
STOCHASTIC CONTROL THEORY FOR OPTIMAL INVESTMENT  

 

Maritina T. Castillo  

School of Actuarial Studies  

Faculty of Commerce and Economics  

University of New South Wales  

E-mail: tina.castillo@unsw.edu.au 

  

and  

 

Gilbert Parrocha  

Department of Mathematics  

University of the Philippines  

E-mail: gilbert@math.upd.edu.ph  

 

 

 

 

 

 

 

 

 



ABSTRACT  
 
 
 
This paper illustrates the application of stochastic control methods in managing the risk 

associated with an insurance business. We present the Hamilton-Jacobi-Bellman (HJB) equation 

and demonstrate its use in finding the optimal investment strategy based on some given criteria. 

Here we consider an insurance business with a fixed amount available for investment in a 

portfolio consisting of one non-risky asset and one risky asset. The object of the resulting control 

problem is to determine the investment strategy that minimizes infinite time ruin probability. The 

existence of a solution to the resulting HJB equation is shown. The relevant verification lemma is 

not presented in this paper and a numerical algorithm is given instead. Examples applied to 

exponential claims are also presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 
 

 
 
Business surplus is often described in ruin theory as follows:  

 Surplus Initial capital Income Outflow= + − .  

The outflow process is determined by the claims incurred and the income process by the total 

premiums collected and the accrued investment income. Quantities of interest are the ruin 

probabilities associated with an insurance business with current surplus u :  

 ( ) Pr{ ( ) 0 for some 0}u U t tψ = < ≥  (1) 

and  

 ( ) Pr{ ( ) 0 for some }u s U t t sψ , = < ≤  

where ( )U t  is the amount of business surplus at time t . One would like to minimize these ruin 

probabilities subject to the dynamics of the surplus process. In practice, for example, an actuary 

is often tasked to make decisions regarding new or existing insurance business. Strategies that 

minimize the above ruin probabilities can be considered when business policies are determined. 

 

Recently, a lot of interest is generated by the use of mathematical tools from stochastic control 

theory in addressing the problem of minimizing the infinite time ruin probability defined in (1). 

Investment, new business, reinsurance and dividend payment are only a few of the many control 

variables that are adjusted dynamically in an insurance business. By means of a standard control 

tool such as the Hamilton-Jacobi-Bellman equation, optimal strategies can be characterized and 

computed, often numerically, and the smoothness of the value function can be shown. Recent 

applications of stochastic control tools to ruin theory include the optimization of reinsurance 

programs (see [6], [7], [8] and [9]), the issuance of new business (see [5]), optimal investment 



strategies (see [1], [3] and [4]), and simultaneous dynamic control of proportional reinsurance 

and investment (see [10]). 

 

In this paper we illustrate how stochastic control tools may be applied in computing the 

investment strategy that would minimize the probability of ruin for a given insurance business. 

We consider the situation where the insurance business has current surplus u  and a fixed amount 

a  available for investment at any time 0t ≥ .  The amount a  is assumed to be independent of the 

business surplus. An investment portfolio consisting of one risky asset and one non-risky asset is 

available at each time 0t ≥  where a proportion ( ) [0 1]b t ∈ ,  of a  is invested in the risky asset 

with the remaining part to be invested in the non-risky asset. This changes the dynamics of the 

business surplus. The investment strategy chosen is the proportion ( )b t  of the fixed amount a  to 

be invested in the risky asset to minimize the infinite time ruin probability. The strategy ( )b t  is 

chosen predictable, i.e. it depends on all information available before time t . 

 

DYNAMICS OF THE BUSINESS SURPLUS 
 

We model the surplus process of an insurance business whose risk { ( ) 0}R t t, ≥  follows a 

Cramér-Lundberg process with the claims process { ( ) 0}S t t, ≥  having intensity λ  and claim 

amount X  with distribution ( )F x  and density ( )f x . Premiums are collected at a rate c  per unit 

of time. Thus, the risk process is determined by  

 ( ) ( ) (0)dR t cdt dS t R r= − , = .   

