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In Professor Wecker's paper, statistical methods are developed to predict

"path properties" of a Time Series. Examples of path properties are turning
points or minima.

Professor Ansley's paper shows how and to what extent Box-Jenkins Time Series
methods can be modified to predict two or more time series simultaneously.
The emphasis will be on workable techniques that are already being success-
fully used in practice. Several practical examples will be presented.

Following the presentation of the two papers by the participants from the
American Statistical Association, the Discussant will present a discussion of
the two papers from the actuary's viewpoint. Discussion from the floor will
follow.

MR. ROBERT J. JO/IANSEN: This is the first of three sessions arranged by the
American Statistical Association (ASA), and I would like to tell you how the
ASA sponsorship came about. As the Society's representative to ASA and to
the Committee of Presidents of Statistical Societies, I attended several
annual meetings of ASA. These meetings covered a number of topics (follow-up
studies, demographic presentations, statistical techniques, papers on
economic subjects) of interest or useful to the actuarial profession.
Conversely, some of the ASA papers referred to actuarial and other techniques
for life tables, follow-up studies, and exposure calculations. Because a
joint sharing of results and techniques, would seem to be helpful to
actuaries and statisticians, I have been talking with both the American
Statistical Association and the Society's program committee to see what could
be done. While the logistics of a joint meeting are discouraging, the

possibility of each group providing sessions at the other's meetings, is
feasible. The three sessions at this meeting are the first exchange and the
Society has been invited to participate in the 1980 ASA Annual Meeting in
Houston. What will happen in the future depends on how useful such inter-
changes are to the members of both organizations. If you have any comments,
please write to the Society's Office or let me know.

Our first speaker, Dr. William E. Wecker, was responsible for the American
Statistical Association effort in organizing the three sessions on Economics;
he was at the time Program Chairman for the Business and Economic Statistics
Section of the 1979 ASA Annual Meeting. Dr. Wecker has a Masters in Oper-
ations Research and a Ph.D. in Statistics and Management Science, both from the

*Dr. Wecker, not a member of the Society, is Associate Professor of Sta-

tistics and Management Science at the University of Chicago Graduate School
of Business, Chicago, III.

1227
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University of Michigan. Now in academia, he had been a consultant to Ford
Motor, Esso Research and the Xerox Education Group. He has authored a number
of papers ranging from random walk and Markov processes to multiple time
series.

Our second speaker is Dr. Craig Ansley, Assistant Professor of Statistics and
Econometrics of the University of Chicago Graduate School of Business. While
he is wearing a statistical hat at this session, Dr. Ansley is a Fellow of
the Institute of Actuaries and an Associate of the Society and he has a Ph.D.
in Business Administration from Michigan. He has been a consulting actuary
in New Zealand and in London mainly on pensions and life insurance, and still
does some consulting primarily in the casualty field. Currently Dr. Ansley's
research interests cover statistical forecasting and he has published a
number of papers.

The Discussant at this session is Irwin T. Vanderhoof. Irv is well known to

most of you for his papers and discussions in the area of investment theory
and analysis. AI_ FSA, he is Senior Vice-President, Office of Corporate

Development and Finance at The Equitable in New York. He also has an attach-
ment to academia, serving as Adjunct Associate Professor with the College of
Insurance. He is an Associate of both the Institute of Actuaries and the

Casualty Society and Js a member of the New York Society of Security Analysts.

DR. WILLIAM E. WECKER*: The title of my talk is "How to Predict the Timing
and the Extent of the Next Recession", but the emphasis is really not on
Gross National Product (GNP) but on statistical methodology. The procedures
that I shall discuss will be applied to the real seasonally adjusted quarterly
GNP to predict the occurrence and extent of the recession that began in 1974.
But I hope that in our discussion today it may occur to you that there are
other series that would be of interest to you to which these same techniques
could apply. The main technical point is that the event that I am trying to
predict (whether it is a turning point which marks the beginning of a re-
cession, or the minimum of the series which indicates the depth of a re-
cession) is a property of the path of the sequence.

The term "turning point" and certainly the word "recession" are often used by
economists, but statisticans have not given them much attention. I reviewed

several important reference works in the area of time series predictions
without finding the concept of a turning point. None of these reference
works does what I am about to do here, so it seems the technical aspects of
this problem have been overlooked.

Now let me show you why predicting turning points is a problem by presenting
some examples. If you make predictions of the future for the GNP series on
the basis of data through 1968 using a Box-Jenkins type technology or from

*Additional details of Dr. Wecker's presentation may be found in his paper
"Predicting the Turning Points of a Time Series" published in the Univer-
sity of Chicago Journal of Business, 1979, voi.52, no. i.
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an econometric model you will find these predictions do not have any turning
points in them (see fig. I). Thus one naively might assert that the pre-
diction is stating that there will be no turning points, but that would be an
incorrect interpretation. Consider the extreme case of a random walk. Host
of us are aware that the way one predicts random walks is to take a point
prediction equal to the last value (see fig. 2). Thus the prediction shows
no turning points although the series has many. This is the difficulty: that
path properties of predictions are generally quite different from the path
properties of actual data. If you are interested in the prediction of some
path property it is not correct to just make point estimates of the future
and then examine the path properties of those estimates.

