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1. INTRODUCTION

Evaluation of assets and liabilities of insurance companies is heavily dependent on interest
rates. Actuaries should take that dependence into account. One commonly used measure
is the “cost of mismatch”. Roughly speaking, this cost is the difference in present value
at evaluation time between the net cash flows (assets minus liabilities) discounted with a
plausible (“base case”) interest rate scenario and the net cash flows discounted with a different
(“worst case”) scenario.

Traditionally, this cost is computed by using scenario testing. This is, for instance, rec-
ommended by the Cash Flow Valuation Method (CFVM) of the Valuation Technique Paper
N° 9 (VTP9), published by the Canadian Institute of Actuaries. A few scenarios are usu-
ally considered: typically, scenarios where interest rates pop up, pop down, increase then
decrease, or decrease then increase.

In a stochastic world consideration of only a few deterministic scenarios can potentially
be dangerous. The aim of the present research is to study the computation of the cost of
mismatch using stochastic interest rate models instead of scenario testing. As far as we
know, there has not been any justification (apart from common sense) that scenario testing
gives a sound answer. Comparing stochastic results with scenario testing results in some
simple cases would either give more weight to or destroy the relevance of the scenario testing
approach.

In this paper, two commonly used stochastic interest rate models are considered: the one
introduced by Vasicek (1977) and the one proposed by Cox, Ingersoll, and Ross (1985). In-
surance cash flows are assumed to be independent of the level of interest rates, but affected
by a random mortality. The cost of mismatch is redefined as the difference between the
present, value under the “base case” scenario and some percentile of the present value distri-
bution. This approach has much in common with the concept of “value at risk”, as pointed
out by Brender (1999).
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The study of solvency testing under stochastic interest and mortality has been drawing
attention for some time. Recent work on the subject has been contributed, among others, by
Beekman and Fuelling (1993, 1991, 1990), Borowiak (1999), Bruno, Camerini and Tomassetti
(2000), Bithlmann (1992), Frees (1990), Levikson and Yosef (2001), Norberg and Mgller
(1996), and Parker (1997, 1994a, 1994b, 1994c, 1994d, 1993).

The first half of this paper (Sections 2, 3, and 4) summarizes the CEVM, introduces a
stochastic approach, and compares the two methods. The second half of the paper (Sections
5 and 6) examines the stochastic approach in more detail. Approximations (which become
exact when the same interest rate is used for both lending and borrowing) are obtained for
the first three moments of the future and present values of the portfolio of life insurance
contracts. An approximation for the distributions of the future and present values is also
proposed.

2. GENERAL FRAMEWORK

Consider a portfolio of life insurance contracts. For i = 0,...,n, let X; be the cash
flow occurring at time t; generated by this portfolio, where 0 = ¢, < t; < -+ < t5.
Let us also introduce the three continuous-time processes R® = {R" (¢);0 <t < t,}, R! =
{R'(t);0<¢t<t,},and R={R(t);0 <t <t,}, to be interpreted as follows.

e R (t) represents the instantaneous rate of lending of the life-insurance company on
its investments at time ¢.

e R!(t) stands for the instantaneous rate of borrowing at time ¢. In this paper, it is
simply assumed that R' (t) = R° (¢) + ¢ for some non-negative constant 4.

e R (t) represents the rate actually used in the accumulation process, depending on
whether the company is in a lending or in a borrowing situation at time t. A more
precise definition of the process R will be given shortly.

To simplify notation, let us introduce for 0 <7 < 57 < n the accumulation factors

tj

Vi, = exp {_ / "R dt]

t;

and the discount factors

associated with the process R. We will also use the notation A? ; and V;’; for the accumulation

and discount factors associated in the obvious way with the process R°.
Let S; (X, R) be the surplus at time ¢; just after the occurrence of the cash flow X;. The
initial surplus is simply

S() (X, R) == X()-

From then, positive surplus are accumulated onto the next period using the lending rate R°,
while negative surplus are accumulated using the borrowing rate R*. That is, fori =1,...,n
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we let

B RY(t) if S;_y (X,R) >0,
(21) R(t) = { R! (t) it S, ()(7 R) <0, over t,_1 <t<t;
and
(2.2) Si(X,R)=S;_1 (X,R) Ai_1,; + X,.
Note that it is also possible to express S; (X, R) as
(2.3) Si(X,R) =) XA,

k=0

The very last surplus S,, (X, R) represents the future value of the cash flows X under the
interest rate R; we will note this quantity by F' (X, R). The present value of the same cash
flows, noted by P (X, R), will be defined later. The two processes X and R° could either be
deterministic (as in the scenario testing approach of the CFVM), or random (as examined
later in this paper).

