poi - -  b i  , | < i < m , Po C R . 

It  is useful to define new constants a~j and b~ in terms of aij and bi as 
follows: 

a'. ( n "~ ''~ 
" ~ \ - D - i /  a i i ,  1 < i <  ra ,  1 < j  < n ;  (12a) 

b~ = bi,  1 < i < m .  (12b) 

The linear programming problem stated in (9) now can be restated in 
terms of the new coefficients a~i and b' i as follows: 

Maximize y, subject to 

y > O ,  p o j > O ,  1 < j < n ;  

~'~'~ Pos = 1 ; 

(13a)  

(13b) 

(13c) 

(13d) 

(13e) 

~-~ a[jpoi > b~ , 1 < i < m ; 
j=l 

Po~ - - - ~ - -  y > O , 1 < i < n ;  

~-] a~jpos - y >_ b ' ,  1 < i < m . 

If constraints (13e) are satisfied, then constraints (13c) also are satisfied 
and are thus redundant. By eliminating the redundant constraints, the 
problem finally can be stated as follows: 

Maximize y, subject to 

y>_ 0 ,  p0 j>  0 ,  1 _<j <_ n ;  (14a) 

Poi = 1 ; (14b) 
j=l 
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(n--l)  t'2 
poj-- ~ y > 0 ,  1 _<j _< n ;  (14c) 

~ a~jpoj -- y > b~ , 1 < i < m .  (14d) 
j=l 

Actually, if constraints (14c) are satisfied and y > 0, it is necessarily 
true that p0j >_ 0 for 1 ~ j < n. The full form of (14a) is retained, how- 
ever, since it is customary to list the nonnegativity constraints for a 
linear programming problem. The point P0 = - ( p 0 1 , . . . ,  po~) that 
maximizes y is the center of the sphere, and the value of the objective 
function, y, at this extreme point is the radius of the maximal sphere, 
rmax. 

I I I .  I N V E S T M E N T  A S S U M P T I O N S  F O R  P R I C I N G  

The purpose of this section is to show how the results of Section II can 
be applied to the pricing of single premium immediate annuities. 

The pricing theory presented in the preceding paper in this volume of 
the Transactions requires investment assumptions in the form of new- 
money interest rates by policy year and vectors of investment rollover 
rates for both the initial investment and subsequent reinvestments. The 
pricing described in the preceding paper can be carried out in conjunction 
with the determination of investment strategy described in this paper. 
The first step is to have the investment department decide upon repre- 
sentative investment cells and the approximate fraction of investable 
funds currently being allocated to each of these investment cells. Let  
these fractions be denoted by (p~0), . . . , p~0)) for the n investment cells. 
The pricing proceeds as follows: 

1. Using p]0~ as the weight for the net annual yield il;i associated with 
cell j, compute a composite net new-money rate il as 

(0) - 
il = P," ~I;i. (15) 

y=1 

The composite net new-money rates it for t 2> 2 can be obtained by 
grading down il to some chosen ultimate level after a specified number 
of years (see Sec. III, A, 2, of the preceding paper). Let v;i be the frac- 
tion of the principal repaid in year i for investment cell j. The rollover 
rates for the initial investment are equal to 

r~ °~ ~ "(°~v (16) 
• -~ Pi i i ,  

j = l  

where r~ °~ represents the fraction of the assets purchased at the be- 
ginning of the first policy year that will mature or be called or sold at 
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the beginning of the (i + 1)st policy year. This is the same notation as 
used in Section 1[, E, of the preceding paper in this volume. Even 
though the theory derived in Section I I  of this paper assumes no call or 
sale of bonds, and no prepayment of mortgages, v~j can reflect assump- 
tions with respect to calls, sales, and prepayments. For the initial 
pricing, it is assumed that the rollover rates appropriate to the rein- 
vestment of funds are the same as those appropriate to the initial 
investment, namely, r ~'~ = r ~°~, using the notation of the preceding 
paper. 

2. The method of the preceding paper is used to determine the annuity 
payout rate per $1,000 of single premium, R~, that meets the profit 
objectives of the company. This rate is then used in a model-office 
projection of a block of annuity business to determine the normalized 
cash-flow requirement vector {b~ I as outlined in Section II  of this 
paper. 

3. The technique described in Section I I  is used to find the maximal in- 
sphere S of investment strategies meeting the ,~ot-liability matching 
constraints for specified years, say, 3"ears ' 

The center point of the sphere obtained in step 3, (p~l~ . . . .  , p ~ ) ,  is 
used in place of (p~0~, . . . , p~0~) in step 1 to compute revised new-money 
interest rate assumptions, i,, and vectors of rollover rates, r <°~ and r ~ .  
Step 2 is performed to determine a new annuity payout rate from the 
pricing and a new cash-flow requirement vector from the model office. 
Step 3 then produces a new maximal sphere, with center (p~,  . . . , p~2~). 
This iterative process is terminated when a reasonable degree of con- 
vergence is attained with respect to the annuity payout rate, and the 
location of the center and the length of the radius of the maximal in- 
sphere of investment strategies. Figure 2 is a flowchart of the complete 
process of pricing and determination of investment strategy. 

The description of the procedure for pricing single premium immediate 
annuities consistently with the practices of the investment department 
(steps 1-3) has glossed over a few points. First, as will be seen in Section 
IV, it generally is not possible to match asset and liability cash flows for 
years 1-15, even though it is possible to match them for years 1-10 or 
years 6-15. Second, no mention has been made of how to determine the 
reinvestment strategy embodied in the vector of rollover rates r ~ .  Third, 
step 2 suggests running a separate model-office projection for each issue- 
age/sex/contract-type pricing cell. Perhaps a better approach would be 
to price annuity rates R= for all pricing cells and then to run a single 
model-office projection based on an assumed distribution of new business 
by issue-age/sex/contract-type cell. The first and second points will be 
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discussed in the next section. The balance of this section is devoted to a 
consideration of the third point. 

