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A N D  STOP-LOSS R E I N S U R A N C E  

HARRY H. PANJER 

ABSTRACT 

A recursive definition of the aggregate claims distribution is developed. 
The computation of the aggregate claims distribution does not require 
the usual computation of the convolutions of the distribution of claim 
amounts. I t  is independent of the number of lives in the group, and 
hence is particularly useful for large groups. Related formulas are 
developed for moments of stop-loss claims and retained claims. A nu- 
merical illustration shows that the computation is so e~cient that one 
can easily calculate the aggregate claims distribution and related values 
manually. 

I. INTRODUCTION 

T 
HE problem of calculating the aggregate claims distribution has 
concerned actuaries for many years. The customary procedure, 
as given in the Part 5 Study Notes on risk theory [5], requires a 

very large number of calculations to generate the various convolutions 
of the distribution of claim amounts given that  a certain number of 
claims occur. In this paper, we show that  the computation of the aggre- 
gate claims distribution and related values can be carried out without 
conditioning upon the number of claims. In fact, reference to numbers of 
claims will be made only in the theory sections of the paper. The only 
things needed to calculate the exact distribution are the sum of the 
forces of mortality over the entire group, and the expected amount of 
claims for each amount of insurance in the group. 

In the case of life insurance, claim amounts are of fixed size, whereas 
in the case of medical, health, and general insurance, claim amounts are 
variable for risks within any risk category. The necessary theory, as 
well as an example, are given for the fixed-claim situation first, and then 
for the variable claim situation, which requires some additional theory. 

In Section VII,  formulas are developed for moments of both stop-loss 
claims and retained claims, using only that portion of the aggregate 
claims distribution to the left of the stop-loss level. These formulas 
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524 AGGREGATE CLAIMS DISTRIBUTION AND STOP-LOSS 

eliminate the need to calculate values of the aggregate claims distribution 
beyond the stop-loss level. 

II. THEORY: FIXED CLAIM SIZE 

Consider a group life contract under which each life is insured for a 
fixed amount of death benefit. In accordance with the collective risk 
model, it is assumed that  lives dying during the year are replaced im- 
mediately by lives of identical risk. Hence, the number of claims arising 
from each certificate is a Poisson-distributed random variable. 

The amounts of insurance will be measured by some convenient unit 
U, such as $1,000. Computations are minimized when the unit chosen 
is the greatest common divisor of the amounts of insurance of the 
certificates in the group. In a paper by Mereu [4], the amounts of in- 
surance in the numerical example are 84,000, $6,000, $8,000, $10,000, 
$12,000, $14,000, $16,000, $20,000, and $25,000. The appropriate unit 
for this example is $1,000, the greatest common divisor of these amounts. 
The choice of this unit minimizes computations, since the aggregate 
claims distribution is calculated at integral multiples of the unit, and 
because we require amounts of insurance to be integral multiples of the 
unit. 

Let Y~ denote the random variable representing the number of claims 
of amount iU. Since the sum of independent Poisson random variables 
is itself a Poisson random variable, Y~ is a Poisson random variable. 

Let 8: denote the sum of the forces of mortality for all lives with 
amount of insurance equal to iU. Then Y~ is Poisson-distributed with 
parameter 8~. 

Let nU represent the largest amount of insurance in the group. Then 
there are at most n independent Poisson random variables Y;, i = 1, 
2 , . . .  , n, with parameters 0~, i -- 1, 2 . . . .  , n. If there are no certifi- 
cates of amount jU, then 8j is set equal to zero. 

Table 1 summarizes the data in Table 1 of [4] by summing the forces of 
mortality (t~ in Mereu's notation) over each amount. The value R i is 
the expected units of claims of size jU. Table 1 contains all the informa- 
tion needed to generate the aggregate claims distribution; no inter- 
mediate calculations are necessary. 

The probability that exactly k claims of amount iU occur is given by 

--$1,~k 
Pr { Y i =  k} = e t~ k! ' i =  1 , 2 , . . . , n ,  (1) 

which equals zero if 0~ = 0. 
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Let X~ denote the random variable representing the aggregate claims 
of amount  iU. Then 

-O i~k  

Pr  {Xi = i U k }  = e ol k l ' i =  1 , 2 , . . . , n .  (2) 

Let X =  X t + X , + . . . + X , .  Then X represents the aggregate 
claims over all amount  categories. 

Let  P ;  represent the probability that  the aggregate claims will be 
exactly i U; that  is, 

P i =  Pr  {X = i U }  . 