I will not tell you how to predict turning points yet. First I will show one
more way to do it wrong. In the previous examples I made predictions succes-
sively further in the future from the same timepoint. Making successive
one-quarter ahead predictions that you keep updating does not work either.
As an example consider the GNP series from 1972 through 1976. If you compare
the actual values and the sequentially updated one-quarter ahead prediction
of GNP, you see that the turning points in the actual data occur before the
turning points in the prediction series (see fig. 3). This illustrates what
one sometimes hears that such and such model is very good for predicting GNP,
but it has one problem, that it lags on the turning points. I can show
analytically that this is a property of an optimal minimum mean square fore-
cast. In other words this is not a fluke. It is simply a fact that this
approach to prediction will not be good in forecasting turning points.

So how can we get a reasonable prediction of a turning point? Well we start
by thinking a little more clearly about the problem. Let X(t) where t =
1,2,3, etc. denote the GNP series or whatever sequence it is you are trying
to extrapolate. Also let Z(t) take on a value of either zero or one de-
pending on whether or not there is a turning point at time t. With this bit
of notation, we can distinguish clearly the usual prediction problem from the
turning point prediction problem. The usual prediction problem is: given a
sequence of X's, predict future values of that same sequence. The solution
to this problem is to get a probability distribution of the future values
conditioned on the past values. The turning point prediction problem is:
given the same data predict the Z's where the Z's have to be defined in terms
of the X's. The solution to the turning point problem will also be a pre-
dictive distribution but it will be a distribution of the Z's conditioned on
the X's.

Earlier I said that there was not really anything in the statistical liter-
ature about turning point prediction, but occasionally one does run into a
paper in the economics literature on the subject. Frequently, these papers
predict future Z's based on past Z's. They look at 'how many turning points
there were and look at the regularity in that turning point sequence and use
that to extrapolate. This is inefficient; it loses information. You do not
want to condition on the past Z's, you want to condition on the past X's.
The other way to do it wrong is the way we have discussed, to get a pro-
bability distribution for the future X's and not the Z's.
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It is important to under6tand that in general Z is an indicator that can
be defined to pick out any path phenomenon of interest. If you are in-
terested in a minimum instead of turning points, you just define Z to
reflect that. In the example we are presently considering, Z represents
turning points but we still must give a careful definition of turning
point. In a way that has been the failing of the previous iiterature, the
term "turning point" or "recession" is used without giving it a careful
definition. Paul Samueison has said, two successive declines in quarteriy
real GNP would be a good servicable definition of a recession. It is a
handy and simple definition on which to base Z but any other unambiguous
definition you prefer could be used. I wili define Z(t) as having a value
of one at the second decline of any two successive quarterly declines
following a period of increase. For other t, Z(t) = 0.

In outline form then, here is the procedure to use to predict turning
points. Given the GNP data, use Box-Jenkins times series method, or any
other procedure_ to get the solution to the usual prediction problem which
is a predictive distrihution of the future X's. Then transform the entire
joint distribution of the sequence of X's into a predictive distribution
of the Z's. For some definitions of Z, tile transformation part is trivial.
For example, for linear transformations, just take the same linear trans-
formation of the point estimates. But for non-linear transformations like
a maximum or a minimum or a turning point, the transformation can be
rather difficult to do analytically, and so I used a fairly straight-
forward numerical procedure on the GNP series.

Looking now at the particular example that I worked out more closely, I
pretend that I know GNP up to the first quarter in 1972 only, and then use
a time series Box-Jenkins type extrapolation to get the joint distribution
of the future values. Then I do the transformation and see if I can pick
up the turning point in 1974. The display that I use to report these
predictions is a distribution of the time until the next turning point, so
that the vertical axis indicates quarters into the future (see fig. 4).
By the definition of a turning point that I have given this is a legiti-
mate distribution. There will be eventually a turning point in this
series with probability one. It turns out that most of the probability is
down around two years or three years in the future, which does agree with
when the turning point actually occurred. There is almost no probability

of a turning point in the first three quarters, which would be the rest of
1972. In contrast if I base my predictions on data through the second
quarter of 1973, the probability of a turning point shifts to be mostly
within the next six or eight quarters (see fig. 5). Finally if we go to
one quarter before the turning point, when in fact, we would have already
observed one decrease in GNP and need only one more decrease to declare a
recession according to the definition we adopted, there is almost I00
percent probability that this will occur in the next quarter, as it
actually did (see fig. 6).

Now consider another path property. Once you know the recession is on,
you might ask how bad is it going to be? A more precise way of phrasing
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this question is to ask what the minimum of the future values of X will
be during the next two years. You must limit your search for the minimum
to two years or some finite period, because otherwise it is not a well

posed problem and the answer will be minus infinity. As before I get a
predictive distribution on the X's. Now my transformation is not to Z,
but to a variable M which is the minimum of those future values of GNP

over the next two years. In this example the probability distribution
of the minimum has a mean of 1.0583 trillion (see fig. 7). The actual
value turned out to be 1.0585, but that is a fluke. The answer is
really the entire distribution and the fact that the actual came right
on the mean is just good fortune.