It is theoretically interesting to determine a separate maximal in- 
sphere of investment strategies for each issue-age~sex~contract-type 
pricing cell. If there is a nonempty intersection of all the separate maximal 
in-spheres, the single investment strategy adopted for single premium 
immediate annuity funds might be required to lie in this intersection. 
Then, regardless of the distribution of new business by pricing cell, the 
overall investment strategy would result in asset-liability matching. 
However, it might very well happen that the various spheres do not all 
intersect, or that, even if they do, the intersection is a small region. If the 
former situation occurs, it is not clear how to establish the investment 
policy for annuity funds. If the latter situation occurs, the intersection 

I 

:ao! 1 
Determine 

Maximal Sphere 

C Start ) 

Define Representative 
Investment Cells 

(Pi", . . . .  p2') 

Starting 
Investment Strategy 

(plo, . . . .  p~o,) 

Calculate 
Investmen t 

Assumptions 

Asset Sbare I 
Pricing 

Yes 

Model-Office 1 Calculation 

Stop ) 

FIo. 2.--Flowchart  for the complete process of pricing and determination of invest- 
ment  strategy. The variables shown in the flowchart represent output  from the imme- 
diately preceding step and input for the succeeding step(s) in the process. The flowchart 
assumes that  a nonempty set of investment strategies exists. 
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may  be so small that  there is not sufficient lati tude in the investment  
strategy to be practical. Moreover,  the region defined by  the intersection 
itself is not a sphere and is as difficult to visualize as is a polytope. Thus ,  
the most practical approach may  be to run only a single model office for 
the combined business in all pricing cells. A single maximal in-sphere 
results from this procedure. At those points within this single sphere t ha t  
lie outside the maximal in-sphere for a particular pricing cell, matching 
m a y  not exist for that  pricing cell. I t  cannot be certain that  matching 
does not exist, because the full region of feasible matching strategies for 
the part icular  pricing cell is a polytope that  includes points lying outside 
the maximal in-sphere. This si tuation is depicted in two dimensions in 
Figure 3. 

R2 

FIG. 3.--R, is the polytope of feasible investment strategies for a particular issue- 
age/sex/contract-type pricing cell, $1 is the maximal in-sphere of RI, R2 is the polytope 
of feasible investment strategies for a combined model office of all pricing cells, and $2 
is the maximal in-sphere of R2. The polytopes RI and R, intersect, but the spheres S 1 
and S~ do not. The shaded region represents points within S~ that are feasible matching 
strategies for the separate pricing cell even though they do not lie within S~. 

IV. SAMPLE CALCULATIONS 

In this section the method described in Section I I I  is applied to the 
calculation of annui ty  rates and inves tment  strategies. The  mortal i ty  and 
expense assumptions used in both the pricing and the model-office 
projection are those described in Section I I I  of the preceding paper  in 
this volume of the Transactions. The model office is used to make separate 
projections of one year 's  issues of single p remium immediate annui ty 
business for each pricing cell. I t  is assumed tha t  new business is writ ten 
at  the middle of each month of the first calendar year, with an equal 
amount  of single premium written each month.  Federal income tax for 
each year  is based solely on the taxable investment  income for the block 
of business. Only non-tax-qualified business is studied. Profit objectives 
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for the pricing and the basis used for statutory reserves are described in 
Section III  of the preceding paper. Annuity rates are determined from the 
pricing model described in the preceding paper, except for certain dif- 
ferences in the calculation of the federal income tax and contingency 
reserves. 

Six representative investment cells are used, three for private place- 
ment bonds and three for mortgages. The parameters specifying the 
contractual provisions of each type of investment are listed in Tables 
1 and 2. For the reasons stated in Section II, when determining feasible in- 

TABLE 1 

INVESTMENT CELLS 1, 2, AND 3: PRIVATE PLACEMENT BONDS 

1. Period to final maturi ty . . . . . . . . . . . . .  
2. Moratorium on principal repayment . ,  
3. Call protection . . . . . . . . . . . . . . . . . . . . .  
4. Percentage called after call protectiol 

expires . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5. Call premium as a percentage of out- 

standing principal . . . . . . . . . . . . . . . . . .  
6. Contractual coupon rate, convertible 

semiannually . . . . . . . . . . . . . . . . . . . . . . .  
7. Reduction in effective annual yield for 

investment expenses . . . . . . . . . . . . . . . .  

CELL INDEX 

1 2 

10 years lS years 
0 year 5 years 

10 years 10 years 

0% 10% 

0% 3.0% 

8.55% 8.80% 

o. 2o% o. 20% 

20 years 
5 years 

10 years 

10% 

4.5% 

8.80% 

0.20% 

TABLE 2 

INVESTMENT CELLS 4, S. AND 6: MORTGAGES 

CgLL INDEX 

1. Amortization period . . . . . . . . . . . . . . . . .  
2. Period to maturi ty . . . . . . . . . . . . . . . . . .  
3. Prepayment protection . . . . . . . . . . . . . . .  
4. Percentage prepaid after prepayment 

protection expires . . . . . . . . . . . . . . . . . . .  
5. Prepayment penalty as a percentage of 

outstanding principal . . . . . . . . . . . . . . . .  
6. Contractual interest rate, convertible 

monthly . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7. Reduction in effective annual yield for 
investment expenses . . . . . . . . . . . . . . . . .  