We now apply a result first proved by Adelson in a paper dealing with 
an inventory control problem in operations research? He shows that  the 
probability generating function of X is given by 

exp ( - -  ~ O i ) e x p  ( ,=~ Oil 'V) .  (,3) 

Using this probability generating function, he proves that  there is a 
recurrence relation 

iP ,  -- ~ j O j P , _ i ,  i = 1, 2, 3 , . . . ,  (4) 
j=l 

TABLE 1 

AMOUNTS OF INSURANCE, TOTAL FORCE OF MORTALITY, 
AND EXPECTED CLAIM AMOUNTS 

J jV oi Joi = Ei 

4 . . . . . . . . . . .  

6 . . . . . . . . . . .  

8 . . . . . . . . . . .  

10 . . . . . . . . . .  
12 . . . . . . . . . .  
14 . . . . . . . . . .  
16 . . . . . . . . . .  
20 . . . . . . . . . .  
25 . . . . . . . . . .  

$ 4,000 
6,000 
8,000 

10,000 
12,000 
14,000 
16,000 
20,000 
25,000 

Total . . . . . . . . . . . . . . . . . . .  

O. 034606 
0.017823 
O. 025323 
O. 023590 
0.021329 
O. 024705 
0.021995 
O. 040867 
0.015878 

0.226116 

0.138424 
0.106938 
0.202584 
0.235900 
0.255948 
0.345870 
0.351920 
0.817340 
0.396950 

2.851874 

x Reported in N. L. Johnson and S. Kotz, Distributions in Statistics: Discrete Dis- 
tributions (New York: Wiley, 1969), p. 112. 
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Pr { X =  0} = e x p ( - -  ~ 0  P0 @ 

\ j = l  / "  

The proof of this recurrence relation is not given in this paper, the 
purpose of which is to adapt Adelson's result to a problem in actuarial 
science. Interested readers can find the proof in Adelson's paper [1]. 

Since in our applications in group life insurance there may be no 
certificates at many of the amount levels iU,  i = 1, 2, 3 , . . .  , n, the 
calculation can be simplified by summing only over those values of j 
for which 0j is not zero. Furthermore, the number of terms in the sum 
is limited by the fact that  j must not be greater than i, lest the subscript 
of P¢-i be negative. Thus, the largest j that can be used in the sum is 
the minimum of i and n, written as min (i, n). Hence, equation (4) can 
be rewritten as 

m i n ( i , n )  

p ,  = 1 E E i P , - i ,  (5) 
$ /=I 

g i # o  

where 
n exp(- 0,) 

Let m represent the number of positive values of E3 , j  = 1, 2, . . . ,  n. 

Then the maximum number of terms in the recursion formula (5) is 
min (i, m). There is an upper bound on the number of terms required 
to compute values of Pi from P1 to Pk. If k > m, the maximum number 
of terms is given by 

l + 2 + 3 + . . .  + ra + m + . . .  + m = r e ( m +  1 ) / 2  + ra(k - -  m) . 

If k < m, the maximum number of terms is k(k  + 1)/2. This maximum 
number is reached only if the amounts of insurance are U, 2 U , . . . ,  mU.  

In practical situations the actual total number of terms is much less 
than the maximum. However, it is useful to note that the computation 
of P~ from P1 to Pk (k >__ m) requires no more than m ( m  + 1)/2 + 
m(k  - m) multiplications, k fewer additions than multiplications, and 
exactly k divisions. In addition, very little computer capacity is required, 
since only the values of P~ and E~ for i = 1, 2 , . . .  , k need be stored. 

IlL E X A M P L E :  F I X E D  CLAIM SIZE 

We shall continue to examine the data of [4], which are summarized 
in Table 1 of this paper. For these data we see that n = 25, m = 9, and 
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U = S1,000. We first compute  Po, the p robabi l i ty  of no claims, which 
is given by  

Po = exp ( - -  ~,~10i) = exp ( - -0 .226116)  = 0.79762557.  

Using formula (5), we compute  recursively 

P4 = ¼E4Po = 0.02760263, 

P8 = ~EePo = 0.01421608, 

Ps = ~t(E4P4 + EsPo) = 0.02067588, 

Pxo = ~6o(E4P6 + E~P4 + EloPo) = 0.01930795, 

P12 = ~ (E4Ps  + E6P6 q- EsP4 + EnPo = 0.01784373, 

P14 = ~4(E4Plo + E6P8 + EsP6 + EloP4 + E14Po) = 0.02072499, 

P16 = ~6(E4P,2 + E6PIo + EsPs + EaoP6 + EI~P4 + g16Po) 
= 0.01874013, 

Pls = 1Ag(E4P14 + E6P12 + EsPto + E~oPs + EI~P6 + E14P4) 
= 0.00148619. 

These values agree with those developed by  Mereu [4] and those who 
discussed his paper .  