 

The company is about to decide on an investment strategy for this business that aims to minimize 



the infinite time ruin probability. The investment portfolio consists of a non-risky asset whose 

value ( )B t  follows 

 ( ) 0
( )

dB t dt
B t

ρ ρ= , ≥ ,   

and a risky asset whose price ( )Z t  follows a geometric Brownian motion 

 ( ) ( ) 0 0
( )

dZ t dt dW t
Z t

µ σ µ σ= + , ≥ , > .   

The insurance business has the following investment policy:  

• A fixed amount a , independent of the surplus, will be invested at any time t .  

• A fraction ( ) [0 1]b t ∈ ,  of a  will be invested at time t  in the risky asset, the 

remaining part in the non-risky asset.  

• The fraction ( )b t  may change through time depending on which combination of 

risky and non-risky asset minimizes the infinite time ruin probability. 

 

The investment return process { ( ) 0}I t t, ≥  from the amount a  is defined by  

 ( ) [1 ( )] ( ) ( ) ( )dI t a b t dt ab t dt ab t dW tρ µ σ= − + + ,  (2) 

and the surplus process { ( ) 0}U t t, ≥  of this business is seen to be  

 ( ) ( ) [1 ( )] ( ) ( ) ( )dU t cdt dS t a b t dt ab t dt ab t dW tρ µ σ= − + − + +   

where (0)U u= .  Clearly, ( )U t  depends on the composition of the investment portfolio in which 

the fixed amount a  is invested and is thus influenced by the investment strategy ( )b t .  

 

Hence, the dynamics of the surplus process can be further described as follows:  

• A claim of amount X  occurs with probability ( )dt o dtλ + .  



• No claim occurs with probability 1 ( )dt o dtλ− + .  

• An amount  ( )cdt o dt+   is received as a premium income.  

• An amount [1 ( )] ( )a b t dt o dtρ− +  is received as an investment income from the 

non-risky asset.  

• An amount ( ) ( ) ( ) ( )ab t dt ab t dW t o dtµ σ+ +  is received as an investment income 

from the risky asset. 

 

THE HAMILTON-JACOBI-BELLMAN EQUATION OF THE CONTROL PROBLEM 
  

The control problem can be stated as follows: 
 
 

 
( ) [0 1]

minimize ( ) { ( ) 0 for some 0}
b t

u Pr U t tψ
∈ ,

= < ≥
 

 
subject to 

  
( ) ( ) ( ) 0

(0)
dU t dR t dI t t
U u

= + , ≥
= .

  

 
The solution to the control problem is found via the Hamilton-Jacobi-Bellman equation of the 

control problem. The solution to this equation determines the optimal proportion, ( )b t∗ .  

 

We now define the probability of non-ruin for a business with current surplus u  to be 

( ) 1 ( )u uδ ψ=: − .  We further consider two distinct cases over the time interval [0 ]dt, : that there 

is no claim and that there is exactly one claim during the period. If there is no claim, the surplus 

of the business grows to ( )u cdt dI t+ + , where ( )dI t  is given in (2). If there is a claim, the 

surplus of the company reduces to ( )u dI t X+ − , where X  is the random claim size. Here we 



assume that no premium is received during the period [0 ]dt, .  

 

For an arbitrary strategy b at the current surplus level u , the probability of non-ruin ( )uδ  may 

now be determined. Taking expectations, 

 ( ) ( )( ) [ ] (1 ) ( )u dtE u X dt u cdt dI tδ λ δ λ δ= − + − + + .  