DR. CRAIG F. ANSLEY*: The subject of my talk is the extension of Box-
Jenkins prediction methods to the problem of predicting more than one
time series at once. Box-Jenkins prediction procedures were invented
during the 1960's. Box and Jenkins wrote a book in 1970 that is now
very famous summarizing these methods. Most of the attention in that
book was directed towards the problem of predicting a time series given
only its past. However, that is a little naive if we really believe
that perhaps one set of circumstances influences another. Recently
people have spent a lot of time working on the extension of these methods
to the problem of predicting two_ perhaps three, or even more series
simultaneously. This is already done to a certain extent by all of the
commercial econometric models. They are in fact predicting several
hundred series simultaneously. The difference is that although the
theoretic structure in these models is quite sophisticated, the statistical
methodology is really not sophisticated at all. We are really starting
from the other end where we try to model the data extremely accurately,
but so far the number of series that can be tackled at once is fairly small.

Before I discuss multiple time series_ I will go quickly through the
Box-Jenkins prediction method for univariate processes. A few technical
terms are required. The term "stationary process" refers to a time
series X(t) where t = 1,2,3, etc. whose expected values are the same for
each t. Also the covariance (which is nothing more than a measure of
linear relationship between two variables) of X(t) and X(t + s) depends
only on the separation s between the two variables and not on their
absolute position in the series. For instance this means the relationship
between the first and second values in a stationary time series is the
same as the relationship between the IOOth and 101st values. Further-
more the condition that the covariances depend only on the separation
implies, when the separation is zero, that the variances around the mean
value are constant. In less technical terms, we can say that the general
statistical behavior of a stationary time series does not change as time
goes on. In other words, if you look at one piece of series, it will
look the same as another piece of series later on, even though the
individual values are different. Now immediately you realize that
almost no time series fit this description. So the first step of Box-
Jenkins procedure deals with how to transform a non-stationary time
series, for instance one with a trend, into a time series which is
stationary.

*Additional details of Dr. Ansley's presentation are contained in his
paper "Predicting Multiple Time Series" available from him.
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The next important part of the Box-Jenkins procedure is to find a good
way of describing relationships along the series. One method is just
to work directly with these covariances between different values. How-
ever since covariances depend on scale we convert everything to correla-
tions which are independent of scale by dividing by the variances.
The autocorrelation function is the sequence of correlations between
X(t) and X(t-k) as k=1,2,3, etc. That is one way of looking at relation-
ships in a time series. There is another way that is equally useful,
called the partial autocorrelation function. It is the sequence of
correlations between X(t) and X(t-k) after allowing for the explanatory
effects of the k-] intervening values X(t-1) through X(t-k+1). Yon
can think of it as the incremental value of another piece of information.
Now in fact these two functions contain exactly the same information;
they are just two different ways of! summarizing the internal statistical
relationships.

Tile reason i haw_ introduced these two functions is that they are used

in a Box-Jenkins procedure to decide the type of mode] that will suitably
fit the stationary series. One of the types of models is something
called a moving average model of order q, denoted NA(q). It is basically
just a linear combinaLion of independent random varliab[es a(t), a(t-l),
through .!!,(IL-q)wher_ _be coefficie:l_t of a(t) is one. A moving average
model of order q has the first q autocorre[ations non-zero and the
others are zero. On the other hand the partial autocorrelations approach
zero only gradually. Thus, if the stationary series X(t) that we wish
to predict has autocorrelation and partial autocorrelation functions that
fit these patterns, an MA(q) mode] is suggested. Another type of mode]
used by Box and Jenkins is an autoregressive model of order p, denoted
AR(p). This is like a regression equation in which the time series is

regressed on itself. In particular an AR(p) model for X(t) would be a
linear combination of X(t-l) through X(t-p) plus an additional random
variable a(t). Such a process has autocorrelations that die out
gradually, while only the first p partial autocorrelations are non-zero.

Now we can take a quick look overall at Box-Jenkins procedure. Most
series are non-stationary and so in almost all cases we will have to
do something to reduce the series to at least approximate stationarity.
One method that usually works fairly well, especially on economic data,
is to take logarithms of the series values and then differences.
Having reduced the data to stationarity, the next step in the Box-Jenkins
procedure is to choose the type of model and its order that will be
used to fit the series, whether it will be a moving average process,
an autoregressive process, or a mixture. The autocorrelation and partial
antocorrelation functions are used to make this identification. Once
a tentative model choice has been made it remains to estimate the

