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E X T E N S I O N S  O F  L I D S T O N E ' S  T H E O R E M  

S. DAVID PROMISLOW 

ABSTRACT 

This paper deals with the problem of determining the effect on reserves 
of variations in the assumptions. A general approach to this problem is 
presented and then used to extend Lidstone's theorem, mainly to cases 
involving a nonmonotone critical function. The setting is a general type of 
insurance policy that allows benefits, interest rates, and premiums to vary 
freely by duration. In addition, the paper discusses an auxiliary problem 
that arises in applications of Lidstone's theorem, namely, the determination 
of monotonicity properties of reserves and costs of insurance. 

I. I N T R O D U C T I O N  

W 
'HAT is the effect on reserves when changes are made in the 
underlying assumptions? The major work dealing with this ques- 
tion is the 1905 paper of Lidstone [5]. A partial account of this 

material is given in the book by Spurgeon [7]. Some other references dealing 
with the subject are the papers of Baillie [1], Gershenson [2], and Milgrom 
[6]. 

In this paper we will summarize this work, and supplement some of the 
intuitive arguments used in previous accounts with rigorous mathematical 
proofs. We then give various new extensions and applications. 

The main conclusions of Lidstone's work are well known through the 
name of Lidstone's theorem as described, for example, in [3]. However, 
the complete details of his ideas do not seem to appear in North American 
actuarial literature. We will elaborate on this after first introducing some 
notation. 

We will consider throughout a policY of duration n. Let 

B, = Death benefit payable at time t + 1, should death occur in policy year 
t + l ;  

P, = Premium payable at time t; 
q, = Rate of mortality for policy year t + I; 
i, = Rate of interest for policy year t + 1 (note that the subscript here 

differs from those of [5] and [6]; 
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E = E n d o w m e n t  p a y m e n t  payab le  at t ime n, should  the insured be then  

alive ( this  can,  of  course ,  be zero,  as in the case of  t e rm insurance) ;  

,V = Terminal  rese rve  at  the end  of  year  t (note tha t  nV = E). 

In all cases  the subscr ip t  t t akes  on  the values  0, ! . . . . .  n - I. W h e n  

any  of  the foregoing symbols  are pr imed,  they will refer  to an a l te rna te  

basis.  Le t  

A = ,V' - ,V .  

No te  tha t  we allow for  all quant i t ies  to vary  with time. The  vary ing  in teres t  

necess i ta tes  some addi t ional  no ta t ion .  Le t  

v, = (1 + it) i ,  

v ( t )  = VoV[ . . . v ,  j for t > 0, v(0) = 1 . 

Annui t i e s  can  be defined as usual ,  with v ( t )  replacing v'. For  example ,  we 

have  

n - - I  

~/~:~i = ~',  v(t) ,Px • 
t = 0  

We now define the  fol lowing (for t = 0, I . . . .  , n - I): 

c ,  = ( , V  + P , ) ( i :  - i , )  + q , ( B , -  , ÷ , V )  - q ' , ( B ' ,  - , . , V ) ,  

t t  - ct 
(I + i ' , ) '  

J ,  = L ,  - (P' ,  - P , ) .  

Note  that  c, above  c o r r e s p o n d s  to the so-called critical funct ion  in [3] 

(where  it also is called c,), while  (1 + i~) J, co r re sponds  to - S ,  in the 

no ta t ion  of  [3] or  - R ,  in the no ta t ion  of  [1]. 

It is c lear  f rom the d iscuss ion  in [5] and [6] tha t  c, r epresen t s  the value 

at t ime t + 1 of  the  gain tha t  occurs  in policy year  t + 1 when  original 

a s sumpt ions  are replaced by a l te rna te  ones.  L, is then  the  value  at  t ime t 

of  the loss in policy yea r  t + 1. (We d iscount  with  in teres t  only, s ince this 

loss is occas ioned  by  each  pol icyholder  who  is alive at  t ime t.) Jr, equals  L, 

ad jus ted  by the  ex t ra  p remium and  therefore  represen t s  a kind of  net  loss 

at  t ime t. 
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We need one final definition to cover the possible loss occurring at maturity 
if the new basis provides a different endowment amount. We define 

L,, = J ~  = E' - E .  

At this point we observe that we easily could have incorporated additional 
generality (as was done in [6]) and considered such factors as withdrawal 
rates, cash values, expenses, benefit payments in midyear, and so on. The 
definition of c, would require appropriate adjustment, but the definitions of 
L, and J,, as well as all that follows concerning these quantities, would 
remain unchanged. 

One of Lidstone's key observations was to note that the present value 
of the extra premiums paid must be equal to the present value of the losses, 
where present values are computed using the alternate assumptions. The 
demonstration of this first appears in [4], an earlier paper of Lidstone. Similar 
results can be found in the basic theorem of [6] and in formula (6) of [1]. 
This observation suggests the following point of view. 

We consider the policy with the alternate assumptions as being decom- 
posed into two separate contracts. The first of these is just the original 
policy. The second is a life annuity that provides a payment of L, at time 
t and carries premiums of (P', - P,) at time t. Its operation is governed by 
the new basis for interest and mortality. We will refer to this second contract 
as the auxiliary annuity. Lidstone referred to it as the variation fund. (It is 
quite possible, of course, for the auxiliary annuity premiums and/or pay- 
ments to be negative, but this does not affect the theory.) 

Let W, be the auxiliary annuity reserve at time t calculated before premium 
and benefit payments are made. It is easy to see that 

A, = IV,. (1.1) 

This shows that the question of whether reserves on the new basis are 
greater than or less than standard reserves can be replaced by the question 
of whether auxiliary annuity reserves are positive or negative. 

We now can give a verbal explanation of the classical Lidstone theorem. 
Consider first the case when the original and alternate assumptions provide 
for level premiums of P and P ' ,  respectively. Suppose that L, is increasing. 
The auxiliary annuity then consists of an increasing sequence of payments 
that must be paid for by the level premium P '  - P. This naturally causes 
positive reserves. Similarly, a decreasing sequence of benefits will result in 
negative auxiliary annuity reserves. 



370 EXTENSIONS OF LIDSTONE'S THEOREM 

Now consider  the general  case of varying premiums. We simply observe 
that the reserves on any annui ty  contract are obviously unchanged if at any 
duration we adjust both the premium and benefit by the same constant  
amount.  (Indeed, the extra amount  of premium is paid out immediately as 
a benefit.) Accordingly, for the purpose of calculating auxiliary annui ty  
reserves, we can add (P, - P',) to both premiums and benefits for each 
duration t. The result is a contract  with benefit payments  of J, but now with 
level premiums of zero amount .  We thus conclude that for increasing J,, 
auxiliary annui ty  reserves will be positive and new reserves will exceed 
standard ones.  The reverse is true for decreasing J,. 

All previous writers on Lids tone ' s  theorem have indicated that there is 
a difference be tween the level premium and the varying premium case, but 
the true nature of this difference has not been fully explained. The above 
analysis should help to clarify the situation. As shown above,  the basic 
theoretical considerat ions are the same regardless of the premium pattern. 
In all cases, reserve changes are determined by the behavior  of J,. We are 
faced, however, with the problem of trying to determine this behavior. In 
many instances,  it is easy to determine the effect on L, of given interest or 
mortality changes. In the level premium situation, J, differs from L, by a 
constant  and will therefore have the same monotonici ty properties. This is 
the great advantage of  this case. For the general varying premium policy, 
on the other hand,  we may know a great deal about L, but still find it difficult 
to obtain information about  J,. 

To illustrate the difficulty, we consider  a limited payment  policy. Assume 
that there is an index k < n - 1 such that P, and P; are both positive 
constants  for t ~< k and are both equal to zero for t > k. Suppose we have 
a change in assumptions  that results in a decreasing L,. If L, is negative, 
then the premiums will decrease.  Therefore, (P; - P,) is increasing, since 
it starts out negative and eventual ly  becomes zero. Hence,  J, is also de- 
creasing, and we know that reserves will be reduced. However,  if L, is 
positive, then the premium increases and we can no longer infer that J, is 
decreasing. It will, of course,  be decreasing over each of the intervals 
0 ~< t ~< k and k + 1 ~< t ~< n - 1, but if the constant  extra premium is greater 
than Lk - L~+,, then J~+, will be greater than J~. Special cases of this situation 
were considered by Baillie ([l], Sec. V,  cases a and b). He considered a 
policy with reserves increasing with duration. An increase in interest rates 
and a constant  increase in mortality rates both result in a decreasing L,, but 
premiums decrease in the former case and increase in the latter. We will 
return to this example later in Appendix A. 