It then follows that  

 ( ) ( )2 2 21( ) ( ) ( ) { [1 ] } ( )
2

u u a b u c a b ab u E u X u dtδ δ σ δ ρ µ δ λ δ δ′′ ′⎡ ⎤⎡ ⎤= + + + − + + − − .⎡ ⎤⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
 (3) 

where it is seen that the proportion invested in the risky asset depends only on the current surplus 

level u . Here we denote the proportion simply as b .  Equation (3) leads to  

 [ ] [ ]2 2 210 sup ( ) (1 ) ( ) ( ) ( )
2b

a b u c a b ab u E u X uσ δ ρ µ δ λ δ δ′′ ′⎧ ⎫= + + − + + − − ,⎨ ⎬
⎩ ⎭

 (4) 

where we have the natural conditions ( ) 0 ( ) 0u uδ δ′ ′′≥ , ≤  for 0 ( ) 0u uδ> , =  for 0u <   and  

( ) 1δ ∞ = . Furthermore, we assume that ( )uδ  is continuous on [0 ),∞  and twice continuously 

differentiable on (0 ),∞ .  Equation (4) is called the Hamilton-Jacobi-Bellman equation of the 

control problem. 

  

THE OPTIMAL INVESTMENT STRATEGY 
 

Note that in  (4), the quantity inside the braces is maximized by  

 2

( ) ( )
( )

ub
a u
ρ µ δ

σ δ

′

′′

−
=%  (5) 

and is seen to be a function of the current surplus only. Substituting (5) in (4) results in the 

differential equation  



 [ ]
( ) 22

2

( )1( ) ( ) ( ) ( )
2 ( )

u
E u X u c a u

u
δρ µ

λ δ δ µ δ
σ δ

′
′

′′

⎡ ⎤− ⎣ ⎦− − = − + .   

The solution ( )uδ  to this equation determines the proportion for the optimal investment strategy.  

 

If [0 1]b ∈ ,%  then it can be shown that this is the optimal proportion when the current surplus is u . 

However, note that the value of b%  is not necessarily inside the indicated interval. For values of 

b%  outside the interval, it will be necessary to consider the dynamics at the endpoints. Observe 

that if b%  is less than 0, then ρ µ>  and the non-risky asset is more advantageous than the risky 

asset. In this case, we do not invest in the risky asset. A different scenario is achieved when b%  is 

greater than 1. This time, the risky asset is more advantageous than the non-risky asset and the 

optimal strategy therefore is to invest the full amount a  on the risky asset. Since  (4) is quadratic 

in b , the supremum value of the quantity inside the braces is therefore attained when  0b = ,  

1b = ,  or  b b= % .  More specifically, the optimal strategy *b  is determined as follows: 

  
  

 
0 if 0

if 0 1
1 if 1

b
b b b

b

∗

⎧ <
⎪= ≤ ≤⎨
⎪ > .⎩

%

% %

%
 

As a special case, if the current surplus is zero we do not invest in the risky asset. This is evident 

from the fact that if the current surplus is 0  and most of the amount a  is invested in the risky 

asset then there will be greater chance of shortage of surplus to pay out possible early claims. 

Since the investment income can be negative, the premium income alone, accumulated for a 

short period of time, may not be sufficient to counter claims. It will follow from (4) that  



 
[ ]0 ( ) (0) (0 ) (0)

( ) (0) (0)

c a E X

c a

ρ δ λ δ δ

ρ δ λδ

′

′

= + + − −

= + − ,
 

and 

 (0)(0)
c a
λδδ

ρ
′ = .

+
 (6) 

 

THE OPTIMAL NON-RUIN PROBABILITIES 
 

We now determine the non-ruin probabilities  ( )uδ  for cases 0b∗ = ,  1b∗ = , and  b b∗ = % , 

denoted by 0( )uδ ,  1( )uδ , and ( )b uδ % , respectively. 

Case 1: 0b∗ =   
 
The classical risk process for insurance business with premium rate c aρ+  results if  0b∗ = . 

Here it follows that  

 ( ) ( ) ( ) (0)dU t c a dt dS t U uρ= + − , = .   

and the HJB equation  simplifies to 

 [ ]0 0 00 ( ) ( ) ( ) ( )c a u E u X uρ δ λ δ δ′= + + − − .  

