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Abstract 

This paper discusses the martingale approach for pricing American-type options 

without an expiry date.  These options include the perpetual American put option and the 

perpetual maximum option in one stock case. The word “perpetual” means that the option 

has no expiry date.  A main tool in this approach is the principle of smooth pasting.  
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Introduction 

American options are contracts that can be exercised early, prior to the expiry date. A 

perpetual American option is a contract without an expiry date. It can be exercised at any 

time. To price an American option, it is important to determine the optimal exercise 

boundary (and the optimal stopping time). Myneni (1992) summarizes the essential 

results on the pricing of the American option. In this paper, the optimal exercise strategy 

related to the optimal exercise boundary will be discussed in detail in the following 

section.  

For simplicity, I shall consider the case of one stock. For the case of one stock, I 

shall illustrate the pricing of perpetual American put options and the perpetual maximum 

options.  For the optimal exercise strategy, I simplify the optimization problem as the 

problem of determining the optimal values of one or two parameters/threshold values. I 

provide a detailed derivation of these one or two endpoints of the optimal non-exercise 

interval. 

 

Some classical assumptions 

It is assumed that the market is frictionless. Trading is continuous. There are no taxes, no 

transaction cost and no restriction on borrowing or short sales. The stock price process is 

assumed to be a geometric Brownian motion.  

 Let S(t) be the price of a stock at time t and define X(t) by 

   S(t) = S(0) eX(t),    t 0≥ . 

We assume that the process {X(t), t 0≥ } is a Wiener process with instantaneous variance 

σ2 and drift parameter µ. 
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 Let r be the constant risk-free force of interest, ζ be the constant dividend yield 

rate of the stock. It is assumed that r and ζ are positive. Dividends of amount ζS(t)dt are 

paid between time t and time t+dt. Under the risk-neutral measure, the stochastic process 

{ }rt te e S(t); t 0− ζ ≥  is a martingale. The martingale condition is  

    * rt t r(0) (0)E e e S(t) e S(0)− ζ − + ζ⎡ ⎤ =⎣ ⎦                       (1) 

or 

    * rt t X(t) 0E e e− + ζ +⎡ ⎤ =⎣ ⎦ . 

Thus, we have 

    * 2 21( r (1) (1 ) )t 0
2

− + ζ + µ + σ = ,           (2) 

i.e. 

    µ* = r –  ζ –  
2

2σ  .                                             (3) 

Here, the asterisk signifies that the expectation is taken with respect to the risk-neutral 

probability measure. Under the risk-neutral measure, {X(t)} is a Wiener process with 

drift parameter µ* which is given by (3). The diffusion parameter of {X(t)} remains σ 

under the risk-neutral measure. 

 

The optimal exercise strategy 

For the American option, an optimal exercise strategy is a stopping time for which the 

maximum value of the expected discounted payoff is attained.  (The expectation is taken 

with respect to the risk-neutral measure.)  For some perpetual options, the optimization 
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problem can be simplified as the problem of determining the optimal values of one or two 

parameters. 

 Now let us look at a put option. If a put option with exercise price K is exercised 

at time t, the payoff is  

Π(S(t)) = max(K – S(t), 0), 

where S(t) is the price of a stock at time t. See Figure 1. Note that the American put 

option always must be worth at least Π(S(t)) since it can be exercised at any time prior to 

the expiry date. This makes it more interesting and complex to evaluate than a European 

option which can only be exercised at the expiry date. Since an American option can be 

exercised at any time prior to the expiry date, choosing the optimal time to exercise is a 

crucial problem.    

Figure 1. The payoff function of a put option 

 

 

Before discussing on how to choose a stopping time, let us consider the optimal 

exercise boundary first. Once the optimal exercise boundary has been found, the price of 

an American put option can be obtained. The optimal exercise boundary separates the 

region where one should continue to hold the option and the region where one should 

exercise it. As shown in Figure 2, there are four optimal exercise boundaries of an 
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American put option corresponding to four finite expiry dates. For a specific expiry date, 

the corresponding optimal exercise boundary implies that one should continue to hold the 

option if the stock price is above the boundary curve and one should exercise the option 

when the embedded stock price falls on or below the optimal exercise boundary. We can 

see that as we extend the expiry date, the curve of the optimal exercise boundary becomes 

flatter and flatter. Following this trend, we can at last observe a level boundary as the 

expiry date tends to be infinite. Thus, we consider a level as the optimal exercise 

boundary for a perpetual American put option. To know more on the analysis of the 

optimal exercise boundary of an American put option, see Basso, Nardon and Pianca 

(2002), Kuske and Keller (1998) and Lindberg, Marcusson and Nordman (2002). 