Table  2 gives Pi, Fi i i i = X;~o Pi ,  Gi = ~;~o F;, and Hi = Y,i=o Gs for 
i = 0, 1 , . . .  , 26. The  value F~ is the  cumula t ive  probabi l i ty  tha t  
aggregate claims will not  exceed iU, tha t  is, 

F i =  P r { X < i U } .  

The functions G; and Hi  will be used in la ter  sections. 

TABLE 2 

VALUES OF -Pi, Fi, G,, AND Hi 

4 . . . . .  

10.. 
12.. 
14.. 
16.. 
18.. 
20.. 
22.. 
24.. 
25.. 
26.. 

iU 

$ 0 
4,000 
6,000 
8,000 

10,000 
12,000 
14,000 
16,000 
18,000 
20,000 
22,000 
24,000 
25,000 
26,000 

Pi 

0.79762557 
0.02760263 
0.01421608 
0.02067588 
0.01930795 
0.01784373 
0.02072499 
0.01874013 
0.00148619 
0.03424170 
0.00125971 
0.00227777 
0.01266470 
0.00147878 

Pi 

0.79762557 
0,82522820 
0.83944428 
0.86012016 
0.87942811 
0.89727185 
0.91799684 
0.93673697 
0.93822316 
0.97246487 
0.97372457 
0.976OO234 
0.98866704 
0.99014582 

Gi 

0.79762557 
4.01573049 
5.68040297 
7.37996742 
9.11951570 

10.89621565 
12.71148434 
14.56621815 
16.44117828 
18.35186631 
20.29805575 
22.24778266 
23.23644970 
24.22659552 

Hi 

0. 79762557 
11.99198621 
22. 51334787 
36. 41316255 
53. 77276583 
74. 66792529 
99. 17289713 

127. 36859646 
159.31272986 
195. 04399762 
234. 66638455 
278. 18594754 
301. 42239724 
325. 64899276 



528 AGGREGATE CLAIMS DISTRIBUTION AND STOP-LOSS 

IV. rrIEORY: VARIABLE CLAI~t SIZE 

Consider a portfolio of r independent Poisson risks with expected 
values hi, h~, ~,3, • . .  , k~. Let Nj be a random variable denoting the 
number of claims resulting from the j th  risk. Then the probability that 
m claims arise from the j th  risk is 

Pr {Ni = m} = e-X0'7 m! ' j =  1 , 2 , . . . , r .  (6) 

The probability generating function for the Poisson-distributed ran- 
dom variable Nj is given by the formula 

aNi(t) ----- exp [--hi(1 -- t)]. (7) 

We now introduce the distribution of the amount of claims given that 
a single claim has occurred. As before, we assume that the amount of a 
claim is an integral multiple of some convenient unit U. Let Xkj denote 
the random variable representing the amount of the kth claim arising 
from the j th  risk. 

Let 
st(i) = Pr  {xkj  = iU} (8) 

denote the probability that a claim arising from the j th  risk will be of 
amount iU. Then the probability generating function of X,j- is 

Gx,~(t) = ~ si(i)t 'v , (9) 
i = l  

where nU is the maximum possible claim over all risks. 
Let 

Ny 

Xi = ~ Xkj 
kffi0 

denote the aggregate claims resulting from the j th  risk. Then, following 
Halmstad [2], we can compute the probability generating function of X i 
by compounding the probability generating functions, as 

axs(t) = VNiIaxki(t)] 
(1o) 

Let X = X1 W )(2 q - . . .  q-X~ denote the distribution of aggregate 
claims over the entire portfolio. Then, because of the independence of 
the risks, S has the probability generating function 
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T 

a:,( t)  = I I a x , ( t )  
~=t (11) 

r ~t  

-~ ox~ [ -  x,,,t,- - [ , . , , . , : , , , , - , ] l n ,  

which can be written as 
r 

Now, because ~7=x si(i) = 1, the first exponent in equation (12) can be 
rewritten as 

-- X~ st(i) = -- X~sj(i) . (13) 

Substituting 

O, = ~ Ajsi(i) (14) 
j=l  

in equation (12), and using equation (13), we see that the probability 
generating function of the aggregate claims over the entire portfolios 
can be written as 

n 

_- (_ x (,x, o,,,O. (15) 

The right-hand side of this equation is identically equal to expression (3). 
Hence, if we let P~ = Pr {X = iU}, the recurrence relation given by 
equation (5) holds; that is, the aggregate claims distribution can be 
written as 

1 mia(i,n) 
P ,  = - ~ E;p,_ , . ,  (16) 

where 

and Ej = jO i. 

n 

V. INTERPRETATION OF THE RESULT 

The quantity 0~ in equation (14) is the weighted sum of the Poisson 
parameters over all risks, where the weights are the associated probabili- 
ties of having a claim of amount iU. I t  thus can be interpreted as the 
expected number of claims of size iU in the portfolio. The quantity Ej 
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is then the expected aggregate amount of claims of sizejU (as measured 
in units of U). 

