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ABSTRACT 

A general model for a pension plan involving growth with respect to 
the population, salaries, and retirement benefits is used to study con- 
tribution patterns that may arise under different actuarial cost methods. 
Detailed results are presented for the case where the growth of population 
and the growth of salaries are described by exponential functions. 
Economic implications are presented and discussed. 

I. INTRODUCTION 

T 
HE paper "Introduction to the Dynamics of Pension Funding" 
[2] presented a mathematical model for a pure pension plan (no 
benefits other than for retirement) under conditions of growth in 

regard to the covered population and salaries. This model may be used to 
provide answers to a wide variety of pension funding questions. 

In the earlier paper, the theory was developed for all members of the 
pension plan, both active and retired. In this paper the emphasis will 
shift to contribution theory, which simplifies the formulas because only 
the subgroup of active members is considered (see Richard K. Kischuk's 
discussion of [2]). The resulting formulas are somewhat simpler and 
provide answers to questions about contributions more readily than do 
those involving the whole group. In the final section of the paper, cor- 
responding formulas for the whole group will be outlined. 

In several developments in this paper exponential growth functions are 
used. This does not mean that it is anticipated that any real pension plan 
will have a covered population and corresponding salaries that will 
proceed smoothly along exponential paths. Instead, these special cases 
are developed because of their pedagogical value; they are easy to derive 
and interpret. In addition, the authors do not have the foresight to fix the 
jagged paths that the experience of real pension plans probably will 
follow. The long-range cost estimates of the social security OASDI 
systems have been based on exponential economic assumptions for 
similar reasons. 
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94 DYNAMICS OF PENSION FUNDING CONTRIBUTION THEORY 

The Mode l  

A summary of the model along the lines of that  given in Section I I  of 
[2] is repeated here. All new entrants join the group at age a, and all 
retirements occur at age r. Only retirement benefits are considered. For 
both active and retired participants, survivorship is deterministic and in 
accordance with the function l,, which is independent of the time variable 
t. At time zero, the density of new retirants at age r is lr, and thereafter 
this density increases by a factor gl(t). This establishes a generation 
pattern of growth for participants. I t  is assumed that gl(t) > 0. This 
implies a positive density gl(t -b r --  x)Ix of members aged x, a < x, at 
time t. Salary rates at time zero are represented by the function s(x)  for 
a member aged x, a < x < r. The function s(x)  captures the merit 
component of salary changes. Thereafter, salary rates increase by a 
factor g~(t). This establishes a year-of-experience pattern of salary growth. 
The function g2(t) is designed to capture the influences of productivity 
and inflation on salaries. The rate of initial annual pension payment,  
commencing at age r, is a fixed positive fraction b of the final salary rate. 
Pension payment  rates increase during retirement by a factor [3(x), 

We now will combine several of these functions. For a < x < r, the 
density of new pensions to be incurred at time t + r - x with respect to 
the survivors of members aged x at time t is given by the function 

h(t  + r - -  x)  = g~(t + r --  x)g2(t + r - x ) l ~ s ( r ) b .  

For x > r, h(t + r --  x) is the density of new pensions incurred at time ~ 
t - (x --  r) for those who were then aged r. Therefore, h(t  + r - x) 
(l , / l ,)[3(x) is the density of existing pensions for retirees aged x at time t. 
In this expression,/3(x) is the aforementioned pension adjustment factor, 
and/3(r) = 1. 

Outl ine  

In Section I I  a number  of pension funding functions in regard to active 
members are considered. These are the following: 

(aA)( t )  Present value at time t of future benefits for the then active 
members. ~ 

P(t )  Annual rate of normal cost for the plan at time l. 
(aV) ( t )  Supplemental present value (accrued liability) of the plan at 

time l for the then active members. 

1 In [2], p. 186, this time was incorrectly called t. 
I In R. K. Kischuk's discussion of [2], the notation (Aa)(t) was used for this quantity. 

To avoid inconsistency with the notation (Pa)(t) and with annuity notation, the 
revised symbol (aA)(t) will be used. 
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(~.)(t) 

~'P(t) 
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Present value at time t of future normal costs for the then active 
members. 
Annual rate of terminal funding normal cost for the plan at time 
t. This is a special case of P(t) and implies that rP(t)dt is the 
present value at time t of future benefits payable to those re- 
tiring at that time. 

The basic income allocation equation relative to active members is 
discussed. 

In Section I I I  ratios of each of the first four of the functions listed 
above to the fifth function are exhibited. These ratios take on particularly 
simple and easily interpreted forms in the exponential growth case, that 
is, when the growth functions g~(t), g2(t) are exponential. 

In Section IV various contribution rates determined by combinations 
of normal cost and rates of amortization of unfunded supplemental 
present value or by aggregate funding are explored. In the exponential 
growth case, aggregate funding is found to achieve the same level of 
funding as some individual cost methods with selected patterns of 
amortizing the unfunded supplemental present value. 

Section V outlines some of the corresponding theory that emerges if 
the functions relate to the whole group of members, both active and 
retired, instead of to only the active group. In many ways this section 
provides a bridge to the developments in the original paper [2]. In this 
section it is natural to consider B(t), the annual rate of pension outgo at 
time t, in place of rP(t),  the annual rate of terminal funding normal cost, 
as a key function. 

As in [2], the presentation will be mathematical. However, the mathe- 
matics is elementary and leads to natural verbal interpretations. I t  is 
hoped that other actuaries will become interested in developing these 
ideas further by numerical examples. 

II. FUNDING FUNCTIONS FOR ACTIVE MEMBERS 

Basic Functions 

Central to the study of contribution theory is the annual rate of 
terminal funding cost for the plan at time t. This rate will be denoted by 
7P(t). I t  will serve as a building block and as a standard of comparison 
for other contribution patterns. For the model plan, the density of 
pensions expected to arise r -- x years later with respect to members 
aged x at time t, a < x < r, is h(t + r -- x). Therefore, the annual rate 
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of terminal funding cost for the plan at time t + r -- x will be 

Tp(t  + r -- x) ----- h(t + r -- x)a~,  (1) 

where the annuity symbol d~ n is given by 

o o  

d ~, = f e - ~ - ' >  x_,p ,t3(x)dx', (2) 
r 

is the annual force of interest. Note that the annuity function in- 
corporates the pension adjustment function /3(x). With the terminal 
funding cost rate function, it is now easy to define the present value of 
future benefits for the active group as 

r 

(aA)(t)  = f e -~r-~) rP( t  + r - x ) d x .  (3) 
cl 

By using the pension purchase density function m(x) and the accrual 
function M(x)  (see [2], p. 182, and [3]), we may write immediately the 
annual normal cost rate at time t for the actuarial cost method associated 
with m(x) as 

r 

P(t) = f e -6~'-~ rP(I  + r -- x ) m ( x ) d x .  (4) 
a 

Then the supplemental present value (accrued liability) at time t for 
active members, based on the actuarial cost method described by re(x), is 

r 

(ag)( t )  = f e -~C'-~) rp ( t  'b r -- x ) M ( x ) d x .  (5) 
a 

The present value at time t of future normal costs of the plan for active 
members is 

r 

(Pa)(t)  = f e - ~ ' - ~  7'P(t + r -- x)[1 -- M ( x ) ] d x .  (6) 
a 

Income Allocation Equation 

In [2] a liability growth equation in regard to all members, both active 
and retired, was expressed in formula (40) and rearranged in formula (43). 
Corresponding to formula (43), we have the equation, relevant to active 
members, 

P(t) + 6(aV)(t)  = Tp(t) + d(aV)(t)  (7) 
dt 

This equation may be described as an income allocation equation; the 
normal cost and assumed interest are allocated to the terminal funding 
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cost and the change in the supplemental present value for active members. 
Formula (7) is very general. Using the notation developed to describe 
our basic model, we may verify formula (7) by using integration by parts 
on formula (4) as follows: 

r 

P(t)  = f e-"<r-~> ~P(t  + r - x ) m ( x ) d x  
a 

= e -6~-~  r p ( t  + r -- x ) M ( x ) [  ~ 

r 

- fM(x )e -~ (~ -~>d[rP( t  + r - x)l 
a 

r 

- f M ( x ) ~ e  -~-~> r P ( t  + r - x )dx  
a 

d " 
= Tp( t )  + -~  . f M ( x ) e  -~(~-~) r p ( t  "I- r - -  x )dx  

r 

- ,S f M ( x ) e  - ~ ' - ~  r e ( t  + r - x )dx  
r~ 

d ( . v ) ( t )  - ~ (av ) ( t )  = Tp(1) - - ~  

I I I .  F U N C T I O N  R A T I O S  

In this section we shall consider the ratios of each of the functions 
(aA)( t) ,  P(I), (aV)( t ) ,  and (Pa)(t)  to Tp(t),  the annual rate of terminal 
funding. These ratios lead to insights because, according to the income 
allocation equation, formula (7), Tp(t) may be thought of as the outgo 
function in regard to funding for active members. First, we consider the 
ratio of the value of future benefits for the active group to the annual rate 
of terminal funding cost, 

( a A ) ( t ) / r p ( t )  = f [ h ( t  + r - -  x ) /h( t ) ]e -S(r -*)dx ,  (8) 
a 

which may be viewed as the present value of a varying annuity certain. 
In the exponential growth case where gl(t) -- e ~t (population growth), 
g2(t) = e ~* (salary growth), and h ( t ) =  ga(t)g~(t)l,s(r)b = e 'q ,s(r)b for 
r = a + "y, [h(t + r --  x) /h(t)]e -~(r-~) = e -(a-*)(r-~). 

At this stage it is necessary to distinguish the three cases 8 > r, ~i = r, 
and 6 <: r. In the next three subsections these three cases will be ex- 
plored and the analyses extended to the other ratios of interest. 
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Case 1: ~ > r 

In this case the annual force of interest is greater than the combined 
rates of salary and population growth. We have 

[h(t + r --  x) /h( t )]e  -6( '-~ = v "-~ (9) 

and formula (8) simplifies to 

(a ,4) ( t ) / rP( t )  = a N (I0) 

evaluated at annual force 0 = ~ -- r. Here, and in the sequel, i f  the force 
to be used in the eraluation of a compound interest function is not stated, it 
is to be taken as O = ~ -- r. 

It  is clear that in this case (aA)(t) /rP(t)  is a decreasing function of 
0 = ~ -  r. If r < 0, that is, if the combination of population and 
salaries is on a decreasing rather than an increasing exponential path, the 
ratio of the present value of future benefits to the current terminal fund- 
ing normal cost rate may be fairly small. 

From formula (10) one sees that the present value of future benefits 
for active members is equal to the discounted value at the force 0 of an 
annuity of rP(t) for r - a years. More completely, in the exponential 
growth case (aA)(t) equals the discounted value at annual force ~ of an 
increasing annuity with a payment rate from formula (1) of rP(t  q- u) = 

rP(t)eru at time t -1- u, 0 < u < r -- a. That is, 

r - - a  r - - a  

(aA)(t)  = f rP( t  + u)e- '"du = f [rp(t)e'"]e-nudu. 
0 0 

The key point is that, in the exponential growth case, the terminal 
funding normal cost increases at the total growth rate r = a -k 7, the 
sum of the population and salary growth rates. Note also that the ratio 
in formula (10) is independent of t as a result of the exponential growth 
functions. 

The function (aA)(t), the present value of future benefits for active 
members at time t, is independent of the actuarial cost method. However, 
the remaining funding functions defined by formulas (4)-(6) depend on 
the actuarial cost method through the accrual function M(x) .  

For example, the ratio of the annual normal cost rate at time t to the 
annual rate of terminal cost funding is 

r 

e ( t ) / r e ( t )  = f [ h ( t  + r - x)/h(t)]e-~( '-~>m(x)dx.  (11) 
a 
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In the exponential growth case, 

r 

P( t ) / rP( t )  = f v ' - ' m ( x ) d x  
a 

r 

= v r f e~(~- '~m(x)dx  (12) 
a 

vr--x(O) . 

Here x(O) is calculated from the equation 

r 

e °~°~ = f e ° x m ( x ) d x .  (13) 
a 

The existence of a value of x(O) on the interval from a to r is assured by 
the mean-value theorem for integrals. 