Figure 2. Optimal exercise boundaries of  

  an American put option 

 

 

Pricing perpetual American put options 

Let us illustrate the pricing of a perpetual American put option. For an American put 

option with exercise price K, K < s = S(0), its payoff is  

Π(S(t)) = (K – S(t))+,             (4) 
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where m+ = Max(m, 0). If the owner of the option exercises it at a stopping time T, then 

he will get (K – S(T))+.  

As discussed in the previous section, the optimal exercise boundary of a perpetual 

American put option is a constant. Consider the exercise strategy that is to exercise the 

option as soon as the stock price falls to the level L for the first time. For 0 < L < K and  

L < S(0), define the stopping time TL as  

   TL = min{t | S(t) = L}.             (5) 

See Figure 3. The value of this exercise strategy TL is  

    P(s; L) = LrT*
LE [e (S(T )) | S(0) s]− Π = ,           (6) 

where r is the risk-free force of interest.  

Figure 3. The stopping time TL  

 

 

Since  

    L = S(TL) = S(0) LX(T )e  = s LX(T )e            (7) 

and 

    Π(S(TL)) = (K – S(TL))+ = (K – L)+ = K – L,  

formula (6) can be simplified to  

    P(s; L) = LrT*E [e (K L) | S(0) s]− − =  
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                = LrT*(K L)E [e | S(0) s]−− = .           (8) 

The problem is to find the value of LrT*E [e | S(0) s]− = .  

 Now let us consider the stochastic process rt X(t)
t 0{e }− + β
≥ . This process is a 

martingale with respect to the risk-neutral measure if  

    * rt X(t) 0E [e ] e− + β =                      (9) 

or 

    * 2 21rt t t 0
2

− + βµ + β σ = ,          (10) 

i.e. 

    2 2 *1 r 0
2

σ β + µ β − = ,                      (11) 

where µ* is given by (3). It is obvious that there are two roots for quadratic equation (11), 

say 1β  and 2β . Since  

    1 2 2 2

r 2r 0
2

− −
β β = = <

σ σ
, 

one root is negative and the other is positive. Assume that 1β  < 0 and 2β  > 0. For the 

negative root 1β , the stochastic process 1

L

rt X(t )
0 t T{e }− + β

≤ ≤  is a bounded martingale. By the 

optional sampling theorem, we have  

   ( )
1

1
L 1 L L L Lr T X(T ) r T X(T ) r T* * * L1 E [e ] E [e e ] E [e ]

s

β
β− + β − − ⎛ ⎞= = = ⎜ ⎟

⎝ ⎠
       (12) 

or 

   
1

Lr T* LE [e ]
s

−β
− ⎛ ⎞= ⎜ ⎟

⎝ ⎠
.            (13) 
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Thus, for s L≥ and K > L, it follows from (8) and (13) that the value of the strategy TL is  

   P(s; L) = 
1L(K L)

s

−β
⎛ ⎞− ⎜ ⎟
⎝ ⎠

,           (14) 

which is represented by the red curve in Figure 4.  

Figure 4. The value of the strategy TL and The price 

 of the perpetual American put option 

 

Now, for the optimal exercise strategy, we seek for the value L that maximizes 

P(s; L). This value is called L% . The optimal value L%  can be obtained by differentiating 

P(s; L) with respect to L and setting the derivative equal to zero, i.e., 

    
L L

P(s;L) 0
L =

∂
=

∂ %

            

or 

1 1

1 1
1 L LK ( 1) 0
L s s

−β −β
⎛ ⎞ ⎛ ⎞⎛ ⎞−β − −β + =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

% %

%
.         (15)  

Solving equation (15) yields the optimal exercise boundary 

    1

1

L K
1
−β

=
−β

% ,            (16) 

which is the same as (3.9) in Gerber and Shiu (1994a) if their 0θ  is 1β .  
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Thus, for s L≥ % , it follows from (14) and (16) that the price of the perpetual 

American put option is 

    
1LP(s;L) (K L)

s

−β
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

%
% %  

1

1 1

1 1

1(K K) K
1 s 1

−β
⎛ ⎞−β −β

= − ⎜ ⎟−β −β⎝ ⎠
 

1

1

1 1

KK
1 s(1 )

−β
⎛ ⎞− β

= ⎜ ⎟−β −β⎝ ⎠
,          (17) 

which is represented by the blue curve in Figure 4. Note that for L < K, as L tends to L% , 

the value of P(s; L) increases, i.e. it is approaching the maximum value P(s; L% ).  