Equation (14) indicates that, for each of the risks, one should prorate 
the Poisson parameters to each amount class in proportion to the proba- 
bility for that amount class, and then sum over each of the amount 
classes. The calculation of the aggregate claims distribution for the 
portfolio depends on the number of amount classes and not on the 
number of risks in the portfolio. 

One sees from equation (15) that computation of the aggregate claims 
distribution for a portfolio of risk with variable claim size is equivalent 
to the computation for a portfolio of fixed claim size, when the data are 
appropriately summarized. 

VI. EXAMPLE" VARIABLE CLAIM SIZE 

Since all risks with the same amount distribution can be treated as a 
single "risk" with a Poisson parameter, that is, the sum of the Poisson 
parameters over.the risks comprising the single "risk," one need list 
only those new "risks" having different amount distributions. Consider 
a group medical expense insurance contract whose risks are classified 
according to marital status and employment status. Summary informa- 
tion related to this contract is given in Table 3. 
Table 4 shows the aggregate claims distribution, calculated by using 

equation (16), and the stop-loss premiums, calculated by using equation 
(21), which will be developed in Section VII. 

vii. STOP-LOSS REINSURANCE 

Mereu [4] computes the mean and variance of both aggregate claims 
and stop-loss claims. The mean and variance of aggregate claims are 
easy to compute; let them be denoted by Uu and U2~ 2, respectively. 
Then 

n 

=  joj, and  Ej oj, 0 7 )  
/ = 1  j = l  

which can be computed from Table 1. Alternatively, 

. = i e ,  and  = (i - (18) 
i = 1  i = l  

neither of which can be calculated conveniently. However, we shall 
need equation (18) for later development. 

We now develop formulas for the mean and variance of both retained 
claims and stop-loss claims; these values can be computed from a single 
line of Table 2. The chief advantage of these formulas is that the moments 



TABLE 3 

V~UESOFXiANDsi(1) FORSAMPLE GROUPCONTRACT 

STATUS 

Active, single . . . . . .  
Active, married . . . .  
Retired, single . . . . .  
Retired, m a r r i e d . . .  

,4 Xisi(i). O~= Zi_l 

J 

• 1 

• 2 

. 3 

• 4 

. 1 . . .  

i 
I i = 1  

4O.2 0.20 
100, 1 0.05 

5,3 0,20 
8.6 0,05 

. . . . . . .  14. 535 

si(i) 

i ~ 2  

0.15 
0.15 
0.15 
0.15 

23.13 

i = 3  

0.15 
0.15 
0.10 
0.10 

22.435 

i = 4  

O, 10 
0.20 
0.05 
0.10 

25.165 

i = 5  

O. 10 
0.15 
0.05 
O. 10 

20.16 

i ~ 6  

O. 10 
0.10 
O. 10 
0.15 

15.85 

i f f i7 

0.10 
0.10 
0.15 
O. 20 

16.545 

i = 8  

0.10 
0.10 
O. 20 
0.15 

16.38 

8 4 
2~.t O~ = 154.20, 2~j_~ Xj ~- 154.20 
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of both types of claims can be computed from the left-hand end of the 
aggregate claims distributions, necessitating calculation of the aggregate 
claims distribution only up to the stop-loss level. 

Let UIV(s) and UR(s) denote random variables representing stop- 
loss claims and retained claims, for stop-loss level Us. We shall use the 
operators E and V to represent mean and variance. 

The first two raw moments of retained claims are 

UE[R(s)] and  U2E[R(s) 2] , 
where 

E[R(s)] = ~ iel "k- ~ sP, = ~ iPi + s(1 -- F,) (19) 
i=O i=a+l i=O 

TABLE 4 

AGGREGATE CLAIMS DISTRIBUTION 

Aggregate 
Claim 

56o. 

~o. . .  

670 . . . .  

'oo . . . . .  

~0o. 