coefficients. However, I do not want to talk about estimation because
it would take forever to go into all the details. There are some pro-
cedures in Box and Jenkins' book and many people have written about
them since. Finally, because it is possible that we might have picked
the wrong model, we calculate the a's and estimate their autocorrelations.
Since these residual a's are assumed to be independent, their auto-
correlations should be zero. Thus if there are large non-zero values in
the residual autocorrelation function, the model is inadequate and we
must return to the identification stage and choose a different model.
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To illustrate the Box-Jenkins method for univariate series, I have two
examples to show you. One series is the seasonally adjusted average
hourly wage rate from January 1972 through March ]979 (see fig. 8)
published in the Survey of Current Business each month. The other series
is the Consumer Price Index (CPI) over the same period (see fig. 9)
and from the same source. You can see both series increase with a

roughly exponential appearance, as you would expect. The CPI series
has a little more of a wavy pattern, but it still can be described
reasonably well as exponential behavior. Since both series have trends
in them, they are not stationary. If I take logarithms of this data
the hourly wage rate series looks almost like a straight line and the
CPI series at least is spread evenly about a straight line trend. By
taking differences the two series become approximately stationary, i.e.
the statistical behavior seems to be roughly the same over any part of
the series.(see figs. 10 and 11).

To save some time, for the next step of the Box-Jenkins procedure, which
is to fit a model to the stationary data series that would create it, I
shall consider only the CPI series. From here on I restrict myself to
the period January 1972 through March 1978 and save the last twelve
months to test my predictions. The autocorrelation function and the
partial autocorrelation function are theoretical numbers so we can never
tell exactly what they are and we have to rely on statistical estimation.
For the autocorrelation function that amounts to nothing more than just

calculating the numerical correlation for the data points separated by
one time period, then the correlation between data points separated by

two time periods, and so on. The result (see fig. 12) is quite a strong
relationship from one time period to the next, especially for the first
few months apart, Knowing how the Consumer Price Index is put together,
this is to be expected. Many items are sampled only once every three
months. Thus some numbers are kept in the index for three months and
therefore there should be fairly strong relationships for up to three
months in this series. I also estimated the partial autocorrelation
function and find that only the first two values exceed the limits that
you would expect them to be within 95% of the time if the values were really
zero (see fig. 12). Thus an AR(2) model seems to be a reasonable first

approximation for this series because its first two partial autocor-
relations are non-zero, its remaining partial autocorrelations are zero
and its autocorrelations die away slowly.

As I indicated earlier, some of the estimation procedures can be very com-
plicated, but the one I used in this case simply arises as a by-product
of calculating the autocorrelation function. The .0058 in the resulting
model (see fig. 14) is the mean value of the differenced log series and
corresponds to the average annual rate of increase in the CPI of 7.2%
over the period January 1972 through March 1978. Having fit an AR(2)
model to the data, I need to test it to see if it is adequate. To do
this 1 solve the model formula for the residual a(t) and estimate its
autocorrelation function (see fig. 13). I find none of the correlations
exceed the approximate 95% limit, which is consistent with the a's being
serially independent as required by theory. Thus I am reasonably
satisfied that this model will describe my data fairly accurately.

However the acid test is whether the model forecasts well. Starting at
March 1978 I made 12 forecasts for the CPI (see fig. 15). The first
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was one month ahead, the second two months ahead and so on. Then I
assumed I was not in March 1978 but April 1978 and I made another set of
forecasts, which appear on the second diagonal. This time, because I
only actually had data through March 1979 I had only 11 values to test
my forecasts. Then I started in May 1978 and so on. Looking at the
mean square errors of the predictions is one way to summarize. You can
see that the size of the error tended to increase, naturally, the further
ahead I tried to predict.

Finally we get to the subject of my talk, multiple time series. Before
we were just looking at the simple series X(t). Now I want to look at m
of them at once, which I can consider as a column vector whose entries
are time series. The stationarity conditions which we had before can be
generalized and each of the m individual time series has to be detrended
as the first step in the Box-Jenkins procedure.

The covariance terms are much more complicated now, 'because we are
considering not just the covariance between one time period and another,
but also the re]ationship of the covariance between one series and
another series. In general we look at the covariance between say the
i-th series at time t and the j-th at time t+s. Instead of simply having

covariances depend on time we have some going across series as well, so
we have interseries relationships as well as intertemporal relationships.
As before we can substitute correlations for covariances. Correlations

really have the same information, but since they are scale free, it
makes it a little bit easier for us to get familiar with the numbers.
The autocorrelation function now becomes a sequence of matrices. For
instance in the s-th matrix the row I, column I, entry is the correlation
between the first series at time t, and the first series at time t+s.
The row I, column 2 entry is the correlation between the first series at

time t and _e second series at time t+s. So you can see that there are
altogether m possible combinations of relationships with the separation
of lag s. We can also define a partial autocorrelation matrix, but I
will not try to do anything more now because the idea of partial corre-
lations for multiple time series is really quite complicated. For one
thing it is not unique; there are many different definitions.

The models for multiple time series look much the same as the models we
had in the univariate case. The difference is that each of the X's and

the a's is a vector and the coefficients are no longer single numbers
but matrices of numbers. That complicates the estimation procedure
quite a bit, because for instance with only two series, we will now need
four coefficients for a first order model instead of one coefficient.