 Remark: we know that 

    
s L s L

(s) (K s) 1
s s= =

∂Π ∂ −
= = −

∂ ∂% %

         (18) 

and  

    
1

1
s L s L

P(s;L) 1 L(K L)
s s s

−β

= =

⎛ ⎞∂
= β − ⎜ ⎟∂ ⎝ ⎠% %

% %
%  

            1 1

1 1

K 1 1
1 K
β −β

= = −
−β −β

.         (19) 

Thus, it follows that 

    
s Ls L

P(s;L) (s)
s s ==

∂ ∂Π
=

∂ ∂ %%

%
.          (20) 

This is known as the smooth pasting condition or the high contact condition.  
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Pricing the perpetual maximum option in one stock case 

A maximum option is an option whose payoff is the maximum of two or more stocks or 

assets, e.g.  

   Π(z1, z2, z3, z4) = max(z1, z2, z3, z4), z1, z2, z3, z4 ≥ 0. 

Consider a perpetual American option with payoff function 

   Π(z) = max(K, z), z ≥ 0,               (21) 

where K > 0 is the guaranteed price.  This payoff function can be regarded as a one stock 

case of the maximum option which is the maximum of a stock and a positive constant K. 

Consider the option-exercise strategies of the form:  

   Tu,v  =  min{t | S(t) = u or S(t) = v},          (22) 

with 0 < u ≤ s = S(0) ≤ v. See Figure 5. The strategy Tu,v is to exercise the option as soon 

as the stock price rises to the level v or falls to the level u for the first time; the value of 

this strategy is  

  V(s; u, v)  =  E*[e−rTu,v Π(S(Tu,v)) | S(0) = s],  0 < u ≤ s ≤ v,       (23) 

where r is the risk-free force of interest.  

Figure 5. The Stopping Time Tu, v 

 

Following Section 10.10 in Panjer, et al. (1998), we express formula (23) as 
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  V(s; u, v)  =  Π(u) A(s; u, v)  +  Π(v) B(s; u, v), 0 < u ≤ s ≤ v,       (24) 

where  

        A(s; u, v)  =  E*[e−rTu,v I(S(Tu,v) = u) | S(0) = s],         (25) 

and 

  B(s; u, v)  =  E*[e−rTu,v I(S(Tu,v) = v) | S(0) = s].          (26) 

Here θ1 and θ2 are the solutions of the quadratic equation 

  22

2
1

θσ   +  (r  –  
2

2σ   –  ζ)θ  –  r  =  0,                 (27) 

with σ being the diffusion coefficient of the Brownian motion {ln S(t)} and ζ the 

constant dividend-yield rate. For quadratic equation (27), there are two roots, say θ1 and 

θ2. For θ = θ1 and θ = θ2, the stochastic process 
u ,v

rt X(t)
0 t T{e }− + θ

≤ ≤ is a bounded martingale. 

By the optional sampling theorem, we have 

 ( ) ( )u ,v u ,v u ,v u ,vr T X(T ) r T X(T )* *
u,v u,v1 E [e ] E I(S(T ) u) I(S(T ) v) e e

θ− + θ −⎡ ⎤= = = + =⎢ ⎥⎣ ⎦
,       (28) 

or 

 u ,v u ,vr T r T* *
u,v u,v

u v1 E I(S(T ) u) e E I(S(T ) v) e
s s

θ θ
− −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= = + =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.        (29) 

It follows from (25), (26) and (29) that 

u vA(s;u, v) B(s;u, v) 1
s s

θ θ
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.           (30) 

Thus, for roots θ1 and θ2, we have 

  
1 1u vA(s;u, v) B(s;u, v) 1

s s

θ θ
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

           (31) 

and 
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2 2u vA(s;u, v) B(s;u, v) 1

s s

θ θ
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.           (32) 

From (31) and (32), we obtain 

  
2 1 1 2

2 1 1 2

v s v sA(s;u, v)
v u v u

θ θ θ θ

θ θ θ θ

−
=

−
            (33) 

and 

  
2 1 1 2

2 1 1 2

s u s uB(s;u, v)
v u v u

θ θ θ θ

θ θ θ θ

−
=

−
.            (34) 

Now, we can substitute the expressions (33) and (34) into the right hand side of (24) to 

get 

  
2 1 1 2 2 1 1 2

2 1 1 2 2 1 1 2

v s v s s u s uV(s;u, v) (u) (v)
v u v u v u v u

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

− −
= Π + Π

− −
.        (35) 

As shown in Figure 6, V(s; u, v) is the value of the Strategy Tu,v, which is represented by 

the red curve between u and v. 