60. 

x;ooo 

Probability 
o| Claim 

O. 00000000 
0.00000000 

0.ooo08770 

0.00338668 

0. 00660896 

0.00578013 

0. 00072096 

0.00000948 

0.00000002 

Cumulative 
Probability 

0. 00000000 
0.00000000 

0.00149819 

0.11837528 

O. 50006997 

0.68897060 

0.98127073 

0.99983773 

0.99999977 

Stop-Loss 
Premium 

$671.51 
670.51 

171.54 

74.77 

24.84 

12.65 

O. 45 

0.00 

0.00 

Expected claims: $671.51; variance of claims: 3,645.24; 
standard deviation: 60.38 
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and 

E[R(s) ~] = k i2p, q- s2( 1 - -  F , ) .  (20)  
i = 0  

Similarly, for stop-loss claims, 

and 

i=s+l i = 0  i = 0  

= U - - s - -  ~ ( i - -  s )P; ,  
i = 0  

Efw(,),j = ~ ( i -  s),J,, = ~ (~- , ) , e , -  Z (~- ,),e, 
i ~ s + l  i ~ 0  i - 0  

= ,~ + (s - ~,)~ - ~ (i - s ) ' P , .  
i~O 

(21) 

(22) 

The four sums in equations (19)-(22) are easily simplified by using a 
generalized summation-by-parts formula as given by Kellison [3, p. 131], 
that is, 

Y~ u~v~ = u,~ v, -- A u ~  ~ vz+x + A2u,~a v,+~ - -  . . . .  (23) 

The results are given by 

k iP, = (s + 1)F. -- G. ; (24) 
i ~ 0  

k i~P, = (s -4- 1)2F. -- (2s q- 3)G, -t- 2H, ; (25) 
i = 0  

k (i -- s)P, = F. -- G. ; (26) 
i - 0  

and 

k (i -- s)~P, = F° -- 3G, + 2H. .  (27) 
i = 0  

Substituting equations (24)-(27) in equations (19)-(22) yields 

E[R(s)] = s + F, -- G, ; (28) 

E[R(s) 2] = s 2 + (2s + 1)F. -- (2s + 3)G° + 2H. ; (29) 

and 
N W ( s ) ]  = ~ - s - F ,  + G.  ; (30)  

E [ W ( s ) 2 ]  = ~2 + (s  - ~)2 _ F,  + 3G .  - -  2 H o .  (31) 
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Hence, 
V [ R ( s ) ]  = E [ R ( s )  ~] - -  E [ R ( s ) ]  2 , (32) 

which reduces to 

V [ R ( s ) ]  = Fo - -  3 G ,  + 2 H ,  - -  ( G ,  - -  F , )  2 . (33) 

Similarly, 

v [ w ( s ) ]  = ,~2 _ F, + 3G, - 211, 

- -  ( G ,  - -  F , ) *  + 2 ( s  - # ) ( G ,  - -  F , )  . ( 3 4 )  

For the example under consideration, with s = 18, substituting values 
from Table 2 in equations (28), (30), (33), and (34), with # = 2.851874 
and ~2 = 44.989822, yields 

E[R(18)] = 2.49704488, E[W(18)] = 0.35482912; 

V[R(18)] = 29.8985304, V[W(18)] = 4.08949160. 

Higher moments of stop-loss claims and retained claims can be computed 
in similar fashion. 

VIII. CONCLUSIONS 

Formula (5) can be used to generate efficiently the exact aggregate 
claims distribution. If the number of different amounts is large, as 
would be the case if a company were computing the distribution of 
claims as measured by the net amount at risk for a block of its business, 
one could group the amounts into convenient units such as $1,000, 
$5,000, or $10,000, to reduce the number of amount cells. Once the data 
are summarized as in Table 1 or Table 2, the computation depends upon 
the number of cells and not the number of lives or policies. 

Formulas (28), (30), (33), and (34) can be used to determine the mean 
and variance of both stop-loss claims and retained claims. The formulas 
could be simplified, but the simplification would involve values with 
subscripts not equal to s. 

The results of this paper are unique to the Poisson distribution, that 
is, the collective risk model. The unique properties of this distribution 
allow the development of the recursive formula (5). 
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DISCUSSION OF P R E C E D I N G  P A P E R  

HANS BUHLMANN* AND HANS U. GERBER: 

The most important  aspect of this paper is the new method of calcu- 
lating the compound Poisson distribution. Now there are three methods. 

1. The first is the customary convolution method (as illustrated in the study 
notes on risk theory). 

2. In a second approach, let X have a compound Poisson distribution with 
Poisson parameter 8, and let p(i) denote the probability that a given claim is i 
(i - 1 . . . .  , n). Then 

X =  Y t +  2 Y 2 W . . . + n Y n ,  

where Y~ is the number of claims of size i. This method is based on the facts 
that (a) the distribution of Y~ is Poisson with parameter 0i = op(i), and (b) 
Y~ , . . . ,  Y, are mutually independent. Thus it is easy to calculate the distribu- 
tion of iY~, and then n -- 1 convolutions have to be performed. 