One of the main limitations of Lidstone 's  theorem is that it applies only 
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when J, is either decreasing or increasing. It is natural to inquire what 
happens when J, is no longer monotone. We will use the general framework 
that we have established to investigate this problem in certain cases. Of 
course, the situation is much more complicated than the monotone case and 
there are no longer any easily stated conclusions. 

A case of particular interest is the one that, in some sense, is closest to 
the monotone case, namely, when J, changes direction exactly once over 
its entire range. This is of practical significance, because such behavior of 
J, arises in many circumstances (examples are given in Sec. III). In this 
case, we are able to give a reasonably complete description of the resulting 
reserve changes, which can be summarized as follows: Just as a monotone 
sequence {J,} produces a sequence {A,} that is of constant sign, the case 
where {J,} changes direction exactly once produces a sequence {A,} that 
changes sign at most once. Complete details are given in conclusion E of 

Section II. This result is not new. It follows intuitively from the observations 
of Articles 18 and 19 of [5], but Lidstone did not pursue this idea. In addition 
to the applications, we extend this case by investigating the effect on the 
point of sign change when we vary the alternate assumptions. 

The remainder of the paper is organized as follows. The main conclusions 
are listed in Section II, for the most part without derivations. In Section 
III, we give a few miscellaneous applications of the Section II results. 
Section IV provides some insight into the method of deriving these results. 
In particular, we present a formula for annuity reserves that shows that the 
problem can be reduced to some mathematical questions involving weighted 
averages of finite sequences of real numbers. For the interested reader this 
mathematical theory is developed in Appendix A, where we have proceeded 
in a somewhat more general manner than is needed for present purposes. 
However, since weighted averages play a role in many actuarial consider- 
ations, it is possible that the results in Appendix A will have more universal 
applicability. 

In order to make effective use of Lidstone's theorem and its extensions, 
it is often necessary to have knowledge of the patterns of reserves and costs 
of insurance. This point_is illustrated by some of the examples, in Section 
III, and is well known from the familiar corollaries to the classical theorem 
that deal with constant increases in mortality and interest rates. In both 
cases, the hypothesis requires that reserves increase by duration. Appendix 
B is devoted to an investigation of the monotonicity properties of reserves 
and costs of insurance. 

We conclude this section with a few remarks on terminology and notation. 
Throughout the paper (except for Appendix B), we will be dealing with 
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func t ions )~ t )  tha t  are defined only  on the integers .  Accordingly,  w h e n  we 

speak of  the  b e h a v i o r  0 f f l t )  on the  interval  a ~< t ~< b, where  a and b are 

fixed integers ,  we are refer r ing only  to the  in tegers  in this  interval ,  tha t  is, 

t = a , a +  I . . . . .  b. 

W h e n  we say tha t  fit) is increasing on the  in terval  a ~< t ~< b, we mean  

that  

f i t)<~fit  + 1) f o r a ~ < t ~ < b  - I . (1.2) 

In o the r  words ,  we do  not  mean  strictly increas ing.  We prefer  this to the  

a l te rna te  cho ice  of  nondecreasing, which  some wri ters  would choose  to 

indicate  re la t ionsh ip  (1.2). Decreas ing  func t ions  are defined analogously.  

No te  tha t  u n d e r  this  definit ion a cons t an t  func t ion  is bo th  increas ing and 

decreas ing!  

II. MAIN CONCLUSIONS 

We cons ide r  the  policy in t roduced  in Sect ion  l, and  we use  the no ta t ion  

of  tha t  sec t ion  th roughou t .  In addi t ion ,  let 

m = n - 1  i f E '  = E 

= n  i f E '  : k E .  

In some sense ,  m is the  last  pe r t inen t  dura t ion  for  the auxil iary annui ty .  

We a lways  have  A,,+j = 0. 

The  classical  L ids tone  t h e o r e m  tells us the sign of  {A,} when  the sequence  

{J,} is m o n o t o n e .  In general ,  {J,} is not  m o n o t o n e ,  but  it is natural  to inves-  

t igate the  b e h a v i o r  of  r e se rve  changes  for  a t ime per iod co r re spond ing  to 

a m o n o t o n e  s u b s e q u e n c e  of  {J,}. We will the re fore  cons ide r  the  fol lowing 

ques t ion .  G iven  a m o n o t o n e  s equence  

{g,, L+,  . . . . .  J,,}, (2.1) 

where  0 ~< s ~< v <~ m, wha t  can  we say abou t  the  signs of  the en t r ies  in the  

fol lowing s equence?  

{A, A+, . . . . .  %+,} . (2.2) 

The  conc lus ions  are as follows: 

A. General case. Withou t  fu r the r  condi t ions ,  ou r  informat ion  is s o m e w h a t  

sparse ,  but  we still can  say someth ing .  
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1. Suppose that sequence (2.1) is increasing. Then the entries of se- 
quence (2.2) are limited to the following possibilities: 
a) They may be of constant  sign, that is, all nonposi t ive or all non- 

negative. 

b) They may change sign exactly once,  either from positive to neg- 
ative or the other way. 

c) They may change sign exactly twice, from negative to positive 
and back to negative. 

2. Suppose that sequence (2.2) is decreasing. The conclusions are the 
same, except that in case c the change is from positive to negative and 
back to positive. Indeed,  by applying the reasoning in part I to the 
sequence { - J  . . . . . .  -J,.}, we must  reach exactly the same conclusion 
but with positive and negative interchanged.  

B. Case of  an initial segment. We can say considerably more in the case 
of an extreme segment of durations,  that is, either s = 0 or v = m. 
Now the double sign change no longer occurs,  and there are further 
restrictions for the other cases. Moreover,  even if sequence (2. I) is not 
monotone,  we can still infer results when its entries are of constant  sign. 
Suppose, for example,  s = 0 in sequence (2.1). Then we have the 
following: 

1. Suppose that (2.1) is increasing. Then 
a) If J0 < 0, either the entries in (2.2) are positive throughout (except 

for A0, which is always equal to zero), or they change sign exactly 
once,  from positive to negative. 

b) If J0 > 0, the entries in (2.2) (other than A0) are all negative. 
c) If J0 = 0, the entries in (2.2) are negative except for an initial 

string of zeros ending one durat ion later than the initial string of  
zeros in (2.1). That is, if J0 = Jj = . . . = J~_j = 0 and Jr :/: 0, 
thenA,  = 0 f o r 0 ~ < t ~ < j ,  a n d A , < 0 f o r j < t ~ < v .  

2. Suppose that (2.1) is decreasing. As indicated in conclusion A for the 
general case, we can simply write down the same result as in part 
1, except that positive and negative (>0  and <0) are interchanged 

. . . .  throughout . . . . . . . . . . . . . . . . . .  
3. If the entries of (2.1) are -<0, those of (2.2) are ~>0. 
4. If the entries of (2.1) are 1>0, those of (2.2) are -<0. 

C. Case o f  a terminal segment. Suppose that v = m in sequence (2.1). We 
then have the following: 
1. Suppose that (2.1) is increasing. Then 

a) If./~, > 0, either the entries in (2.2) are positive throughout (except 
for Am+, = 0), or they change sign exactly once,  from negative 
to positive. 
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b) If  Jm < 0, the entries in (2.2) (other than A,,÷ ~) are all negative. 

c) If Jm = 0, the entries in (2.2) are all negative except  for a final 

string of  zeros  starting at the same point as the final string of  zeros 

in (2.1). That  is, if J,, = Jm ~ = . . .  = Ji = 0 and Ji_, :/: 0, then 

A, = 0 f o r i ~  < t ~  < m  + 1 , a n d A , < 0 f o r s ~ < t < i .  

2. Suppose that (2.1) is decreasing.  The conclusion is as in part I, with 

posit ive and negat ive (>0  and <0) interchanged throughout.  

3. If  the entries of  (2.1) are all ~<0, those of  (2.2) are all ~<0. 
4. If  the entries of  (2.1) are all 1>0, those of  (2.2) are all t>0. 

D.  C l a s s i C a l  L i d s t o n e  t h e o r e m .  Suppose that {J,} is monotone over  its entire 

range. Since the present  value of  this sequence is zero under the alternate 

assumptions,  we cannot  have J0 and J,, both positive or  both negative. 

Comparing conclusions B and C, we obtain the following. 

1. If {J,} is increasing for 0 ~< t ~< m, and it is not a constant  zero 

sequence,  then 

A , > 0  f o r l  < ~ t < - m .  

2. If{J,} is decreasing for 0 <~ t ~ m ,  and is not a constant zero sequence ,  

then 

A , < 0  f o r l  ~ < t ~ < m .  

