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O F  D E C R E M E N T  E S T I M A T O R S  

S T U A R T  A. K L U G M A N  

A B S T R A C T  

Actuarial  est imators  of  decrement  probabilit ies normally use the number  

of  policies or  the amount  of  insurance,  rather than the number  of  lives, as 

units. In this situation, the binomial distribution is not an appropriate model.  

This paper defines a general  model  for arbitrary units and gives formulas 

for computing the variance and mean squared error  of  decrement  est imators.  

The cases of  random and nonrandom units are discussed,  as well as the 

situation in which the decrement  probabili ty depends  on the value of  the 

unit. It is observed that, in small studies, the mean squared error  is reduced 

by counting lives, even  if the probabili ty o f  death depends  somewhat  on 

the amount  of  insurance.  

[. I N T R O D U C T I O N  

M 
OST est imates of  decrement  probabilit ies are of  the form t) = D~ 

G, where G relates to the number  of  observat ions  and D bears 

a similar relationship to the number  of  successes.  If  G and D 

refer to the actual number  of  observat ions ,  and if the observat ions  are 

independent  with success probabili ty q, then G~ will have a binomial dis- 

tribution with parameters  G and q. It fol lows that E(~) = q and Var (t~) 

= q(1 - q)/G. If  l - q - 1 then Vat (r~) - q/G, the formula r ecommended  

in the Socie ty ' s  Part 5 textbook ([2], p. 222). 

It is unusual in actuarial studies to use the number  of  observat ions  (lives) 

when counting G and D. It is more common  to use number  o f  policies (e.g., 

[7], p. 140) or  amount  (e.g., [12], pp. 1-55). For a discussion of  the merits 

of  each approach see [2], pages 215-18. 

In this paper, we will be using the following model.  Let  X~ be the number  

of  units of  exposure  for individual i for i = I . . . . .  n. Let  01 = 0 if individual 

i is an observed failure and 0~ = I if i is a success.  Then G = X X~ and D 

= X 0y~. Assume that 0~ . . . . .  0,,, X~ . . . . .  X,, are mutually independent  

except  that 01 may depend on X;. Let  q(x) = P(O~ = l ]X~ = x). This 

dependence has been clearly established when X~ is the amount  of  insurance 

but the nature of  q(x) is not well known [I 1]. 
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This paper ignores some of the problems introduced by the practical 
aspects of decrement  estimation, the most significant being the problem of 
censoring. Several authors (see, for example, [3], [6], and [13]) have pointed 
out that the "ac tuar ia l"  est imator is not consistent  and is not based on the 
likelihood equation of a binomial  model. While not reflecting the customary 
formulas,  the model introduced above does have the desired statistical prop- 
erties. For  situations with low withdrawal probabilities, the model used here 
should provide a good representat ion.  

The problem is to find E(cT) and Var (c~) in this general setting. In Section 
II the case where q(x) = q for all x will be considered. The solution for 
general q(x) will be presented in Section III. In Section IV some uses for 
these results will be given. 

1I. X i AND 0~ INDEPENDENT 

In this case the desired values are relatively easy to obtain. Two results 
help considerably. They apply to any pair of  random variables X and Y. 
First,  E(Y) = E[E(YI A3], and, second, Var (Y) = E[Var (YI X)] + Var 
[E(Y I X)]. To use these results,  let Y = c~ and X = (X, . . . . .  X,,). Then 

E(YI X) = E(20,X,~ X,  I X ,  . . . . .  X,,) = q .  

Also, 

Var ( Y ] X) = Var (20,X,/~r X~ [ X, . . . . .  X,) = q(I - q) .Y_. X~/(5~Xi) 2 . 

Finally, E(O) = E(q) = q, and 

Var (c~) = E[q(l  - q) 5~ X~/(5" X~)2] + Var (q) 

= q (1 - q)E[2 X?/(Y X,)-']. (I) 