25 years 
15 years 
10 years 

30% 

5% 

9.25% 

0.40% 

30 years 
20 years 
10 years 

30% 

5% 

9.2.5% 

0.4o% 

30 years 
15 years 
10 years 

30% 

S% 

9.25% 

0.4o% 
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vestment strategies one assumes that there are no bond calls or mortgage 
prepayments. However, as mentioned in Section I I I ,  it is proper to make 
assumptions about calls and prepayments when determining the vector 
of rollover rates to be used in the pricing. The assumptions concerning 
calls and prepayments are shown in Tables 1 and 2, respectively. I t  has 
been assumed that  the bond calls and mortgage prepayments take place 
as soon as the respective protection periods expire and that the listed call 
premiums and prepayment penalties are appropriate to call or prepay- 
ment at that time. 

Mortgage cells 5 and 6 produce identical principal and interest pay- 
ments through the fifteenth year, except for the "balloon" payment at  
the end of the fifteenth year for cell 6. Investment strategies are de- 
termined by using only cells 1-5, but rollover rates are based on all six 
cells. Before determination of the rollover rates, the assumption is made 
that, of all investments in mortgages with thirty-year amortization 
periods, 50 percent are in mortgages having a balloon payment after 
fifteen years and 50 percent are in mortgages having a balloon payment  
after twenty years. This is in accord with the actual investment practices 
observed by the author. 

The matrix {v~j} of principal repayment in years 1 < i < 20 for in- 
vestment cells 1 < j < 6, including bond calls and mortgage prepay- 
ments, appears in Table 3. The matrix [a,i} of interest and principal 
payments in years 1 < i < 15 for investment cells 1 < j < 5, excluding 
bond calls and mortgage prepayments, is shown in Table 4. The actual 
values of {vii} and {a~} used in the computer programs are carried to 
more decimal places than are shown in Tables 3 and 4. I t  will be noticed 
in Table 4 for the columns labeled "Cell 4" and "Cell 5" that  the sum of 
the principal and interest payments is not quite level by year. This arises 
because the level mortgage payment is based on a contractual rate before 
accounting for investment expenses. A fixed proportion of each interest 
payment is then deducted for investment expenses. When the net 
interest payment is added to the principal repayment, this "recon- 
stituted" amount increases slightly each year. For each investment cell, 
principal and interest payments made during the year have been ac- 
cumulated to the end of the year at a short-term interest rate of 4 percent. 
This applies to {a#}, which is used for determining investment strategies, 
but not to {v~j}, which is used only for determining rollover rates cor- 
responding to a given investment strategy. 

The net annual yield for each cell is computed by converting the 
contractual interest rates shown in line 6 of Tables 1 and 2 to effective 
annual rates and then subtracting the amount for investment expenses 



TABLE 3 

P R I N C I P A L  R E P A Y M E N T  P A T T E R N  

M A T R I X  {vii] 

YEAR 
i 

1 

1 . . . . . . . . . . .  0,1 
2 . . . . . . . . . . .  0,1 

. . . . . . . . . . .  0.1 

. . . . . . . . . . .  0.1 
5 . . . . . . . . . . .  0.1 

6 . . . . . . . . . . .  0.1 
7 0•1 
8 . . . . . . . . . . .  0 , l  
9 . . . . . . . . . . .  0.1 
10 . . . . . . . . . .  0.1 

11 . . . . . . . . . .  0 
12 . . . . . . . . . .  0 
13 . . . . . . . . . .  0 
14 . . . . . . . . . .  0 
15 . . . . . . . . . .  0 

16 . . . . . . . . . .  0 
17 . . . . . . . .  0 
18 . . . . . . . . . .  0 
19 . . . . . . . . .  0 
20 . . . . . . . . .  0 

* 0.06 -~ 0.066 

INVEST~NT CELL j 

0 
0 

0.1 
0.1 
0.1 
0.1 
0.15 

0 .09  
0.09 
0.09 
0.09 
0,09 

0.06* 
0,06 
0.06 
0.06 
0.13 

0.06 
0 ,06  
0 .06  
0.06 
O. 06 

0.06 
0 .06  
0~06 
0.06 
0.06 

0.0107 
0.0117 
0.0129 
0.0141 
0.0155 

0.0170 
0.0186 
0.0204 
0.0224 
0.2742 

0.0188 
0.0207 
0.0227 
0.0248 
0~4955 

O. 0065 
0.0071 
O. 0078 
0.0086 
O. 0094 

0.0103 
0.0113 
0.0124 
0.0136 
0.2844 

0.0114 
0.0125 
0.0137 
0.0151 
0,0165 

0 .018l  
0.0198 
0.0218 
0.0239 
0.4760 

0. 0065 
0.0071 
0.0078 
0 .0086 
0. 0094 

0.0103 
0.0113 
0 .0124 
0 .0136 
0 .2844 

0 .0114 
0.0125 
0.0137 
0.0151 
0,5760 

• . .  ; 0,13 ~ 0.1333 . . . .  

TABLE 4 

I N V E S T M E N T  C A S H - F L O W  P A T T E R N  

M A T R I X  { a i i }  

INVESTMENT CELL j 
YEAR 

i 
1 2 3 4 5 

1 . . . . . . . . . . .  

2 . . . . . . . . . . .  

3 . . . . . . . . . . .  

4 . . . . . . . . . . .  

5 . . . . . . . . . . .  

6 . . . . . . . . . . .  

8~ . . . . . . . . . . .  
911111111111 
10 . . . . . . . . . .  

11 
12 . . . . . . . . . .  
13 . . . . . . . . .  

14 . . . . . . . . .  
15 . . . . . . . . .  