3. The new method starts with Pr (X = 0) = e-' and computes Pr (X = i) 
recursively from the formula 

1 i^. 
V r ( X  = i) = ~ ~ j O i P r ( X  = i - j ) .  (1) 

j= l  

This method is certainly the easiest to program (on a computer or a calculator). 

As the author indicated, the recursion (1) can be derived from the 
generating function. We shall give an al ternative derivation that pro- 
vides more insight. 

Let Z,, Z 2 , . . .  be independent,  identically distributed random vari- 

ables such that  the possible values of Zi are 0, 1, 2 , . . . .  Let S,, = 
Z1 + . . . + Z,,. Then 

i 
- -  = E(Z,,IS, , ,  = i) 

m 

2~ s Pr  (Z,, = j )  Pr  (S,,_, = i -- j )  

Pr  (Sin = i) 
Thus  

Pr  (S,, = i) = m_~ Y~sJ Pr (Z,, = j )  Pr  (S,,-a = i --  j )  (2) 
i 

Now let Z~. be compound Poisson with Poisson parameter  Olin and 

claim amount  distribution p( . ) .  Note that  for any m, the distribution 

* Mr. Btihlmann, not a member of the Society, is president of the Swiss Association 
of Actuaries. 
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of S~ is that of X. In the limit m --~ oo formula (2) produces the recursive 
formula (I). 

JAMES A. TILLEY: 

In the first part  of my discussion, I will comment briefly on the useful- 
ness of the new method for calculating the aggregate claims distribution. 
Next, I will give an alternate derivation of the principal result of Dr. 
Panjer's paper. Finally, I will develop new recursion formulas applicable 
to compound binomial and negative binomial processes. The recursion 
formula derived by Dr. Panjer is a limiting case of each of these new 
formulas. The practical importance of the negative binomial process is 
described briefly. 

Usefulness of the New Method 
As described by Dr. Panjer, the conventional approach to calculating 

the probability density function for aggregate claims in a collective risk 
model has been to break the problem into two pieces: (1) the determina- 
tion of the probability density for the number of claims in a specified 
period and (2) the computation of n-fold convolutions of the individual 
claim amount distribution. I t  has not been usual to expend much effort 
on item 1--generally one uses the Poisson process with the appropriate 
expected number of claims. The item 2 computations, however, consume 
considerable computer time because high-order convolutions often are 
needed to determine accurately the right-hand tail of the aggregate 
claims distribution. 

In the new method developed independently by Dr. Panjer and Mr. 
Williams (reference in Sec. I X  of Dr. Panjer's paper), the aggregate 
claims distribution is computed from a recursion formula that does not 
require the calculation of convolutions of the individual claim distribu- 
tion. Each author presented a different derivation of the recursion 
formula. In my opinion, what is most significant about their new method 
is how remarkably practical it is. 

1. To achieve a high level of accuracy in determining the aggregate claims 
distribution, especially in the right-hand tail, the recursion method generally 
consumes much less computer time than the convolution method, potentially 
by orders of magnitude, depending on the expected number of claims for 
the group and the shape of the individual claim amount distribution. 

2. Programs that capitalize on the power of particular computer languages 
such as APL to make the convolution method more efficient with respect 
to computer execution time typically use considerably more computer 
storage than the recursion method. 
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3. In the convolution method, as a higher-order convolution is included in the 
calculation, all the values of the prior approximation to the aggregate 
claims distribution (except for the "leftmost" values) are altered. By con- 
trast, in the recursion method, one determines the aggregate claims distribu- 
tion sequentially from its leftmost value (zero) toward its rlght-hand tail, 
and, once computed, each value is exact (to the accuracy of the computing 
device) and is not altered as the computation is carried further. 

4. The recursion formula calculations are so efficient on today's computers 
that one can afford to calculate by brute force the entire aggregate claims 
distribution (for all practical purposes) and then determine stop-loss 
premiums directly from the density function without resort to any of the 
special techniques described previously in the actuarial literature. 

The third point may be of theoretical interest only, since both the 
recursion formula and the convolution method produce accurate results 
if they are terminated when the cumulative distribution function is suffi- 
ciently close to unity, for example, to within 10 -8 . 

The only practical limitation of the applicability of the Panjer- 
Williams recursion formula is that it is valid only if the number of 
claims for the collective is a Poisson random variate. In the next section, 
I will present another derivation of the recursion formula sufficiently 
general that it can be extended to the compound binomial and negative 
binomial processes, and perhaps, with sufficient ingenuity (and good 
fortune), to some other processes. 