We will call x(O) the average age of normal cost payment associated with 
the actuarial cost method defined by re(x) and the combination of 
interest, population, and salary forces 0 = 6 - r = 6 - ~ - 3'. Two 
extreme cases need special attention. For terminal funding, M(x) = 0 
for a < x < r, M(x)  = 1 for r < x, and x(O) = r. For initial funding, the 
whole pension cost is funded for each entrant  by a lump-sum payment  
at entry,  so M(x) = 1 for a < x, and x(O) = a. In the model plan with 
exponential growth, the number  x(O) can tell us some of the characteris- 
tics of the actuarial cost method with which it is associated. ~ 

Formula (13) has an interesting interpretation. Note that  the right- 

hand side, to be denoted by ~k(0), may  be interpreted as the moment  
generating function associated with the actuarial cost method defined by 
re(x). This leads to the formal conclusion that  if two actuarial cost 
methods yield the same value of x(O) for all values of 0 on an interval 
containing zero, then their associated moment  generating functions are 
the same on the interval, and the two actuarial cost methods are identical. 

I t  is more practical to examine the relationship between x(O) and the 

characteristics of the associated actuarial cost method. For two con- 

a For a given value of O, the number x(O), which depends on O, does not characterize 
an actuarial cost method. For fixed 0 and x(O), a < x(O) < r, it is easy to construct a 
density function re(x) that  will yield 

r 

f d~m(x )dx  = d~(o~ 
a 

by using step functions or exponential density functions as described in [31. 
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tinuous pension purchase density functions, re (x )  and rot(x) ,  with 
M ( a )  = M l ( a )  = 0 we have 

r 

e sx~s~ - -  e e~,~°~ = f e s ~ d [ M ( x )  - -  Ml(x)] . 
a 

Using integration by parts, we have 

r 

e s'~°~ - es*, ~e> = - O f [ M ( x )  - -  M ~ ( x ) l e g ~ d x .  
a 

If re(x)  is associated with a decelerating cost method ( m ' ( x )  < 0), and 
m~(x) is associated with an accelerating cost method ( m i ( x )  > 0), then 
M ( x )  - -  M l ( x )  > 0 for a < x < r, and for 0 positive or negative we have 
x(O) < x~(O). We are led to the following obvious result: in comparing 
decelerating (re(x))  and accelerating (rot(x))  cost methods, we have from 
formula (12) 

P ( t ) / r P ( t )  = vr-,<e) < vr-' ,~') = P l ( t ) / r P ( t ) .  

This states that the ratio of annual normal cost rate to the terminal cost 
funding rate is less for decelerating cost methods than for accelerating 
cost methods. A closely related argument will be used in the next sub- 
section in comparing the pro rata accrued benefit and entry age normal 
cost methods. 

Using our new symbol, formula (12) may be rearranged as 

, , , ( t )  = ~-~co~ re ( t )  ' (14) 

or, by using formula (1) for the exponential growth case, as 

e ( t )  = e-~t~-~S)le ~t~-~(s)! r e ( t )  
(15) 

= e -nt"-~<°)l r P ( t  -4- r - -  x(O)) . 

This shows that the annual normal cost rate at time t may be thought of 
as remaining in the fund for r - x(O) years and then utilized to provide 
the terminal funding cost r p ( t  + r - x(O)). The total  f u n d i n g  term for 
current active members is r - a years. We shall see that this may be 
thought of as consisting of a pas t  f u n d i n g  t e rm of r - x(O) years and a 

f u t u r e  f u n d i n g  term of N = x(O) - -  a years. Of course, x(O) depends on 
the actuarial cost method. In the special case of terminal funding 
x(O) = r, that is, the past funding term for the active group is zero years 
and all funding is in the future. For initial funding 

x P ( t )  = e -s~'-~) r P ( t  "-l- r - -  a)  (16) 

and x(O) = a. Thus the future funding term is zero years, and the past 
funding term is r - a years. 
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The next ratio we will consider is the ratio of the supplemental present 
value at time t for active members to the terminal funding cost rate at 
time t. We remain in the situation where ~ > r. We have, for a cost 
method characterized by M(x) ,  

r 

( a V ) ( t ) / r P ( t )  = f [ h ( t  -k r -- x ) /h( t ) ]e -~(r -*)M(x)dx .  
a 

This ratio may be calculated directly in the exponential growth case from 
the equation 

r 

( a V ) ( t ) / r P ( t )  = f v r - * M ( x ) d x ,  (17) 
a 

but it is simpler to note that 

d 
d-5 ( .V)( t )  = ,-(,,v) c t ) .  (18) 

When this result is substituted in formula (7), we have 

P(t) -1- 6(aV)( t )  = rP(t) + r ( a V ) ( t )  (19) 
or 

(aV)( t )  = [re(t) -- eCt)]/(8 -- r ) .  (20) 

By use of formula (14) this becomes 

(a v)(t) = Te(t)~_,--a~ (21) 
or 

( a V )  ( t )  = P( t )~_ . - z -~-  I . (22) 

Formula (21) exhibits the supplemental present value (accrued lia- 
bility) for active members as the present value of the current terminal 
funding cost over the next r - x(O) years. Formula (22) looks at the 
same quantity as the accumulated value of current normal costs for the 
past r - x(O) years. These interpretations of formulas (21) and (22) are 
somewhat incomplete. To state it another way, (aV)(t)  is the present 
value at force of interest 6 of the terminal funding cost rp( t  + u) = 
rp(t)e~", where 0 < u < r -- x(O); 

r-~(O) r-x(e) 
(aV) ( t )  = f rPCt + u )e -* ,au  = f rp(t)e'~e-+"du 

0 0 

= rP(t)a,_~=;~. 

We also know that (aV)(t) is the accumulated value, at force of interest ~, 
of the annual normal costs P(t -- u) = P( t )e- ' " ,  where 0 < u < r - x(O). 
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r-z(O) 

(av)(t) = f e ( t -  u)e'~du 
o 

r-z(O) 

= f P ( t ) e - ' " e ~ " d u  
o 

= P ( t ) ~  ~--:gg]. 

The present value of benefits for active members must equal the 
supplemental present value plus the present value of future normal costs. 
That  is, adding formulas (5) and (6), we obtain 

(a~)(t) = (aV)(t) + ( e a ) ( t ) .  

One now may apply formulas (10) and (21) to show that 

(aa) ( t )  = ~e(t)a~_-zl. = ~ e ( t ) a - ~  + (P~)(t), 

and by rearranging we have 

(~ 'a)( t )  = Te(t)e_--q. - ~ e ( t ) e - : ~  

T ,-~(o) - (23) 
= P ( t ) v  a~o~-s: ~ . 

An application of formula (14) yields 

(Pa) ( t )  = P ( t )a  ~o)-g-z;1. (24) 

Formula (23) exhibits the present value of future normal costs for active 
lives at time t as the present value of terminal funding costs that will arise 
during the future funding term of N = x(O) - -  a years. Formula (24) 
expresses the same quantity as the present value of normal costs at rate 
P ( t )  for the next N = x(O) - a years. This value will provide the terminal 
funding costs r - -  x(O) years later. In reviewing these interpretations, 
recall that the compound interest functions are evaluated at ~ -- r = 
8 - a - % that is, each interest function depends on the annual forces 
of interest, population change, and salary change. 

These concepts may be clarified by the Lexis-type diagram in Figure 1. 
Cohorts of entrants may be viewed as moving along diagonal lines in the 
figure. Vertical lines depict cross-sectional views of the funding for active 
lives at a fixed point of time. The dashed diagonal line may be viewed as 
the mean path followed by the group active at time t. The paths to be 
followed in tracing the relationships are indicated by arrows indexed by 
relationship numbers. Along diagonal lines the final salary and popula- 
tion growth functions are fixed--only interest contributes to changed 
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values. Payments  dis t r ibuted along horizontal  lines are of different 
amounts  because of r and have different present values because of & 
Normal  cost payments  made at  the same t ime (same vert ical  line) differ 
because they are made on behalf  of different cohorts and because of the 
different t imes until  they are used to purchase ret i rement  benefits (0 = 
8 --  r).  The  relat ionship numbers  (1)-(6) denote  the following: 

(1) F o r m u l a  (15): 

(2) F o r m u l a  (16): 

(3) F o r m u l a  (21): 

(4) F o r m u l a  (22): 

(5) F o r m u l a  (24): 

(6) F o r m u l a  (12): 

P( t )  = e -~t'-*(°)l r P ( t  -[- r --  x(O)) 

t P ( t )  = e -~('-°) r p ( t  --[- r --  a) 

(aV)( t )  = rP(t)a~_~--~ff 1 

(aV)( t )  = e(t)¢_~-;~ 

( ea ) ( t )  = e(t)a~(~)-s- ~ 

P( t )  ~ e -°tr-x(e)J r e ( t )  

Because of the in terpre ta t ions  provided by  relationships (4) and (5), 
r - x(O) was called the past f u n d i n g  term and N = x(O) -- a was called 

nitial 
:unding 

x(0) 

erminal • 

unding 

,P(t - (r - a) ) 'e(t - Ix(0) - a]) 
t - (r - a) t -- [x(O) -- a] 

_ _  _ _  ~ ~ ! ~ ( - )  

rPO - (r - a)) ~p(J 

"e(O 

~---- (s) _ _  

rP(t + r - x(O)) ~V(t 

t J c r - -  d~ 

Time 

Attained 
Age 

Fro. 1.--Illustration of relations among funding functions: active lives; exponential 
growth. 
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the future funding term. Since (aA)(t) = (aV)(t) + (Pa)(t), we have a 
na tura l  division of the present  value of future benefits for active lives 
into a past  and future component  and of the funding term r - -  a into 
associated terms of length r --  x(0) and  N = x(O) -- a. 

Application of Case 1: ~ > r 

a) Terminalfunding.--For terminal  funding, it has been noted a l ready 
tha t  the future  funding term is N = r - -  a and the pas t  funding term is 
zero. Then (aV)(t) = 0 and (Pa)(t) = Tp(t)dr--~ = (aA)(t). 

b) Pro rata accrued benefit cost method.--Here re(x) = 1/(r -- a) where 
a < x < r, and re(x) = 0 elsewhere. By Jensen's  inequal i ty  [4], for a 
random variable  X and a function such tha t  ~o"(x) > 0, 

EI~(X)]  > ~ (e [X] )  , 

where E denotes mathemat ica l  expectat ion.  I f  ~ ( x ) =  e C~-')*, then 
~o"(x) > 0. Now let re(x) play  the role of a uniform probabi l i ty  densi ty  
function. Then from formula (13) and Jensen's  inequality,  

e (s-')*(8) = E[e (5-')x] > e (6-')e[xl (25) 
and 

x(O) > E [ X ] .  (26) 

Wi th  the uniform densi ty  re (x )= 1 / ( r -  a), we know tha t  E[X] = 
(a + r)/2. We then may  rewrite inequal i ty  (26) as 

x(O) > (a + r ) / 2 ,  (27) 

where x(O) per ta ins  to a pro ra ta  accrued benefit cost method.  In  other  
words, for this  cost method the future  funding term N is more than  one- 
half of the total  funding term of r - a years.* 

c) Entry age normal cost method.--A choice of re(x) is 

r ]--1 
re(x) = e-~-,~Xl~s(x)l.g, r , a < x < r 

= 0 ,  elsewhere 5 

Then from formula (4), after subs t i tu t ing  for rp(t  + r -- x) and re(x) in 
the exponential  case and rearranging,  we have 

P(t) = e-a-v"s(r)Lba°rE / e - ( " - " U s ( y ) l u d y ]  -t  
(28) 

r 

× fe"+a('-~)t~s(x)dx, 
a 

* This proof was suggested by Dr. Hans U. Gerber. 
5 See [21, p. 183, for a discussion of this choice for re(x). 
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o r  

P( t )  = "zr, W ( t )  . (29) 

In formula (29) .It, is the entry age normal cost ra te--as  a level fraction 
of salary--for an employee entering at age a, retiring at age r, and 
having an annual salary rate ev~*-~)s(x) at age x, where a < x < r. The 
symbol W(t )  is the annual payroll at time t (see [2], formula [77]). Note 
that '~', is independent of t and of the population growth rate a. 