At this point,  two situations must  be identified. In some cases the values 
of X~ . . . . .  Xn will be  known in advance.  In this situation X~ . . . . .  Xn 
should be treated not as random variables but as fixed quantities. This makes 
Var (c~) easy to compute,  since formula (I) involves the expectation of a 
constant .  In other situations the values of X~ . . . . .  Xn will not be known.  
This occurs if the calculation of Var (c~) is being done in advance of the data 
collection, or if the data set is so large as to make the evaluation of ~ 
and 2 Xi impractical. In the latter case, formula (1) requires the evaluation 
of E l2  X~/(~ X~)2], a task that can be difficult even if each Xi has a simple 
distribution. We can, however,  obtain an asymptotic estimate of this ex- 
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pectat ion.  Use  the Theorem in the Append ix  with Y~ = ~ ,  Z~ = X~, and 

f (y ,  z) = y/z  2. Then the express ion  

n'a{n ~ X7~/(2 X,)'- - E(An)/[E(X)] 2} 

will converge  to a normally dis t r ibuted random variable with mean zero  and 

finite variance.  Therefore ,  a reasonable  approximat ion  to n Var (c~) is 

q(I - q)E(An)/[E(X)] 2, where  X has the same distr ibution as each  Xi. The 

two situations descr ibed above may be combined  if, for the case in which 

X~ . . . .  , Xn are known,  X is defined as assigning probabili ty l /n to each 

value of  Xi. 

If  G > n (as would be the case  when  number  of  policies or amount  is 

used),  then 

q(I - q )  q ( I  - q )  q ( I  - q)E(X ~) 
G n nIE(X)F 

This indicates  that the value of  Var (c~) cannot  be less than the value given 

by a naive formula using exposures ,  and also that it exceeds  the value 

obtained when  number  of  lives is used.  The only way the above relation 

can produce  an equali ty is if X places  all its probabil i ty on a single value. 

Table 1 gives an example  of  the relative magni tudes  of  these  values. The 

data are f rom a sampling of  policies issued by the Equitable Insurance  

TABLE I 

VARIANCE FORMULAS BASED ON KNOWN AMOUNTS OF INSURANCE 

AGES 

48-52 . . . . . . . .  
53-57 . . . . . . . .  
58--62 . . . . . . . .  
63--67 . . . . . . . .  
68--72 . . . . . . . .  
73-77 . . . . . . . .  
78-82 . . . . . . . .  
83--87 . . . . . . . .  
88-92 . . . . . . . .  

48-92 . . . . .  

261 
355 
383 
31 I 
300 
238 
142 
76 
24 

(I) 
io4~ x~ 

.0058 

.0056 

.0061 

.0075 

.0090 

.0118 

.0197 

.0461 

.1087 

VARIANCE FORMULA* 

(2) 
1041n 

38 
28 
26 
3 2  
33 
42 
70 

132 
417 

(3) 
Io4~ X~I(~ X~)2 

79 
70 
68 

95 
246 
141 
518 
290 

1,577 

2,090 .0011 5 16 

*(i) Naive variance based on number of exposures. (2) True variance for estimates 
based on number of lives. (3) True variance for estimates based on amount. All three 
formulas omit the factor q(I - q). 



3 0 4  V A R I A N C E  O F  D E C R E M E N T  E S T I M A T O R S  

Company of Iowa. Since q is unknown, the term q(l - q) is left out of each 
expression. 

Exposures are usually calculated by using amount rather than number of 
policies, for two reasons: first, savings and convenience, since using 
amounts does not necessitate a check for duplicate policies; second, the 
belief that q should measure the monetary impact of the loss. As shown in 
Table 1, however, ifq does not depend on the amount of insurance, accuracy 
is lost by using amount as the unit. It should be noted in addition that using 
number of policies instead of number of lives also leads to an increase in 
the variance. As an example, suppose that the number of policies on an 
individual has a Poisson distribution with parameter h. Conditioning on the 
existence of at least one policy yields 

P ( X  = x )  = M e - ~ / [ x ! ( l  - e-q] for x = 1, 2 . . . .  

and 

E(X2) / [E(X)]  '- = (h + I)(1 - e ~)/h. 

The ratio has a maximum value of 1.30, which indicates that the penalty for 
using number of policies is not severe. 

II1. 0 i D E P E N D E N T  UPON X i 

The large-amount studies of the Society of Actuaries indicate that 0i does 
depend upon X~. In particular, there is some evidence that q(x)  is a decreasing 
function ofx  [11]. In this case, 

E(,~) = E [ E ( E  O~X~/E X~ [ X ,  . . . . .  X,)] = E[I£ Xiq(X~)/Y~ Xi] . 