The best way of illustrating this perhaps is just to look at an example.
The example that I shall use is the same as I used before: wages at time
t and Consumer Price Index at time t. Previously I forecast each one of
these independently without taking any notice of what was happening to
the second series. Now I shall predict them as if they were a 2xl vector
and look at the joint properties.

The 2x2 autocorrelation matrices can be computed fairly easily (see fig.
16). The top left hand values are the same correlations between the

wage series at time t and the wage series at time t+s that we looked at
in the univariate case. In the same way the bottom right hand corners
are the correlations between the Consumer Price Index at time t and the

Consumer Price Index at time t+s that we have already seen. The off
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diagonal entries, in the bottom left and the top right, describe the
interrelationships between the two series, and this is what is new. As
before, the correlation matrices will drop to zero for a moving average
process but not for an autoregressive process. Since quite a few corre-
lation matrix entries exceed 95% confidence limits, it does not look like
a moving average model. Next I computed the partial autocorrelation
matrices, from which chi-square statistics can be deduced. 1 will
not have time to tell you how I do that. The chi-square statistics
should be close to zero if the underlying partial correlation is zero
and will be big otherwise. We find that the chi-square values exceed
the 95% critial value at lag I and lag 2 only (see fig. 17). Because we
have a model for which the autocorrelations die away slowly and only the

first two partial antocorrelations appear to be non-zero it looks like
an AR(2) model will fit the data reasonably well.

The two matrices of estimated coefficients for my model can be computed
as by-products of the partial autocorrelation function. The non-zero
off diagonal value in the upper right hand corner of the first 2x2
coefficient matrix (see fig. 18) tells us that the hourly wage rate is
predicted partly not only by past hourly wages but also is predicted
partly by past values of the Consumer Price Index. This is about what
you would expect, because the wage rates react to past movements in the
Consumer Price Index. On the other hand, the CPI is being influenced
not only by its own past hut also, through the non-zero value in the
lower left hand corner, by the past of the wage series. This model then
is telling us exactly how the wage price spiral works. Note that it
only happens at lag one; at lag two the off diagonal values in the co-

efficient matrix were not originally zero hut they were very close to
zero so I just left them out.

Next I looked at the 2xl column vector of a's. The values of these

residual vectors should be serially uncorrelated, so I worked out their
autocorrelation matrices in the same way I did for the original series
(see fig. 19). Since none of the values in these matrices is very big I
find that my first try at the model is satisfactory, that there is no
usable information left in the residual series.

Finally I did some forecasting with this model using the same successive
origin dates as in the univariate forecasts (see fig. 20). By comparing
the root mean square errors of these predictions with the average errors
resulting earlier from my predictions using nnivariate Box-Jenkins
technology, it is evident that the bivariate model is significantly
better than the two separate univariate models. This improvement is

greater for the wage series than for the Consumer Price Index, because
the amount of feedSack in the joint model is greater for hourly wages.

MR. IRWIN T. VANDER}{OOF: My discussion of these papers will be in three
pieces. First, some general comments on what I think of the papers.
Second, some general comments on what 1 think of stochastic predictive
techniques in general. And third the way in which I believe the con-

tents of these papers can be used in the one area that is of real interest
to me, viz. how to make money.



1236 DISCUSSION--CONCURRENT SESSIONS

My general comments on the papers are that they are useful and very
interesting. Professor Wecker's paper is sort of off on one side of the
Box-Jenkins procedure, in the sense that his contribution should not be
restricted to time series techniques. There are other predictive
techniques for which this" particular method of forming a distribution of
the expected results and a transformation of those distributions could
apply. Professor Ansley's contribution is sort of on the other side of
the Box-Jenkins techniques because he is essentially allowing for a
deterministic element to enter into the pure time series method in that
two time series are considered that react on each other. Thus it is

possible to take the point of view that one time series is a causal
factor in the development of the other.

Now I would like to talk about time series techniques and more generally
about stochastic forecasting as a methodological approach. I condemn
such an approach. I have strong reservations about the usefulness of any
such approach and the desirability of embarking on this kind of a method
of solving problems. Professor Wecker made reference to Samuelson,
a Nobel[ Prize winner, saying that a decline in GNP in two successive
quarters :is a good way to decide when you had a recession, l will
cite another winner of some prizes, Einstein, who said, "God does not
play dice with the universe." This is the basic argument against time
series forecasting techniques: that they make certain assumptions about
the underlying nature of the processes we are studying without ever
trying to find any kind o:f rational explanation for them. Professor

Ansley talked about the basic underlying philosophy of Box-Jenkins.
It says that the particular elements of the universe we are studying
are subject to shock or innovation. We do not know what those innova-
tions are, but we assume based on past experience that the mean is zero
and the variance is constant. However, that is making some fairly big
assumptions about the world, particularly when you start by saying you
do not understand and you are not trying to understand what these
innovations are or how they affect the world.