E. 

3. If  J,  = 0 for 0 ~< t ~< m, then 

A, = 0 f o r 0 ~ < t ~ < m  + 1 . 

C a s e  o f  o n e  c h a n g e  o f  d i r e c t i o n  in {J,}. We now arrive at the key result 

ment ioned in the Introduct ion:  

1. Suppose that for some index q (0 < q < m) 

Jo <~ J t  <~ • • • <~ Jq > Jq+l >~ • • • > Jm • (2.3) 

a) I f J o > 0 ,  t h e n A , < 0 ,  1 ~< t ~ < m .  

b) If J,. > 0, then A, > 0, l ~< t ~< m. 

c) I fJo  and J,, are both <0 ,  there is an index p, I < p < m, such that 

A , > 0 ,  1 ~ < t < p ;  

< 0 ,  p < t < ~ m .  
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d) lfJo = J, = . . .  = Jj-, = 0, a n d J j : k  0, then 

A,= 0, I < - t < ~ j ;  

< 0 ,  j < t < ~ m .  
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e) If J,, = J,,-t = • • • = Ji+t = 0, and Ji ~ 0, then 

A , > 0 ,  1 ~ t < ~ i ;  

= 0 ,  i < t < ~ r n .  

2. Suppose that for some index q (0 < q < m) 

Jo >~ J t  >! . . .  >~ Jq  < Jq+,  <~ . . . <~ J , ,  . (2.4) 

We can write down the same conclusion as in part 1, with positive 
and negative (<  and >)  interchanged throughout in all s tatements 
about J and a .  

Suppose now that we have a second set of  alternate assumptions,  and we 
wish to compare the resulting reserve changes with those produced by the 
first set. Let J and A denote the quantit ies calculated with respect to the 
new alternate basis. 

We will cont inue to discuss the case where {J,} has one change of direction. 
Now in many familiar applications there is a simple linear relationship be- 
tween J and J - - f o r  example,  in the case of constant  multiples of mortality 
or constant  additions to mortality or interest on level premium policies. 
(These are discussed more fully in Sec. III.) In such cases, {J,} will also 
have one change of direction and, by conclusion E, we can expect both 
{A,} and {2~,} to exhibit one change of sign. A natural  procedure is to compare 

- the point at which  this change  occurs .-The re la t ionship  be tween  A, and/~,  _ 
is more complicated than that between J, and J,, since the auxiliary annui ty  
reserves are calculated according to the alternate mortality and interest 
assumptions,  which differ in each case. We need to consider  the ratios 

v" ( t )  , p"  
h,  v ' ( t )  ,p'~ ' (2.5) 
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where double-primed symbols refer to the second alternate basis. When 
{h,} is monotone, we obtain the following conclusions: 

F. Point o f  sign changes for  alternate assumptions. Suppose that there are 
constants r > 0 and h, such that 

), = rJ, + h ,  O < ~ t < ~ m ,  

and suppose that J, and hence J, satisfy (2.3) or (2.4). 
1. If {h,} is increasing, then the point of sign change in {~,} occurs later 

(or at the same time) for the second set of alternate assumptions, that 
is, 
a) If (2.3) holds, then A, I> (resp. >)~ 0 implies that ~, >/ (resp. >) 

0. 
b) If (2.4) holds, then A, ~< (resp. <) 0 implies that ~, ~< (resp. <) 0. 
By interchanging the two sets of alternate assumptions, we see that 

2. If{h,} is decreasing, then the point of sign change in {A,} occurs earlier 
(or at the same time) for the second set of alternate assumptions, that 
is, 
a) If (2.3) holds, then A, ~< (resp. <) 0 implies that ~, ~< (resp. <)  0. 
b) If (2.4) holds, then A, /> (resp. >) 0 implies that ,~,/> (resp. >)  0. 

111. EXAMPLES AND APPLICATIONS 

A. Limited Payment Policies 

We return to the situation introduced in Section I where we have a change 
in assumptions producing values of L, that are decreasing and positive. We 
want to determine the effect on reserves for a limited payment policy for 
which premiums are level during the premium-paying period. We can use 
the results of Section II to conclude in general, as Baillie does in a particular 
case ([1], Sec. V, case b), that new reserves may begin lower than standard 
ones but will eventually become higher and remain so. Indeed, this 
pattern is given by conclusion B, part 2, in Section II, during the premium- 
paying period. After the premium-paying period, when J, = L, > 0, new 
reserves are higher, from conclusion C, part 4. 

B. Mortality Increases on Endowment Policies 

Suppose that interest rates remain unchanged but mortality rates increase. 
Under what conditions will the new reserves be higher than standard at a// 

t The notation ( r e s p . )  means that the preceding symbol should be replaced throughout the 

expression by the symbol in parentheses, thus producing an alternate expression. 
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durations prior to maturi ty on a level premium endowment  policy? The 
simple but  somewhat  surprising answer  is that this is never  true. This was 
brought out in the discussions of [1] and [2]. In fact, simply using the 

assumptions that 

and 

B . - i  = B ' - i  = E '  = E (3.1) 

p '_ ,  > p . _ , ,  (3.2) 

it follows that 

,,_,V' = ! + i._, - P"- '  < "1 + i.-t  

We see that there cannot  be a higher reserve in the last durat ion prior to 

maturity. 
This is readily verified by general reasoning. Assumption (3.1) means that 

the extra mortality has no effect in the final policy year, while assumption 
(3.2) means that there is still a payment  due for the extra mortali ty at the 
beginning of this year. If we consider  the auxiliary annui ty  at the end of 
n - 1 years, we see that the insured has received all the benefits from this 
annui ty  but has not yet paid for them. This naturally means  a negative 

reserve. 
One can ask, however,  for condit ions that ensure that new reserves will 

be higher than standard at all durat ions up to some fixed point.  This was 
done by Greville in the discussion of  [2]. A special case of this result was 
also derived by Baillie in his au thor ' s  review of the discussion of [1]. We 
will state Grevi l le 's  result  and show how it may be derived from the results 

in Section II. 
Consider a level premium n-year  endowment  policy issued at age x. (We 

will be considering here the normal condit ions,  that is, i is constant  and E 

= B,  for all t.) For ease in notation,  let 

a, = a~.+,:.--:71-, • 

Suppose that mortality rates change and i remains the same. Let O, and z, 

be defined by 

0, q~ = q, + - -  
v//,+l 
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,~, = (1 + z , ) / / ' , .  

THEOREM (Greville).  Suppose  that r is an index <n such that 

0, is increasing (resp. decreasing) , for  0 ~< t ~ r - l , (3.3) 

and 

zr >! (resp. ~<) 0,_~ ; (3.4) 

then ,V' >t (resp. <~) ,V for  0 <~ t <~ r .  

Proo f  (for the case where  0, is increasing). Assume that E = I. Using 

standard formulas  for endowment  reserves and premiums ([3], formulas 

[4.7] and [5.6]), we have 

0, 
L, = v(q', - qt)(l - ,+IV) = - -  

ti0 

and 

--a-;- e---T-j' 

which shows that J, is increasing. We apply conclusion B of  Section lI to 

the sequence  {J,, J~ . . . . .  J,_~}. 
Suppose that J,_~ ~ 0. Then J,  ~< 0 for 0 ~ t ~ r - I, and the conclusion 

follows from conclusion B, part 3. 

Suppose,  on the o ther  hand, that Jr_~ > 0. Then (3.4) and (3.5) show that 

Zr ~ Z0 , 

implying that 

ii;/ a; \ i-U-£Zo/ > o . 

This last inequali ty precludes the second possibility in conclusion B, part 

1, a, and the conclus ion of  the theorem follows. 

C. Multiples o f  q~ 

We consider  the c o m m o n  type of  mortali ty change where 

q; = ( 1  + k)q, 
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for some constant k. If all other assumptions are unchanged, we have 

L,  = vkq , (B ,  - ,+, V) . 

We will assume that k > 0 throughout the discussion. For k < 0, we 
simply interchange the original and new bases. 

We see that in the level premium case the monotonicity properties of J, 
depend only on the corresponding properties of the sequence 

{K} = q , ( B , - , . , v ) .  

The behavior of {K,} depends, of course, on many factors, such as the 
type of policy, the mortality table, the range of ages, and even the interest 
rate. Observations show, however, that in many of the familiar cases we 
tend to obtain a sequence with one change of direction. Some mathematical 
evidence of this statement is provided in Appendix B. 