0.1843 
0.1759 
0.1675 
0.1590 
0.1506 

0.1422 
0.1337 
0.1253 
0.1169 
0.1084 

0.0869 
0.0869 
0.0869 
0,0869 
0.0869 

0.1869 
0.1782 
0.1695 
0.1608 
0.1521 

0.1434 
0.1347 
0.1261 
0.1174 
0.1087 

0.0869 
0.0869 
0.0869 
0,0869 
0.0869 

0.1535 
0.1477 
0.1419 
0.1361 
0.1304 

0.1246 
0.1188 
0.1130 
0.1072 
0.1014 

O. 1006 
O, 1006 
O. 1007 
O. 1007 
O, 1008 

O. 1009 
0.1009 
O. I010 
0.1011 
0.1012 

0.1013 
0.1014 
0,1015 
0.1017 
0.1018 

0.0965 
O. 0965 
O. 0965 
0.0965 
O. 0966 

O. 0966 
O. 0967 
0,0967 
0.0968 
O. 0968 

0.0969 
0.0970 
0.0970 
0.0971 
0.0972 
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shown in line 7. This results in rates of 8.53 percent for cell 1, 8.79 percent 
for cells 2 and 3, and 9.25 percent for cells 4, 5, and 6. The investment  
strategy assumed initially is shown in column 2 of Table 5. These are the 
fractions (p~0~, . . . , p~0)) defined in Section I I I .  Using equation (15), an 

initial net  new-money rate of 8.96 percent results. This is rounded to 
9 percent for convenience. The new-money rates are graded by policy 
year, as discussed in Section I I I ,  A, 2, of the preceding paper. Rollover 
rates for the first-iteration pricing are obtained by using equation (16) 
and the data from Table 3 and column 2 of Table 5. 

The results of the first-iteration pricing appear in Table 6 for each of 

TABLE 5 

I N V E S T M E N T  S T R A T E G I E S  FOR F I R S T -  A N D  

S E C O N D - I T E R A T I O N  P R I C I N G S  

CELL 
(1) 

2 . . . . . . . . . .  
3 . . . . . . . . . .  
4 . . . . . . . . . .  
5 . . . . . . . . . .  

6 . . . . . . . . . .  

Total.. 

INVESTMENT STRATEGY 

Firs t  I te ra t ion  
(2) 

0.06 
0.33 
0.21 
0.20 
0.10 
0.10 

1.00 

Second I terat ion 
(3) 

0.20 
0.35 
0.15 
0.15 
0.075 
0.075 

1.000 

TABLE 6 

MONTHLY ANNUITY PAYOUT RATES FOR F I R S T -  

AND SECOND-ITERATION PRICINGS 

PRICING CELL* 

A . . . . . . . . . .  
B . . . . . . . . . .  
C . . . . . . . . . .  
D . . . . . . . . .  

MO~T~L~ INCOIF. WR $1,000 
OF SINGLE PIIEMIUM 

Firs t  I terat ion 

$8.911 
8. 172 
7. 734 
7.463 

Second I terat ion 

$8.887 
8. 150 
7.712 
7.442 

* Pricing cell A: male age 65, straight-life annuity; Pricing 
Cell B: male age 65 guaranteed-lO annuity; Pricing Cell C: fe- 
male age 65, straight-life annuity; Pricing Cell D:  female age 65, 
guaranteed- I0 annuity. 
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the four pricing cells. These monthly  payout  rates per S1,000 of single 
premium are used in the model-office projection. The model office pro- 
duces normalized cash-flow vectors {hi}, 1 < i _< 15, for each of the four 
pricing cells. Annui ty  benefits and maintenance expenses incurred during 

the calendar year are accumulated to the end of the year at  a short-term 
interest rate of 4 percent. The first-iteration cash-flow vectors are shown 
in Table 7. 

TABLE 7 

M O D E L - O F F I C E  NORM.MAZED CASH FLOW 

(Annuity Benefits, Maintenance Expenses, and Federal Income Taxes) 

PRICING CELL A* PRICING CELL C *  PRICING CELL D *  

YF.AR 

6 . . . . .  

7 . . . . .  

8 . . . . .  

9 . . . . .  

10 . . . .  

11 . . . .  

12 . . . .  
13 . . . .  
14 . . . .  
15 . . . .  

I tera- 
tion 1 

1 . . . . . .  0.1228 
0.1247 2 . . . . . .  I 

3 . . . . . .  0. 1214 
4 . . . . .  0.1180 
5 . . . . .  0.1146 

0.1112 
0.1073 
0.1034 
0.0992 
0.0949 

0.0888 
0.0845 
0.0800 
0.0753 
0.0706 

PRICING CELL B* 

I tera-  I tera-  I tera-  
tion 2 tlon I tion 2 

o.122s o.1151 
0.1245 0.1204 0.1202 
0.1211 0.1200 0.1198 
0.1177 f 0.1197 0.1194 