I think these techniques have the twin disadvantages of being very
seductive and quite effective. They are seductive in that the mathematical
techniques that have evolved are interesting, exciting and fun to try to
analyze and understand. They are effective, perhaps more so than
deterministic methods. Since they are effective they lead people away
from attempting deterministic model building solutions for the problem

of prediction. This is a disadvantage because without a deterministic
model there is no theory by which to attempt to infiuence the course of

events. For instance, if we have a wonderful predictive method for GNP,
for CPI and for hourIy wage rates that is based upon pure time series
analysis we are discouraged from trying to build models, perhaps involving
the money supply or dependency ratios, that wouid tell us how to affect
the GNP and other facets of the economy, in ways that might allow us to
alter the course of the economy for the better. As another example,
consider that the Mayas in their temples, with high class time series
techniques might have been able to predict the movement of the stars
and eclipses with great accuracy; and yet that would never have led to
the law of gravity which is, in fact, more valuable than just correct
prediction based purely on observation and experience.

Now I would like to discuss the way in which I think these techniques
can be used to make money. Professor Wecker's contribution might be applicable
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to some purely insurance functions, perhaps loss ratios on health insurance.
Sometimes we see loss ratios on loss of time products rising slowly and
declining slowly. It would be very interesting to have some method of deter-
mining where those turning points would fall, because if we think the loss
ratio on loss of time insurance simply will go up forever we better get out
of the business. If we have some idea where it is going to peak or reach a
trough, we have some idea about when we should try to emphasize or de-
emphasize the product. Professor Ansley's results might relate to questions
about productivity of agents. To some extent the number of agents we employ
determines our sales of insurance. On the other hand, sales of insurance are
closely related to disposable income in the economy and if the agents sell
more they can stay in business. We therefore have cross effects. So in

these two specific applications, one for Professor Wecker and one for Pro-
fessor Ansley, there seem to be possibilities of applying these techniques
and making money.

DR. WECKER: I want to make a brief response to the discussant. I think that
a bad impression may have been left here. A distinction has been made between
a law such as a gravitational law, a sort of knowledge about the universe,
and the sort of information that is contained in these statistical models. I

do not see that distinction. For instance take Craig's wage rate series,
transformed by logging and differencing. There is a statistical regularity
to that series, the left side looks much like the right side and there is
evidence of a constant mean. That is real; that is not some statistical
fabrication. The data are real and the properties are real. We are repre-
senting what we actually see in the world with these models. In that sense I

would not distinguish between laws of gravitation and facts about wage rates.

DR. ANSLEY: I want to add my response too. First, all of the examples as to
why it is nice to have deterministic rather than stochastic models were
addressed to physics. This is kind of unfortunate, especially when we talk
about the law of gravity, because after all the latest .theory on gravity is
entirely probabilistic. So in fact if we have a law of gravity it is a
statistical law, not a deterministic law. The same applies to most modern
particle physics and quantum mechanics. Secondly it is a pity for an actuary
to condemn stochastic models_ seeing that your profession and indeed mine is
based entirely on a large stochastic model, namely that of life contingencies.
It makes no sense at all to reject stochastic models.

MR. VANDERHOOF: Let me respond first to the second of the two comments made.
The examples 1 gave were not only from physics. I also talked about the
policy value of having some idea of the relationship between actions by the
federal government through the Federal Reserve on the economy and what
actually happens in the economy. It is not very good to be able to predict
the CPI, if you believe, as many people do, that a determinant factor of the
CPI is the money supplies controlled by the Federal Reserve. As for the
regularity of the wage rate series being a real fact of the world, how is it
a real fact of the world? Only after you have taken the logarithms of the
data and after you have taken the differences. I can find a way to transform
any series of data that will eventually produce a regularity if I massage it
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enough. What Professor Ansley has done is perfectly fine, but suppose that
something happens, for instance oil goes to $50 a barrel. The trend would
change and what is now a regularity ceases to be a regularity. Without
knowing the effect of oil on the economy, there is no guarantee that the
trend and this particular way of massaging the data will continue to work.

MR. JAMES A. TILLE¥: I want to comment on Mr. Vanderhoof's remarks. Having
spent many years of my life working in physics I can tell you the problems
there are difficult, but they are at least pure. The particular example he
mentioned is one where Einstein himself did not have much success. I sub-

scribe to Mr. Vanderhoof's philosophy of trying to find out as much as one
can. Any technique that circumvents that is not good. Nevertheless, I share
the concerns that were expressed by both Professors in answering his objection
and I agree with them. Predicting various things in the economy is tough and
if you can learn something by looking at a time series and the data contained
in it by itself, or in the way it correlates with other time series, then it
is a useful exercise. That does not mean that one should not aspire to
higher things. That their techniques do not explain how the economy works,
is not a valid argument against developing and using such techniques.

I also have a question for each of the Professors. Professor Ansley, how do
your techniques differ from what is commonly known as Box-Jenkins bivariate
transfer function techniques?

DR. ANSLEY: The difference is basically that transfer function models regard
only one of the series as being stochastic, the other is regarded as being
non-stochastic.