The CFVM is essentially a present value computation and the cost of mismatch, a measure
of sensitivity to interest rates, different from assumptions. Comparing what happens when
we move from the deterministic framework of the CFVM to a stochastic framework should
give an idea of the relevance of scenario testing.

We are not going to look at examples with interest sensitive cash flows in this paper since
we want to examine the relevance of scenario testing even in situations where interest rate
fluctuations of the cash flows is a priori not the prime cause of problems.

Clearly, if cash flows are entirely deterministic, perfect hedging is theoretically possible
(for instance, with bonds of appropriate maturities) and the computation of the cost of
mismatch is useless. We propose to look at examples where mortality is the sole other
source of randomness. Even in this simple situation, we will show that scenario testing
might give a false sense of security.

VTP9 recommends that “ ... positive cash flows might be assumed to be reinvested for
a period up to the next negative net cash flow. On the other hand, negative net cash flows
may require borrowing or the sale of assets. The reinvestment/disinvestment practice should
be consistent with the company’s expected investment practice.”

Instead of fixing a well-defined and elaborate investment strategy involving assets of dif-
ferent maturities, we take in (2.2) a somewhat macroscopic view and model the global rate
of return of the company by the short term rate R. This short term rate is then used as
suggested in VT'P9.

The rationale behind this approach is that the cost of mismatch is a macroscopic measure
per se. At a microscopic (i.e. product specific) level, interest rate risk should be taken into
account at pricing. Pricing in turn should incorporate evaluation of the assets supporting
the liabilities, including interest rate fluctuations. The whole idea of the cost of mismatch
is somehow to perform the microscopic analysis with simplified assumptions (a base case
scenario) and to take care of interest rate risk afterwards, i.e. at a macroscopic level. So we
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assume for convenience that the global rate of return of the company is described by a short
rate model. This rate of return is used as the investment rate R° for positive surplus and,
together with the borrowing premium ¢, as the borrowing rate R! for negative surplus.

One of the advantages of this relatively simple framework is its tractability. Several ana-
lytic results will be derived in Sections 5 and 6. This would be much more difficult if cash
flows were interest rate dependent, or if an investment strategy involving assets of different
maturities was considered (requiring a term structure model of interest rates instead of a
short term model).

3. THE CASH FLOW VALUATION METHOD

We summarize in this section the main points of the CFVM. The interested reader is
invited to consult the reference paper VIP9 for a more complete exposition.

3.1. Interest rate scenarios. In scenario testing we change the interest rate scenarios for
R’ in order to study the impact on present value. The technical paper VIP9 suggests to
consider 4 types of scenarios, in addition to the base case:

e POP-UP: interest rates grow higher than in the base case in a relatively short period
of time and stay higher than in the base case for the rest of the study period.

e POP-DOWN: interest rates fall lower than in the base case in a relatively short period
of time and stay lower than in the base case for the rest of the study period.

e UP-DOWN: interest rates grow higher than in the base case in a relatively short period
of time, stay higher than in the base case for some time, then fall down lower than in
the base case and stay lower than in the base case for the rest of the study period.

e DOWN-UP: interest rates fall lower than in the base case in a relatively short period
of time, stay lower than in the base case for some time, then grow higher than in the
base case and stay higher than in the base case for the rest of the study period.

The paper also recommends to take fluctuations of at least 3%.

3.2. Cash flows. The CFVM suggests to construct a deterministic cash flow process X for
each scenario, since insurance cash flows are potentially dependent on the level of interest
rates. As explained in the previous section, the aim of the present paper is only to compare
the CFVM against a stochastic approach under interest rate independent cash flows. We
will hence use the same cash flow process X for every interest rate scenario.