When solved for  0( )uδ ′ ,  the preceding equation is transformed to the form  

 [ ]0 0 0( ) ( ) ( )u E u u X
c a

λδ δ δ
ρ

′ = − − .
+

 (7) 

An explicit solution for the above differential equation has been derived for an assumed 

distribution of X  (see [2]). Generally, however, the differential equation is solved numerically. 

 

 



Case 2: 1b∗ =   
 
A similar procedure is used to derive an expression for 1( )uδ ′ . If b  is replaced by 1, the HJB 

equation  simplifies to 

 2 2
1 1 1 1

10 ( ) ( ) ( ) [ ( ) ( )]
2

a u c a u E u X uσ δ µ δ λ δ δ′′ ′= + + + − − .  

Equivalently,  

 { }1 1 1 12 2

2( ) [ ( ) ( )] ( ) ( )u E u u X c a u
a

δ λ δ δ µ δ
σ

′′ ′= − − − + .  (8) 

To simplify  (8), we integrate both sides of the equation from 1u  to u , where 1u  is taken to be 

the least capital such that  1b =% . The following differential equation results: 

 { }
1

1 1 1 1 1 12 2

2( ) [ ( ) ( )] ( ) ( ) ( )
u

u
u E t t X c a t dt u

a
δ λ δ δ µ δ δ

σ
′ ′ ′= − − − + + .∫  (9) 

 

Case 3: b b∗ = %   
 
Assuming that  b b= %   where  b%   is given in  (5), equation (4) can be equivalently written as  

 { }
2

2 2

( ) ( )
( ) 2 [ ( ) ( )] ( ) ( )

b

b b b b

u
u E u u X c a u

δ ρ µ
δ σ λ δ δ ρ δ

′′

′ ′

−
− = .

− − − +
%

% % % %

 (10) 

Integrating from 0  to u ,  

 
2

2 0

1 ( ) 1 1
( ) 2 [ ( ) ( )] ( ) ( ) (0)

u

b b b b b

dt
u E t t X c a t

ρ µ
δ σ λ δ δ ρ δ δ′ ′ ′

−
= + .

− − − +∫
% % % % %

 

Solving for  ( )b uδ ′
% ,  the following differential equation results  

 
1

2

2 0

( ) 1 1( )
2 [ ( ) ( )] ( ) ( ) (0)

u

b
b b b b

u dt
E t t X c a t

ρ µδ
σ λ δ δ ρ δ δ

−

′
′ ′

⎧ ⎫−⎪ ⎪= + .⎨ ⎬− − − +⎪ ⎪⎩ ⎭
∫%

% % % %

 (17) 



 

If µ ρ> ,  then 0b > .%  As u  approaches 0, b%  approaches 0. Since (0) 0bδ ′ >%   is finite, it follows 

that  

 (0 )bδ ′′ + = −∞.%  

The left hand side of  (10) is infinite and it follows that the denominator of the right hand of the 

equation must be zero. Thus  

 [ (0) ( )] ( ) (0 )b b bE X c aλ δ δ ρ δ ′ +− − = + .% % %  

Note that ( ) 0b Xδ − =%   and  

 
(0)

(0 ) b
b c a

λδ
δ

ρ
′ + =

+
%

%  

which is similar to  (6). Equation (4) can then be written as  

 
1

2

2 0

( ) 1( )
2 [ ( ) ( )] ( ) ( ) (0)

u

b
b b b b

c au dt
E t t X c a t

ρ µ ρδ
σ λ δ δ ρ δ λδ

−

′
′

⎧ ⎫− +⎪ ⎪= + .⎨ ⎬− − − +⎪ ⎪⎩ ⎭
∫%

% % % %

 (11) 

Equation (11) determines the optimal strategy b∗  since once the solution to this equation is 

characterized, b%  is solved which in turn gives the value of b∗ . 