Arguing as in Section II, we find that an approximation is provided by qc 
= E [ X q ( X ) ] / E ( X ) .  This is the quantity of interest, since it represents the 
dollar-weighted probability of death. This will be different from qL = 
E[q(X)], which represents the probability of death for the average life. We 
can compare the merits of t~c = ]£ O~XI/Y. X ,  as opposed to ~L = ~" O,/n by 
examining their mean squared errors (MSE) with respect to q,;. For ~c, the 

approximation is 

MSE(Oc;) ~ Var (~c) - (IxdlJ-]: + ~ f 3 x / ~  - 2p.,IxollJ.~.)ln 

(see the Appendix for the derivation and for definitions of the symbols). For 

~L it is 

MSE(O~.) = Var (~,) + [E(t~ L) - q,;]'- = q,(I - q , ) / n  + (q,. - q , ) ' - .  
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If q(x) indicates that the probability is significantly affected by the amount ,  

then the increased variability in c~a due to the use of  amounts  may be more 
than offset by the bias in c~L. 

As an example,  consider  the Equitable data at ages 48-52. I have selected 

q(x) = b + a/x as a general  form. There  is no empirical  basis for its selection 
other than its simplicity. It leads to q,; = b + a/ttx and q~ = b + aE(I /X) .  

Furthermore ,  P.u = b~x + ap.x and txr = btxx + a. For the Equitable data 

t~x = 6,557, 13x = 88,440,613, and E(I /X)  = 0.000344. This results in qc 

= b + 0.0001525a, qj. = b + 0.000344a, and n Var (~,) = 0.0001525a 

+ 2.057b + 1.3265a-'/109 - 2.057b 2 - 0.000305ab. Let  qc = 0.006, in which 

case b = 0.006 - 0.0001525a. Substituting this in the previous expressions 
yields 

MSE(~c) = (0.012268 - 0.00015926a - 8.9375a'-/lOU)/n 

and 

MSE(t~L) = (0.005964 + 0.0001892a - 3.677a:/lOS)/n + 3.667aV!08 . 

The mean squared error  using c~c will be smaller  for n / >  0.999976 - 9,490/ 

a + 171,803/a:. A reasonable value for a would be in the neighborhood of  

5 (roughly based on results in [ l l ] ) .  This would require n I> 4,975, a relatively 

large number  of  observat ions.  Note  that, if q(x) is decreasing,  qL > qc and 

the use o f  number  of  lives provides  for a conserva t ive  est imate.  

A compromise  be tween  the large variance of  qa and the bias of  qL may 

be obtained by reducing the influence of  large-amount  policies.  For example,  

Xi could be defined as the face value if the face value is less than c, and as 

c if the face value is greater  than c. This suggestion is endorsed in [2], page 

217, and results similar to those presented in this section are given in [10]. 

IV. PRACTICAL APPLICATIONS 

Knowledge of  the variance of  decrement  es t imators  can prove useful 

during the planning, graduation,  and reporting stages of  a decrement  study. 

In the planning stage, the magnitude of  the var iance reveals  the sample size 

needed to achieve a desired level of  accuracy.  Several  modern  graduation 

methods suggest using the variances as weights.  These  include Whittaker-  

Henderson methods [8], Bayesian methods  [9], and the fitting of  mathe- 

matical models [14]. Finally, any wel l -conceived report  should include a 

statement about the probable error. In all of  the above,  it would be appro- 

priate, when using a biased estimator,  to use the mean squared error  in 
place of  the variance.  
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The method outlined in Section III can be used to decide on the appro- 
priate measurement unit. In particular, for small studies, even if decrement 
probabilities depend on amounts, a smaller mean squared error may be 
obtained by using number of lives or number of policies. 

V. CONCLUSIONS 

The methods presented in this paper enable an investigator to estimate 
the variance and mean squared error of the estimators when the units of 
investigation are variable, Two items that appear worthy of investigation 
are the nature of q(x) and the dependence of E(X~)/[E(X)] 2 on age. 
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APPENDIX 

The paper makes use of the following theorem. 

THEOREM. L e t  (Y~, ZO, (Y2, Z2) . . . .  be independent and identically 
distributed random pairs each with mean (P.r, P-z) and variance 
( ~ ,  cruz). Le t  o'vz = C o v  (Yi, Z~), 12,, = E~'=~ YJn, ~P,, = E?=t Z/n ,  and let 

f(y,  z) be any real-valued funct ion  with f irs t  and second derivatives 
existing in a neighborhood o f  (p~r, t~z). Then as n ~ ~, the distribution 

o f  nln[f(~'., 2 . )  - tiP.r, tXz)] converges to the distribution o f  a normal 
random variable with mean zero and variance 

Proof.  See Theorems 4.2.3 and 4.2.5 of [1]. 
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To ob ta in  the resul t  in Sec t ion  III ,  make  the fol lowing defini t ions:  T~ = 

X,q(X~), Ui = AT~q(Xg, V~ = [X,q(X~)] 2, and 13x -- E(AT). Le t  Ixr, I~t,, I~v, and  

Ixx be the means  of  T~, U~, Vi, and  X~, respect ively.  T h e n  

Var(~c)  = E[Var(E0yJEX~IX,  . . . . .  X.)] + Var[E(EO~/EX~[X,  . . . . .  X.)] 