3.3. Present value. Let us introduce the modified cash flow process X% = {Xi@x;i =0,..., n},
defined by

Xor —

2

Xo+x for i =0;
X; for i =1,...,n.
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In words, the modified cash flows X®* are the same as the original cash flows X except for
an additional amount of x units at time 0. The present value, as defined by the CFVM, is

F(X,R)
F (X%, R — F (X, R)’

where R is the interest rate process used to accumulate the cash flows X and R®!, the
one used to accumulate the modified cash flows X®! (because of the initial additional unit,
borrowing may occur over different periods).

The idea behind this way of discounting is as follows. The difference F (X% R®1) —
F (X, R) represents the future value at time t,, of the initial additional unit. The inverse of
this difference is then used as a “discount factor” to find the present value at time 0 of the
future value F' (X, R).

By successively letting R® be each one of the interest rate scenario, the corresponding
present value is computed using (2.1), (2.2) and (3.1). We will note by PE*"™V™ the present
value computed under scenario k.

(3.1) PCFVM (X, R) —

3.4. Cost of mismatch. Let us denote the CFVM present value computed according to

the base case scenario by PSE&M. This quantity is of particular importance: it represents

the targeted profit of the insurance company. The difference CFFVM = pFEYM — pEFVM g
thus the amount in current dollars missing to attain the expected situation if scenario k gets
realized instead of the base case. This missing amount Cy¥YM is taken as the measure of
the risk associated to scenario k. The cost of mismatch is defined as the missing amount in

the worst case: C"VM = max {CFFVM}.

3.5. Numerical examples. For all numerical examples in this paper, we will assume a
borrowing premium of § = 0.02 and base the mortality on the life table N° 305 available
from the Society of Actuaries web site (www.soa.org/tablemgr/tablemgr.asp).

As a first example, consider a 10 year term life insurance contract, with a monthly (gross)
premium of $15 and a benefit of $100 000 payable at the end of the month of death. Let us
call Xgani the (random) cash flow process generated by a portfolio of 1 000 such contracts, on
1 000 independent lives of age 30. Since the CFVM deals with deterministic cash flows, let us
replace each random cash flow by its expectation, and call Xppr; the resulting (deterministic)
cash flow process. Equivalently, we could assume that mortality risk pooling eliminates
fluctuations in the mean.

For the BASE scenario, we take a constant rate of 6% over the 10 year period. For the
four other scenarios, we take fluctuations of 3%, as suggested by VTP9, and assume that the
increase or decrease happen in 6 months. For the UP-DOWN and DOWN-UP scenarios, we
divide the whole period equally between the up and down parts. Figure 3.1 illustrates all
those scenarios and Table 3.1 presents the future and present values computed under each
scenario. (The reader should not pay attention for now to the last row in Table 3.1.) The
cost of mismatch turns out to be $11 400, about 11% of the expected profit, coming up from
the difference between the present value under the BASE scenario and the present value
under the POP-DOWN scenario.
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FIGURE 3.1. The four alternate scenarios (solid line) along with the base
scenario (dotted line).

| [ BASE | POP-UP | POP-DOWN | UP-DOWN [ DOWN-UP |

F (Xpgri, R) 183 790 | 264 439 121 676 170 871 198 033
PCYVM (Xppri, R) [ 100 866 | 108 322 89 466 94 482 107 871
P (Xpgr1, R) 99 192 | 106 293 88 231 93 035 105 931

TABLE 3.1. CFVM analysis of the cash flows Xpgr;.

As a second example, consider a 30 year temporary life annuity contract providing monthly
payments of $§1 000 for an initial (gross) cost of $150 000. Let us examine a portfolio of
1 000 such annuities, on 1 000 independent lives of age 60. We will call Xgano the resulting
(random) cash flow process, and Xpgrs the deterministic process obtained by replacing each
cash flow by its expectation.

The five CEFVM interest scenarios are constructed in the same way as in the first example,
but over a period of 30 years instead of 10 years. Table 3.2 displays the results of the CFVM
analysis. This time, the cost of mismatch turns out to be $30 423 990, about 82% of the
expected profit.