EXISTENCE OF A SOLUTION TO THE HJB EQUATION  
 

Notice that  (4) determines solutions up to a multiplicative constant. That is, if ( )uδ  is a solution 

then it follows that  ( ) ( )g u uωδ= ,  where  0ω >   solves (4) with boundary condition  

( )g ω∞ = .  The computations below will consider a solution using 0(0) (0)g δ= .  A similar 

approach was used by C. HIPP AND M. TAKSAR [5] and H. SCHMIDLI [9].  

 



Using the function  ( )g u   instead of  ( )uδ ,  (11) can be transformed to  

 
1

2

2 0

( ) 1( )
2 [ ( ) ( )] ( ) ( ) (0)

u

b
b b b b

c ag u dt
E g t g t X c a g t g

ρ µ ρ
σ λ ρ λ

−

′
′

⎧ ⎫− +⎪ ⎪= + .⎨ ⎬− − − +⎪ ⎪⎩ ⎭
∫%

% % % %

 (12) 

 

The initial task is to ensure that the integral in (12) is finite for a surplus u . The procedure starts 

by showing that  ( )bg u%   exists on an interval close to zero.  

 

First, we express [ ( ) ( )]E g t g t X− −  in terms of  ( )g t′ . By the definition of the expectation with 

( )F x  and ( )f x ,  the distribution and density function of  X  respectively,  

 

[ ]

0

0

0

0

[ ( ) ( )] ( ) ( ) ( )

( ) (0) ( ) ( ) (0) ( ) ( )

( ) (0) ( ) ( ) ( )

(0)[1 ( )] 1 ( ) ( )

t

t

t

t

E g t g t X g t g t x f x dx

g t g F t g t F F x g t x dx

g t g F t F t z g z dz

g F t F t z g z dz

′

′

′

− − = − −

= − + − −

= − − −

= − + − − .

∫
∫

∫
∫

 

 

If the expression  [ ( )]b bE g g t X− −% %  in (12) is replaced by a corresponding expression based on 

the formula above, the equation becomes  

 
[ ] [ ]{ }

1

2

2 0

0

( )( )
2 (0)(0) 1 ( ) 1 ( ) ( ) ( ) ( )

u

b t
bb b b

dt c ag u
gg F t F t z g z dz c a g t

ρ µ ρ
σ λλ ρ

−

′

′ ′

⎡ ⎤
− +⎢ ⎥= + .⎢ ⎥

− + − − − +⎢ ⎥⎣ ⎦

∫
∫

%

%
% % %

 

 

Define a function ( )k u  by  

 
(0) 2( )

( )
bg

c a bg u
k u

u

λ
ρ

′
+ −

= .
%

%  (13) 



Then we have  

 

(0) ( )bg
c a uk uλ

ρ+ −%   

 

[ ]

2

2

1
2

2 (0)0

0

1
2

12 (0)0 2 2( )

0

( )
2 (0)( ) ( ) (0) ( ) 1 ( ) ( )

( )
(0)( ) ( ) (0) 1 ( ) ( )

b

b

u

t g
bc ab

u

gF t
bt c ab

dt c a
gc a tk t g F t F t z zk z dz

dt c a
gc a k t g F t t z t zk t z tdz

λ
ρ

λ
ρ

ρ µ ρ
σ λρ λ λ

ρ µ ρ
σ λρ λ λ

−

+

−

+

⎡ ⎤
− +⎢ ⎥= +

⎢ ⎥⎡ ⎤+ − + − − −⎢ ⎥⎣ ⎦⎣ ⎦

⎡
− +⎢= +

⎡ ⎤⎡ ⎤+ − + − − −⎣ ⎦ ⎣ ⎦⎣

∫
∫

∫
∫

%

%

%%

%%

⎤
⎥

⎢ ⎥
⎢ ⎥⎦

 

Solving for ( )k u ,  

 
2 2 2

2 2 2

(0) ( )( )( )
(0)( )( ) ( ) ( )

b

b

gl uk u
u g c a l u c a

λ ρ µ
λ ρ ρ µ σ ρ

−
=

+ − + +
%

%

 (14) 