Derival.ion of the Panjer-Williams Recursion Formula 
In the following derivation, no distinction is drawn between the fixed 

and variable claim size situations because the probability density function 
of individual claim amounts appears explicitly in the equations. This 
approach contrasts with that  of Panjer and Williams, who did not refer 
to the individual claim amount distribution explicitly but classified the 
data by amount cells and identified appropriate characteristics of the 
risks in those cells. There is no practical difference between the two 
approaches, however, since one would have to classify the data by cells 
in order to determine the individual claim amount distribution. 

Let g(n, t) represent the probability density function of the number of 
claims in a period t. Assuming a Poisson process, 

g(n, t) e-e'(Ot)" 
= n !  ' ( 1 )  

where 0 is the expected number of claims in a unit time period. Let p(x) 
represent the probability density of individual claim amounts, and let 
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f(x) be the probability density of aggregate claim amounts. Finally, let 
p"*(x) denote the n-fold convolution of p(x). It  will be assumed in this 
discussion that all probability density functions are well defined. The 
theory can be developed for discontinuous cumulative distribution 
functions by treating the densities as measures rather than functions, 
and by using the concepts of Laurent-Schwarz distribution theory. 

The aggregate claims density of the compound Poisson process is 

e - O r ( o f )  n 

.=o n! p"*(x).  (2) 

Denote the Laplace transform of a function by a bar over the function. 
For example, 

¢o 

](k) = f f ( x ) e - * * d x .  (3) 
0 

By taking Laplace transforms of both sides of equation (3) and using 
the convolution theorem for Laplace transforms, we obtain 

] ( k )  = 
e - o t ( O [ )  n 

n=0 n i  [~(k)p 
(4) 

= eet~(k)-et . 

Next, by differentiating equation (4) with respect to k, we derive 

d] Oti(k) d~ 
d ~  = -~-k " ( 5 )  

Using the relation 

u/ 
-- f xf(x)e-kXdx (6) dk o 

taking the inverse Laplace transform of equation (5), and using the 
convolution theorem, we finally obtain 

xf(x) = Ot f yp(y).f(x - y )dy .  (7) 
0 

Equation (7) is the continuous form of the Panjer-Williams recursion 
formula for the aggregate claims density f(x). In the continuous form it 
is an integral equation for f(x) and is not very useful. By replacing p(y) 
with a discrete density function, however, we recover the Panjer-Williams 
equation. 

Let U be the largest positive number such that all individual claim 
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amounts are expressible as positive integral multiples of U. Let pj 
denote the probability that an individual claim amount is jU.  Similarly, 
let f~ denote the probability that  the aggregate claims amount is iU. 
Then equation (7) becomes 

i 

if, = Ol ~ JPJf,-i, i > 1 . (8) 
i=O 

The initial condition is f0 = e-% Identifying 0s = (Ot)ps for j > 1, and 
noting that  the j = 0 term vanishes in the summation, we see that  
equation (8) above is equivalent to equation (4) in Dr. Panjer's paper. 

Compound Negative Binomial Process 
The actuarial literature is rife with examples of the applicability of 

the negative binomial distribution in collective risk theory. Some of the 
reasons for its importance are the following: 

1. The Poisson distribution can be obtained as a limiting case of the negative 
binomial distribution. 

2. In many situations, the negative binomial distribution accords with actual 
data better than the Poisson distribution. 

3. The negative binomial distribution has been used for processes exhibiting 
contagion--those in which the probability of a further claim increases 
whenever a claim has already occurred. 

The negative binomial distribution has larger variance and longer 
tails than the Poisson distribution and consequently results in larger 
stop-loss premiums than does the Poisson process with the same ex- 
pected number of claims. Thus it is important to examine whether or 
not the negative binomial distribution is more appropriate for the 
collective than the Poisson distribution. 

As an example of how the negative binomial distribution can arise, 
consider a group life insurance case. On the basis of the size of the group, 
the age, sex, and income distribution of its members, and any other 
relevant available data, the group underwriter establishes the standard 
expected number of claims 0 per unit time period. Let r denote the 
"mortali ty level" of the group. We assume that  aggregate claims in a 
period of length t would follow a compound Poisson process with Poisson 
parameter rOt if r were known with certainty. Then, in either of the 
following two situations, the distribution of aggregate claims would be 
given by a compound negative binomial process. 

1. The mortality level of the group is not constant over time but fluctuates 
randomly and independently from period to period according to a gamma 
distribution. 
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2. The mortality level of the group is constant over time, but its exact value 
is unknown. On the basis of prior experience, we know that the mortality 
levels of similar groups can be represented by a gamma distribution. 