MR. TILLEY: Professor Wecker, does your technique for predicting turning
points take into account the fact that if you have used a Box-Jenkins model,
the model parameters may not have been precisely determined because you only
had a part of the series to look at to estimate them?

DR. %dECKER: It is customary in applied time series work to ignore the fact
that there is uncertainty about the parameters. The usual justification is
that the order of uncertainty is not very great relative to other un-
certainties, but the facts are that it is hard from a technical point of view
to take this uncertainty into account. So the first answer to your question
is that I am assuming that the parameters are correct even though that is not
really true. The second answer is that everybody else does it too_ and the
third answer is that the procedure that I discussed today would apply without
change if you did account for the uncertainty in the parameters.

MR. HARRISON GIVENS: Professor Wecker, how good is your procedure at pre-
dicting when the stock market will turn one way or another?
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DR. WECKER: My procedure would be optimal! But given the random walk
character of the stock market, there would be no money to be made by
this optimal prediction. If you accept this martingale description of
stock price sequence_ then no one else will have a procedure that will
make money either.

MR. GIVENS: Professor Ansley, if you had taken the same series at a
different time, how stationary are the coefficients?

DR. ANSLEY: Well you never can be certain with those two series, but
there is no evidence that there is any non-stationarity.

MR. JAMES G. BRIDGEMAN: I could not help comparing the two talks.
Could one improve the prediction of turning points by doing a two series
analysis?

DR. WECKER: There was nothing special about using a single time series
method to make the turning point prediction. A multiple time series
approach might be used to advantage, but 1 stuck with univariate time
series because it is sort of an easy canned everyday procedure, whereas
even just two time series is rather exotic by modern day applications.

MR. STEVEN M. MARTIN: My question is for Professor Wecker. You demon-
strated that your technique worked very well on the example for predicting
that 1974 downturn. Have you applied the technique to prior downturns
and were you as successful?

DR. WECKER: The only example that I computed was the one that I showed
here today. That is because I am in the business of producing the
technique and not really concerned with GNP. I am completely certain
that this is a statistically sound procedure and it will work correctly
in any period.

MR. STEPBEN L. WHITE: Professor Wecker, your method involves a trans-
formation of the measured X's to the new variables Z. The only specific
transformation yon showed, that for predicting when the series would
turn, let Z assume only the values of 0 or 1. Is this restriction
necessary, or do your methods also work for continuous transformations?
It would appear you must have used a continuous function for your later
prediction of the minimum value of the GNP.

DR. WECKER: The method can use any transformation. Letting the Z's be
either 0 or i is a standard choice for a model where there are exactly
two alternatives.
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MR. WHITE: Early in your remarks, you said it is incorrect to project
the X's beyond the present and then look at path properties of the pro-
jected series. However, later you did make some projection of the X's
to find the Z's. Is there a contradiction?

DR. WECKER: There is no contradiction. My procedure is to compute the
entire predictive distribution of future X's given past X's, and then
transform that distribution to obtain the distribution of future Z's

(given past X's). At no time is it correct to transform point predictions
of the X's. Just recall the elementary result that in general Elf(X)]
f(E[X]) to see why.

MR. BRIDGEMAN: Professor Wecker, one of the kinds of yes/no questions
that some actuaries are interested in is the ruin question for a risk
enterprise. Is there anything in what you have done that might be
applied to get better answers than we have right now for this problem?

DR. WECKER: Well I do not know what answers you have right now. How-
ever, the probability that some particular sequence will fall below some
particular value can be computed in the way that I showed. The main
point here is clarity of thinking. When you want to produce a prediction,
do it with care. Define the random variable you are :interested in and
do not just hastily do something ad hoc that seems right, because you
may not get the right answer.
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Fi6ure i. - Quarterly, seasonally adjusted real GNP with predictions.

Figure 2. - An artificially generated random walk with optimal (mean
squared error) predictions.
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Figure 8. Average hourly wages, non-farm, non-supervisory workers
January 1972 - March 1979 (seasonally adjusted)

Source: Survey of Current Business
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Figure 9. Consumer Price Index January 1972 - March 1979 (1970 = i00)
Source: Surye_ of Current Business
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Figure i0. Differences of logarithms of hourly wages February 1972 -
March 1979
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Figure ii. Differences of logarithms of Consumer Price Index February
1972 - March 1979.
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Figure 12. Consumer Price Index autocerre!ations and partial

autocorrelations estimated for period January !972 through

March 1978. (Log difference series.)
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Figure 13. Consumer Price Index model residual autocorrelations.
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C = Consumer Price Index _ime t
t

X2t = V£nCt = £nCt/Ct_ 1

(X2t - ,0058) = .23(X2,t_ 1 - .0058) + .33(X2,t_ 2 - .0058) + a2t

Var(a2t) = .82.10-5

[igure 14. - Consumer Price Index AR(2) model.