4. STOCHASTIC APPROACH

Let us point out a few shortcomings of the CF'VM.

e While VTP9 does offer some guidelines, the number of scenarios, and their specific
construction, is left at the discretion of the valuation actuary. This does not provide
an objective measure of risk.
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| [ BASE | POP-UP | POP-DOWN | UP-DOWN | DOWN-UP |

F (Xprre, R)  |2.239 x 10% [ 8.553 x 10% | 1.631 x 10" | 3.320 x 10® | 7.872 x 107
PCPYM (X pgre, R) [ 3.700 x 107 [ 5.792 x 107 | 6.579 x 10° | 5.530 x 107 | 1.292 x 107
P (Xprre, B)  [3.700 x 107 [ 5.792 x 107 | 6.579 x 10° | 5.530 x 107 | 1.292 x 107

TABLE 3.2. CFVM analysis of the cash flows Xpgrs.

e One of the aims of the CFVM is to measure the interest rate risk, in order to establish
a provision for adverse interest rate fluctuations. In life insurance, another provision is
generally made for adverse mortality. However, stochastic interest rate and mortality
could interact in complex ways, which cannot be captured by two separate provisions.
It would be preferable to take into account the random nature of mortality and interest
rate at the same time, and establish a single provision which encompasses both.

e The present value is defined in a peculiar way. If we use, say, $1 000 as our monetary
unit instead of $1, we may very well obtain a different present value, since borrowing
could occur over different periods in definition (3.1). This lack of numeraire invariance
is not very satisfactory.

The purpose of the stochastic approach, presented in this section, is to examine the objectiv-
ity of the scenario approach. Also, we propose an alternate (numeraire invariant) definition
of the present value.

4.1. Interest rate process. Two well-known stochastic models for interest rates are the
one introduced by Vasicek (1977),

(4.1) dR° (t) = k [0 — R° (t)] dt + odW (t)

and the one introduced by Cox, Ingersoll, and Ross (1985),

(4.2) dR° (t) = k [0 — R® (t)] dt + o /RO (t)dW (t).

These two stochastic differential equations are generally used to model the short term rate
in the market, and their parameters estimated accordingly. However, in this case, the pa-
rameters should probably not be estimated from historical values of the short term rate.
Doing so would suppose the company is constantly “rolling over” all its assets in short term
instruments (such as 30-day T-bills), a rather naive investment strategy. Instead, the param-
eters should be consistent with the internal rate of return of the insurance company. Also,
the parameters should describe the model under the real “physical” probability measure, not
under a martingale “risk-neutral” probability measure, since we are concerned with solvency
testing, not pricing.

More sophisticated interest rate models could be used, for instance term-structure models
such as Heath, Jarrow, and Morton (1992), but this lies beyond the scope of the present

paper.
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4.2. Cash flow process. Let X(1) = {XZ-(I); 1=0,..., n} be the cash flow process generated
(1)

by a single life-insurance contract. We will assume that each random variable X;”’ could

be expressed as

(43) Xy,(l) =T; + yll{tl<T} + zi]{ti—l<TSti}7

where T is the future lifetime of the insured and I;zy is the indicator function of the event
E. The quantities x;, y;, and z; are to be interpreted as follows.

e r;: A base amount received by the company at time ¢;, whether the insured is alive or
not. This is useful for modeling deterministic cash-flows.

e y;: An additional amount received by the company at time ¢;, but only if the insured is
still alive at that time. Positive values of y; are used to model premiums and cotisations,
while negative values are used for endowments and annuity benefits paid by the company
to the insured.

e z;: An additional amount received by the company at time ¢;, but only if the insured
dies between t; ; and t;. Negative values of z; are used to model death benefits.

This model for X is general enough to represent the most common insurance contracts:
whole life, term, deferred, endowment, increasing and decreasing life insurances and annu-
ities, and many more. Generating a sample path of the process XV is easy: we simply need
to simulate a random draw of the future lifetime 7.

We are now in position to consider a portfolio of individual contracts. The cash flow
process X generated by such a portfolio of w independent contracts is

(4.4) X=X,
v=1

where X" is the cash flow occurring at time ¢; from the v™ contract. We do not require
those contracts to be similar. In other words, {z;}, {y;}, {2z} and the distribution of the
random variable 1" may differ from one contract to another.