Consider, for example, the normal type of endowment policy with B, = 
E = 1. It is usual for {K,} to increase at the early durations because of the 
effect of the increasing values of q,. As reserves begin to build up, the 
decreasing nature of the (1 ~- ,+~V) term often dominates, and {K,} will 
decrease until a value of zero is reached for t = n - 1. We can apply 
conclusion E of Section II to conclude that, typically, new reserves will 
begin higher than standard and then eventually become lower than standard. 

A natural problem that now arises is to determine the effect of changing 
k. Suppose that 0 < k < k, and let us compare the results of changing 
mortality rates to (1 + k)q,  and (1 + ~)q,, respectively. Let J, and P" (the 
level premium) refer to quantities calculated with respect to k. It is not hard 
to see that J and J are linearly related. Indeed, 

where 

J, = ~ J ,  + h ,  O < ~ t < ~ n  - 1 , 

h =  l -  t" +-~P 

The ratio in expression (2.5) is given by 

(1 + k-~qoJ " ' "  (1 + k-~qd " 
(3.6) 



380 EXTENSIONS OF LIDSTONE'S THEOREM 

It is clear that each factor in expression (3.6) is less than 1, and, hence, 
{h,} is decreasing. We can apply conclusion F of Section I1 to obtain the 
result that, as we increase the multiple of qx, the substandard reserves 
remain higher than standard for longer periods. 

For  a particular example of how one may use such results, consider  a 
twenty-year  level premium endowment  policy for which {K,} exhibits the 
typical pattern described above.  Suppose we know that at 150 percent 
mortality, the fifteenth terminal  reserve is higher than the standard one. We 
then know that, for all multiples higher than 150 percent,  the tth substandard 
terminal reserve is higher than standard for all t ~< 15. 

It is, of course, possible that K, will be decreasing over the entire duration 
of the policy. In that case, it is of  interest to note that no matter  what k is, 
all substandard reserves will be less than standard. In Appendix B, one can 
find sufficient condit ions for a decreasing K, in the cont inuous case. (See 
Theorem B.2 and inequali ty [B.18].) 

D. Term Insurance 

The familiar corollaries to the classical version of Lids tone ' s  theorem do 
not apply to term insurance,  since the reserves do not increase by duration. 
In the typical case, the reserves will increase up to a point and then decrease 
to a final value of zero. Our extensions of Lidstone 's  theorem can be ex- 
ploited to yield information in this case. In this subsection we will, for 
simplicity, consider  a level premium policy with constant  interest rate, 
B, = l f o r a l l t ,  a n d E  = 0. 

Suppose first that q', = q, + c for some positive constant  c, while all 
other assumptions remain unchanged.  Then 

L, = vc(I - , + i V ) .  

In the ordinary life or endowment  case, L, decreases and new reserves are 
lower. In the term insurance case, L, (and hence J,) exhibits the pattern of 
(2.4). From conclusion E of Section II we obtain the result that new reserves 
typically will begin lower than, but eventually become higher than, the 
original. Using an expression similar to (3.6), with (I + k)q replaced by 

q + c, and applying conclusion F of Section l l ,  it is clear that as c increases 
the period during which the new reserves are lower is increased. We can 
also verify this last observat ion intuitively. If c increases to l - q~-t, then 
q'n-t = 1 and we are essentially in the ordinary life case. 

Next we consider  the case (discussed in the previous section for endow- 
ment  policies) where q', = (l + k)q,, for some positive constant  k, and all 
other assumptions  remain unchanged.  It is clear now that since reserves 
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eventual ly are decreasing,  we can expect  K, eventual ly  to be increasing. In 

fact, observat ions  show that K, tends to be increasing ove r  the entire du- 

ration of  the policy. Again,  mathematical  evidence of  this can be found in 

,~ppendix B. (See Corol lary B.4, part a.) The classical Lids tone theory will 

apply, and we conclude that new reserves  are higher than original. 

We now consider  interest  changes for the term policy. Suppose that 

i' = i + c, for some posit ive constant  c, and all o ther  assumptions  remain 
unchanged.  Then 

L, = - c ( , V  + P,) 

will follow the pattern of  (2.4). We conclude that for early durations the 

new reserves  may be lower,  as they would be for an endowment  policy, 

but we expect  them eventual ly  to be higher. Le t  us also compare  two 

constant  interest  changes,  c and ~, where 0 < c < 6. The relevant ratio of  

(2.5) is 

+ i +  
h , =  + i +  ' 

which decreases .  Therefore ,  as c increases the new reserves  remain lower  

for longer periods. Again,  this seems intuitively correct .  As interest  rates 

become larger, the present  value of  an endowment  payment  diminishes,  

and the term and endowment  situations tend to coalesce.  

IV. A FORMULA FOR ANNUITY RESERVES 

Consider  a life annuity that provides  for a net payment  of  b, at age x + 

t, t = 0, l . . . . .  n - I. We mean by this that b, equals the annuity payment  

less the premium. As indicated in Sect ion I, we can think of  the benefit 

payment  as being equal to b, and the premium as being equal to zero,  thus 

viewing the annuity as a level premium contract .  

As in Sect ion ~ I, we let w, denote  t h e  reserve at-age x + i c o m p u t e d  

before the payment  of  b, is made. One method of  deriving a formula for W, 

is to view our  annuity as n separate contracts  and value each separately.  

The rth such contract ,  r = O, 1 . . . . .  n - 1, provides  for a single payment  

of  br at age x + r and carries level annual premiums of  

b,v(r) rP~ 
Qr - -  , (4.1) 
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pa ya b l e  fo r  n y e a r s  b e g i n n i n g  at  age  x. 

To  s impl i fy  n o t a t i o n ,  w e  i n t r o d u c e  the  func t i on  

F ,  = -~:q-x+,:,-,t , t = 1 , . .  . , n .  (4.2) 

L e t  IV,., be  t h e  r e s e r v e  at  t ime  t app l i cab le  to  t he  r th  con t r ac t .  F o r  r / >  

t, we  t ake  a r e t r o s p e c t i v e  v i e w p o i n t ,  s ince  t h e r e  a re  no  annu i ty  p a y m e n t s  

p r io r  to  t ime  t. F o r  r < t,  it is e a s i e r  to v i ew the  s i tua t ion  p r o s p e c t i v e l y .  

T h e  resu l t  is 

W , . ,  = Q , L : , I  , r >~ t 

= - Q ,  ii~+,:,--:71 , r < t , 

and ,  us ing  (4.1) and  (4.2), 

w, .  = r ~ t , [ ~ j  , r ~  > t 
(4.3) 

L e t  

, rb~,<r) ,p~l _--F.,L. -.j. r < , .  

w ,  = v ( t ) , p . , ,  t = 0, 1 . . . .  , n  - I ; (4.4) 

t h e n ,  us ing  (4.3),  w e  h a v e ,  fo r  t = ! . . . . .  n - 1, 

n - I  

W, = ~ Wt.r 
r = 0  

= F ,  

n - I  t - I  

% 
r = t  r = O  

L e t  t he  t w o  t e r m s  in t he  b r a c k e t e d  e x p r e s s i o n  a b o v e  be  d e n o t e d  by  E, 

and  I,, r e s p e c t i v e l y ;  t h e n  

w,  = F,[E,  - t , ] .  
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Since F, is >0 for all t, W, is i>0 or ~<0 according as E, >- L or ~<1,. These 
latter quantities are weighted averages associated with the sequence {b0, bl, 
. . . .  bn-i} and the sequence of weights {Wo, wl . . . . .  wn-i}- E, is the weighted 
average of a final segment, and/ ,  the weighted average of an initial segment. 
Now, since the weighted average of the entire sequence is zero, it is intu- 
itively clear that E, and / ,  are of opposite signs or are both zero. Applying 
this to our auxiliary annuity where b, = J,, and using (1.1), we see that 

A , > 0  if and only if I , < 0 ,  

or, equivalently, 

A , > O  if and only if E , > O .  

Most of the results in Section II can be derived intuitively from these 
observations. Consider, for example, conclusion B, part l, a. In this case, 

I, begins negatively and A, will be positive at the beginning. If 1, becomes 
positive, it must remain so due to the increasing nature of J,, and A, will 

remain negative. 
As mentioned earlier, precise derivations of all the Section II statements 

can be found in Appendix A, as follows: 

Section 11 

A 

B and C 
D 
E 
F 

Appendix A 
Theorem A.4, part a (see also Theorem A.4, part b, for further 

refinements concerning the possible pattern of zero entries) 
Theorem A.4, parts c and d; Theorem A.I 
Corollary A.5 
Theorem A.6 
Theorem A.7 and the remark following that theorem 

APPENDIX A 

SOME FACTS ABOUT WEIGHTED AVERAGES 

Let {b0, bl, b2 . . . . .  b,,} be a finite sequence of arbitrary real numbers 
and let {wo~ wt-, ~ . . - ,  win} be a sequence with W;-~; 0 for each i. we  Will- 
think of the latter as a sequence of weights. We define 

t-I 
X biwi 

it ~-- i = o  , - i  , 1 < ~ t < ~ m  + 1 , 

X Wi 
i~O 
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b i w i  

E ,  i=~ . O < t < m ; 

W i  
J=t  

Y ,  = E ,  - I , ,  I <~ t <~ rn  . 