I tera-  
tion 1 

0.1081 
0.1118 
0.1102 
0.1085 

0.1143 

0. 1108 
0. 1069 
0. 1028 
0.0985 
0. 0941 

0.1196 

0.1196 
0.1193 
0.1191 
0.1188 
0.1038 

0.0882 0.0815 
0.0838 I 0.0775 
0.0793 0.0733 
0.0746 0.0690 
0.0699 0.0647 

0.1192 0.1069 

0.1191 0 1052 
0.1188 0.1032 
0.1184 0.1010 
0.11811 0.0987 
0.1029 0.0962 

0.0808 0.0918 
0.0768 0.0892 
0.0726 0.0863 
0.0683 0.0832 
0.0639 0.0798 

I tera-  I tera-  
tion 2 lion 1 

0.1078 0.1053 
0.1116 0.1102 
0.1100 0.1099 
0.1082 0.1096 
0.1065 0.1095 

0.1048 0.1094 
0.1027 0.1091 
0.1004 0.1088 
0.0980 0.1085 
0.0953 0.1008 

0.0912 0.0885 
0.0885 0.0859 
0.0856 0.0831 
0.0824 0.0801 
0.0791 0.0768 

I tera-  
tion 2 

0. 1051 
0. 1100 
0. 1096 
0. 1093 
0.1091 

O. 1090 
0. 1086 
0.1082 
0 1077 
0. 1000 

0.0879 
0.0852 
0.0824 
0.0794 
0.0761 

* Pricing Cell A: male age 65 straight-life annuity Pricing Cell B: male age 65, guaranteed-10 annuity; 
Pricing Cell C: female age 65° straight-life annuity; Pricing Cell D: temale age 65, guaranteed-10 annuity. 

A quick inspection of Tables 4 and 7 indicates that  it is impossible for 
the asset flows to match the liability flows unless investment  cell 1 is used. 

Cell 1 represents a ten-year private placement bond with full call pro- 
tection and with 10 percent of the initial par value repaid each year. I t  is 
this early principal repayment  that  makes cell 1 useful for matching 

asset flows with liability flows in years 1-5. However, if too large a frac- 
tion of the investable funds is invested in cell 1, it will be difficult to 

match in years 11-15 because the ten-year private placement produces 
no investment  cash flow in these years. 

There were no feasible inves tment  solutions that  produced matching 

in )'ears 1-15, inclusive. Two other runs were performed for each of the 
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pricing cells; these involved matching from years 1-10 and from years 
6.15. The center and radius of the maximal in-sphere for each pricing 
cell are shown in Table 8. Since there were no solutions that produced 
matching in years 1-15, a decision had to be made whether to base the 
investment strategy on the matching solution for years 1-10, the match- 
ing solution for years 6.15, or perhaps some hybrid of these two solu- 
tions. The solution for years 1-10 emphasizes strongly cell 1, the ten- 
year private placement bond. As a practical point, it should be noted that 
the supply of these shorter-term private placements is not as abundant 

TABLE 8 

MAXIMAL IN-SPHERES OF INVESTMENT STRATEGIES: FIRST ITERATION 

A . . . . . . .  

B . . . . .  

C . . . . . .  

D . . . . . .  

PRICING ATCHING 
CELL* VEARS 

Cell I 

1-10 0. 509 
6-15 0.146 

1-10 0.561 
6-15 0.165 

1-10 0.398 
6-15 0.122 

1-10 0,434 
6-15 0.134 

CENTER OF MAXIMAL 1N-SPITERE 

Cell 2 

O. 123 
0.417 

0.189 
0,339 

0.150 
0.513 

0,142 
0.463 

Cell 3 Cell 4 

0.146 0.146 

0.150 0.150 
0.122 0.122 

0,142 0,142 
0.134 0.134 

Cell 5 

0.084 
0.165 

0.150 
0.122 

0.142 
0.134 

RADIUS 

0.137 
0.163 

0. 093 
0. 185 

0.168 
0. 136 

0,158 
0.150 

* Pricing Cell A: male age 65, straight-life annuity; Pricing Cell B: male age 65, guaranteed-10 annuity; 
Pricing Cell C: female age 65, straight-life annuity; Pricing Cell D: female age 65, guaranteed-10 annuity. 

as the supply of longer-term private placements with maturities from 
fifteen to twenty years. If there were a significant increase in the demand 
for the shorter-term securities, the coupon rates would fall, thus de- 
creasing their desirability. It  might be reasonable to add a further con- 
straint to the investment strategy problem by limiting the fraction of 
funds that can be invested in cell 1--for example, Pl _< 0.2. 

Suppose there had been a matching solution for years 1-15. It is quite 
probable that the midpoint of the line joining the centers of the maximal 
in-spheres for the 1-10 and 6-15 problems would lie closer to the maximal 
in-sphere for the 1-15 problem (and perhaps within this sphere) than would 
either of the center points of the 1-10 and 6-15 maximal in-spheres. Let 
us adopt this "hybridization" of the 1-10 and 6-15 solutions even though 
there was no feasible solution of the 1-15 matching problem. The hy- 
bridized points for the pricing cells A, B, C, and D will be denoted by 
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PA, PB, Pc, and Po, respectively. To arrive at a single investment 
strategy for the second iteration, this crude averaging process can be 
continued. Let P.~ represent the midpoint of the line joining Pa and Pn, 
and P~. the midpoint of the line joining Pc and Po. Finally, let/5 be the 
midpoint of the line joining PM and Pc. This geometry is shown sche- 
matically in Figure 4. The j th  coordinate of the point/5 can be obtained 
by averaging all the entries in the column under cellj in Table 8. The re- 
sult is 15 = (0.309, 0.292, 0.133, 0.133, 0.133). If we implement the 
limitation p~ < 0.2 (as discussed in the previous paragraph) by setting 

PM 

PA 

P~ P~ 

P~ 

FIG. 4.--Geometry of a crude averaging technique to arrive at a single investment 
strategy /3 for use in the second-iteration pricing. Points Pa, Ps, Pc', and Po are 
representative matching strategies after the first-iteration pricing for the four pricing 
cells labeled A, B, C, and D. 

pl = 0.2 and rounding P3 = p4 = p~ to 0.15, we obtain p~ = 0.35. Thus, 
as the investment strategy for the pricing in the second iteration, we 
choose P(" = (0.20, 0.35, 0.15, 0.15, 0.075, 0.075)--see Table 5. Note 
that the 15 percent of the investable funds channeled into mortgages 
with thirty-year amortization periods has been split equally between cell 5 
(twenty-year maturity) and cell 6 (fifteen-year maturity), as discussed 
earlier in this section. 