To generate a sample path of the process X, we simulate a sample path of each process
XM, X® and add them up according to (4.4). Thus, generating a sample path of
X boils down to simulating w future lifetimes T, ..., T one for each contract in the
portfolio.

4.3. Equilibrium present value. We are going to view discounting in a way different
from VTP9. The basic idea behind the definition of present value is the following. With
a constant interest rate i, when we say that the present value of 1 unit to be cashed in n
periods is v"™ = (1 +¢)~", we mean that, if we borrow v" today, we will be able to pay the
debt in n periods when we cash the 1 unit, hence ending with a zero net situation at the end
of the project.

Faced with uncertain investment opportunities, we can no longer discount in the usual way
since we do not know when we will be in a borrowing or lending situation. The important
point, however, is that we want to keep the zero net situation at the end of the project.



THE COST OF MISMATCH IN STOCHASTIC INTEREST RATE MODELS 9

We thus define the present value P as the amount of money that should be subtracted
today in order to be in equilibrium over the whole period under consideration, i.e.

F (X®P RoEP) = .

If X and R are stochastic, the amount P computed along a trajectory is the exact amount
that we should subtract today so that we attain a zero situation at the end of the project
provided that particular trajectory gets realized.

This equilibrium present value P is computed by initializing F' = 0 and by solving recur-
sively for the previous surplus. To simplify the discussion, let us introduce the two processes
S’ and R'. One should think of —S! (X, R') as the surplus of the modified cash flows X (")
just before the occurrence of the cash flow at time ¢;, and of R’ as the rate used to accumulate
the modified cash flows X®() Thus,

S (X, R) = X,.

Note that, if S; > 0, the modified surplus has been negative between ¢;_; and t;. From
then, positive values of S’ are discounted onto the previous period using the borrowing rate
R!, while negative values of S’ are discounted using the lending rate R°. That is, working
backward for : =n —1,...,0, we let

RY () if S, (X,R)>0
/ _ +1 ) - . .
(4.5) R'(t) = { RO(1) if S, (X,R') <0, over t; <t <t
and
(4.6) Si(X,R) = St (X, R) Vi + X,
where

t
Vi =exp [—/ R' (1) dt]
t;

is the discount factor associated with R’ .
Note that it is also possible to express S; (X, R') as

(4.7) SI(X,R) = Zxk

The equilibrium present value P (X, R) is then given by Sj (X, R').

When § = 0, that is, when lending and borrowing rates are the same, the two definitions
(PCYVM and P) are equivalent. However, this is no longer the case when § # 0. We think
the equilibrium approach is a more natural definition of the present value which should be
used when 0 > 0, instead of the CFVM approach. Moreover, the symmetry between the way
the future value was defined by (2.1), (2.2) and (2.3), and the way the equilibrium present
value is defined by (4.5), (4.6) and (4.7) will be exploited later.
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4.4. Cost of mismatch. In this stochastic framework, we could simulate a whole bunch
of randomly generated trajectories for X and R, instead of a few deterministically chosen
trajectories. In scenario testing, we got a few values for CZFVM and the cost of mismatch
C“"VM yas chosen as the missing amount in the worst case. In stochastic models, we get a
sample of values C} and the cost of mismatch C' can be defined probabilistically. We suggest
to define the cost of mismatch as some (say 99'") percentile of the sample distribution of the
missing amount:

Pr[Paase(X, R) — P(X, R) < C] = 0.99.
Since this is the same as
Pr[P(X,R) < Psasi(X, R) — C] = 0.01,
the cost of mismatch is C' = Pgasp(X, R) — «, where « is the 1% percentile of P(X, R).

4.5. Numerical examples. For the remaining examples in this paper, we will take 6§ =
0.06, k = 0.3, and 0 = 0.02 in the Vasicek model and 8 = 0.06, x = 0.3, and o = 0.08 in the
CIR model. We will also set the initial value of the lending interest rate at R° (0) = 0.06.
With those parameters, both models give £ [R° (¢) |R® (0)] = 0.06 for every ¢, which is exactly
the BASE scenario used in the CEFVM. This allows for a relatively fair comparison between
the CFVM and the stochastic approach.