Here a direct application of Jensen's inequality does not lead to a 
statement about x(O), the average age of normal cost payment. However, 
an indirect application (see Appendix) shows that, if e-~*s(x) l ,  is a 
decreasing function of x and if, as throughout this subsection, 6 > r, then 

x(O) < (r + a ) / 2 ,  (30) 

where x(O) pertains to the entry age normal method. That  is, under the 
stated condition, for entry age normal funding the future funding period 
N = x(O) - -  a is less than one-half of the entire funding term r -- a. I t  
follows from formulas (14), (27), and (30) that  the normal cost for the 
entry age normal method is less than for the accrued benefit method, and 
from formula (21) the reverse relation holds for the supplemental present 
values. 

Case 2: ~ = r 

In this case the annual force of interest equals the combined rate of 
salary and population growth. We have [h(t + r - -  x ) /h ( t ) ]e  -6~r-~) = 1, 

and formulas (10), (21), (12), and (23) may be replaced respectively by 

where 

( a A ) ( t )  = ~ P ( t )  (r  - a ) ,  

(a V) q) = ~'e(O(," - ~ ) ,  

e ( t )  = ~'v(t) ,  

( va ) (O = ~ v ( t ) ( ~ -  a ) ,  

(31) 

(32) 

(33) 

(34) 

r r 

, - ~ = ,  - f x m ( x ) d x  = f ~ ( x ) d x .  
a 

These formulas relate to certain of the formulas in [2], Section VI, 
"The Exponential Growth Case," in the following fashion: formulas (31), 
(32), and (33) are the active members'  analogues of formulas (89), (90), 
and (88) in [2], and formula (34) is identical to (92) of [2]. 

When 0 = ~ -- r = 0, formula (13) does not lead to a definition of 
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x(0). There  is a na tura l  way out  of this difficulty tha t  leads to insights 
about  x(O). From formula (13) we have 

r 

ee~o) = f e ~ * m ( x ) d x ,  
a 

z(O) = ~ l n E  * (35) 

c(o) 
0 ' 

where C(O) = In ~b(0) is the cumulant  generat ing function associated with 
the densi ty re(x) ([1], p. 307). Now we define x(O) in the case 0 -- 0 as 

x(0) = lira c ( 0 ) / 0  
0 - * 0  

The evaluation of the l imit  requires one appl ica t ion  of L 'Hospi ta l ' s  rule.  

Case 3: ~ < r 

a) Basic ra t ios . - -Th i s  is the case where r, the sum of the generation 
growth rate a and  the salary growth ra te  ~', is such tha t  $ < r. In this 
case the basic mathemat ica l  formulas remain.  The  number  x(O) is still 
defined by formula (13) for each actuar ia l  cost method• However, the  
formulas involving compound interest  functions take on a new signifi- 
cance for v = e - ~ - ' )  = e ~'-~) > 1, and where we had a,--] evaluated a t  
force 6 --  r > 0 we now have ~-~ evaluated a t  r - -  6 > 0. In general,  
where a discount effect was observed in case 1 an accumulat ion effect is 
observed in case 3. 

Corresponding to formulas (10), (14), (21), (22), and (24), respect ively,  
we now have 

(aA)( t )  = TP(t)~---~ , (36) 

P(t)  = TP(t)e~'-6)[r-*(e)l, (37) 

(aV)( t )  = TP(t)~_,--z;~, (38) 

(aV) (t) = P(t)~_.-zT~, (39) 

(Pa) ( t )  = P(t)~n--], (40) 

where each of the compound interest functions is evaluated at  annua l  
force of interest  r - -  ~. 
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The application of Jensen's inequality yields 

x(0) < (a + r) /2 ,  

where x(8) pertains to a pro rata accrued benefit cost method. This is 
the opposite of the relation for ~ > r found in inequality (27). In this 
case it seems difficult to obtain a useful general statement about x(O) for 
the entry age normal cost method. 

b) lncome allocation.--The income allocation equation (19) takes on 
the form 

P ( t )  = T P ( t )  "~ (7" - -  $)(aV)(t). 

That  is, the normal cost must provide not only for the terminal funding 
cost but also for the growth required in the supplemental present value, 
(aV)(t), in excess of interest income. In case 3, terminal funding has the 
lowest cost among the methods that complete funding by age r. Further, 
if one cost method defines a higher supplemental value than a second 
cost method, the normal cost for the first method will have a higher 
normal cost than the second. Thus in case 3, among the cost methods 
completing funding during the working lifetime of members, initial 
funding would result in not only the highest supplemental present value 
(aV)(t) but also the highest normal cost. 

c) Discussion.--The practical implications of interest rates below the 
sum of the growth rates of salaries and population are enormous. Tradi- 
tional economic arguments in favor of funded pensions begin to lose 
their validity. The change to current cost funding of pensions in nations 
with a high rate of wage inflation and relatively low interest rates would 
seem to be a realization of this theoretical result (see [7] for a discussion 
of this important point). 

In this paper the stress has been on contribution theory. Current cost 
funding, or pay-as-you-go funding, has not been one of the cost methods 
under consideration. We have not made any assumptions about the 
benefit adjustment function /3(x). However, it is clear that there are 
many patterns of postretirement benefit adjustments that would result 
in a current cost rate below the terminal funding cost rate. 

IV. CONTRIBUTION THEORY 

In this section several patterns of contribution rates are developed. 
These patterns are selected to build up funds to meet the cost of the plan 
in regard to active members. With slight changes, the theory could be 
developed for the whole group, active or retired. The contribution pat- 
terns will be related to individual actuarial cost methods. While the 
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patterns could be developed in a more general context, the exponential 
growth case will be assumed throughout. Amortization factors (1/d~) 
will be evaluated at force 0 = 8 - r to provide for amortization of the 
unfunded supplemental present value as a level percentage of payroll tha t  
is increasing at an annual rate of r = a + ~, the sum of the population 
and salary growth rates. This will be done in lieu of considering amortiza- 
tion by level amounts.  

Normal Cost plus Amortization over Fixed Term 

The objective is to reach fully funded status for some actuarial cost 
method at the end of n years measured from an arbitrary initial time. For 
convenience the initial time will be denoted by zero. The annual con- 
tribution rate (aC)(t) at time t, 0 <_ t < n, in regard to active members is 
denoted by the formula 

(aC)(t) = P(t) + O.OlfW(t)  . 

In this equation W(t) is the rate of payroll payment  at time t (see formula 
[77] in [2]), and f is a level percentage of payroll determined so as to 
amortize the initial unfunded supplemental present value over n years. 
If  (aF)(t) denotes the fund available for the active members at time t, and 
(aU)(t) = (aY)(t) -- (aF)(t) is the unfunded supplemental present ralue 
for active members at time t, then 

n 

(aU)(O) = (aV)(O) -- (aF)(O) = O.Olf f e - ' tW(t )dt  
0 

n 

= O.OlfW(O) f e - % " d t  
0 

= O.Ol fW(O)a-1 ,  

where a~ I is calculated at force ~ - r as previously noted. In this result 
we have used the fact that  W(t) = e'tW(O), and in developing formula 
(41) we also shall use the fact that  P(t) = e"P(O). These results are 
achieved in [2], p. 199. Now substituting in the expression for the annual 
contribution rate, we have 

(ac)(t) = e(O + (_av)(o) w(t) 
a q w(o) 

= P(t)  + (aU)(O__))e" (41) 
a.-- 1 

(Qv) (0)q , ,  
= + . 
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From these formulas it is clear that ( a C ) ( t ) / W ( t )  is a constant, namely, 

(.v)(o)] [e(o) + ~ . w(o)-,. 

We now consider how convergence to a fully funded status occurs. 
With contributions determined by (aC)( t )  as in formula (41), the active 
member fund (aF)( t )  grows according to the differential equation 

d ( a F ) ( t )  = ( a C ) ( t )  -F t~(aF)(l)  - -  r P ( t )  
,It (42) 

= e ( 0  + ( , v ) ( 0 ) e , ,  + ~ ( o F ) ( 0  - re ( t ) .  

The income allocation formula (7) may be rearranged as 

d ( a v ) ( t )  = e ( t )  + ~ ( a v ) ( o  - ~'t '(t)  
dt 

When formula (42) is subtracted from this expression, the result is 

d(aV)q) = ~(ars)(t) (aV)(O) ~,, . 
at a ~  

(43) 

Changing t to h, multiplying through by the integrating factor e - th,  and 
rearranging yield 

d[_~(oV)(h)] = (aV)(0),_(,_,,~dh. 
~,--] 

Integrating from 0 to t and solving for (aU)( t ) ,  we have 

( , v ) ( t )  = ( , v )  (o)e~, - ( , v ) ( 0 ) e ' % a ~  1 

= (aU) (O)e"[e  ¢*-')' _ st-'la"q ] .  _-t  

= ( a v ) ( o ) e " a - ~ / a ~ .  

(44) 

It  may be verified that formula (44) holds whether 6 is greater than, 
equal to, or less than r. It is now clear from formula (44) that ( aU) (n )  = 
0, which implies that (aF) (n )  --- ( a V ) ( n ) .  Also, from formulas (43) and 
(44) we note that 

d(a u) (0 --~ 
dt = ( a U ) ( t ) ( ~  - -  a - : ~ )  , (45) 
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_--I and if a ~  < 8 then d(aU)(t)/dt > 0 until time to, when a,-=~o = 5. 
That  is, (aU)(t) increases to a maximum at time to and then decreases. 

In practice one might select what appears to be a more flexible con- 
tribution system, to be denoted by superimposing tildes on the functions, 
such that  

(aC)(t) = P(t) + (a[ l ) ( t ) /d- -~ ,  (46) 

with (aU)(0) = (aV)(O) -- (aF)(O) = (aU)(O). Again the objective is to 
amortize the unfunded supplemental present value over a fixed n years. 
In application, formula (46) allows for spreading experience gains and 
losses. However, in the deterministic model we are studying, gains and 
losses do not appear, and we might guess that identical results will be 
produced by contributions defined by formulas (41) and (46). To confirm 
this guess we can write the equation analogous to formula (42), subtract 
it from the income allocation equation, and obtain 

d(a~l)(t) __, 
a,_--Tq) dt = ( a O ) ( t ) ( 8 -  , (47) 

which is the same differential equation as (45). Since the two differential 
equations involve the same initial condition, we can conclude that 
(afl)(t) = (aV)(t), 0 < t <  n. This in turn implies that  (a~)( t )= 
(aC)(t), 0 < t < n, which may be confirmed by substituting from 
formula (44) in formula (46) and comparing with formula (41). 

Normal Cost plus Amortization over a Moving Term 

In this case, the objective is to attain fully funded status for some 
actuarial cost method asymptotically. For t > 0, the annual contribution 
rate at time t for active members, (aC)(t), is defined by the formula 

(aC)(t) = P(t) + (aV)(t)/a--]. (48) 

That  is, amortization is over a term of n years from the current time t 
rather than from time zero. The amortization term continually moves 
forward. 

The formula analogous to formula (43), derived by a similar chain of 
steps using (aC)(t) as in formula (48), is 

d _-1 
a~ (a U) (t) = -- (%-I -- 8) (aU) (t) . (49) 

Solving this differential equation yields 

(aU)(t) = (aU)(O) exp [ - ( a ~  1 -- 6)t]. (50) 
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N O W  " - 1  if a ~  > 6, then 

lira [ (aV) ( t )  - (aF)( t ) ]  = lira (aU)( t )  = 0 (51) 
t--* ~o t ~ c o  

and 
(ar)( t )  -~ ( a V ) ( t )  as t ~ ~o (52) 

I t  is clear that  convergence as described in formula (52) will occur for 
certain sets of (n, 6, r). For example, the conditions for convergence may 
be written as 

In 8 -- In r 
n <  ~ # r  

1 
< ~ ,  ~ = r .  

If  ~ > 0 and r = O, any n, 0 < n < co, will assure convergence. If 
-- r and n < 1/6, then as r--~ oo the upper bound on n approaches 

zero. The point is that  if pension obligations are growing very rapidly as 
a result of a large total growth rate relative to the interest rate, the rolling 
amortization period n must be small to assure convergence. 