I t  may seem that all these manipulations are arbitrary, but it must be 
recognized that a crude approach can be used during the first iteration of 
the solution to the pricing/investment-policy problem, since it is required 
only that the second and higher-order iterations converge. The purpose 
of the manipulations is only to produce a better starting investment 
strategy for the pricing than was used at the outset (col. 2 of Table 5). 
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What can be said about the reinvestment problem? Since all the bond 
cells used in this sample calculation are paying back principal during 
years 6-10, it can be expected that any investment strategy that places a 
significant fraction of investable funds into bonds will produce in )'ears 
5-10 significant excesses of investment cash flow over the cash-flow needs 
of the block of annuity business. It  was mentioned earlier that in the 
current capital market ten-year private placements are less easily 
acquired than fifteen-year or twenty-year private placements. More- 
over, Table 8 shows clearly that the ten-year private placement bonds 
are needed for matching only in years 1-5. Therefore, it makes sense to 
invest none of the excesses (of investment cash flow over annuity cash- 
flow requirements for years 6-10) in investment cell 1. By taking the 
20 percent of investable funds that otherwise would have been invested in 
cell 1 according to the revised investment strategy and prorating it 
among cells 2-6 in proportion to the percentages to be invested in these 
cells under the revised strategy, the reinvestment strategy for the second- 
iteration pricing becomes p¢1), = (0, 0.4375, 0.1875, 0.1875, 0.09375, 
0.09375). The reinvestment strategy is used to determine the vector of 
rollover rates for reinvested funds. 

The whole cycle begins again. The coordinates of p~l) are used to weight 
the net annual yield for each cell. By using equation (15) and column 3 
of Table 5, an initial net new-money rate of 8.88 percent is obtained. In 
practice this would be rounded to 8.9 percent and the net new-money 
rates for subsequent years graded down from there. For the purposes of 
these sample calculations, however, it was easier to round 8.88 percent to 
9 percent so that only the rollover rates would have to be changed in the 
pricings. The annuity payout rates arising from the second pricing are 
shown in Table 6. For each of the pricing cells, the monthly income per 
$1,000 of single premium is about $0.020--$0.025 less than the corre- 
sponding figure for the first-iteration pricing. The second-iteration model- 
office normalized cash-flow vectors {b¢} are shown in Table 7. Finally, the 
solutions of the matching problems are presented in Table 9. As in the 
first iteration, there were no feasible solutions for matching in years 1-15, 
inclusive. The similar results in Tables 8 and 9 indicate.that there is 
little to he gained by performing another iteration. 

For each pricing cell, it is worthwhile to examine how closely the in- 
vestment cash flow arising from the initial-investment strategy alone 
(that is, without reinvestment) matches the projected cash-flow needs 
of the annuity business. This is shown in Table 10, using the cash-flow 
vectors {bi} from Table 7, iteration 2, and the investment cash-flow 
matrix {aii} from Table 4. The extent of nonmatching for any year is 



T A B L E  9 

MAXIMAL IN-SPHERES OF INVESTMENT STRATEGIES: SECOND ITERATION 

PRICING 
CELL* 

A . . . . . .  

B . . . . . .  

C . . . . . .  

D . . . . . .  

MATCHING 
YEARS 

6 - 1 5  

1 - 1 0  
6--15 

1 - I 0  
6 - 1 5  

1 - 1 0  
6 - 1 5  

CENTER OF MAXIMAL IN-SPHERE 

Cell 1 Cell 2 

0 . 1 4 7  0 . 4 1 0  

0 . 3 9 4  0 . 1 5 2  
0 . 1 2 5  0 . 5 0 0  

0 . 4 2 9  0 . 1 4 3  
0 . 1 3 8  0 . 4 5 0  

Cell 3 

O. 147 

O. 088  
O. 167 

O. 152 
0 . 1 2 5  

O. 143 
O. 138 

Cell 4 

0 . 1 2 3  - 
0 . 1 4 7  

0 . 0 8 8  
0 . 1 6 7  

0 . 1 5 2  
0 . 1 2 5  

0 . 1 4 3  
0 . 1 3 8  

Cell 5 

0 . 1 2 3  
0 . 1 4 7  

0 . 0 8 8  
0 . 1 6 7  

0 . 1 5 2  
0 . 1 2 5  

0 . 1 4 3  
0 . 1 3 8  

RADIUS 

0 . 1 3 8  
0 . 1 6 5  

O, 098  
0 . 1 8 7  

0 . 1 6 9  
0 . 1 4 0  

0 . 1 6 0  
0.  154 

* Pricing Cell A: male age 65, straight-life annuity; Pricing Cell B: male age 65, guaranteed-10 annuity; 
Pricing Cell C: female age 65, straight-life annuity; Pricing Cell D: female age 65, guaranteed-10 annuity. 

T A B L E  10 

E X T E N T  OF NONMATCHING AFTER SECOND ITERATION* 

YEAR 

i 

1 . . . . . . . . . . . .  
2 . . . . . . . . . . . .  
3 . . . . . . . . . . . .  
4 . . . . . . . . . . . .  
5 . . . . . . . . . . . .  

6 . . . . . . . . . . . .  
7 . . . . . . . . . . . .  
8 . . . . . . . . . . .  

9 . . . . . . . . . . .  

10 . . . . . . . . . .  

11 . . . . . . . . . .  
12 . . . . . . . . . .  
13 . . . . . . . . . .  
14 . . . . . . . . . .  
15 . . . . . . . . . .  