A Bayesian approach is useful in the second situation. Let ho(r) denote 
our "prior" distribution of the mortality level based on any previous 
experience with similar groups, or, if there is none, on our judgment. 

ho(r) = ~ ' ~  r ~ 'e ~ .  (9) 

Suppose that kl claims occur in a priod of duration t. The "posterior" 
distribution of the mortality level based on ho(r) and the observation of 
kt claims is 

hl(r l kl) = 03 + Ot)"+*t r"+k'-te-~+")" (10) 
r ( a  + kl) 

If k2 , . . .  , k,~ claims are observed in subsequent successive periods of 
length t, and the posterior from one period is used as the prior for the 
next, we obtain, for 0 _< j _< m, 

hi(rlkx, ki ) = ([3 +jOt)  "+Ki r~r~_K~_le_(a+j~t)r (11) 
" ' "  r (~  + K3 

where K; = X~=I kl. 
The distribution h j ( r ] kx , . . . ,  kj) is a gamma density function. The 

same distribution is obtained whether the initial distribution is "up- 
dated" sequentially from the initial period to the most recent completed 
period or whether it is updated only once on the basis of the combined 
number of claims over all the periods. When sufficiently many periods 
have elapsed that mot >> B and K~ >> a, our revised estimate of the 
group's level of mortality depends mostly on its own experience and very 
little on our initial estimate. This is consistent with the usual notion of 
credibility. 

From a practical viewpoint, it may be impossible to distinguish 
between the time-heterogeneous process (situation 1 above) and the 
time-homogeneous process (situation 2 above). Since both result in a 
compound negative binomial process, however, it may be possible to 
determine an aggregate claims distribution acceptable for group under- 
writing purposes without resolving which of the two situations is appli- 
cable. 

Consider the following compound process. 

~ e-,*t(rOt). 
f ( x l r )  = n t  p"*(x) ; (12) 

n ~ O  
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~ a 

h(r) = ~ r~-'e - ~  , a,/~ > O. (13) 

where It(r) is the gamma distribution with shape parameter  a and scale 
pa ramete r  j~--~. 

The  density of aggregate claims is 

oo 

f (x)  = f f ( x [ r ) h ( r ) d r  
0 

(14) 

= - -  ~ P(n  + a) (1 -- q)~q~p~*(x) 
.=0 r ( ~ ) r ( n  + 1) 

where q = Ot(fl + Ot) -~ and 0 < q < 1. Thus  the probabil i ty density of 
the number  of claims in a period t is 

g(n, t) = P(n + a) (1 - q)*q" n > 0 (15) 
r ( ~ ) r ( n +  1) ' - " 

This is the negative binomial distribution with mean aq(1 -- q)-i and 
variance aq(1 -- q)-L 

Proceeding as in the derivation of the Panjer-Williams recursion 
formula, we derive the following expressions. 

f(k) = ~ r(n + a) (1 -- q)~q"[[~(k)]" (16) 
+ 1) 

4 4 dp 
d--k = q[~(k) ~ + aqf(k) -~  , (17) 

xf(x) = q f (x - y )p(y) f (x  - y)dy + aq f yp(y) f (x  - y )dy .  (18) 
0 0 

Replacing p(y) and f (x)  with discrete distributions as before, and assum- 
ing tha t  individual claim amounts  are positive, that  is, po = 0, we derive 
the compound negative binomial recursion formula 

i 

if, = q ~ [i + (a -- 1)j]pff,_s, i >_ 1 . (19) 
J ~ t  

The initial condition is fo = (1 -- q)~. 
In the limit q --~ 0 and a ~ oo with aq = Ot, a constant,  the negative 

binomial distribution "approaches"  the Poisson distribution with mean 
0t, equation (19) "approaches"  equation (8), and the initial condition 
"approaches"  f0 -- e-**. 
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Compound Binomial Process 
As a final example of the technique described in this discussion, 

consider a compound binomial process. 

:<" = (D:<' - . > ' - " ' * < ' >  • (20) 

In equation (20), m is a positive integer and q is a real number satisfying 
0 < q < l .  

The following equations are analogous to those derived previously. 

d~ = ~ - ~(k) ~ ] ,  (21) 

xf(x) = f [ ( m  + 1)y - xlp(y)f(x -- y)dy, (22) 
0 

i 

The initial condition is f0 = ( 1 -  q)=. The results for the compound 
Poisson process are recovered in the limit q ---* 0, m ---* ~,, with mq = Or, 
a constant. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

HARRY H. PANJ'ER: 

Both discussions give alternate derivations of the recursive formula 
for the distribution of aggregate claims for the compound Poisson model. 
Drs. Btihlmann and Gerber provide a very elegant constructive proof 
to obtain the recursion. Dr. Tilley uses Laplace transforms to obtain the 
result. In addition, he uses the same method to obtain recursions for the 
compound negative binomial and the compound binomial distributions. 
He also provides a very lucid exposition on the importance of the negative 
binomial distribution. 
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paper. 