If a ~  = ~ the functions (aF)( / )  and (aV)([ '  :bounded, but 

( , , v ) ( o  = ( o r )  l, , (s3) 

and no progress is made toward reducing the unfunded present supple- 
mental value in an absolute sense. However, in a relative sense progress is 
made. This may be seen by rearranging formula (53) as 

( a V ) ( t )  - (aF)  (t)  = ( a v ) ( o )  - (aF)  ( 0 ) .  

In the exponential growth case, we may observe that formula (21) tells us 
that  (aV) ( t )  grows at the same rate as terminal funding cost ~'P(t). From 
formula (6) we learn that  ~'P(t) grows as h(t) grows, and in the exponential 
growth case h'(t)  = rh(t) .  Therefore, (aV) ( t )  = (aV) (O)e" ,  and we may  
divide each side of our re-formed formula (53) by this expression to obtain 

(a~')(t) = [ i  (aF)(O)l  _ ,  

1 - ( o v ) ( o  ~ - I  ~ " " 

This implies that  if r > 0, then 

lim [1  (aF) (t)]  
,-~o ( a v ) ( t ) J  = o ,  

or 
lira [ ( a F ) ( t ) ] [ ( a V ) ( t ) ]  -~ -- 1 .  (54) 

If  a ~  < 6, then (aU)( t )  increases indefinitely as t --~ co. Again there is 
a relative kind of convergence. Rearrange formula (50) as follows: 

( a V ) ( t )  - -  ( aF) ( t )  = [(aV)(0) -- (a¥)(0)] exp [--(a~l l -- ~)t]. 
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We then divide by (aV)(t) = (aV)(O)e" to obtain 

(aF)(t) = [1 
1 (av)(t) 

--E' 

(~)(0) 1 ._, 
(aV)(O)-I exp {- - [a~  -- (6 -- r)]t} 

(aF)(O)'] __, 
( 'aV-~~J exp ( - - s~ t )  

where ~ is valued at ~ - r and n is a finite number. In this case formula 
(54) holds once more and the same type of relative convergence takes 
place. The unfunded supplemental present value becomes indefinitely 
large, but  the funding ratio (aT)(t)/(aV)(t) approaches 1. 

The ratio of the annual contribution rate defined by formula (48) to the 
rate of payroll payment,  W(t), each evaluated at time t, is a decreasing 
function of t. To establish this fact we use the same ideas as for formula 
(41). We start  with formula (48) and substitute formula (50) to obtain 

( .c)(t)  e(t) ~aV)(t) 
(w)(t----5 = w(t----5 + a~ w(t) 

a*(o) I-(aV)(O) ] 
= ~ + La-~w(6).J exp (--g~t).  

_--! 
Since 0 < s.--1, (aC)(t)/W(t) decreases as t increases, and 

lim (aC)(t) P(O) 
,-... w(t---3-= w(o---5' (55) 

that  is, the ratio of the contribution rate to the payroll rate approaches 
the ratio at time zero of the normal cost rate to the payroll rate. 

Aggregate Cost Method 

I t  is natural to ask the following: what is the result if, for the normal 
cost plus amortization over a moving term method, discussed in the 
preceding subsection, the term n is taken equal to N = x(O) -- a, the 
future funding term for the actuarial cost method defined by the accrual 
function M(x)? We then would have 

(aC)(t) = P(t) + ( a U ) ( t ) / ~ ,  (56) 

which may be rearranged as 

(aC)(t) = [P( t )a~ + (aV)(t) -- (aF)(t)]/d~ 

= [(aA)(t) -- (aF)(t)]/d~, 
(57) 
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since P ( t ) a ~  = (Pa)(t)  by formula (24) and (aV)(t)  = (aA)(t)  -- (Pa)(t) .  
In the notation of formula (56) of [2], (Pa)( t ) /P( t )  equals a(t), a mean 
temporary annuity. However, because we are discussing the exponential 
growth case, a(t) = am is independent of t ([2}, formula [85]). We now 
recognize that 

(aC)(t) = [(aA)(t) -- (aF)(t)]/a(t)  (58) 

is the aggregate cost contribution rate defined by formula (58) of [2]. This 
demonstrates that, for the model plan and exponential growth case, 
contributions determined by normal cost plus amortization over a 
moving term N (the future funding term of the given actuarial cost 
method) are the same as the contributions under aggregate cost funding 
with mean temporary annuity value a(t). Further, since the contribution 
rates are the same in the two cases, the same fund (aF)(t) develops, and 
the funds' convergence in relation to (aV)(t)  is the same as indicated in 
the preceding subsection. Finally, formula (55) shows that (aC) ( t ) /W( t )  
---> P(O)/W(O) as t ~ co, which is to be expected under the aggregate 
cost method. 

In a more general case where exponential growth is not assumed, one 
can show that the contribution rate defined by 

(aC)(t) = e ( t ) +  (aU)( t ) /a( t )  (59) 

is eqt~ivalent to the aggregate cost contribution rate in formula (58). In 
this case, the amortization annuity value a(t) may vary with t. 

The discussion here is related to the generalized aggregate cost method 
first described by Trowbridge [5] and further described in Trowbridge 
and Farr ([6], p. 62), where the role of a ~  is played by the constant k. 

V. ANALOGOUS THEORY, ALL MEMBERS 

In the preceding two sections a body of theory about pension con- 
tributions for the subgroup of active members was developed. A parallel 
theory exists for the whole group, both actives and refireds. The develop- 
ment of this parallel theory is very similar to that for the active subgroup, 
and therefore it does not seem necessary to present full details. Instead, 
some of the modifications of key formulas will be given and an outline of 
the theory indicated. 

The concepts and corresponding symbols to be used in this section also 
appear in early sections of this paper or in [2]. For example, P(t),  the 
normal cost rate at time t, and (Pa)(t) ,  the present value of future normal 
costs for active members, remain as defined in Section II. Table 1 provides 
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TABLE 1 

BASIC SYMBOLS 

Value of benefits . . . . . .  
Contribution rate . . . . . .  

Fund . . . . . . . . . . . . . . . .  
Unfunded supplemental 

present value . . . . . . . .  

Supplemental present 
value . . . . . . . . . . . . . . .  

Symbol 

A(t) 
c(t) 

~(t) 

v(t) 

vq) 

WHOLE GROUP 

Definition 

[2], formula (28) 
[2], page 192 

[2}, formula (54) 

[21, formula (49) 

[21, formula (37) 

ACTIVE GROUP 

(aA)(t) 
(aC)(t) 

(a~)(t) 

(ov)(t) 

(av)(0 

Definition 

Formula (3) 
Formulas (41) 

and (48) 
Formula (42) 

Explanation of 
formula (41) 

Formula (5) 

a glossary of other needed symbols. Some reference to [2] is required to 
complete the developments in this section. 

Within the larger framework of this section, we work with B( t )  ([2], 
formula [26]), the annual rate of pension outgo at time t, instead of with 
rP(t), the terminal funding annual cost rate. For simplicity, the discussion 
will be limited to the exponential growth case. 

As a replacement of the income allocation equation, formula (7), one 
now has 

d V ( O  (60) e(t) + ~v(t) = B(t) + d---i-' 

which is formula (43) of [2]. For the exponential growth case, this becomes 

P(t) + 6V(t )  = B( t )  + rV(t) , (61) 

which, for $ # r, may  be rearranged as 

V(t)  = [B(t) -- P ( t ) ] / ( ~  - -  r)  . (62) 

Also, in the exponential growth case, there are the following relations: 

co 

B( t )  = f e ' ( ' + r - * ) s ( r ) b l ~ ( x ) d x  
r 

(63) 
= e" lrs (r )ba ' r~ ,  

where a'~a is valued at force of interest r. Then 

B( t )  = e , ' l r s ( r )ba f (a :a /a~)  

= Te(O(a,r~/a~). (64) 
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Thus, if ~ (the force of interest) is greater than r (the force of total growth), 
then B ( t ) >  rp(t); if 5 < r, then B ( t ) < r p ( t ) ;  and if ~ =  r, then 
B ( t )  = T e ( t ) .  

Further, according to the discussion following formula (12), the 
annual normal cost rate at time t under initial funding is given by 

~ e ( t )  = v r-o T p ( t ) ,  ( 6 5 )  

where, in accordance with the earlier convention, the discount factor is 
valued at force 0 = 5 - r. At first we assume ~ # r. Then, upon sub- 
stitution from formula (64), 

'P ( t )  = B( t ) (g~ /d ' f ) v  r-~ . (66) 

Before proceeding with the development, we will examine the function 
a~vr/a m. We have 

= E[e-~6-,)r] = e-¢6-,)~(o), 

where the expectation is taken with respect to the density function within 
the braces. The number y(O) exceeds r as a result of the mean-value 
theorem for integrals. We find that 

limy(0) = r + E[ Y --  r] = ~ , 

where ) is the expected value associated with the density function 
within braces when 6 = r. Thus ~ may be interpreted as the average age 
of pension payment.  

With this result, we may write formula (66) as 

~ e ( t )  = B ( t ) e - e ~  ~-o~ . ( 6 7 )  

If 6 > r, then *P(t) < B(t); if 6 = r, then *P(t) = B(t); and if 6 < r, 
then ~P(t) > B(t). 

Next, since A(t) equals tV(t) ,  the supplemental present value under 
initial funding, and since the expanded income allocation equation and 
formula (62) hold for initial, terminal, and continuous cost methods, one 
finds that 

A(t)  = 'V ( t )  = [B(t) -- IP( t ) } / (~  --  r) . 

By substituting from formula (67), we have 

a ( t )  = B ( t ) ( 1  - v ~ e ~ - " ) / ( ~  - r )  

= B(t)d¢o)_~T:_~. (68) 
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Here y(O) is determined as in formula (67). From formulas (65) and (67) 
we obtain 

rP(t)  = B( t )e  -°t~8~-rl . (69) 

Formula (69) then permits the transformation of formula (37) or (14) into 

P( t )  = B( t ) e  -et~'~e~-z~ , (70) 

and use of formula (62) leads to 

v(t) = B ( t ) a ~ .  (71) 

Finally, from formulas (71) and (68) we obtain 

(Pa ) ( t )  = A( t )  - -  V(t)  = B ( t ) z , u ~ ' ~ - * ~ ) a ~  = P ( t ) a ~ ,  (72) 

which is a restatement of formula (24). 
Table 2 shows the correspondence between the formulas of this section 

and Section III. 

TABLE 2 

CORRESPONDENCE AMONG 
FORMULAS 

Entire Group Active Group (8 > *) 
(See. V) (Sec. III) 

(68) (10) 
(70) (15) 
(7t) (21) 
(72) (24) 

The concepts of this section may be clarified by the Lexis-type diagram 
in Figure 2. The general format is similar to that of Figure 1. The dashed 
diagonal line again may be viewed as the mean path followed by the 
group active at time t. The paths to be followed in tracing the relation- 
ships are indicated by relationship numbers. Payments distributed along 
horizontal lines are of different amounts because of r and have different 
present values because of & Normal cost payments made at the same 
time (same vertical line) differ because they are made on behalf of dif- 
ferent cohorts and because of the different periods of time until they are 
used to pay retirement benefits (6 = ~ - r). The relationship numbers 
here denote the following: 

(1) Formula (67): 

(2) Formula (68): 

(3) Formula (69): 

(4) Formula (70): 

t p ( t )  = B(t)e-etu~o)-~J 

A(t)  = B ( t ) a ~  

r p ( l )  = B(t)e-elv~e~-r] 

P( t )  = B ( t ) e  -°tv~e)-x~e)] 
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(5) Formula (71): V(t) = B ( t ) ~  

(6) Formula (72): (ea) ( t )  = e ( t )a  ~e~-~ 

Additional relationships can be seen by dividing A(t) and V(t) into 
components for active and retired lives. For example, (rV)(t), the present 
value of benefits for retired lives, is represented by B ( t ) a ~ ,  relation- 
ship (7), or by rP(t)3-~o~-~-;], relationship (8). 

Of course, one may examine the formulas that correspond to formulas 
(31)-(34) for ~ = r and to formulas (36)-(39) for ~ < r. The theory of 
Section IV concerning contributions for active lives may be recast in 
terms of the whole group. The changes are primarily notational, except 
that the total rate of pension outgo B(t) plays the role of the terminal 
funding cost rp(t) and the global income allocation formula (61) is used. 