PRICING CELLt 

-1o.3% 
- 1 3 . 1  
- 1 2 . 0  
- 1 0 . 9  
- 9 . 7  

3 2 . 2  
3 1 . 8  
3 1 . 6  
3 1 . 7  
3 2 . 0  

1 1 . 8  
1 3 . 0  
14 .6  
16 .6  
18 .9  

- -  4 . 5 %  
- 1 0 . 0  
- 1 1 . 1  
- 1 2 . 2  
- 1 3 . 4  

2 3 . 0  
1 8 . 6  
1 4 . 3  

9 . 9  
2 0 . 7  

2 2 . 0  
2 3 . 3  
2 5 . 2  
2 7 . 4  
3 0 . 1  

+ 1.9% 
- 3 . 1  
- - 3 . 2  
- 3 . 1  
- 3 . 1  

3 9 . 8  
3 7 . 2  
3 4 . 8  
3 2 . 4  
3 0 . 3  

8 .1  
7 . 0  
6 .1  
5 . 6  
5 . 1  

* Results are shown as percentages of cash-flow requirements for the year. 

D 

+ 4.6% 
- -  1 . 6  
- - 2 . 8  
- - 4 . 1  
- - 5 . 4  

3 4 . 4  
2 9 . 7  
25 .1  
2 0 . 5  
2 4 . 2  

1 2 . 2  
1 1 . 2  
10 .3  
9 . 6  
9 . 2  

t Pricing Cell A: male age 65 straight-life annuity; Pricing Cell B: male age 65, guar- 
anteed-10 annuity; Pricing Cell C: female age 65, straight-life annuity; Pricing Cell D: 
female age 65, guaranteed-10 annuity. 
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given as a percentage of the cash-flow requirement for that year. Table 10 
suggests that the initial-investment strategy p(1)__ (0.20, 0.35, 0.15, 
0.15, 0.15) would produce only a very small deficiency in years 1-5 and 
excesses thereafter for a reasonable distribution of business by sex and 
type of contract. 

v. CONCLUSION 

It  is necessary, from a competitive standpoint, to use new-money 
interest rate assumptions in the pricing of single premium products. Con- 
siderations of equity between classes of policyholders may require that 
net investment income be allocated to such products via an investment- 
generation method. Under these circumstances, it is important to use in- 
vestment assumptions for pricing that are consistent with the actual 
practices of the company's investment department. Primarily, it is the 
actuary's responsibility to ensure this consistency. By using the method 
described in this paper, the actuary can develop strategies for the invest- 
ment of the initial single premiums less expenses and taxes, so that in- 
vestment cash flow from the resulting portfolio of assets meets or exceeds 
the expected cash-flow needs of the block of business at later durations. 
The sensitivity of the investment strategy to the experience assumptions 
for mortality and expenses can be analyzed conveniently. Moreover, the 
results can be communicated easily to investment officers. 

The ideas discussed in this paper are simple. The mathematics of the 
maximal in-sphere problem is superficially complicated, but the final 
result that the center and radius of the sphere are the solution of a 
standard linear programming problem makes the approach very practical. 
Software packages for solving linear optimization problems are available 
in several computer languages, using either the conventional simplex 
method or the revised simplex method. 
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APPENDIX I 

The notation used in this appendix refers only to the geometrical 
problem considered here; symbols used in the appendix that  are identical 
with symbols used in the main body of the paper do not necessarily have 
the same interpretation. 

Consider the following geometrical problem. 
Given a point P0- - (p0x  . . . .  , po,) in n-space, and m planes T~ 

(m < n) of the form 

Ti: ~ a~jpj = bi , I < i < m , (A1) 

find the length I of the line from P0 perpendicular to the "surface" formed 
by tlae intersection of the m planes T~, 1 < i < m. 

This problem can be solved by minimiz ing  the function 

f (P t  . . . . .  P,) = ~ (Pi -- Po,) ~ (A2) 
j = l  

subject to the constraint tha t  the point P --- (pl, • • • , p,) lies on each 
of the planes T~, 1 < i < m. Introduce m Lagrange multipliers M, 
1 < i < m, and define functions g~ and G as follows: 

g ~ ( P l , . . . ,  P,)  = ~ a, jpi  - b~, 1 < i < m ; (A3a) 
j = l  

m 

a (p , ,  . . . , p , )  = f ( p , ,  . . . , p , )  -- 2 ~-] A,g,(px . . . .  , p , )  . (A3b) 
i=1  

The factor of 2 in equation (A3b) is included only for later convenience. 
The point P minimizingf(pl, . . . , p,) can be found by solving the equa- 
tions OG/Opj = O, 1 < j < n, together with the constraints gi(pl, • . • , 

p,) = 0, I < i _< m. Specifically, 

o r  

OG " 
Opj 2(pj  Poj) - 2 Y~.,=, X,a,i O,  1 < j <_ n 

Ps = Pos + ~ Xiaij , 1 < j <_ n .  (A4) 
i=1  

Define a symmetric m X m matrix C as follows: 

c,i = ~ a ,ka ,k ,  1 < i < m ,  1 < j < m .  (A5) 
k = l  
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In the remainder of this appendix it is assumed that C is nonsingular and 
possesses an inverse C -1 ~ {c~1}. In Appendix I I  the conditions under 
which C -~ exists will be shown. Since C is symmetric, so is C -1. Upon 
substituting equation (A4) in equation (A2), the following expression for 
P can be derived. 