 

where the function  ( )l u   is defined by  

 
2 1 (0)0 2 2( )

0

( )
( ) ( ) (0) 1 ( ) ( )b

u

gF t
t c ab

dtl u
c a k t g t F t t z t zk t z dzλ

ρρ λ λ +

= .
⎡ ⎤⎡ ⎤+ − + − − −⎣ ⎦ ⎣ ⎦

∫
∫ %

%

 

 

Note that 
2( ) 2

0 0lim lim 2 ( ) 0F t
t tt tf t→ →= = .  Furthermore, the functions  ( )F x   and  ( )k u   present 

in the integrand defining the function  ( )l u   are bounded. Therefore, the inner integral and the 

integrand itself are bounded and the following statements hold:  

• 0lim ( ) 0u l u→ =   

• 
0

( ) 1
0 ( ) lim ( )lim

u

l u
u u c a k uρ →→ +=   



Taking the limit of both sides of  (14) as  0u →   and applying the preceding properties, we have  

 
2 2 22

2 30

(0) ( )
lim ( )

( )
b

u

g
k u

c a
λ ρ µ

σ ρ→

−⎡ ⎤ = .⎣ ⎦ +
%  

 

Equivalently,  

 3
20

(0)( )
lim ( )

( )
b

u

g
k u

c a
λ ρ µ

σ ρ→

−
= − .

+
%  

 

Now that we know the behavior of ( )k u  for small values of  u ,  it is possible to generate a 

corresponding behavior for  ( )bg u′
% .  Using  (14),  

 
(0)

( ) ( )b
b

g
g u k u u

c a
λ

ρ
′ = − .

+
%

%  

 

As  0u →   it follows that  

 3
2

(0) (0)( )
( )

( )
b b

b

g g
g u u

c a c a
λ λ ρ µ

ρ σ ρ
′ −

= + .
+ +
% %

%  (15) 

 

Equation (15) gives the derivative of  ( )bg u%   for small values of  u . Since  (0)bg %   is known, the 

above equation can be integrated to get  ( )bg u% . Therefore, a solution to (12) exists. 

 

 

 

 

 



A NUMERICAL ALGORITHM 

 

The optimal strategy may be solved numerically. Given a discretization step size  u
nu∆ = ,  

consider an initial iterate  0( )bg i u′ ∆%   for  1 2i n= , ,..., .  For values of  u   near zero,  

0( ) ( )b bg i u i uδ′ ′∆ = ∆% %   where  ( )b i uδ ′ ∆%   is obtained from (15). Next, define a sequence  { ( ) }jbg i u′ ∆%   

by the recursion  

[ ] [ ]{ }

1

2

1 2 0
00 0

( )( )
2 (0)(0) 1 ( ) 1 ( ) ( ) ( ) ( )

i u

jb t

j jb b

dt c ag i u
F t F t z g z dz c a g t

ρ µ ρ
σ λδλ δ ρ

−

∆′
+

′ ′

⎡ ⎤
− +⎢ ⎥∆ = + .⎢ ⎥

− + − − − +⎢ ⎥⎣ ⎦

∫
∫

%

% %

 

This is locally a contraction and therefore the scheme converges to  ( )bg i u′ ∆% .  The initial solution  

0( )bg i u′ ∆%   after the recursive equation is obtained by Euler scheme from (10), where  ( )b uδ %   is 

replaced by ( )bg u% .  Thus,  

 0( ) ( ) ( )b b bg i u u g i u g i u u′ ′ ′′∆ + ∆ = ∆ + ∆ ∆ .% % %  

 

The value of  ( )b i u∆%   is computed using (10) and (5), where  ( )b uδ %   is replaced by ( )bg u% .  If  

( )b i u∆%   is less than 0 then the optimal proportion  ( )b i u∗ ∆   is given by ( ) 0b i u∗ ∆ = .  If  ( )b i u∆%   

is greater than 1 then ( ) 1b i u∗ ∆ = ,  that is,  ( )b i u∗ ∆   is defined as follows.  

