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By “disinformation” I mean the inclusion of data that should not be
considered in a study. For example, in a study of patients with a particular
disease, records of some other patients (perhaps with a similar disease) are
wrongly included in the data set; or a study of infant mortality is confounded
by the inclusion of some records that should have been classified as fetal
deaths. It might or might not be feasible to identify the extraneous records.
As with censoring, no single method can be relied upon to detect, let alone
correct, all possible types of disinformation. The starting point in any analysis
must be a careful consideration of the data, and of possible errors. In this
paper we discuss a case in which the presence of disinformation was clear, but
it was not possible to determine with certainty which records were extraneous.

Data collection for this project was funded by a grant obtained by Kimberly Hughes from
the National Institute on Aging (RO3 AG18122-02)



In the summer of 2002 I was contacted by Rose Reynolds, a Ph.D.
student in life sciences who was studying the survival patterns of fruit
flies. In particular, she was concerned about a plateau, where mortal-
ity rates that have been rising with age level off or begin to drop. She
wanted to know how various factors affect the existence or location of
such a plateau, and had accordingly conducted a number of experi-
ments on homogeneous groups of newly emerged adult flies, recording
their times of death. I said that I would take a look at the data and
see what advice I could offer.

Table 1 shows the essential information from one of her experiments.
Note that although she began with 190 flies (all having emerged from
the pupal state the same day), there are 206 recorded times of death,
and one censored observation. Clearly there are some extraneous data
entries; but before attempting any analysis it was essential to under-
stand how they might have arisen.

Ms. Reynolds told me that one factor that clearly increases mortality
is crowding in the cages. Thus, if you start with 200 flies in a cage and
observe decreasing mortality rates after, say, 50 days, it is not clear
whether the surviving flies are intrinsically more robust, or whether
they are simply lucky to have survived into a less stressful environment.
So in about half of the experiments she had maintained a constant
density (usually of about 200 flies) in the cage, by replacing dead flies
with others. Of course the replacements were not immortal, and some
of them died. But they were marked, and they were not supposed to
be included in the death counts. Clearly some mistakes were made;
but when? That is, how many of the deaths recorded at the various
times should be removed from the data set? Perhaps a preliminary
question should be, “Does it matter?” That depends on the use to be
made of the estimated survival function. The median age at death will
be almost the same after removing the first 17 deaths, or the last 17.
Higher percentiles are affected more dramatically. As the example here
illustrates, the misrecorded deaths tend to mask a plateau.
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Table 1: Recorded deaths from a cohort of 190 flies; and adjusted
death counts by two different methods. Note there was one censored
observation on day 31. In order to simplify the analysis I assumed that
was one of the original flies, so the adjusted deaths in columns A and

B add up to 189 (except for roundoff error).

Day | Deaths Recorded | Adjusted Deaths (A) | Adjusted Deaths (B)

3 0 0 0

5 2 2 2

7 0 -0.02 0

9 1 0.98 0.97
11 1 0.97 0.96
13 4 3.96 3.94
15 12 11.91 11.89
17 10 9.78 9.72
19 14 13.68 13.58
21 53 52.52 52.39
23 34 32.95 32.65
25 19 17.59 17.19
27 12 10.39 9.94
29 20 18.28 17.80
31 11* 9.08 8.55
33 1 -1.03 0.00
35 0 -2.02 0

37 2 0.00 0.00
39 10 8.00 741
41 0 0 0

The Kaplan-Meier estimator, used where there is censoring; is based

on the intuitive idea of “redistributing to the right” — each censored
observation is redistributed among various times when that individual
might have died, based on the other information that you have about
the sample. In that spirit, I would like here to “undistribute” a total
of 17 deaths, not necessarily in integer pieces, that I think might be
the mistaken observations, again based on what I have in the data.
With an understanding about how the mistakes arose, I can say
definitely that neither of the deaths recorded on the fifth day were
errors, because at that time there were no marked flies in the cage.
The likely number of errors is certainly larger when there are more
of the marked replacement flies in the cage. Unfortunately, next to
nothing was known about the replacement flies. In particular, they
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were not necessarily the same age as the original cohort, so if a death
was erroneously recorded on day 20 it was not necessarily a death at
age (ie duration since emergence from the pupa) 20 days. Accordingly,
I felt I had no option but to use a very simple model for the combined
risk of death-and-misrecord for the replacement flies, and thus assumed
that there was a constant (but unknown) hazard rate a. Table 1 shows
the results of two different efforts to recalculate the correct number of
deaths.

Column A is based on the assumption that the (expected) number of
misreported deaths on any given day is a times the (expected) number
of replacement flies in the cage at the beginning of the day. The value of
o is then determined so that the total expected number of misrecorded
deaths equals 17. Since there is nothing in this method to force the
number of misrecorded deaths on a particular day to be less than the
total number of deaths reported that day, this method occasionally
resulted in an adjusted number of deaths less than 0. Obviously, this
method is inadequate.

Recognizing that the number of misrecorded deaths will also be larger
on days when the total number of deaths is larger, I used the following
formula to estimate df, the number of misrecorded deaths on day z:

aP;
“aPr4q. P,
PF =0 -
P, = Pl +d,—d
Peyi = Po—dp+d, = n—P],
qr = 1 - P:c+1/Pa:
Y& = k
Here, P, is the number of survivors to day = from the original cohort
of n flies, P} is the number of replacement flies in the cage on day z,
d is the recorded number of deaths, and k is the number of extraneous
deaths (sum of recorded deaths and censored observations, minus n).
Clearly I need to use an iterative method to find the « and g, that
satisfy these equations, but I’ve written an S-plus program that does
it quickly. The resulting adjusted deaths are shown in Column B of
Table 1.
We now have an initial estimate of the survival function, essentially
analogous to what the Kaplan-Meier method would give us. We can do

all sorts of things with it. But we also need an indication of how good
this estimate is. Figure 1 shows the estimate and a (pointwise) 95%

& = d



5

confidence interval, based on bootstrapping the original data, for the
survival function; Figure 2 shows the corresponding estimated mortal-
ity rates and estimated confidence intervals. The theory justifying this
approach is yet to be worked out.

Does this data set exhibit a plateau? The rates do seem to drop off
(temporarily) after 21 days, but not with much significance. For the
questions of interest, one probably needs samples of a few thousand
flies, not a few hundred. However, Ms. Reynolds has data on about 20
similar experiments, with various factors. Combining them may lead
to some interesting results, but it is also likely to be difficult (much as
censoring complicates regression).

There is another piece of information in the data sets, that I have
not mentioned: the initials of the person who collected the data each
time. It would not be surprising to find a “collector effect” on the likely
errors; but the data may be too skimpy for any significance. Analysis
is yet to be carried out.
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Figure 1: Estimated survival function, with approximate 95% confi-
dence intervals determined by 200 bootstrap iterations. Asymmetric
intervals are 2.906 times the interquartile differences.
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Figure 2: “Box and whisker” plot of estimated mortality rates. The
central line is the median value, the “box” covers the 25th to 75th per-
centiles. Brackets enclose median + 2.906 times the interquartile range,
giving a 95% confidence interval. Horizontal lines indicate outliers.
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