P =  ~ ( P i -  PoJ) ~ =  ~ ~ c, ,X,~, .  (A6) 
j ~ l  r = l  *~1  

From equation (A4), we also derive 

2: o.p, = ± o,,po, + 2 ~.- , ,  ~ < ,  < m ( .>  
j = l  j = l  r = l  

The constraint gi(pt, • . . , p,) = 0 is equivalent to Z~=t aiiPi = bi. The 
latter relationship allows equation (A7) to be rewritten as 

X~c~i = 2 a i , p o i -  b , ,  1 < i < m .  (A8) 
r ~ l  j = l  

Multiplying equation (A8) by c7, ~, summing over the index i from 1 to m, 
and using the result Zi~l c,icT, 1 = (L,, we derive 

) Xa = a o p o j -  bl ci~ I. (A9) 
i=I 

The definition of the Kronecker function a,. is 

~r~ = 1 , r = S 

= 0 ,  r #  s .  

Substituting equation (A9) in equation (A6), we obtain 

l 2 = a i i P o s -  b~ c7,1 
r = l  s = l  (A10) 

× 

Using the fact that 

CraCk* -~" CraC~k ~- ~rk 

and carrying the sum out over r, we finally arrive at 

~, = ~ ~ c.: o,,p0,- b, ok,~0,- bk . 
i = 1  k = l  = 

(Al l )  
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Equation (Al l )  is more general than is needed for the discussion in 
Section I I I  of the paper. In  terms of the notation of Section I I I ,  the 
specific problem is to find the length of the shortest line from a point  P0 
lying on a plane H0 to the surface formed by the intersection of H0 with 
another plane H~. Thus,  the point Po, from which the perpendicular ex- 
tends, itself lies on one of the planes. In terms of the notation of this ap- 
pendix, rn = 2, and Po lies on T1 but  not necessarily on T~. Hence, in 
equation (All ) ,  all terms in the outer two summations vanish except for 
the single term with i = 2 and k = 2. The expression for l ~ is a perfect 
square, and the square root can be extracted easily. 

l = [c22) I a ~ j p o i -  b2 , (A12) 
j = l  

where c~-) is the (2, 2)th element of the inverse of the matrix C defined in 
equation (A5). 

APPENDIX II 

Before stating and proving the theorem relating to the nonsingularity 
of the matrix C defined by equation (A5), it is necessary to review briefly 
a few definitions and theorems pertaining to vector spaces and matrices. 

Let ~ denote the vector space of n-component vectors, each com- 
ponent of which is a real number. Let  0 ~"~ denote the n-vector having all 
components equal to zero. Let vi, 1 < i < m <_ n, represent m nonzero 
vectors in (R ~, and let ~, 1 < i < m, represent m scalars in 6~ t. The 
vectors v~, 1 < i < m < n, are said to be linearly independent if and only 
if E;~I ~i,vi = 0 ~') implies ~ = 0, 1 < i < m. 

A square m X m matrix, all the components of which are real (that is, 
belonging to 61" X 6~"), is nonsingular if and only if its m row vectors are 
linearly independent vectors in 6l ' .  Every nonsingular matrix possesses 
an inverse. 

The scalar product  of two vectors u = (ul, . • • , u,) and u = (vl, . . . , 
r,) belonging to (R" is defined as 

U ° !) ~ ~_~  "1¢,k7: k • 

The vectors u and v are said to be orthogonal if and only if u. v = 0. 
The vector subspace of 61" spanned by m linearly independent vectors 

vl, 1 < i < m, consists of all vectors of the form 2;7~ 1 ,~ivi, where the ~i's 
are arbitrary scalars in 61L. This subspace is known as the linear span of 
the set of vectors v;, 1 < i < m, and is m-dimensional. Let  it be repre- 
sented by V~. The vector subspace of 61" containing all the vectors in 011" 
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orthogonal to every vector in V, is called the orthogonal complement of 
V~ and is denoted by VS. V$ is (n - m)-dimensional. The only vector 
belonging to both V, and V~ is 0 Cn), the zero vector. 

THEOREM. Let ai, 1 < i < m < n, represent m nonzero vectors in 
6~", and define the matrix C in 6l" X 6~" so that the element in the ith 
row and the jth column is equal to the scalar product of ai and ai. Then 
C is nonsingular i f  and only i f  the vectors a~, 1 < i < m, are linearly 
independent. 

Proof: Assume that the vectors a,, 1 _< i _< m < n, are linearly inde- 
pendent. Let ri represent the ith row vector of C. Let Va denote the linear 
span of the vectors ai, 1 _< i _< m, and V~ its orthogonal complement. 
The statement XT= 1 ~,r, = 0 ~") implies XT= 1 ~a~'ai = 0 for 1 < j < m. 
Thus, ,~=~v'~ (fa, belongs to VI. By definition, however, it also belongs to 
V,. Hence, ,.=~',".' ~ (~a~ = 0 C"), implying that  ~ = 0, 1 < i < m, since the 
vectors a,, 1 < i < m, are linearly independent. This proves that  the 
row vectors of C are linearly independent and that  C is nonsingular. 

Next, assume that  C is nonsingular. Thus, the row vectors of C are 
linearly independent vectors in 6l m. Suppose that  2;~L1 ~,ai = 0 ("). I t  
follows that  (2;~"= 1 ~a,) .aj  = O, 1 < j <_ m, which further implies tha t  
xT= ~ ~r~ = 0 °"). Hence, ~ = 0, 1 < i < m, and the vectors a~, 1 < i < " 
m, are linearly independent. This completes the proof of the theorem. 

The matrix C defined in equation (AS) is precisely the matrix defined 
in the statement of the theorem. The 2 X 2 matrices C~, 1 < i < n + m, 
defined in equations (10a) and (10b) are clearly nonsingular for n > 1. 