 
0 if ( ) 0

( ) ( ) if 0 ( ) 1
1 if ( ) 1

b i u
b i u b i u b i u

b i u

∗

⎧ ∆ <
⎪∆ = ∆ ≤ ∆ ≤⎨
⎪ ∆ >⎩

%

% %

%
 

 

The preceding criterion determines the proportion of the amount  a   to be invested in the risky 



asset to maximize the non-ruin probability. The optimal non-ruin probability, in turn, is 

dependent on the above proportions. 

 

Consider the following formulas derived from (7) and (9)  

 

[ ]{ }

[ ]{ }

0 0 00

1 0 1 1 02 2 0 0

( ) (0)[1 ( )] 1 ( ) ( )

2( ) (0)[1 ( )] 1 ( ) ( ) ( ) ( ) (0)

u

u t

g u F u F u z g z dz
c a

g u F t F t z g z dz p a g t dt
a

λ δ
ρ

λ δ µ δ
σ

′ ′

′ ′ ′ ′

= − + − − .
+

⎛ ⎞= − + − − − + + .⎜ ⎟
⎝ ⎠

∫

∫ ∫

 

 

Next, define the functions  ( )g u′   and  ( )h u ,  respectively, by  

 
0

1

( ) if ( ) 0
( ) ( ) if 0 ( ) 1

( ) if ( ) 1
b

g u b u
g u g u b u

g u b u

′

′ ′

′

⎧ <
⎪= ≤ ≤⎨
⎪ >⎩

%

%

%

%
 

and  

 0 0
( ) (0) ( )

u
h u g t dtδ ′= + .∫  

The optimal non-ruin probability  ( )uδ   at the optimal proportion  b∗   is determined by the 

norming  

 
( )( )
( )

h uu
h

δ = .
∞

 

 

SOME NUMERICAL EXAMPLES 
 

In the following examples, an exponential distribution with mean γ  is assumed for the claim size 

X . The optimal investment portfolio will be determined on a given insurance business for 



different investment scenarios. The examples consider two different amounts a  allocated for 

investment and two different values of drift coefficients µ . The results obtained are very much 

dependent on the numerical implementation and tolerance level. The numerical implementation 

used a discretization size of  0 001u∆ = .   and a tolerance level of  121 10−× .  

 

Example 1  
 
Consider an insurance business with premium  1c =   and whose aggregate claim is such that  

1λ =   and  1γ = .  An amount  2a =   will be invested in an investment portfolio with 4%ρ = ,  

6%µ = ,  and  0 4σ = . . Figure 1 shows the graph of the optimal proportion  b∗   as a function of 

the surplus level u .  

 

 

Figure 1.  Graph of Example 1 

 

The graph has an asymptote at  0 7271b∗ = . .  This implies that for sufficiently large values of u ,  

the optimal strategy is to invest a constant proportion  0.2729  on the non-risky asset and the 



remaining proportion  0.7271  on the risky asset. Notice that the value of  b∗   does not reach 1.  

Thus both assets comprise the optimal investment portfolio for all positive surplus levels u . 

Table 1 provides a summary of the optimal strategy for some small values of u .  This will show 

how a company should invest when its surplus process is near ruin.  

 

Table 1. Proportion values for Example 1 
 

It can be seen that as the surplus decreases the fraction invested on the risky asset decreases. As a 

company moves to a higher surplus level, the fraction of the risky asset in the investment 

portfolio increases. This is expected since higher surplus level implies greater capability in 

handling claims in the insurance business and losses incurred brought by an investment in the 

risky asset. 

 

Example 2  
 
For the same insurance business, the same amount  2a =   will be invested in another investment 

portfolio where µ  is considerably higher than ρ . Here, 4%ρ = , 8%µ = , and  0 4σ = . .  The 



result is different from that of Example 1. Figure 2 shows the graph of  b∗   for this investment 

portfolio. 