= E{E)tTq(X,)]l -q(X,)]/(EX,)'-} + Var]EX~q(X,)/EX,] 

= E[E(Ui - Vy(2X,)'-] + Var(E~/EX~)  

= E[(O.  - l / .)/ f~]ln + Var(]t~/~.) .  

(2) 

The  t heo rem prov ides  app rox ima t ions  for  each  term.  The  first is ju s t  

(Ixv - Ixv)/(n~.~.). For  the second ,  use f(y, z) = y/z and note  tha t  cr-~, = tr~ 

= I~v - tx'~, {r) = try. = 13x - ~ . ,  and  tr} z = trTx = P-u - 1~71x.v. Then  

n Var (1",/)(.)- (l/~tx)2(tLv- ~)  + 2(I / t tx) ( -  I~r/tt,~.)(ttu- ~T~a.) 

+ (-~; /~? , . ) : (13x - W~). 

Combin ing  these  two resul t s  yields 

Var  ( O D -  (Ixu/Ix?~. + I~ ,104 .  - 2t~rttJt~].)/n • 

To comple te  the  result ,  no te  tha t  S iu t sky ' s  t h e o r e m  (see [5], p. 255) 

indicates  tha t  ~c is a cons i s t en t  e s t ima to r  of  qc, s ince 

x 0~',/n ~ ~xq( x~], ~ x/n ~ e(x). 

Therefore ,  #c is asympto t ica l ly  unb iased  and  MSE(~c)  - Var (~c). 

I f  the  values  of  Xi are  fixed and known,  then the second  t e rm  of  fo rmula  

(2) is ze ro  and  the  first t e rm b e c o m e s  X A'7,q(Xi)[I - q(Xi)]/(X Xi) 2. This  

formula  for the  var iance  appea red  in [4]. 
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D I S C U S S I O N  O F  P R E C E D I N G  PAPER 

K E N N E T H  S. AVNER" 

Mr. Klugman rightly notes that for statistical estimators, any well-con- 
ceived report must include a statement about the probable error of the 
estimators. Further, it has become common in actuarial literature to see the 
notion of risk quantified in terms of the variance of an unknown quantity. 
Toward that end, an investigation of the variance of decrement estimators-- 
the estimators that are fundamental to actuarial work---is always timely in 
this publication. I should like to raise some questions related to those dis- 
cussed by Mr. Klugman and clarify some inaccuracies in his otherwise clear 
and concise paper. 

The paper discusses estimators of decrement probabilities that can be 
expressed in the form 0 = D/G, where G relates to the number of obser- 
vations and D bears a similar relationship to the number of successes. It 
states that if the observations are independent with probability of success 
q, then G0 will have a binomial distribution with parameters G and q, from 
which it follows that E(0) = q and Var (0) = q(l - q)/G. This is certainly 
a common scheme to actuaries; in fact, Mr. Klugman cites the Society's 
Part 5 text by Batten. But he sidesteps a logical error in Batten and goes 
on to claim that if we take 1 - q = I, then Var (0) -~ q/G, the formula 
recommended by Batten. 

The first point I consider is this derivation of Var (0)- Certainly there are 
conditions that yield a binomially distributed GO; in practice, however, they 
rarely arise. In fact, this approach serves only to obscure the underlying 
situation, which, when I - q -~ i, can give directly the estimate Var (0) = 
q/G. 

What ruins the binomial distribution is the inequality of the increments 
that sum to form G. Consider an unequally weighted sum of independent 
Bernoulli random variables (i.e., each takes on only the values 0 and + 1) 
with parameters q: 

S = wiX~ + w2Xz  + . . .  + w , , X , .  

Clearly, E(S) = q(w~ + . . .  + w,), and 

Var (S) = q(1 - q)(w~ + . . .  + w ~ ) ,  

309 
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which is quite similar to binomial distribution results. However, unless the 
weights are equal, the distribution is not binomial. Specifically, in cases 
where the observations are weighted by amounts of insurance or where 
there is censoring, G~ would be better estimated as normally distributed. 
This does not affect the formulas derived by Batten (for confidence intervals, 
etc.), since he uses a normal approximation to his assumed binomial. 