Note  t h a t / ,  is the weighted average of  an initial segment of  the sequence 

{bl}, while E, is the weighted average of  a final segment. 

Our main goal in this appendix is to establish condit ions for determining 
the signs of  the entries in the sequence {Y~}. 

It will be convenient  to extend the definitions of  the above quantities. Let  

p. = 1,,._, = Eo,  

the weighted average of  the entire sequence.  
We define 

b,.+, = b_, = la. and E=+, = Io = I t ,  

from which it fol lows that 

Y . + , =  Y o = 0 .  

We now define 

' - '  

et, = ~ ,  w i  , fS, = w i  , 
i=O i = t  

W I 14~ t 
~1, = - -  , ~ ,  = - -  

OLt + I ~ t  

The three formulas below follow immediately from the definitions• 

1 , . ,  = y , b ,  + (1 - y , ) I ,  , O <<- i <<- m ; (A. l )  

E, = 8,b, + (I -8,)E, .~ , 0 ~< t ~ m ; (A.2) 

e~,l, + fS ,E,  
I* - , 1 ~ t ~< m .  ( A . 3 )  

~, + 13, 
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From (A.3) we can derive two expressions for Y,. First solve for E, in 
terms o f / ,  and then subt rac t / , .  Alternat ively,  solve for - 1 ,  in terms of E, 

and then add E,. The resulting formulas are (for t 4: 0) 

and 

(a, + 13,) 
Y, = (Ix - / , ) -  (A.4) 

13, 

(a, + 13,) 
Y, = (E, - I X ) -  (A.5) 

Or. r 

From (A.4) and (A.5) it is clear that, for 1 ~< t ~< m, 

Y, > (resp. <)  0 if and only if 1, < (resp. >)  I.t, (A.6) 

Y, > (resp. <)  0 if and only if E, > (resp. <)  IX. (A.7) 

We can now state our  first main result concerning the signs of {YI}- 

THEOREM A.I .  Let  r be a f i x e d  index (1 ~< r ~< m); then 

a) I f  b, <~ (resp. >I) Ix for  0 <~ t <~ r - 1, then Y, >i (resp. <~) 0 for  1 

<~t<~ r ;  

b) I f  b, >I (resp. <~) Ix for  r <~ t <~ m, then Y, >t (resp. <~) O fo r  r <~ t 

~ m .  

Proof.  Part a follows immediately from (A.6) after it is noted that the 
condit ion on {bi} implies tha t / ,  ~< (resp. t>) Ix for 1 ~< t ~< r. Similarly, part 

b follows from (A.7). 
This theorem gives information strictly from quanti tat ive data concerning 

the sequence {b~}. All subsequent  results will depend on the monotonici ty  
properties of this sequence.  Consider  first the behavior  over an increasing 
segment. Suppose that, for some indices s and v (0 <~ s ~< v ~< m), 

bs ~< b,+t <~ • • • ~< b,._~ ~< b,.. (A.8) 

We wish to investigate the signs of entries in the associated sequence 

Y .  Y,+, . . . . .  Y,.. Y,,+, • (A.9) 

LEMMA A.2. Suppose that (A.8) holds. Le t  r be any index in the interval 

s <~ r < v, satisfying 

I x ~ < L ~ < b , ;  (A.10) 
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then Y, ~ O f o r  r < t ~ v + 1. Moreover ,  i f  e i ther inequal i ty  in (A.IO) 

is strict,  then Y, < O f o r  r < t <~ v + 1. 

Proof .  From (A. 1) and the fact that 0 < % ~< 1, we see that I r+t is between 

L and br, and, in fact, it is strictly between,  unless L = br. Hence  

I* <<- L+, ~ b, <~ b,+~ , 

where we use (A.8) for the third inequality. We see that (A.10) holds for 

index r + 1 as well. By induction,  (A.10) will hold for all t with r < t <~ 

v, and the first inequali ty will hold for t = v + I. The desired result now 

follows from (A.6). The s ta tements  regarding strict inequality are clear from 

the proof. 

COROLLARY A.3. S u p p o s e  tha t  (A.8) holds.  Given any indices  i and  j 

with s <~ i < j <~ v, 

a) Yi > O and  Yj <~ O implies  Y, < O f o r  j < t <~ v + 1; 

b) Yi = O and  Yj < O impl ies  Y, < O f o r  j < t <~ v + 1; 

c) Yi = O and  Y~ = O impl ies  Y, <<- O f o r  j < t <~ v + 1. 

Proof .  In part a, let r be the smallest index such that i < r and Yr ~< 0. 

From (A.6) we see that L-~ < Ix ~< L, and from (A.I)  and (A.8) we see that 

L < br. Since r ~<j, the conclusion follows directly from L e m m a  A.2. Parts 

b and c follow in a similar manner.  In part b, for example,  we take r to be 

the smallest index such that i < r and Yr < O. 

We can now state our  main result ,  namely, 

THEOREM A.4. S u p p o s e  that  (A.8) holds.  We then have  the fo l lowing:  

a) Ei ther  

(i) Y , < O f o r s < ~ t < ~ v  + l , o r  

(ii) There are indices  k and  I, with s <- k <~ l ~ v + 1, such  that  

Y , < 0 ,  s < ~ t < k  

> 1 0 ,  k<<-t<~l  

< 0 ,  I < t < ~ v  + 1 .  

b) I f  par t  a(ii) holds,  then e i ther  

(i) Y , > 0 f o r k <  t < l ,  or  

(ii) II, = 0 f o r  k <~ t <~ I. I f  this occurs,  then b, = Ix f o r k  <~ t <~ 

I -  l.  I f  k > s, then bk_, < Ix, and  i f  l < v + l ,  then bl > IX. 
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C) Suppose  that  s = O. Then par t  a(ii) holds  with k = O. Condi t ion  

b(ii) will ho ld  i f  a n d  only i f  bo >! IX, and  in this case  I is the lowes t  

index f o r  which  bt > IX (or I = v i f  b,. = Ix). 
d) Suppose  that  v = m. Then part  a(ii) holds  with I = m + 1. Condi t ion 

b(ii) will ho ld  i f  and  only  i f  b= <~ ix, and  in this case  k is the h ighes t  

index f o r  which b~ < It (or k = s i f  bs = It). 

Proof .  If  part a(i) does not hold, let k and I be the smallest and largest 

indices, respect ively ,  between k and v for which Y,/> 0. F rom parts a and 

b of  Corol lary A.3, we see that Y, 1> 0 for k ~< t ~< 1, establishing part a of  

the theorem. 

Suppose that Y, = 0 for k ~< t ~< I. The rest of  part b(ii) follows from the 

fact that any two of  the three s tatements  

II, = 0 ,  Y,+l = 0 ,  b, = It 

imply the third. Use  (A.I)  and (A.6). 

Suppose,  on the o ther  hand, that Y, > 0 for some r be tween k and I. Part 

a of  Corol lary A.3 implies that Y, > 0 for r ~< t < I, while part c of  this 

corollary implies that Y, > 0 for k < t ~< r. Hence ,  part b(i) holds. 

If s = 0, the fact that Yo = 0 shows that part a(ii) holds with k = 0. If 

b0 < IX, then I, < It and Y, > 0, so part b(i) holds. If bo ~> It, Yt ~< 0 and 
the s tatement  in part b(ii) completes  the proof  of  part c. 

If  v = m, reasoning analogous to the above establishes part d. 

Suppose we apply Theorem A.4 to the case where s = 0 and v = m, that 

is, the entire sequence  is increasing. Both of  parts c and d apply, and we 

can conclude the following. 

COROLLARY A.5. Suppos e  that  (A.8) holds  f o r  s = 0 and  v = m. Then 

ei ther Y, > 0 f o r  l <~ t <~ m or Y, = 0 f o r  all t. The lat ter  condi t ion 

holds  i f  and  only  i f  {bi} is a cons tan t  sequence .  

Of course,  it is not difficult to deduce this corol lary directly in this simple 

case. - 

At this point, it is natural to consider  the case of  a decreasing segment.  