VI. CONCLUSION 

In this paper a theory of contributions to fund pensions during workers' 
periods of employment, under dynamic economic and demographic as- 

q'(0 
t - ( ,  - a )  t - i x ( o )  - '*l t t + ~ - a 

Time 

( 

v- (8) - 

(3) 

. . . .  - . 1 _  _ 

B ( t  - (,, - a )  ) B ( t )  

Attained 
Age 

Fro. 2.--Illustration of 
exponential growth. 

relations among funding functions: whole population; 
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sumptions, has been developed. Relationships among the contribution 
patterns that may arise under different cost methods also have been 
developed. The theory has economic implications. For example, if the 
sum of the rates of population increase and salary increase exceeds the 
interest rate, the terminal funding normal cost is below that of any cost 
method funding pensions during the working lifetimes of members. 
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APPENDIX 

PROOF OF FORMULA (30), ~ > r 

The pension purchase density function associated with entry age 
normal funding is given by 

/ r 

, . (x)  = f 0 < x < , .  

Upon substituting in formula (13) and using 0 = ~ -- r = 6 -- a - ~/> 0, 
we have 

t r 

r T 

so that 
t r 
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The function within the brackets may be interpreted as a density func- 
tion. Using Jensen's inequality, we have 

e-~(8~ = Ere -oY] > e-eEt Y} . 

Now if e-'~s(y)lu is a decreasing function, E[ Y] < (a + r)/2. Using this 
result, we may strengthen the previous inequality as follows: 

e-0z(e) > e - e ~ [ y ]  > e-e[(a+r)/2] 

o r  

x(O) < ~a + r 
2 ' 

x ( 0 )  - a - -  ~ < 





DISCUSSION OF P R E C E D I N G  PAPER 

c .  L. T R O W B R I D G E :  

Mr. Harry Sarason, in his discussion of the earlier (1976) paper by 
these same three authors, predicted that the second paper in the series 
might bear the title "The Dynamics of Pension Funding." Have the 
authors added the final two words to the title of this most recent work 
simply to prove that Mr. Sarason isn't 100 percent clairvoyant? Perhaps 
we shall find out when still another of the series appears, as I suspect it 
will. There seems to be no end to the development of this elusive subject. 

Certainly Drs. Bowers, Hickman, and Nesbitt have come up with a 
worthwhile extension of their previous work. The mathematical model is 
the same, but the analyses are carried further. Some simplification is 
obtained by splitting apart the active and retired portions of the mathe- 
matical analysis, in accordance with a suggestion from Mr. Kischuk, an 
approach which leads into what the authors call contribution theory. 
This discussant has not encountered this terminology before, but it 
strikes him as appropriate. 

One new function that the careful reader will note is x(O), calculated 
from equation (13). This is the attained age at which the normal con- 
tribution P(t) can be viewed as "centered." In the special cases of initial 
and terminal funding, x(O) becomes a and r, respectively. Otherwise 
a < x(O) < r, the exact place of x(O) within this range depending on 
both the actuarial cost method and the "excess" interest function 0. 

As in the earlier paper, it is important to look at the three cases 6 > r, 
= r, and 6 < r separately. For many applications a can be treated as 

zero, and, since r = o~ + ~, the three cases become 6 > ~, 6 = % and 
6 < "r. Advance funding loses much of its theoretical appeal in the last 
of these. This discussant's British namesake, whose J I A  paper is No. 7 
in the reference list, clearly shows why "pay-as-you-go" is predominant 
in France. The authors warn us when they note that  "the practical 
implications of interest rates below . . .  the growth rates of salaries . . .  
are enormous." We will do well to heed this warning. 

JOHN W. PENNISTEN: 

The authors' paper is an outstanding addition to the literature on the 
funding of pension plans. 

I. Rdative Levels of Conlributions under Different Funding Methods 

When alternate funding methods for a particular plan are considered, 
it is natural to consider the patterns of annual contributions generated by 

121 
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the methods. For example, it is known that the normal cost of a unit 
credit funding method will increase as the average age of the covered 
active population increases; but to what ultimate level will it rise? 

Applying the "equation of maturity" for stationary populations with 
mature pension funds from [2], we have 

C l + d F  t = B t ,  C 2 + d F  2 = B ~. 

Since plan benefits are independent of the funding method, B ~ = B ~, and 

C ~ -  C ~ = d ( F  ~ -  F ~ ) .  (1) 

That is, when the population covered by a pension plan (actives, vested 
terminations, pensioners, and survivor beneficiaries) has matured and 
become stationary, and the funding under alternate methods would 
have progressed to the point where there was no change in the fund 
accumulated under either method from one year to the next, the con- 
tribution required under one funding method would differ from that 
under the other method by the amount of the discounted interest 
earnings on the difference between the accumulated funds. 

A more general result, using continuous functions, may be obtained by 
applying the "liability growth equation" from the authors' previous 
paper [1] : 

d V ' ( t )  
e~(t) + ~v' ( t )  = B'(t) + d---i--; 

dv ' ( t )  
P~(t) + ~v~(t) = B~(t) + d--S-- 

Again, B~(t) = B~(t) regardless of the funding method, so that 

[d~(t) ~v,(t)-] 
P2(t) - -  P ' ( t )  = 6[V ' ( t )  - -  W(t)] + t_ dt  ~ -_1" (2) 

For the exponential growth case examined by the authors, 

d V ( t )  = r V ( t )  
d t  

and 
v~(o - v , ( t )  = o[v , ( t )  - v~(t)]. (3) 

It should be noted (a) that both equations (2) and (3) measure differ- 
ences in normal cost, rather than total contributions, and (b) that they 
are independent of any funding that may have occurred. 

The results in this section of the discussion are illustrated in Tables 
1-7 in the next section. 
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II.  Numerical Examples 
At the end of Section I of their paper, the authors request numerical 

examples. Although the examples given in this section of the discussion 
support the concepts of the paper, they also supplement examples given 
elsewhere (see [2], [3], and [4]) and develop the authors' previous com- 
ments in [1] regarding directions for further work (see Sec. I I I  of this 
discussion). 

The most significant difference between the projections in this discus- 
sion and projections given elsewhere is that one hundred and twenty-five 
years, instead of fifty years, are shown. This helps to illustrate (a) the 
progress of funding after the original group of active employees and 
pensioners has died and been completely replaced, (b) the large amounts 
that emerge ultimately even with low rates of exponential growth, and 
(c) the magnitude of the asymptoticity of the amortization of experience 
gains and losses under frozen initial liability funding methods. 

The projections in this section are based on curtate, rather than 
continuous, functions. "Plan termination liabilities" are based on 100 
percent vesting of all benefits based on salary and service accrued at 
date of termination. Annual plan valuations, including those in Table 5, 
are on a "closed group" basis, that is, excluding future new entrants. 
Under the terminal funding method, any initial accrued liabilities are 
amortized over ten years to prevent negative assets in the early years. 

The pension plan in Table 1 requires no employee contributions and 
provides 1 percent of final salary for each year of service upon normal 
retirement at age 65. There are no preretirement death, disability, or 
withdrawal benefits and no postretirement death or survivor benefits 
(straight life annuity form only). New employees are assumed to enter 
at age 30 and there are no withdrawals from active employment other 
than by death or normal retirement. Pre- and postretirement mortality 
is assumed to follow the 1971 Group Annuity Mortality Table (1971 
GAM) for men with radix of 100 at age 65, so that  there are 122.70 new 
entrants each year at age 30, (L30 - L6~) = 4,091.57 active employees, 
and L6~ = 1,561.20 pensioners. Annual interest and salary scale under 
noninflationary conditions are assumed to be 4½ and 2½ percent, respec- 
tively. Each of the new employees at age 30 is assumed to start  with a 
$10,000 annual salary, so that each new retiree at age 65 has an annual 
benefit of (0.01)(35)($10,000)(1.025) ~5, or $8,306. In Table 1 there are 
no automatic postretirement benefit increases, no population growth or 
decline, and no experience gains or losses. 

In Table 1, and all other tables of this discussion, normal cost under 



TABLE 1 

INITIALLY MATURE POPULATION; 4½ PERCENT INTEREST, 2{ PERCENT SALARY SCALE (NONINFLATIONAR¥); 

NO EXPERIENCE GAINS OR LOSSES; FINAL SALARY PLAN; NO AUTOMATIC POSTRETIREMENT 
BENEFIT INCREASES; NO POPULATION GROWTH OR DECLINE 

(In $ Millions) 

YEAR 

1 . . . .  
2 . . . .  
3 . . . .  
¢ . . . .  
5 . . . .  

1 0 . . .  
1 1 . . .  
1 5 , . .  
2 0 . . .  
2 5 . . .  

3 0 . . .  
3 1 . . .  
4 0 . . .  
4 1 . . .  
SO.. .  

7 5 . . .  
100 . .  
125 . .  

PAYROLL 

$63.4 
63 .4  
63.4 
63.4 
63.4 

63.4 
63.4 
63.4 
63.4 
63.4 

63.4 
63.4 
63.4 
63.4 
63.4 

63.4 
63.4 
63.4 

pLA~¢ 
TERMINATION 
LIABILITY 

$178.8 
178.8 
178.8 
178.8 
178.8 

178.8 
178.8 
178,8 
178,8 
178.8 

178,8 
178,8 
178,8 
178,8 
178.8 

178.8 
178,8 
178,8 

PAY-AS- 

Yov-co 
BENEFIT 

PAVKF-.NTS 

$13,0 
13.0 
13.0 
13.0 
13.0 

13.0 
13.0 
13.0 
13.0 
13.0 

13.0 
13.0 
13.0 
13.0 
13.0 

TERMINAL FUNDING 

Contri- Pension 
bution Fund 

$20.2 
20.2 
20.2 
20.2 
20,2 

20.2 
8.9 
8.9 
8 .9  
8 .9  

$ 7 , 6  
15.5 
23.8 
32.5 
41.5 

93.3 
93.3 
03,3 
93.3 
93.3 

93.3 
93.3 
93.3 
93.3 
93.3 

93.3 
93.3 
93.3 

Normal 
Cost 

$4.5 
4.5 
4.5 
4.5 
4.5 

4.5 
4.5 
4.5 
4.5 
4.5 

4.5 
4.5 
4.5 
4,5 
4.5 

13.0 
13,0 
13.0 

8 .9  
8 .9  
8.9 
8.9 
8.9 

8.9 
8 .9  
8 .9  

4.5 
4.5 
4.5 

UNIT CREDIT* 

Past 
Service 

$11.6 
11,6 
11.6 
11.6 
11.6 

11.6 
11.6 
11.6 
11.6 
11.6 

Pension 
Fund 

$ 3.2 
6 .6  

10.2 
13.8 
17.7 

39,8 
44.8 
67.3 

101.5 
144.2 

197.5 
197.5 
197.5 
197.5 
197.5 

197.5 
197.5 
197.5 

FROZEN INITIAL LIABILITY 

11.6 
0 
0 
0 
0 

Normal ! Past 
Cost ! Service 

i- 
6 . 3 3 % 1  $12.2 
6.33 i 12.2 
6.33 i 12.2 
6.33 i 12.2 
6.33 12,2 

6.33 12,2 
6.32 12.2 
6.33 12.2 
6.33 12.2 
6.33 12.2 

6.33 12.2 
6.33 0 
6.33 0 
6.33 0 
6.33 0 

6.33 0 
6,33 0 
6.33 0 

Pension 
Fund 

$ 3.4  
7.0 

10.7 
14.6 
18.6 

41.9 
47.2 
70.8 

106.9 
151.8 

207.9 
207.9 
207.9 
207.9 
207.9 

207.9 
207.9 
207.9 

NoTE.--Payrol}, contributions, and benefits payable as of the beginning of each year; plan termination liability and pension funds calculated as of the end of each year, prior to con- 
tributions and benefit payments then due for next year. Initial accrued liability under terminal funding, if any, is amortized by constant dollar amount over ten years and under unit 
credit and frozen initial liability is amortized by constant dollar amount over thirty years. 

* Benefits projected to normal retirement age by salary scale and prorated by years of service; net experience gains or losses are amortized by constant dollar amount over fifteen-year 
period following year ol occurrence. 