Let us reconsider the random cash flow process Xgani introduced in Section 3.5. Figure
4.1 displays the distribution of the present value P (Xgan1, R), estimated from 10 000 simu-
lations (i.e., 10 000 trajectories of Xgan1, each one based on 1 000 random death times, and
10 000 trajectories of R’). The 1% percentile of that distribution is -677 045 in the Vasicek
model and -643 660 in the CIR model. Assuming the Vasicek model, the interpretation of
that percentile is the following. If the company wishes to end up with a non-negative future
value with a probability of 0.99, then $677 045 needs to magically appear in its bank account
today. In other words, $677 045 is the amount missing today to be 99% sure of not going
bankrupt. The same interpretation holds for the CIR model.

The reader could now look at the last row of Table 3.1, which gives the equilibrium present
value P (Xpgri, R) under each CFVM scenario. For the BASE case, this present value is
$99 192. Thus, the insurance company could distribute $99 192 today to its shareholders
and still end up with a zero net situation if the realization of R" happens to be the BASE
scenario and the realization of Xgan; happens to be Xpgri;. By analogy with the CFVM,
we take this amount of $99 192 as the targeted profit.

Again, let us concentrate on the Vasicek model for a moment. Since the 1%® percentile of
P (Xgran1, R) is-677 045, the cost of mismatch (with respect to the targeted profit of $99 192)
turns out to be $776 237. Its interpretation is the following. If the company distributes $99
192 today to its shareholders and still wishes to end up with a non-negative future value with
a probability of 0.99, then $776 237 needs to magically appear in its bank account today. In
other words, $776 237 is the amount missing today to be 99% sure of attaining the targeted
profit.
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Now, let us compare the scenario testing approach with the stochastic approach. The
equilibrium present values of the CFVM scenarios from Table 3.1 are plotted on Figure 4.1.
Obviously, they do not give a good idea of the spread of the distribution, but this is because
most of the randomness in P (Xgani, R) comes from the mortality, not from the interest
rate. This is not a defect of the CFVM: its purpose is only to measure the interest rate risk.

In order to do a reasonable comparison, let us replace Xgran1 by Xpgr: in the stochastic
approach. Figure 4.2 displays the distribution of the present value P (Xpgr1, R), estimated
from 10 000 simulations under the Vasicek and CIR models. Now that random mortality
has been replaced by deterministic mortality, the distribution is much more concentrated,
confirming that mortality was the main source of risk in P (Xgan1, R). This time, the CFVM
scenarios seem to give a better idea of the spread of the present value distribution: they cover
the percentiles 0.072 to 0.879 in the Vasicek model, and the percentiles 0.036 to 0.876 in the
CIR model.

Even with deterministic cash flows (in principle, this situation can be fully hedged) we see
that scenario testing does not provide a safe answer. The scenarios give a rather good idea
of the spread of the distribution, but we are still far from a 99% probability that the extra
provision, represented by the cost of mismatch, is sufficient. The best we get with scenario
testing is a 93% probability in the Vasicek model and a 96% probability in the CIR model.
The cost of mismatch computed from scenario testing in this example thus gives a false sense
of security.

Finally, let us look at the two cash flow processes Xgan2 and Xpgro. Figure 4.3 displays
the distribution of the present value P (Xgan2, R), again based on 10 000 simulations. The
1% percentile of this distribution is 5 126 116 in the Vasicek model and 13 067 926 in the
CIR model. Taking P (Xpgr2, R) under the BASE scenario (see Table 3.2) as our reference,
the cost of mismatch is thus $31 877 284 in the Vasicek case, and $23 935 474 in the CIR
case.

Figure 4.4 presents the distribution of the present value P (Xpgro, R). Note that there
is almost no difference between Figures 4.3 and 4.4. Thus, mortality is not an important
source of risk in P (Xgang2, R). Again, the CFVM scenarios furnish a good idea of the spread
of the distribution of P (Xpgre, R): they cover the percentiles 0.011 to 0.989 in the Vasicek
model, and the percentiles 0.001 to 0.978 in the CIR model.