Figure 6. The Value of the Strategy Tu, v and  

the Price of the Perpetual Option 

 

The problem is to find u(  and v( , the value of u and v that maximize V(s; u, v).  

Then V(s; u( , v( ), u( ≤ s = S(0) ≤ v( , is the price of the perpetual American option. The 

optimal values u(  and v(  are obtained from the first-order conditions: 
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  Vu(s; u( , v( )  =  0,             (36) 

  Vv(s; u( , v( )  =  0.             (37) 

We can show that (36) and (37) are equivalent to the high contact or smooth pasting 

conditions: 

  Vs( u( ; u( , v( )  =  Π′ ( u( ),            (38) 

  Vs( v( ; u( , v( )  =  Π′ ( v( ).            (39) 

Differentiate (24) with respective to u and set s = u, we have 

  Vu(u; u, v)  =  Π′ (u)  + Π(u) Au(u; u, v) + Π(v) Bu(u; u, v).        (40) 

On the other hand, by differentiating (24) with respective to s and setting s = u, we obtain 

  Vs(u; u, v)  =  Π(u) As(u; u, v) + Π(v) Bs(u; u, v).         (41) 

Now let us introduce a new parameter x, where u < x < s < v. From (33), by 

changing some parameters, we can obtain  

  
2 1 1 2

2 1 1 2

v s v sA(s; x, v)
v x v x

θ θ θ θ

θ θ θ θ

−
=

−
 

and 

  
2 1 1 2

2 1 1 2

v x v xA(x;u, v)
v u v u

θ θ θ θ

θ θ θ θ

−
=

−
. 

 We can see that (33) can be factorized as follow: 

  A(s; u, v)  =  A(s; x, v) A(x; u, v).           (42) 

Similarly, we can also obtain the factorized form of (34) as 

  B(s; u, v)  =  A(s; x, v) B(x; u, v)  +  B(s; x, v).         (43) 

By differentiating the identities (42) and (43) with respect to x and setting x = s = u, we 

have 

  Au(u; u, v)  + As(u; u, v)  = 0,            (44) 



 14

and 

  Bu(u; u, v)  +  Bs(u; u, v)  = 0.            (45) 

A new identity is obtained by combining the identities (40) and (41). By 

substituting (44) and (45) into the new identity, it can be simplified as 

  Vu(u; u, v)  +  Vs(u; u, v)  =  Π′ (u).           (46) 

Likewise, we can obtain 

  Vv(v; u, v)  +  Vs(v; u, v)  =  Π′ (v).           (47) 

This shows that (36) and (37) are equivalent to (38) and (39).  

Now let us solve for u(  and v( . With u(  < K < v( , it follows from (21), (38) and 

(39) that 

( )
( )

( )2 11

1 2

2 1

1u
v 1

θ −θ
⎛ ⎞−θ θ −

= ⎜ ⎟⎜ ⎟θ − θ⎝ ⎠

(

( ,             (48) 

which is denoted as ϕ(  in Gerber and Shiu (2003). Further, we can determine u(  and v(   in 

terms of θ1 and θ2. We obtain 

  v
K

(
  = 

−θ1
1− θ1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−θ1 θ2 −θ1( )
θ2

θ2 −1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

θ2 θ2 −θ1( )
,         (49) 

which is denoted as c(  in Gerber and Shiu (2003), and 

 u
K

(
  =  v

K

( u
v

(

(    =  
−θ1

1− θ1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1−θ1( ) θ2 −θ1( )
θ2

θ2 −1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

θ2 −1( ) θ2 −θ1( )
,        (50) 

which is denoted as b
(

 in Gerber and Shiu (2003). Thus, with u(  < K < v( , for the 

perpetual American option whose payoff is given by (21), its price is  

  
K if s u

V(s;u, v) (u)A(s;u, v) (v)B(s;u, v) if 0 u s v
s if s v

≤⎧
⎪= Π + Π < < <⎨
⎪ ≥⎩

(

( ( ( ( ( ( ( ( ( (

(
,       (51) 
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       ( ) ( )1 2

2 1

2 1

K if s u

s / u s / u
K if 0 u s v

s if s v

θ θ

≤⎧
⎪

θ − θ⎪= < < <⎨ θ − θ⎪
⎪ ≥⎩

(

( (
( (

(

,       (52) 

which is the blue curve between u(  and v(  in Figure 6. For detail derivation of u( and v( , 
please refer to Yu (2003). 
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