~' Entry age normal form with normal cost expressed as a constant percentage of salary. 
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the frozen initial liability method is shown as a percentage of payroll. 
Thus the pension fund (in millions of dollars) at the end of the fifth year 
may be derived from the pension fund at the end of the fourth year as 
follows: [($14.6 -k (0.0633 X $63.4) -b $12.2 - $13.0)] X 1.045 -- $18.6 
million. 

I t  can also be seen from Table 1 (using amounts in t h o u s a n d s  of dollars) 
that, after the thirtieth year, the difference between the normal cost under 
the unit credit method and that under the frozen initial liability method 
is equal to the discounted interest earnings on the difference between the 
accumulated funds: 

$ 4 , 4 6 4 . 7 -  (0.063310 X $63,436.7) -- $448.5 

-- (0.045/1.045)($207,871.7 -- $197,456.5). 

Table 2 is similar to Table 1 except that the covered group is assumed 
to have started thirty-five years ago with no pensioners and a 5 percent 
(linear) increase in the number of new entrants at age 30 for each of the 
first twenty years of its existence. Thus the number of active employees 
at the commencement of funding is 

64 

(L~ -- L~) -b ~ (0.05)(65 -- k ) l k  --  3,046.55 
k ~ 4 6  

and there are no pensioners. Under these conditions, the dollar amount 
of normal cost increases during the first twenty years and remains 
constant thereafter, whereas, since o~ for the 1971 GAM is 110, the 
pension payrolls, pension funds, and plan termination liability do not 
mature until (110 - 45) = 65 years (at the beginning of the first year, 
the active employee group below age 46 is already mature). Table 2 
thus illustrates the general rule that pensioner populations require much 
more time to attain full maturi ty than do active employee populations 
(see also Table 5). 

Table 3 is similar to Table 1, except that annual interest and salary 
scale under inflationary conditions are assumed to be 6 and 4 percent 
respectively. Thus there is an annual inflation element of (1.06/1.045) -- 
1, or 1.44 percent, in the interest rate and (1.04/1.025) - 1, or 1.46 
percent, in the salary scale. Inflation at these rates is assumed to have 
been occurring indefinitely into the past, so that a retired employee aged 
x at the beginning of the first year has an annual benefit of $8,306(1.025/ 
1.04) ~ and the initial pension payroll is less than in Table 1 (see also 
Table 4). In accordance with this general inflation, each year's new 
employees at age 30 have starting salaries 1.46 percent higher than the 
previous year's new employees. 



TABLE 2 

INITIALLY" IMMATURE POPULATION; 4~ PERCENT INTEREST, 2~ PERCENT SALARY SCALE (NONINFLATIONARY); 

NO EXPERIENCE GAINS OR LOSSES; FINAL SALARY PLAN; NO AUTOMATIC POSTRETIREMENT 
BENEFIT INCREASES; NO POPULATION GROWTH OR DECLINE 

(In $ Millions) 

YEAR 

1 . . .  
2 . . .  
3 . . .  
t . . .  
5 . . .  

1 0 . . .  
1 1 . . .  
1 5 . , .  
Z0 . . .  
~ 5 . . . '  

3 0 . .  
H . .  
~'0..  
t l . .  
'30. .  

75. , 
I00. 
125. 

PAYROLL 

$42.5 
44.5 
46.4 
48.3 
50.0 

57.1 
58,3 
61.7 
63.4 
63.4 

63.4 
63.4 
63.4 
63.4 
63.4 

63.4 
63,4 
63.4 

PLAn 
TEIIM INATION 

LIABILITY 

$ 34.5 
38.8 
43.5 
48.5 
53.8 

83.0 
89.2 

113.7 
140.7 
159.2 

170,1 
171.5 
177.8 
178.1 
178.8 

178.8 
178,8 
178.8 

PAY-AS- 
You-Go 
BENEFIT 
PAYMENTS 

$ 0  
0 .04  
0.1 
0.2 
0 .4  

1.7 
2~1 
3 ,8  
6,5 
9.1 

TERMINAL FUNDING 

Contri- Pension 
bution 

$0 
0.5 
0 ,9  
1.3 
1.8 

Fund 

$ o  
0~4 
1.2 
2.5 
4 .0  

16.3 
19.5 
34.1 
55.1 
73.7 

84.5 
86.0 
92.3 
92.6 
93.3 

Normal 
Cost 

$2.6 
2.8 
3.0 
3.1 
3.3 

3.9 
4.0 
4.3 
4.5 
4.5 

10,9 
11.2 
12.6 
12.7 
12.9 

4.0 
4.5 
6.3 
8,5 
8 9  

93.3 
93.3 
93.3 

4.5 
4 5  
4 .5  
4.5 
4.5 

UNIT CREDIT* 

Past  
Serv ice 

$2,5 
2,5 
2,5 
2,5 
2,5 

Pension 
Fund 

$ 5.4 
11.1 
17.2 
23.6 
30.3 

66.4 
73.9 

104.0 
138.6 
166.3 

188.7 
190.1 
196, 5 
196.7 
197.4 

FROZEN INITIAL LIABILITY 

Normal 
Cost 

6 .33% 
6.33 
6.33 
6.33 
6.33 

6.33 
6.33 
6.33 
6.33 
6.33 

Past 
Service 

$2.9 
2.9 
2.9 
2.9  
2.9 

2 .9  
2 .9  
2 .9  
2 .9  
2 .9  

Pension 
Fund 

13.0 
13.0 
13.0 

8 .9  
8 .9  
8 .9  
8 .9  
8.9 

8.9 
8.9 
8.9 

4,5 
4.5 
4.5 

2,5 
2.5 
2,5 
2.5 
2.5 

2,5 
0 
0 
0 
0 

197.5 
197.5 
197.5 

6.33 
6.33 
6.33 
6.33 
6,33 

6.33 
6.33 
6.33 

2.9 
0 
0 
0 
0 

- $ 
5,9 

12.1 
18.6 
25.5 
32.5 

70.6 
78.4 

109.7 
145.5 
174.8 

199.1 
200.5 
206.9 
207,1 
207,8 

207.9 
207.9 
207.9 

N~TE.--Payroll, contributions, and benefits payable as of the beginning of each year; plan termination liability and pension funds calculated as uf the end of each year, prior to cou- 
tributions and benefit payments then due fur next year. Initial accrued liability under terminal funding, if any, is amortized by constant dollar amount over ten years and under unit 
credit and frozen inltialliability is amortized by constant dollar amount over thirty years. 

* Benefits projected tu normal retirement age by salary scale and prorated by years of service; net experience gains or losses are amortized by constant dollar amount over flfteen-year 
period [onowing year of occurrence. 

~" Entry age normal form with normal cost expressed as a constant percentage of salary. 



TABLE 3 

INITIALLY MATURE POPULATION; 6 PERCENT INTEREST, 4 PERCENT SALARY SCALE (INFLATIONARY); 

NO EXPERIENCE GAINS OR LOSSES; FINAL SALARY PLAN; NO AUTOMATIC POSTRETIREMENT 

BENEFIT INCREASES; NO POPULATION GROWTH OR DECLINE 

(In $ Millions) 

~E~R 

0 . .  

5 . .  
0 . .  

5 . .  

0 . .  
1 . .  
0 ,  . 

1 . .  
0 . .  

5 . .  
00. 
25. 

PAYROLL 

$ 63A $148.6 
64.6 150.7 
65.3 153,0 
66.3 155.2 
67.2 157,5 

72.3 169.3 
73.4 171,8 
77.7 182,1 
83.6 195,8 
89.9 210.6 

96.7 226,4 
98.1 229.7 

111.8 261.8 
113.4 265.7 
129.3 302.8 

185.9 435.4 
267.3 626.0 
384.3 900.2 

PAY-AS- 
Yov-Go- 
BENEFIT 

PAYMENTS 

$11.4 
11.5 
11.7 
11.9 
12.0 

13.0 
13.1 
13.9 
15.0 
16.1 

TERMINAL FUNDING 

Contri- Pension 
bution Fund 

$17,9 $ 6.9 
18.0 
18,1 
18.3 
18.4 

19.0 
9.3 
9.9 

10.6 
11.4 

14,2 
21.9 
30.0 
38.5 

88.6 
89.9 
95.3 

102.5 
110.2 

118.5 
120.2 
137.0 
139.0 
158.5 

227.8 
327.7 
471.1 

Normal 
Cost 

$ 4 . 0  
4,1 
4.2 
4.3 
4.3 

4.6 
4.7 
5.0 
5,3 
5.7 

PLAN 

TERMINATION 
LIABILITY 

17.3 
17.6 
20.0 
20.3 
23.1 

33.3 
47.9 
68.8 

12.3 
12.5 
14.2 
14.4 
16.5 

23.7 
34.0 
48.9 

6.2 
6.3 
7.1 
7.2 
8.2 

11.9 
17.0 
24.5 

UNIT CREDIT* 

Past 
Service 

$11.7 
II .7 
11,7 
i i  .7 
I I .7  

11.7 
11.7 
11.7 
11.7 
11,7 

11.7 
0 
0 
0 
0 

Pension 
Fund 

4.7 
9.5 

14.5 
19.7 
25.1 

55.2 
62,0 
91.9 

137.1 
193.4 

264.2 
268.1 
305.5 
310.0 
353.3 

508.0 
730.5 

1,050.4 

FROZEN INITIAL LIABILITY ~" 

Normal 
Cost 

5.75% 
5.75 
5.75 
5.75 
5.75 

5.75 
5.75 
5.75 
5.75 
5.75 

5.75 
5.75 
5.75 
5.75 
5.75 

5.75 
5.75 
5.75 

Past Pension 
Service Fund 

812,4 $ 4.9 
12,4 10.0 
12.4 15,3 
12.4 20,8 
12.4 26.4 

12,4 58.2 
12,4 65.4 
12,4 96.9 
12.4 144.6 
12,4 204.0 

12.4 278.7 
0 282.7 
0 322.2 
0 326.9 
0 372.6 

0 535.8 
0 770.4 
0 1,107.8 

NOTE.--PayroII, contributions, and benefits payable as of the beginning of each year; plan termination liability and pension funds calculated as of the end of each year, prior to con- 
tributions and benefit payments then due for next year. Initial accrued liability under terminal funding, if any, is amortized by constant dollar amount over ten years and under unit 
credit and frozen initia/liability is amortized by constant dollar amount over thirty years. 

* Benefits projected to normal retirement age by salary Hale and prorated by years of service; net experience gains or tosses are amortized by constant dollar amount over fifteen-year 
period following year of occurrence. 

t Entry age normal form with normal cost expressed as a constant percentage of salary. 
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By applying equation (1) from [2] (which is a eurtate equivalent of the 
liability growth equation of [1] but is based on pension funds and total 
contributions rather than on normal costs and accrued liabilities), one 
may still obtain results from Table 3 similar to those obtained in the 
discussion of Table 1: 

C ~ - 1 - d F  l = B I + z ' A F  ~ ,  

Ca Jr- d F  2 = B 2 -+- ~,AF ~ ; 

( C  a - C a ) = d ( F '  - -  F 2) q- ,,(AF ~ -- AF ' ) .  (4) 

For a mature population, with supplemental liabilities fully funded and 
no experience gains or losses, and subject to constant inflationary forces 
such that both F'  and F 2 are only growing each year at the same rate of 
salary inflation (which is 1.46 percent in Table 3), 

( ca  - -  C ' )  = d ' ( F '  - F "z) , (5) 

where "interest" is net of salary inflation; that is, in Table 3, [1.06/ 
(1.04/1.025)] - 1, or 4.4712 percent (in the authors' notation, 6 -- ~, = 
In 1.044712 and a = 0 in Table 3). Then, comparing the unit credit and 
frozen initial liability methods (in thousands  of dollars) in the forty-first 
year in Table 3, 

$7,234.1 -- (0.057476 X $113,428.0) -- $714.7 

= (0.044712/1.044712)($322,229.6- $305,531.1). 