However, this is a significant difference from the percentiles of the previous example. Now
the spread of the distribution is very well represented by the scenarios and we get a safer
answer: 99% in the Vasicek model and essentially 100% in the CIR case.

We conclude that the scenario testing approach is conservative and might be appropriate
in some cases, but that it does not offer a measure of risk which is totally consistent with
stochastic interest rate models across different situations. It is not even reliable with simple
deterministic cash flows. How could it be reliable with fully stochastic cash flows ... with
interest sensitive cash flows?
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5. MOMENT APPROXIMATIONS

In this section, approximations are derived for the first three moments of the two random
variables F' (X, R) and P (X, R). Those approximations will be used in the next section to
construct an approximation of the distribution of F' (X, R) and P (X, R).

5.1. Moments of the interest rate process. Let us start by presenting a useful Lemma.
We prefer to omit the proof (see for instance Lamberton and Lapeyre (1996) for an idea of
the techniques involved).

Lemma 5.1. Let the process R° be given by the Vasicek model (4.1) or by the CIR model
(4.2). Then, for ¢,&, s,u,v € R such that s < u < v,

E{exp( CR® (v g/ R (¢ dt) IR (s )} = exp [¢ (5,u,v,(, &) R (5) + 9 (5,u,v,(,8)],

where

x|

¢ (87 u,v, Ca 6) = < - C) eiﬁ(U7S) - éQiﬁ(u*s%

02 2€ (é- CK) £ —k(v+u—2s) + efn(u u)]
w(sauavacag) = @ - (é- CK) ~2r(v=9) (<H+§)
—&% [ — 2k (v — u) + 3]

19 [e—ﬁ(v—S) <§ _ %) + %e‘”(“_s) —(—=&(v— U)]

in the Vasicek model and
2k e F(u=s)
Ao?[1 — e ru=s)] 4 25’
20k [)\02 [1 — e*”(“’s)} + 2k
In

¢(87u7v7 C?g) =

d)(S,U,U,C,f) = _779&_ 72 Ve

)

2 | 2ve 30w
= ——1n
1 o? Co?[efv=w) — 1]+ (y+ k) e 4y —k |’

C [(f), + Ii) + (,), _ ,{) e’Y(vfu)] + 2§ [e“/(vflﬂ — 1]
Co?[eSv=u) — 1] + (y+ k) Y0¥ 4y — g

v o= K2+ 20%

in the CIR model.
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Now, for 0 < h <i < j <k <m < n, let us define the joint moments of the accumulation

factors A7 ;,
Uim — [ (') |R0 (tﬂ)] )
Qijm = [A?mA2m|RO (to)] )
ai,j,k,m - [A?mA;) mAz,m|R0 (to)] )

and the joint moments of the discount factors V;%;,

Vhi = E |:Vh0,l|R0 (to)] )
Vnij = B [Vho,ivho,j|R0 (to)] ,
Vhigk = B [VeiViiVirl B (to)] -

Those joint moments are easily computed using the previous Lemma, as the next theorem
shows.

Theorem 5.2. (Joint moments of the accumulation and discount factors.) We have,
im = exp [p1 R’ (to) + ],
aijm = exp 3R (to) + 12 + 3],
Qijkm = exp [peR’ (to) + a4+ 15 + 6]

with
qsl :¢(t0atz;tm;0a_1)a d)l :w(toatlatmaoa_l))
¢2:¢(tj7t]7tma07_2)7 w2_¢(tj7t]7tm)07_2)7
¢3 :¢(t07tutj7¢27_1)7 77b3 :¢(t07tl7t]7¢2a_1)7
¢4:¢(tj7t]7tk707_ )7 Zb4—7,b(tj,t],tk,0,— )7
¢5 :¢(ti7tzatja¢4a_2)a 77b5 _w(tiatzatja¢4a_2)a
¢6 :¢(t07tutj7¢57_1)7 77b6 :w(t07tut]7¢5a_1)
Also,
Vhi = €Xp [¢1R0 (tO) + 77b1] )
Vhij = exp [@5R (to) + 5 + 1],
Vhigk = exp [@gR® (to) + ¥y + 5 + ],
with
(tO;thatlao 1) d)ll 1/)(t0;th;tz;0 1)
(tzatzatjao 1) % :Zb(tutzatjaoal)a
(t tha iy 272)7 %Zlb(t thatu_ ,272)7
(tj,t],tk,O 1) ML zb(tj,t],tk,O 1)
(tzatwtja ¢47 )7 Zbé _Zb(tutzat]) ¢47 )7