Suppose that there are indices s ~< v such that 

b,  I> b,+t /> . . .  /> b, .- i  /> b , . .  (A.8*) 

We obtain the same conclusions except  with all inequalit ies reversed.  
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In fact, for any statement involving the quantities b, I, E, Y, we can obtain 
a new statement by interchanging ~< and ~>, and < and >. We will call this 
new statement the dual of the original. For any valid theorem concerning 
these quantities, the dual theorem is also valid. We can see this by consid- 
ering the sequence { -  b,} in place of {br}. The signs of I and E change, and 
all relevant inequalities are reversed. Sometimes we write a statement to- 
gether with its dual by using parentheses, as in Theorem A.I. This is not 
always notationally convenient, however. Instead, for a statement or theo- 
rem referenced by number n, we will reference the dual by number n*, as 
in condition (A.8*). The dual statement itself will not always be written out 
explicitly. 

Corollary A.5 and its dual say that a monotone sequence {bi} gives rise 
to a sequence {Y~} of constant sign. Theorem A.4 can be used to extend this 
idea. We can show in general that a small number of changes of direction 
in {b~} will mean a small number of changes of sign in {Y~}. We will analyze 
in detail the simplest case, next to the monotone one. This is where the 
entire sequence {b~} changes direction exactly once. The conclusion is that 
{Yi} changes sign at most once. 

We consider the case where there is an index q (0 < q < m) such that 

bo~<b~ ~ < . . .  ~<b~>b~+t > / . . .  />b~-~> /b~ .  (A.II) 

THEOREM A.6. Suppose that (A.II)  holds. We then have the following: 

a) I f  b,, >1 ~, then 

Y , > 0 ,  I < t < ~ i  

= 0 ,  i < t < ~ m ,  

where i is the largest index for  which bi > ~; 

b) I f  bo >- Ix, then 

Y , = O ,  O<~t<~j 

< 0 ,  j < t < m ,  

where j is the smallest index for  which bj > IX; 
c) I f  b,, and bo are both <Ix, there is an index p, with 1 < p < m, such 

that 

Y , > O ,  I < t < p  

< 0 ,  p < t < m .  
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Proof. We apply Theorem A.4,  part c, to the segment (b0, b, . . . . .  bq) 

and Theorem A.4*, part d, to the segment  (b~, bq+~ . . . . .  b,,). 

a) If  b,, I> Ix, it is clear  from (A.11) that bq/> IX. Now Theorem A.4*, part 

d, gives us the indicated pattern for q ~< t < m with a value of  i > q. The 

pattern of  (A.I  1) and the fact that IX is the weighted average of  the entire 

sequence show that b0 < Ix. Using this together  with the fact that Yq > 
0, we conclude from Theorem A.4 that Y, > 0, 1 < t ~< q. 

b) Our argument  is similar to that in part a. If  b0 I> Ix, it is clear  from (A. 1 !) 

that bq > Ix and bm< IX. Theorem A.4,  part c, gives the indicated pattern 

for l ~< t ~ q, and Theorem A.4*, part d, shows that Y, < 0 for q ~< t 
~ m .  

c) Let  I and k* be the indices obtained from Theorem A.4,  part c, and 

Theorem A.4*, part d, respect ively .  If  b0 and b,, are both < i t ,  we know 

that 0 < I and k* < m, as well as the fact that part b(i) of  each theorem 

holds. I f l  < I ~ < q ,  then ) ; > 0 f o r  i < t < / a n d  Y , < 0 f o r . / <  t ~<q. 

We see as in part b above that Y, < 0 for q + 1 < t ~< m, which shows 

that part c holds w i t h p  = 1. I f l  = 1, we can t a k e p  = 2, since It = b0 

< 0. I f / = q  + I, we can show in a similar fashion that part c holds with 
p =k*.  

We next consider  the problem of  determining what happens to the var ious 

quantit ies when we change the sequence  of  weights.  Let  {~'0, ~'t . . . .  , ~',,} 

be a new weight sequence.  We will use symbols  with carets  above them to 

denote  quantit ies computed  with this new sequence.  

Let  
r0i 

hi = -  , i = 0 , 1  . . . . .  m .  
Wi 

Writing ffl as h~w, we see that, for all applicable values of  t, 

t - I  
I , -  ], = ~ w,w~ (b, -bi)(h - h~) (A.12) 

i d = O Ot tutt  " 

A similar expression holds for (E, - /~,). We must use 13 instead of  a in the 

denominator  and let t and m replace zero  and t - 1, respect ively ,  as the 

limits of  summation.  

From (A.I)  and (A.2) we obtain,  with a minor  amount  o f  algebraic ma- 
nipulation, the recursion formulas 

( I , + ,  - ] , + , )  = ( ~ ,  - ~ , ) ( b ,  - 1 3  + ( I  - <13(1, - ],), (A.13) 
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(E', - E , )  = (B, - B,)(b, - ~7,+,)  + (1 - [i ,)(L',+, -E,+O. ( A . 1 4 )  

It is tempting to try to use the above formulas to make statements con- 
cerning the relative magnitude of the original and capped quantities.  This 
is difficult or  impossible without further assumptions.  If we impose some 
monotonici ty  requirements  on {hi} and {bi} we can reach some conclusions.  

Suppose that {bl} satisfies (A. I I) and that {hi} is decreasing. For  0 ~< i 
~<j ~< q (q is as in [A. II]), we have (bi -bj)  <~ 0 and (kj - hi) ~< 0. From 
(A.12) we conclude that 

],<~L, i < ~ t ~ q  + 1.  (A.15) 

Similar reasoning shows that 

E, ~</~, , q ~< t ~< m (A.16) 

as well as 

and 

";/, ~< 7, , 0 ~< t ~< m (A. 17) 

~ ,~<~ , ,  0 ~ <  t ~ < m .  ( A . 1 8 )  

In fact, for 0 < t < m, (A.17) and (A.18) follow directly from (A.15) and 
(A.16), respectively. For  fixed t, we apply these latter formulas to the 
sequence which has an' entry of 1 in the position indexed by t and zero 
entries elsewhere. For  such a sequence,  which obviously satisfies (A. II)  
with q = t, we have ~,, = L+~ and B, = E,. 

We can now formulate and prove our main result concerning change of 
weights. If {bl} satisfies (A.I I), we know from Theorem A.6 that {Yi} will, 
in general, change from positive to negative. A natural problem is to de- 
termine how the weight sequence affects the point of  change. It turns out 
that if the ratios of new weights to old are decreasing, then the point of 
change is deferred and {~} will, in general,  have more (or as many) positive 
entries. The precise s tatement  is as follows. 

THEOREM A.7. Suppose that {bl} satisfies (A.11). Let (wl) and (*('i) be 
two weight sequences such that ~biw7 ~ is decreasing. Then Y, >I (resp. 
>) 0 implies that ]', >! (resp. >)  0. 

Proof. We prove the s ta tement  for/>. The case of strict inequality requires 
nothing more than modifying the second inequality sign in (A.23) and (A.24). 
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Suppose first that r />  q and assume that II, >I 0. We then have 

/ , ~ < E , ~ b , ,  q ~ t ~ < r ,  (A.19) 

where the first inequality follows from Theorem A.6 and the second follows 
from the definition of q. Now using formulas (A. 13), (A. 17), and (A. 19), we 
obtain by induction 

i ,  <~ L ,  (A.20) 

where we use (A.15) to start the induction at index q. From (A.15), 

which, combined with (A.20), yields 

~', /> Yr 1> 0 .  (A.21) 

Next,  suppose that r < q. We will derive the contrapositive of the desired 
result, namely, that }>r < 0 implies Y, < 0. If I;', < 0, we have 

E , < ] , ~ < b , ,  r ~  t ~ < q ,  (A.22) 

where the first inequality follows from Theorem A.6 and the second follows 
from the definition of q. Now, using formulas (A.16), (A.18), and (A.22), 
we obtain by induction 

E, ~</~,, (A.23) 

where we use (A.16) to start the induction at index q and work backward 
to index r. From (A.15), 

L<-I,, 

which, combined with (A.23), gives 

Y, <~ ~', < 0, (A.24) 

completing the proof. 
Suppose we have a sequence satisfying (A. 11"); that is, it consists of an 

initial decreasing segment followed by a final increasing one. What happens 
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to {¥~} now if we change to weights with a decreasing sequence of ratios? 
Theorem A.6* tells us that {F~} will, in general, change from negative to 
positive, and Theorem A.7* says that F,~ 0 implies that ~',~ 0. Exactly as 
in the case of (A . l l ) ,  the point of  change is deferred. 