Table 4 is similar to Table 3, except that there are now automatic 
postretirement benefit increases of 1 percent per year (13 = In 1.01), in 
the authors' example of an exponential B(x) in [1]; this is equivalent to a 
postretirement interest rate of (1.06/1.01) -- I, or 4.95 percent, not 
5 percent). Since in Table 3 it is assumed that inflation of approximately 
1-~ percent per year has been occurring in all past years, such postretire- 
ment benefit increases are made retroactive (based on years since retire- 
ment) for the initial pensioner group to compensate partially for such 
inflation. Thus the initial pension payroll in Table 4 is greater than that 
in Table 3 but still not so large as that in Table 1. Further, for the 
calculation of plan termination liabilities, it is assumed that such auto- 
matic benefit increases will occur from the normal retirement age of 65 
only and that there will be no pension adjustments during the deferred 
period from date of termination of employment to age 65. Comparison of 
Table 4 with Table 3 demonstrates the dramatic impact on costs and 
liabilities that automatic pension adjustments as small as 1 percent per 
year can have. 



TABLE 4 

INITIALLY MATURE POPULATION; 6 PERCENT INTEREST, 4 PERCENT SALARY SCALE (INFLATIONARY); NO EXPERIENCE GAINS 
OR LOSSES; FINAL S A L A R Y  PLAN; 1 PERCENT PER YEAR AUTOMATIC POSTRETIREMENT BENEFIT INCREASES, 

ALSO RETROACTIVE; NO POPULATION GROWTH OR DECLINE 

(In $ Millions) 

YZAa PAYROLL 

I . . .  $ 63.4 
2 . . .  64.4 
3, . .  65.3 
~ . . .  66.3 
5, . . 6 7 . 2  

| 0 . .  
11.. 
15.. 
20.. 
25.. 

3 0 . . .  
31. 
10. 
t l .  
50. 

15. 
100. 
125. 

72.3 
73.4 
77.7 
83.6 
89.9 

96.7 
98.1 

111.8 
113.4 
129.3 

185.9 
267.3 
384,3 

PLAN 
TERMINATION 

LIABILITY 

$165.0 
167.4 
169.8 
172.3 
1748 

188.0 
190.8 
202.2 
217.4 
233.8 

251.4 
255.1 
290.7 
295.0 
336.2 

483.4 
695.1 
999.5 

PAY-AS- 
Yov-Go 
BENEFIT 

PAYMENTS 

$12.4 
12.6 
12.8 
13.0 
13.2 

14.2 
14.4 
15.2 
16.4 
17.6 

18.9 
19.2 
21.9 
2 2 . 2  

25.3 

36.4 
52.3 
75.3 

TERMINAL FUNDING 

Contri- Pension 
but|on Fund 

$19,9 $ 7.9 
20.0 16,3 
20.2 25.1 
20.3 34.4 
20.4 44.1 

21.1 101.4 
10.0 102.9 
10.6 109.0 
11.4 117.3 
12.3 126.1 

13.2 135.6 
13.4 137.6 
15.3 156.8 
15.5 159.1 
17,7 181.3 

25.4 260.7 
36.5 374.9 
52.5 539.1 

Normal 
Cost 

$ 4 . 3  
4.4 
4.5 
4.5 
4.6 

4,9 
5.0 
5.3 
5.7 
6.2 

6.6 
6.7 
7.7 
7.8 
8.8 

12.7 
18,3 
26.3 

UNIT CaEDIT* 

Past 
Service 

$12.9 
12,9 
12.9 
12.9 
12.9 

~12,9 
12,9 
12,9 
12,9 
12,9 

12,9 
0 
0 
0 
0 

Pension 
Fund 

$ 5.2 
10.5 
16.0 
21.7 
27.7 

61,0 
68.5 

101.6 
151.5 
213.7 

292.0 
296.2 
337.6 
342.6 
390.4 

561.4 
807.3 

1,160.8 

FROZEN INITIAL LtABILII"Y ¢ 

Normal  Past 
Cost Service 

6.17% $13.6 
6.17 13.6 
6.17 13.6 
6.17 13.6 
6.17 13.6 

6.17 13.6 
6.17 13.6 
6.17 13.6 
6.17 13.6 
6.17 13.6 

6.17 13.6 
6.17 0 
6.17 0 
6.17 0 
6.17 0 

6.17 0 
6.17 0 
6.17 0 

PeP, SinP, 
Fund 

5.4 
11.0 
16.9 
22.9 
29.2 

64.2 
72.1 

107.0 
159.6 
225.1 

307.5 
312.0 
355.5 
360.8 
411.1 

591.2 
850.1 

1,222.4 

Norm--PayroU contributions and benefits payable as of the beginning of each year; plan termination liability and pension funds calculated as of the end of each year, prior to con- 
tributions and benefit payments'then due for next year. Initial accrued liability under terminal funding if any, is amortized by constant dollar amount over ten years and under unit 
credit and frozen initialliability is amortized by constant dollar amount over th rty years. 

* Benefits projected to normal retirement age by salary scale and prorated by years of service; net experience gains or losses are amortized by constant dollar amount over fifteen-year 
period following year of occurrence. 

~; Entry age normal form with normal cost expressed as a constant percentage of salary. 
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Table 5 is similar to Table 4, except that the number of new employees 
at age 30 each year is 2 percent greater than the number for the previous 
year. This differs from the authors' assumption as to population growth, 
which is based on a mature population. Table 5 thus illustrates the 
build up to such mature state, which requires (65 - 30) = 35 )'ears for 
the active employee group and (110 -- 30) = 80 years for all employees 
and pensioners, assuming no net eligible "immigration" (e.g., transfers) 
at the older ages. After thirty-five years the total active emplo)'ee 
payroll is growing by' (1.02)(1.04/1.025) -- I, or 3.49 percent per year 
(in the authors' notation, e" -- 1), and after (110 -- 30) = 80 years the 
pension payroll is growing by the same amount (automatic postretire- 
ment benefit increases, which were made retroactive for the initial 
pensioner group, affect only existing pensions, not new pensions). At the 
beginning of the one hundred and twenty-fifth )'ear, the initial group of 
4,091.57 active employees has grown to 35,045.66 and the initial group 
of 1,561.20 pensioners has grown to 7,613.37. 

Table 6 is based on the immature population of Table 2 and the 
inflationary, conditions of Table 3. However, during 3"ears 16-25, when 
supplemental liabilities have been only partially funded under the unit 
credit and frozen initial liability funding methods, a period of severe 
inflation is assumed to occur, with seven percent interest and seven and 
one-half percent total salary increases, and with experience reverting to 
the actuarial assumptions both before and after this period. Under these 
conditions, during each of the ten years 16-25 there are net experience 
losses under both the unit credit and the frozen initial liability funding 
methods but net experience gains under the terminal funding method, 
since the liabilities under that method are independent of the salary 
experience of active employees. (Later on, of course, higher contributions 
are required under the terminal funding method when the employees 
with the higher earnings ultimately retire.) Table 6 demonstrates the 
extreme asymptoticity of the amortization of experience gains and losses 
under a frozen initial liability method; even one hundred )'ears after the 
occurrence of the experience, the normal cost percentage is still signifi- 
cantly greater than its original entry-age level. Further, the more rapid 
fifteen-year amortization of the net experience losses under the unit 
credit method produces, during years 38-39, a greater pension fund under 
the unit credit method than under the frozen initial liability method. 

Table 7 is similar to Table 6, except that the pension plan now has a 
career average salary benefit formula of 1 percent of each year's earnings 
(salary increases are assumed to occur at the beginning of each year). As 
in Table 6, there are net experience gains under the terminal funding 



TABLE 5 

INITIALLY MATURE POPULATION; 6 PERCENT INTEREST, 4 PERCENT SALARY SCALE (INFLATIONARY); NO EXPERIENCE GAINS 

OR LOSSES; FINAL SALARY PLAN; 1 PERCENT PER YEAR AUTOMATIC POSTRETIREMENT BENEFIT INCREASES, 

ALSO RETROACTIVE; 2 PERCENT PER YEAR :INCREASE IN NEW ENTRANTS AT AGE 30 

(In $ Millions) 

YEAR 

1 . . . .  
. . . .  
. . . .  

1 1 . . .  
1 5 . . .  
~ 0 . . .  
1 5 . . .  

O.. 
1 . .  
0 . .  
I , .  
0 . .  

5 . .  
00. 
25. 

PAYROLL 

$ 63.4  
64.4 
65.4 
66.4 
67.5 

73.7 
75.1 
81,6 
91 .6  

104.5 

121.2 
125.1 
169.4 
175.3 
238.8 

563.4 
1,329.1 
3 ,135 .4  

PLAN 
TERMINA TION 

LIABILITY 

165.0 
167.4 
169.8 
172.3 
174.9 

188.1 
190.9 
202.6 
218.7 
237.3 

259.9 
265.1 
330.1 
339.8 
451.3 

1,059.4 
2 ,499.2  
5 ,895.8  

PAY-AS- 
You -C¢) 
BENEFIT 

PAYMENTS 

$ 12.4 
12.6 
12.8 
13.0 
13.2 

14.2 
14.4 
15.2 
16.4 
17.6 

18.9 
19.2 
22.2 
22.7 
28.7 

66.2 
156.3 
368.7 

TERMINAL FUNDING 

Normal 
Cost 

$ 4.3 
4 .4  
4.5 
4.5 
4 .6  

5 .0  
5.1 
5.5 
6.1 
6.9 

7.9 
8.2 

11.1 
11.5 
15.6 

36.8 
86.8 

204.8 

UNIT CREDIT* 

Past 
Service 

$12.9 
12.9 
12.9 
12.9 
12.9 

12.9 
12.9 
12.9 
12.9 
12.9 

Pension 
Fund 

$ 5,2 
10,5 
16,0 
21,8 
27,7 

61.3 
68.8 

102.7 
154.8 
221.7 

309.0 
315.8 
399.1 
411,1 
548.4 

1 ,288.6  
3 ,039.8  
7,171.1 

FROZEN INITIAL LIABILITYt 

Contri- Pension 
bution Fund 

$ 19.9 $ 7.9 
20.0 16.3 
20.2 25.1 
20.3 34 .4  
20.4 44.1 

21.1 101.4 
10.0 102.9 
10.6 109.0 
11.4 117.3 
12.3 126.1 

13.2 135.6 
13.4 137.6 
16.5 159.7 
17.1 163.3 
23.3 210.9 

55.0 492.3 
129.7 1,161.5 
306.1 2 ,739.9  

12.9 
0 
0 
0 
0 

Normal Past 
Cost Service 

6 . 1 7 %  $13.6 
6.17 13.6 
6.17 13.6 
6.17 13.6 
6.17 13.6 

6.17 13.6 
6.17 13.6 
6.17 13.6 
6.17 13.6 
6.17 13.6 

6.17 13.6 
6.17 0 
6.17 0 
6,17 0 
6,17 0 

6.17 0 
6.17 0 
6.17 ! 0 

Pension 
Fund 

$ 5.4 
11.0 
16.9 
22.9 
29.2 

64.6 
72.6 

108.4 
163.8 
235.0 

328.1 
335.6 
426.0 
439.0 
586.4 

1,378.1 
3 ,251 .0  
7 ,669.4  

NoTr..--Payroll, contributions, and benefits payable as of the beginning of each year; plan termination liability and pension funds calculated as of the end of each year, prior to con- 
tributions and benefit payments then due for next year, Initial accrued liability under terminal funding, if any, is amortized by constant dollar amount over ten years and under unit 
credit and frozen initlal llability is amortized by constant dollar amount over thirty years. 

* Benefits projected to normal retirement age by salary scale and prorated by years of service; net experience gains or losses are amortized by constant dollar amount over fifteen-year 
period following year of occurrence. 

Entry age normal form with normal cost expressed as a constant percentage oI salary. 



TABLE 6 

INITIALLY IMMATURE POPULATION; 6 PERCENT INTEREST, 4 PERCENT SALARY SCALE (INFLATIONARY); 7 PERCENT INTEREST, 
7½ PERCENT TOTAL SALARY INCREASES DURING YEARS 16-25; FINAL SALARY PLAN; NO AUTOMATIC POSTRETIREMENT 

BENEFIT INCREASES; NO POPULATION GROWTH OR DECLINE 

(In $ Millions) 

YEAR 

1 . . . .  
2 . . . .  
3 . . . .  
4 . . . .  
5 . . . .  

1 0 . . .  
11. .  
15. .  
20 . .  
25 . .  

3 0 . .  
3 1 . .  
4 0 . .  
4 1 . .  
50 . .  