  

Figure 2. Graph of Example 2 

 

 

 

Table 2.  Proportion values for Example 2 

 



It is interesting to note that  ( )b u∗   is less than  1  on the interval from  0  to  0.388.  Thereafter, 

the optimal strategy is  1b∗ = .  At  0 388u = . ,  a company has to invest fully on the risky asset to 

achieve the optimal non-ruin probability. At this level of surplus, the risk brought by the 

diffusion coefficient of the risky asset is upset by the surplus itself and the expected returns on 

investment. This creates a remarkable advantage of the risky asset over the non-risky asset. Table 

2 gives a summary of the optimal strategy for some small values of  u . Notice that the risky 

asset with greater drift coefficient results in a higher proportion than one with a smaller drift 

coefficient. This result is not surprising. Assuming that the diffusion coefficients are the same, 

the expected investment return will be bigger for the asset with the larger drift coefficient.  

 

Example 3 

 For the same insurance business, a bigger amount  5a =   will be invested in the same 

investment scenario as in Example 1. Here, the characteristics of the investment portfolio are 

also 4%ρ = , 6%µ = , and  0 4σ = . .  Observe that the result is also different from that of 

Example 1. Figure 3 shows the graph for b∗ . Both types of asset constitute the optimal 

investment portfolio for all positive surplus levels since the value of  b∗  has not reached 1. 



 

 

Figure 3. Graph of Example 3 

 
   

The graph has an asymptote at  0 1459b∗ = .   which implies that for sufficiently large values of  

u ,  the optimal strategy is to invest a constant proportion  0.1459  on the risky asset. This is less 

than the corresponding proportion in Example 1. It is possible therefore to have a completely 

different optimal strategy with similar scenarios but having different values for a . The optimal 

strategy for small values of  u   is given in Table 3.  



 

Table 3. Proportion values for Example 3 

 
It is important to note here that based on the numerical results, the optimal combinations of the 

non-risky and the risky assets varies with the value of  a   allotted for investment. No single 

optimal combination can optimize every investment amount. 

 

 

References 

[1]  Browne, S. (1994) Optimal investment policies for a firm with a random risk process: 

exponential utility and minimizing the probability of ruin. Mathematics of Operations Research, 

20, 4, 937-958.  

[2]  Fausett, L. (1999), Applied Numerical Analysis Using MATLAB, Prentice-Hall, Inc., New 

Jersey, 1999.  

[3]  Hipp, C. and Plum, M. (2003) Optimal investment for investors with state dependent income, 

and for insurers. Finance and Stochastics 7, 299-321.  

[4]  Hipp, C. and Plum, M. (2000) Optimal investment for insurers. Insurance: Mathematics and 



Economics 27, 251-262.  

[5]  Hipp, C. and Taksar, M. (2000) Stochastic control for optimal new business. Insurance: 

Mathematics and Economics 26, 185-192.  

[6]  Hipp, C. and Vogt, M. (2003) Optimal dynamic XL-reinsurance. Preprint. Download 

available from www.uni-karlsruhe.de/ivw/daten/hipp/vogt.pdf  

[7]  Hojgaard, B. and Taksar, M. (1998) Optimal proportional reinsurance policies for diffusion 

models. Scandinavian Actuarial Journal, 81, 166-180.  

[8]  Hojgaard, B. and Taksar, M. (1999) Optimal proportional reinsurance policies for diffusion 

models with transaction costs. Insurance: Mathematics and Economics 22, 41-51.  

[9]  Schmidli, H. (1999) Optimal proportional reinsurance policies in a dynamic setting. 

Scandinavian Actuarial Journal, 77, 1-25.  

[10]  Schmidli, H. (2002) On minimising the ruin probability by investment and reinsurance. 

Ann. Appl. Probab. 12, 890 -907.  

 