Now consider a direct analysis when I - q - I. There are two approaches. 
First, there is the well-known approximation to such a normal or binomial 
distribution by the Poisson distribution. Using the method of moments, we 
match the means and are led to a Poisson with parameter qG. And that is 
my point: A Poisson with parameter qG also has variance qG, and we return 
to the standard approximation! 

The second approach uses the same calculations to match moments and 
derive variances, but involves a different philosophy. Here we dispense with 
the normal approximation to sums of independent random variables. Recall 
that that approximation is based on the notion that the individual variables 
are (probabilistically) sufficiently small so that no single one contributes 
significantly to the overall sum. An alternative situation is the summing of 
independent random variables, but because the probability of a nonzero 
value is sufficiently small, each such value may contribute appreciably to 
the overall sum. In such a case one would expect direct convergence to a 
Poisson-like variate. This might justify a match of moments to derive the 
formulas above. 

For the basic derivation in Section II, Mr. Klugman posits that Xi and 01 
are mutually independent. (The X~'s and 0~'s are always sets of independent 
variables.) Under this assumption E(c~) = q, and Vat (c~) = q(I - q) 
E[EX~/ (XX,)2 ]. 

Then he considers two situations: where the X~'s are known in advance, 
and where there is no a priori knowledge of the X~'s because the calculations 
are "being done in advance of data collection" or because "the data set is 
so large as to make evaluation of EX~ and EX~ impractical." In both cases 
we wish to compute E[EX~/(~X)2]. 

When the X~'s are not random, the expectation is superfluous, so in the 
former case Var (~) is easy to compute. This is not true in the latter case. 
There, Mr. Klugman suggests the expedient of an asymptotic estimate, 

E(X2)In[E(X)]2 ~_ E[EX~I(YXi)2], 

derived by the so-called delta method. 
His use of the delta method is in itself worthy of note. This, the most 

popular and one of the most useful methods of advanced applied statistics, 
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is too little known in actuarial circles, although it is now beginning to appear 
in our journals (see also Hickman and Miller's 1977 paper--reference [9] 
in Mr. Klugman's paper--which uses a variance stabilizing transformation 
supplied by the delta method). To be applied in the present case, however, 
it does require that the X~'s be independent and identically distributed. 

When the calculations are being done in anticipation of the experiment, 
independent and identically distributed X~'s are an acceptable assumption, 
and in keeping with the spirit of this paper, we probably should pay more 
attention to the variance of the asymptotic normal. But when the X~'s merely 
constitute a data set that is too large for computations, the assumption is 
false. It is not surprising, then, that the expedient is useless in practice. For 
it requires a computation of E(X) and E(X0, which presumably would be 
based on XX~ and XA"~--quantities assumed to be impractical to evaluate. 
We are left where we started. 

Finally, recall the inequalities among the various estimates of Vat (~): 

q(I - q) /G <~ q(l  - q)/n <~ q(l  - q)E(X~)/n[E(X)]  2 . 

The first estimate is a naive approach based on the binomial distribution 
where the exposure itself is used in the denominator. It is commonly rec- 
ognized as inadequate and is often multiplied by the average exposure (e.g., 
policy size) per life. This approximates the middle estimate. That the quan- 
tity is still inadequate is the content of the second inequality, and this may 
explain some of the arbitrary reduction in observed exposures in practice 

(cf. ref. [9] of the paper). 

(AUTHOR'S REVIEW OF DISCUSSION) 

STUART A. KLUGMAN: 

I will confine my remarks to three items mentioned in Mr. Avner's dis- 
cussion. First, the sum he labels S is identical with the one I label D, and 
from there our results are identical. My reference to the binomial distribution 
in the first paragraph of Section I was meant only to apply to the case in 
which G counts lives, or, equivalently, where Xt = X2 = . . • = An. This 
does not invalidate Mr. Avner's second point, that the approximation 
Var (~) = qG is best viewed as being derived from the Poisson distribution. 

Finally, I must agree with Mr. Avner's remark that neither formula (1) 
nor the approximation q(l - q)E(XO/n[E(X)] 2 is of direct use when one is 
dealing with a large data set. I might suggest an alternative, namely, esti- 
mating either of them by sampling from the available data. 

I would like to thank Mr. Avner for taking the time to comment on my 
paper. 