75. 
100 
125 

PAYROLL 

$ 42.5 
45.2 
47.8 
50.4 
53.0 

65.1 
67.4 
75.6 
95.4 

121.1 

134,6 
136.6 
155.7 
157.9 
180.0 

258.8 
372,2 
535.1 

PLAN 
TERMINATION 

LIABILITY 

26.7 
30.8 
35.4 
40.4 
45.8 

78.1 
8 5 5  

116.6 
173.7 
243.6 

289.5 
297.6 
360.2 
366.4 
421.3 

606.2 
871.6 

1,253.3 

PAY-AS 
You-G() 
BENEFIT 
PAYMENTS 

$ o  
0.04 
0.1 
0 .3  
0 .4  

1.9 
2.3 
4.5 
8.3 

13.5 

18.7 
19.7 
26.6 
27.2 
32.1 

TERMINAL ['UND[NG 

Contri- Pension 
butioo Fund 

$ 0  
0 ,4  
0 .8  
1.3 
1.7 

4.1 
4,7 
6 .9  

11.4 
14.9 

$ 0 
0 .4  
1.2 
2.3 
3,8 

16.4 
19,8 
36.4 
67.9 

109.5 

142.7 
148.2 
186.4 
190.1 
220.3 

317.2 
456.2 
655.9 

Normal 
Cost 

$ 2 . 4  
2.6 
2.8 
2.9 
3.1 

4 .0  
4.2 
4.8 
6 . l  
7~7 

8.6 
8.7 
9 .9  

10.1 
11.5 

46.3 
66.6 
95.8 

16,5 
16.7 
19.7 
20.1 
22.9 

33.0 
47.4 
68.2 

16.5 
23.7 
34.1 

UNIT CItED[T* 

Pas t  
Service 

$2.6 
2.6 
2.6 
2 .6  
2.6 

2.6 
2.6 
2 .6  
3 .7  
5.4 

Pension 
Fund 

5.4 
11.2 
17.4 
24.2 
31.3 

72.3 
81.3 

119.4 
180.4 
255.5 

326.8 
338.1 
421.0 
428.1 
491.6 

707.4 
1,017.1 
1,452.5 

FROZEN INITIAL LIABILITYi" 

Normal Past 
Cost Service 

5 .75% $3,1 
5.75 3.1 
5.75 3.1 

5.8 
3.1 
0 .4  
0 
0 

5,75 3.1 
5.75 3.1 

5.75 3,1 
5.75 3.1 
5.75 3.1 
6.77 3.1 
7.65 3.1 

7.50 3.1 
7.43 0 
6.93 0 
6.89 0 
6.55 0 

6.05 0 
5.86 0 
5.79 0 

Pension 
Fund 

5.9 
12.2 
19.0 
26,2 
33.8 

77,1 
86.7 

126.5 
189.4 
264.7 

333,2 
343.0 
421.5 
429,5 
500,6 

736,2 
1,067.3 
1,539.5 

NoTE.--Payroll, contributions, and benefits payable as of the beginnin~ of each year; plan termination liability and pension funds calculated as of the end of each year, prior to con- 
tributions and benefit payments then due for next year. Initial accrued hability under terminal funding, if any, is amortized by constant dollar amount over ten years and under unit 
credit and frozen initia|liability is amortized by constant dollar amount over thirty years. 

* Benefits projected to normal retirement age by salary scale and prorated by years of service; net experience gains or losses are amortized by constant dollar amount over fifteen-year 
period following year of occurrence. 

1" Entry age normal form ~'ith normal cost expressed as a constant percentage of salary. 



TABLE 7 

INITIALLY IMMATURE POPULATION; 6 PERCENT INTEREST, 4 PERCENT SALARY SCALE (INFLATIONARY); 7 PERCENT INTEREST, 
7~ PERCENT TOTAL SALARY iNCREASES DURING YEARS 16-25; CAREER AVERAGE SALARY PLAN; NO AUTOMATIC 

POSTRETIREMENT BENEFIT INCREASES; NO POPULATION GROWTH OR DECLINE 

(In $ Millions) 

YEAR 

Z,, 
3. .  
i.. 
5 . .  

10.  , 
1 l , ,  
15.,  
20..  
25..  

30. 
31. 
40, 
41. 
50. 

100. 
125. 

PAYROLL 

$ 42.5 
45.2 
47.8 
50.4 
53.0 

65.1 
67.4 
75.6 
95.4 

121,I 

134.6 
136.6 
155.7 
157.9 
180.0 

258.8 
372.2 
535.1 

PLAN 
TERMINATION 

LIABILITY 

$ 17.3 
19.7 
22.3 
25.2 
28.3 

46.5 
50.6 
67,7 
90.4 

114.2 

138.4 
143.1 
183.9 
188.3 
227.9 

341.7 
491.7 
707.0 

PAY-AS- 
You-Go 
BENEFIT 

PAYMENTS 

$ o  
0.02 
0.07 
0.1 
0.2 

1.0 
1.3 
2.4 
4,3 
6.4 

8.4 
8.8 

12.2 
12.5 
15.7 

TERMINAL FUNDING 

Contri- Pension 
bution Fund 

$o  
0.2 
0 .4  
0.7 
0.9 

2.2 
2.5 
3.7 
5,4 
6,2 

24.7 
35.5 
51.1 

7.2 
7.4 
9.6 
9.8 

11.9 

17.6 
25.3 
36.3 

0 
0.2 
0 .6  
1.2 
2.0 

8.7 
10.6 
19.4 
34.7 
51,3 

63.5 
65.8 
85.7 
88.0 

108.9 

169.0 
243,3 
349.8 

Normal 
Cost 

$ 1.3 
1.4 
1.5 
1.6 
1,7 

2.1 
2.2 
2.5 
3.1 
3.7 

4.2 
4.3 
5.1 
5.2 
6.1 

8.8 
12.7 
18.2 

UNIT CREDIT* 

Past 
Service 

$1.41 
1,41 
1.41 
1.41 
1.41 

1.41 
1.41 
1,41 
1.44 
1.43 

Pension 
Fund 

$ 2.9  
6,0 
9.3 

12,9 
16.7 

38,5 
43,4 
63,7 
94.5 

128,5 

159,2 
164,0 
205.8 
210,5 
252,5 

377,0 
542,4 
779,9 

Normal 
Cost 

3.065% 
3.065 
3. 065 
3.065 
3.065 

3.065 
3.065 
3.065 
3.01 
2.93 

2,94 
2.94 
2.98 
2.98 
3.01 

3.04 
3.057 
3. 062 

FROZEN INITIAL LIABILITY~ 

Past 
Service 

$1.6 
1,6 
1.6 
1.6 
1,6 

1,6 
1.6 
1,6 
1.6 
1,6 

1.42 
0.01 

(0.01) 
0 
0 

1.6 
0 
0 
0 
0 

Pension 
Fund 

$ 3.1 
6.5 

10.1 
14.0 
18.0 

41.1 
46.2 
67.4 
99.8 

136.2 

169.6 
174.7 
219.2 
224.0 
268.1 

398.3 
572.4 
822.8 

Nozr.--Payroll, contributions, and benefits payable as of the beginning of each year; plan termination liability and pension funds calculated as of the end of each year, prior to con- 
tributions and benefit payments then due for next year. Initial accrued habi]ity under terminal funding, if any, is amortized by constant dollar amount over ten years and under unit 
credit and frozen initialliability is amortized by constant dollar amount over thirty years. 

* Benefits projected to normal retirement age by salary scale and prorated by years ol service; net experience gains or losses are amortized by constant dollar amount over fifteen-year 
period following year of occurrence. 

'f Entry age normal form with normal cost expressed as a constant percentage of salary. 
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method. However, since benefits that accrued prior to plan years 16-25 
are now not affected by the higher salary increases during those years, 
whereas all of the plan's assets benefit from the increased investment 
earnings, there are now net experience gains during all years under the 
frozen initial liability method. Further, since the unit credit method has 
smaller asset accumulations and its costs are prorated into constant 
dollar amounts rather than being spread over future salary increases as 
under the frozen initial liability method, net losses are experienced during 
years 16-21, followed by net gains during years 22-26, when more assets 
have accumulated to take advantage of the higher interest rates. Again, 
as in Table 6, there is the extreme asymptoticity of the amortization of 
experience under the frozen initial liability method, with the normal cost 
percentage still 0.1 percent less ( I -  3.062/3.065) than its original 
entry-age level even one hundred years after the experience period. 

III.  Summary; Future Projects 

The tables in the preceding section, and the comments by the authors 
in their previous paper [1], including their review of the discussions, 
indicate the need for further work on the effects of (1) immature popula- 
tions; (2) alternate benefit formulas, including those integrated with 
various social insurance benefits or contributions; and, especially, (3) ex- 
perience gains and losses. 
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(AUTHORS' REVIEW OF DISCUSSION) 

NEWTON L. BOWERS, JR., JAMES C. HICKMAN, AND CECIL J. NESBITT 

Mr. Trowbridge perceives correctly that there are several lines of 
development that may be followed, starting with the model for a dynamic 
pension environment outlined in our first joint paper on this topic. The 
model was the basis for a third paper by Cecil J. Nesbitt, one of our team 
of authors, "Exploration of Pension Funding in Case of Exact Vesting," 
which appeared in the 1978.2 issue of ARCH. 
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Mr. Trowbridge has also caught some of our fascination with relating 
concepts from pension funding to ideas in other branches of actuarial 
mathematics. Considered individually, each of these connections is of 
little importance. However, together they help to build a needed unity 
in actuarial mathematics. The analogy between pension purchase density 
functions and accrual functions on the one hand and probability density 
functions and cumulative distribution functions on the other is clear. 
The average age of normal cost payment turns out to be related closely 
to the cumulant generating function of probability and statistics. How- 
ever, the average age of normal cost payment provides a bridge that 
permits pension funding ideas to be stated in terms of compound interest 
functions. 

In addition to thanking Mr. Trowbridge for his discussion, we want to 
reinforce his statements about the implications when 6 - r becomes 
negative, particularly if inflation is the cause. However, if 0 = ~ -- r is 
negative because of the population growth rate, advance funding still 
may be in order. In any case, the causes for the negative value of 0 
should be distinguished and taken into account appropriately in the 
funding arrangements. 

We are most grateful to Mr. Pennisten for his seven well-worked-out, 
ingenious, and illuminating illustrations. They are a very useful con- 
tribution to the development and understanding of the theory. Since our 
papers are on a completely continuous basis, the illustrator either must 
calculate the continuous functions by approximate integration or must 
visualize the corresponding discrete theory and then compute the discrete 
functions in the usual manner. Mr. Pennisten has made the second choice, 
and his discussion gives various insights into the necessary modifications 
of the continuous theory. At some stage it may be useful to have an 
explicit development of the main relations for the discrete theory. 

In our paper, we generally have looked at the ratios of functions, while 
Mr. Pennisten has provided additional insight by looking at differences 
between functions. From his tables it can be observed that the ratio of 
unit credit normal cost to terminal funding contribution tends to 0.51 
for the first two tables and to 0.50 in the remaining tables, except in 
Table 5, where the limit is 0.67. The ultimate ratios of the frozen initial 
liability normal cost to terminal funding contribution are 0.45 in all 
except Table 5, where the ratio is 0.63. The ultimate ratios of terminal 
funding contribution to pay-as-you-go benefit payments vary from 0.68 
to 0.71, except for 0.83 in the case of Table 5. 

These variations in the ultimate ratios can be explained in terms of the 
net excess of the interest rate over the total growth rate (corresponding 
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to 0 = ~ -- r of the paper). For Tables 1 and 2 this excess is 4.5 percent; 
for all other tables except Table 5 it is 4.4712 percent (see Mr. Pennisten's 
remarks on Table 3); and for Table 5 it is (0.06 - 0.0349)/1.0349, or 
2.43 percent. 

Many of these ratios are attained within the active service period of 
thirty-five years, but those involving the pension roll may take twice 
as long, and for the frozen initial liability method the period may be 
well over one hundred years. This illustrates again Mr. Pennisten's 
observations that pensioner populations require much more time to 
attain full maturity than do active employee populations, and that the 
frozen initial liability method (which is of the moving amortization type) 
can be very gradual. 