Date Actual StepsAhead

1 2 3 4 5 6 7 8 9 l0 ii 12

4-78 191.4 -0.5

5-78 193.3 -0.6 -1.2

6-78 195.5 -0.5 -1.2 -2.0

7-78 196.7 0.2 -0.4 -1.4 -2.2

8-78 197.7 0.5 0.8 -0.i -I.i -2.1

9-78 199.1 -0.2 0.4 0,8 -0.i -1.3 -2.3

10-78 200.7 -0.4 -0.7 0.I 0.5 -0.5 -1.7 -2.7

11-78 201.8 0.3 -0,3 -0.6 0,3 0.7 -0.3 -1.6 -2.7

12-78 202.9 0.2 0.5 -0.2 -0.5 0.4 0.9 -0,2 -1.5 -2.6

1-79 204.7 -0.7 -0.4 0.i -0.8 -1.2 -0.! 0.3 -0.8 -2.1 -3.2

2-79 207.1 -I.i -1.9 -1.6 -i.i -2.0 -2.4 -1.3 -0.8 -2.0 -3.3 -4.5

3-79 209.3 -0.5-1.9-2.9-2.6-2.1-3.0-3 4-2.3-1.8-3.0-4.3-5.5

Root Mean 0.53 1.05 1.34 1.30 1.45 1.85 1.97 1.79 2.15 3.17 4.40 5.50

Square

Fi_ire 15. - Forecast errors for univsmimte AR(2) model for
Consumer Price Index,
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Lag Autocorrelation Indicator
.Matrix Matrix

0 i.00 .i!
•ii i.00

I -.27 .23 -
.22 .35 +

2 -.06 .02
.02 .41 +

3 .24 .16 +
.i0 .33 +

-.05 .15
•13 .23

5 -.16 -.08
•08 ,25 +

6 .25 .16 +
.32 .25 + +

7 -.22 .07
-,05 .18

8 .01 -.08
-.01 .07

9 -.01 .08
-.15 .19

i0 -.08 -.08

.09 .14

Approximate 95% limits +.23 for purely random model•

• matrix element within limits

+ matrix element above limits

- matrix element below limits

Figure 16. - Bivariate autocorrelation matrices.
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2
Lag X 0 5 I0 15 20 25I' , 7-"

1 21.8

2 10.8 '"

3 5.0

4 0.7 -

5 5.6

6 3.2 I

7 7.9

8 1.6

9 6.3

i0 5.1

2
X (4) 95Z Critical value 9.5

Fi6ure 17. - Bivariate partial autoeorrelations: chi-square statistics.

Xlt = V£n(hourly wages)

X2t = ?£ n(consumers price index)

[ ][0060 = -.38 .32 XI,t 1-.0060

Xlt-'0058J .ii .24 X2,t_l-.0058X2t-" _

+ %

•2 X2,t_2-.O058 [a2tj

_°_L_j _.1o-_._._o-q

Figure 18. - Bivariate AR(2) model.
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Lag Autocorrelation Indicator
Matrix M_trix

0 1.00 .ii
.Ii 1.00

I .04 ,O0

•O0 -.08

2 .06 -.06
-.08 -.06

3 .08 .09
•08 .12

4 -.04 .06

•12 -.08

5 -.23 -,04
-. 15 •03

6 .08 -.08
.16 .20

7 -.22 -.14
.08 .O0

8 -.02 -.06
-.07 -.16

9 -.06 -.14
.12 .12

i0 -.01 .16

-.14 .i0

Approximate 95% limits +,24 for uncorrelated residuals.

• matrix element within limits
+ matrix element above limits
- matrix, element below limits

Figure 19. - Bivariate residual autocorrelation matrices.
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Date Actual StepsAhead

i 2 3 4 5 6 7 8 9 i0 ii 12

4-78 191.4 -0.4

5-78 193.3 -0.5 -i.i

6-78 195.3 -0.6 -1.2 -1.9

7-78 196.7 0.2 -0.5 -1.3 -2.1

8-78 197.7 0.5 0.7 -0.i -i.0 -2.0

9-78 199.1 -0.3 0.4 0.7 -0.2 -1.2 -2.2

10-78 200.7 -0.i -0.7 0.I 0.5 -0.6 -1.6 -2.6

11-78 201.8 0.3 -0.i -0.7 0.3 0.7 -0.4 -1.5 -2.6

12-78 202.9 0.i 0.5 0.i -0.6 0.4 0.8 -0.3 -1.4 -2.5

1-79 204.7 -0.7 -0.5 0.0 -0.4 -1.3 -0.i 0.3 -0.9 -2.1 -3.1

2-79 207.1 -i.0 -1.9 -1.7 -1.2 -1.6 -2.5 -1.3 -0.9 -2.1 -3.3 -4.4

3-79 209.3 -0.5 -1.8 -2.9 -2.7 -2.1 -2.6 -3.5 -2.3 -1.8 -3.1 -4.3 -5.4

Root Mean 0.50 1.02 1.33 1.29 1.37 1.74 1.96 1.77 2.14 3.17 4.35 5.40

Square

Fi6_re 20. - Forecast errors for bivarlate AR(2) model--Consumer Price Index.