Note that if the ratios in the sequence {hi} are increasing rather than 
decreasing, we simply interchange the two weight sequences to conclude 
that, with the new weights, the point of change in sign of { F~} occurs earlier, 
in the case of either condit ion (A. l I) or 'condit ion (A. l l*). 

Remark.  In certain cases we can apply Theorem A.7 to situations where 
changes occur in the sequence {b,} as well as the weight. Suppose we 
have a new sequence 

b~ = kbi + h 

for some constants  k>  0 and h, and let f" be calculated with respect to 
{b~} as well as {Wi}. It is clear that f" = kY, and hence the conclusions of 
Theorem A.7 will still hold. 

APPENDIX B 

MONOTONICITY PROPERTIES OF ,V AND K, 

In this appendix,  we show that, under  certain general and natural con- 
ditions, both reserves and costs of  insurance either are monotone  or change 
direction exactly once.  The examples in Section III provide the motivation 
for such results and their relationship with the previous sections of the 
paper. 

For  mathematical  convenience ,  we replace the discrete model that we 
have used up to now with a cont inuous one. This permits the use of calculus 
a n d  facilitates the derivations.  Similar conclusions could, no doubt,  be ob- 
tained in the discrete case, but it appears that some rather complicated 
algebraic manipulat ions would be involved. 

We will adopt the notat ion and terminology of Section I, with suitable 
modifications. The variable t now will assume all values in the interval 0 

t ~ n. The benefit B, is payable at the moment  of death. Premiums are 
paid cont inuously  and P, now denotes the annual  rate of payment  at time 
t. We now have ,V denoting the reserve at time t, rather than at the end of 
year t. In place of q, and i,, respectively, we will consider  

~, = Force of mortality at age x + t 
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and 

5, = Force of interest at time t .  

The cost of insurance K is now defined by 

K, = I~,(B,- ,V). (B.1) 

We will assume that, for all values of t, B,, P,, 5, >t 0 and It, > 0, and that 
E~>0. 

We also assume that all functions under discussion are twice differentiable 
on the closed interval [0, n] (the appropriate one-sided derivatives existing 
at the endpoints). 

Note carefully that, in this section, primes will denote differentiation with 
respect to t (a change from their use in previous sections). 

To simplify the notation, we will often omit the subscript t. 
We remind the reader that we will use the same conventions as in Section 

I regarding the use of the words "increasing" and "decreasing." 
The starting point in our development is to observe that the monotonicity 

properties of a function often can be obtained by looking at differential 
equations that the function satisfies. We now state a general lemma in this 
regard, which will be applied later to both reserves and costs of insurance. 

LEMMA B. 1. Let f be a function on [0, n] satisfying 

f(0)/> 0 (B.2) 

and the differential equation 

f ' = a f - b ,  (B.3) 

where a and b are functions such that 

(i) a(t) > 0 and a'(t) >! O for all t, and 

(ii) For all t suchthat  b(t) >i 0 ,_ 
(B.4) 

a'(t) 
b'(t) >- ~ - f f  b(t) . (B.5) 

Then f either is monotone or changes direction exactly once, from 
increasing to decreasing. 
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Proof.  Differentiating (B.3) and substituting for f in terms o f f ' ,  

f " =  o f ' +  a ' ( f '  + b I - b' 
\ a / 

(B.6) 

We now define a point r as follows. Take r to be the smallest zero of b, 
if such exists. If not, take r = n if b < 0 or r = 0 if b > 0. Assumptions 
(B.4) and (B.5) show that if b(t) ~ O, then b'(t) is also >/0. Hence, once b 
becomes nonnegative, it is increasing and remains nonnegative. In any 
event, we see that 

b(t) < O , O < t < r (B.7) 

>10,  r < t <~ n . 

Using (B.7) together with (B.4), we can infer from equation (B.3) that, for 
t on the interval 0 ~< t < r, iff(t) >t 0, then f ' ( t)  is also >10; hence, f i s  
increasing and remains >10 in this interval. Now, invoking (B.2), it is not 
difficult to see that f,  and therefore f ' ,  are nonnegative in the interval [0, 
r). By continuity, this holds in the closed interval [0, r]. 

Suppose thatf ' ( t)  < 0. Then, as we saw above, we must have t > r. From 
(B.6), using (B.4), (B.5), and (B.7), we see thatf"(t) is also <0. Hence, once 
f '  becomes negative, it is decreasing and remains negative. This shows that 
once f begins to decrease it continues to decrease, and the conclusion of 

the lemma is evident. 

Remarks .  Assumption (B.5) can be put into more enlightening forms. Since 

a a 

the inequality in (B.5), together with the fact that a > 0, says that (b/a) 

is increasing. Also, for b > 0, (B.5) is equivalent to 

b t a r 

b a 

In other words, (B,5) really says that after b becomes positive, its relative 

rate of growth is greater than that of a. 
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We next apply the lemma to the case  w h e r e f  = ,V. We have the familiar 

differential equation 

V' = P + 5 V -  K (B.8) 

= V(IX + 5) - (B~ - P ) ,  

which is in the form of  (B.3) with 

a = (Ix + 5 ) ,  B = (BI~ - P ) .  (B.9) 

We define a new function 

Ixt 
p = - -  = ( l n I x ) ' ,  

Ix 

which will play an important role in the remainder  of  the section. 

THEOREM B.2. Suppose that 

(i) Ix is increasing; 
(ii) B is increasing; 

(iii) P' <~ pP; 
(iv) -p Ix  ~< ~' ~< p~. 

Then V is either (a) increasing, or (b) increasing then decreasing. More- 
over, i f E  >- Bn, then (a) holds; and i rE  = O, then (b) holds (unless ,V 

= 0 for  all O. 

Proof. The main conclusion follows by simply verifying the condit ions 

of  L e m m a  B.!  for the functions a and b given in (B.9). Since V = 0 for t 

= 0, (B.2) holds. The  first s ta tement  of (B.4)  is clear,  and the second follows 

from the first inequality in part (iv). We now observe  that 

b '  = B'p, + BIX' - P '  

BI~' - P '  , using part (ii) (B.10) 

I> p(BI~ - P) = p b ,  using part (iii) , 

while, using the second inequali ty in part (iv), we have 

a '  = p.' + 5' ~< p(ix + 5) = pa (B . I I )  

and (B.5) is immediate  from (B.10) and (B. I I ) .  
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The statement regarding E = 0 is now evident from the fact that .V = 
E, while the remaining statement follows from the fact that 

V', = P, + ~E - ix,(B,- E) 

is />0 when E/> B,. 

R e m a r k s  on the a~sumpt ions  o f  T h e o r e m  B.2.  Note that assumption (i) is 
natural, while the others all hold in the familiar case where B, P, and 
are constant. Assumption (iii), in fact, allows for any decreasing P (as 
would be the case in a continuous version of a limited payment policy). 
It also allows for increasing P, provided that the relative rate of increase 
is less than that of Ix. It is precisely this upper bound on P'  that rules out 
the possibility of negative reserves (which, it is easy to see, are precluded 
by the conclusion of the theorem). We could not have a negative reserve 
produced by premiums being less than the benefit cost at early durations, 
since there would be no chance for premiums to increase sufficiently to 
make up this deficit. In fact, with the assumptions of the theorem, it is 
clear that V' i> 0 at t = 0 and hence, from (B.8), that 

P0 ~> BoIx0 • (B. 12) 

The concluding statements of the theorem reflect the expected patterns 
of reserves in the case of endowment and term insurances. 

We now wish to apply Lemma B.l to K. From formula (B.I) we solve 
for V in terms of K and substitute in (B.8), to obtain 

V' = P +  ~ B -  K ( ~ +  1 ) .  (B.I3) 

Differentiating (B.I), we have 

K'  = Ix'(B - V) + IXB' - I x V ' .  (B.14) 

Now, noting that ~'(B - V )  = pK, and substituting for V ' f rom(B.13) ,we  
obtain, from (B.14), 

K '  = (Ix + 8 + o)K - Ix(P+ ~B - B ' ) ,  

which is in the form of (B.i) with 

(B.15) 

a = (Ix + ~ + p) ,  b = IX(P +bB - B ' ) .  (B.16) 

We now give some sufficient conditions to enable Lemma B.I to be 
applied to K. One of these conditions (inequality [B. 17] below) may appear 
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somewhat  unusual at first. We will a t tempt  to clarify it later and show that 

it does indeed hold in many cases. 

THEOREM B.3. Suppose that 

(i) Ix and p.' are increasing; 
(ii) B is increasing and B' is decreasing; 

(iii) 0 ~< 8 ' ;  

(iv) 0 ~< P ' ;  
(v) p' ~< p2 + p8 _ 8 ' .  (B.17) 

Then K is either (a) decreasing, (b) increasing, or (c) increasing then 
decreasing. Moreover, (a) holds if and only i f  

Po ~ BoPo + BoPo + Bo .  (B. 18) 

Proof. We verify the condit ions o f  L e m m a  B. 1 for a and b as given in 

(B.16). Since Ko = la~Bo /> 0, we see that (B.2) holds. F rom parts (i) and 

(iii), we easily obtain (B.4). 

Let  c = P + 8B - B' .  Using parts (ii), (iii), and (iv), 

c '  = P '  + 8 'B + 8B' - B" ~> 0 ,  

SO 

From(B.17) ,  

b '  = p.'c + p.c' ~> p.'c = pl.tC = p b .  (B. 19) 

a '  = Iz' + 8' + p' ~< pp. + p2 + p8 = p a ,  (B.20) 

and (B.5) is immediate  from (B. 19) and (B.20). 

The final s ta tement  of  the theorem fol lows from the fact that 

K~ ~ P.o[Bo(~ + Po) + B~ - Po] ,  

which we obtain by setting t = 0 in (B.15). 

COROLLARY B.4. Assume the conditions o f  Theorem B.3. 

a) I f  reserves are eventually decreasing (i.e., decreasing on the interval 
[s, n] for  some s < n), then K is increasing. 

b) If  

E ~> B, - ~ Bo , (B.21) 
P., 

then K either is decreasing or is increasing then decreasing. 
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Proof. Part a: In this case, K is eventually increasing, and, by Theorem 
B.3, it must be increasing in the entire interval [0, n]. Part b: In this case, 

K, ~< K0, so the conclusion is obvious. 
In the following corollary, the assumptions are those of Theorems B.2 

and B.3 combined, so the conclusions of both theorems will hold. 

COROLLARY B.5. Suppose that (B.17) holds and that 

(i) Ix and p~' are increasing; 
(ii) B is increasing and B' is decreasing; 

(iii) 0 ~< 8' ~< p~, and 
(iv) 0 ~< P'  ~< pP. 

Then V is increasing under either of the following conditions: 

a) Po satisfies (B.18); 
b) E satisfies (B.21). 

Proof. In both cases, K is not increasing. Now apply Corollary B.4, parts 
a and b, respectively. 

We can view Corollary B.5 as follows. Basically, a sufficiently large en- 
dowment payment is the feature that makes reserves on a policy increase. 
This is reflected directly in part b. In Theorem B.2 we saw that E/> Bn was 
sufficient to cause increasing reserves. We now see that, with the added 
conditions of Theorem B.3, we can reach this conclusion with the smaller 
value of E given by (B.21). Of course, without direct knowledge of E, we 
can still infer that it must be large if premiums are sufficiently large. This 
is the idea of part a. It is of interest to compare this part with (B. 12), which, 
as shown earlier, is always true under the given assumptions. 

Under the assumptions of Theorem B.3, if K does not decrease, the 
inequality in (B.18) is reversed. This gives an upper bound for the initial 
premium rate. We can apply this to term policies, and therefore also t o  
ordinary life policies, since they can be viewed as a limiting case of a term 
policy. For a simple example, consider an ordinary life policy with a constant 
death benefit of 1, constant interest, and level premiums. Assume that re, 
together with its derivative, is increasing and satisfies (B.17). All assump- 
tions are satisfied, and we may invoke both (B.12) and the negation of 
(B.18), to obtain the premium estimate 

I 

P-0 ~ P ~ ~0 + ~-2° • (B.22) 

The lower bound in (B.22) is obvious in this case, but the upper bound is 
decidedly not so. In fact, it is somewhat surprising at first, since it involves 
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the values of Ix and Ix' only at issue age. Note, however, that assumption 
(B. 17) does establish a connection between the values of Ix at various points. 

R e m a r k s  on  t he  a s s u m p t i o n s  o f  T h e o r e m  B .3 .  Assumption (i) is reasonable 
and reflects the expected behavior of Ix over most ages. It is clear from 
the proof that assumptions (ii), (iii), and (iv) can be weakened. We need 
only conditions on B, P, and 8 that will ensure that c' and a '  are non- 
negative. The chosen conditions are easy to state, and they hold when 
all quantities are constant. 

Assumption (v) is of a different nature, and it is not easy to grasp its 
meaning. It may become more transparent if we write it in a somewhat 
different manner. For simplicity, we will restrict our discussion to the 
case where 8 is constant (so 5' = 0). For p > 0, (B. 17) can then be written 
as  

p' Ix' 
- - ~ < -  + 5 ,  (B.23) 
P Ix 

which involves a comparison of the relative growth rates of p and Ix. 
When 8 = 0, further simplification is possible. In this case, (B.23) is 

equivalent to the statement that 

IxF 
- -  is decreasing . (B.24) 
Ix2 

We go from (B.24) to (B.23) by writing Ix,/Ix2 as p/Ix, applying In, and 
differentiating. The steps can be reversed to show that (B.23) with 8 = 

0 implies (B.24). 
We see then that condition (B.17) restricts the growth rate of Ix'. The 

underlying principle is for p.' to grow at a relative rate that is less than 
the relative growth rate of Ix2. If this happens, then the condition will hold 
regardless of 5. However, some relaxation of this growth restriction is 
allowed as 8 increases. In fact, no matter what the mortality basis is, the 
condition can always be made t o  hold by  taking_8 sufficiently large. 

Perhaps the best test of the reasonableness of (B. 17) is to see whether 
it holds in cases where we have a known analytic expression for Ix. In 
the case of Gompertz's law, p is a constant, and the condition holds 
automatically for all constant 8 (in fact, for all 8 satisfying assumption 
[iv] of Theorem B.2). In the more general case of Makeham's law, this 
universality no longer applies, but (B.17) does hold in a wide variety of 
circumstances. To see this, suppose that 

Ix, = A + B e  x÷t , 
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where A, B, and c are positive constants. (Recall that x is the issue age.) 
Suppose also that f5 is constant and satisfies 

Observe that 

/> (2  A -  1 ) .  (B.25) 
In c 

IX' = (it - A) l n c ,  

so that 

A l n c  
p = In c - - -  (B.26) 

p. 

Since Ix is increasing, (B.25) holds when ~ is replaced by any Ix,, and we 
can write 

p + g ~> In c [ (1  

(B.27) 
A 

= I n c - - .  
IX 

a),(2a ,)] 

Differentiating (B.26) gives 

A 
P' - p'--~7~, = l ncA ix ' l  ~ = l n c  

and comparison with (B.27) yields (B.23). We conclude that condition 
(B. 17) holds under Makeham's  law, provided that (B.25) also holds. Since 
the right-hand side of this latter inequality is <1, condition (B.17) will 
always hold for 8 >t In c. Moreover, as soon as the issue age is high 
enough so that ~ / >  2A, the right-hand side of (B.25) is nonpositive and 
condition (B.17) will hold for all 8. 
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D I S C U S S I O N  O F  P R E C E D I N G  P A P E R  

THOMAS KABELE: 

It is interesting to see a paper on the famous Lidstone theorem concerning 
net premium reserves and the remainder function. Mr. Promislow has given 
new proofs of Lidstone's  results. 

Lidstone's  remainder function is essentially our contribution dividend 
formulas, and, in fact, his 1905 paper on reserve charges was a sequel to 
his earlier 1895 paper on the contribution dividend formula. (See my dis- 
cussion of Don Cody's  paper, which appears elsewhere in this volume.) 

Lidstone's  treatment was remarkably general. He considered lapse rates 
and varying interest rates, and dealt with a nonmonotone remainder func- 
tion. Note that Lidstone's  "equation of equilibrium" is n o t  the same as 
Sheppard Homans 's  "equation of equilibrium." Lidstone 's  equation states 
the equality between the "normal"  and "specia l"  reserves. Homans 's  
equation relates the ending reserve to the beginning reserve, plus premium 
and interest, less claims and expenses. Homans 's  equation is also called the 
"retrospective reserve formula" or the "Fackler  accumulation formula" or 
the "Elizur  Wright accumulation formula." Lidstone called Homans 's  equa- 
tion the "fundamental principle." 

(AUTHOR'S REVIEW OF DISCUSSION) 

S. DAVID PROMISLOW: 

Mr. Kabele has added some interesting historical remarks to my paper. 
I would like to thank him for these, and also for some helpful discussions 
that I had with him previously concerning the work of Lidstone. 
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