(tO)thJ iy g73)a d)ﬁ w(tO;th)tza_ t’ng)
The functions ¢ and 1b are given by Lemma 5.1, depending on the model (Vasicek or CIR).
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Proof. We prove only the result for o; ;,; the other proofs are similar. Since ¢y <t; <t; <
tm, we could rewrite o j, as

Qi = B AL (42,,)° 1R (t0)]
Then, by the “tower property” of conditional expectation,
Gigm = B [ALE [ (A0,)° R (1) |R (t0)]
Finally, using Lemma 5.1 twice, we get
Qijm = E [A?,j exp (¢2R0 (t;) + 1/)2) |R° (to)]
= exp(¢q) E [Agj exp (QSQRO (tj)) |R° (to)]
= exp [¢3R’ (to) + 12 + 3] .
O

Note that the first three moments, in the form given by the Theorem, follow a straightforward
pattern. Higher moments follow the same pattern and could thus be found with very little
effort, but are not needed in this paper.

5.2. Moments of the cash flow process. Let us start by computing moments of the cash
flows resulting from a single contract. To simplify the next formulas, we will depart from
standard actuarial notation and define

pi = Prit;<T] for i=0,...,n;
o 0 for 1 =0,
% = PI‘[ti_1<T§ti] forvo=1,...,n.

Theorem 5.3. (Joint moments of a single contract.) Let the process X1 be defined by
(4.3). Then,

K [Xi(l)] = Ti + piYi + izi;

also
E [X.“)X(l)] _J gyizi ey Jor i<,
’ J iniZ + ¢4 fOT‘ 1=,
Cij = Pivi®; + iy (Yi + 33) + @iz + @iz + T35
and

qYiziTr + Qeze (il + Uity + T3y;) + ¢y for i < j <k,

E[x®WxMx0] = 47 (Yizj + 2yij + 2izj) + C;'Ijk for i <j=k,
¢ 0% Tk + QYizr (Yi + 23;) + ciyy, for i =j <k,

iz (2 + 3wi) + cijy, for i=7j=kF,
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/ _
Ciir = Py + pjyivr (Yi + i) + prye (Yi + i) (y; + 25)
+q;i2i%; T + Q2T + QpT T2 + Tk Tk

We prefer to omit the proof, since it is straightforward but rather long. Performing
standard manipulations on sums, we could now obtain the moments of the cash flows for our
portfolio of individual contracts.

Theorem 5.4. (Joint moments of a portfolio.) Let the process X be defined by (4.4). Then,

E[X;)] = zw:E[Xi(v)]7
pra) = 3 (B[x0x0) - B [x0) £ [x")) + BB,

EXX] = Y| B XX B[X] -

+E [XZ] COIUI:Xj,Xk] + E [X]] COU[Xi,Xk]
+E[Xy] Cov[ X, Xj] + E[X] E[X;] B [Xy].
Moments of X®) are given, for each v, by Theorem 5.3.

Let us say that two contracts are similar if {z;}, {y;}, {z:}, {p:} and {g;} are the same
for the two contracts. In this situation, Theorem 5.4 reduces to the following Corollary.

Corollary 5.5. (Joint moments of a portfolio of similar contracts.) Let X be a portfolio
of w similar contracts. Then,

E [XZ.(S) — wE Xf”] ,
E [Xi(S)X](S) — wE|X I)X](-l)] tw(w—1)E X}”] E [XJ(I)] ,
E(XxPXPxP] = wE|[xOXOXP] +ww-1)E | xOxP] B [x{"]

tw(w—1)E [X}”X,ﬁ”] E [X(” tw(w—1)E [X@X,gU] E [Xi(l)

tw(w—1)(w—2)E [XZ.(I)] E [X}”] E {X,gw] .

Moments of a portfolio consisting of several sub-portfolios of similar contracts (e.g. a
sub-portfolio of 10 similar contracts of one type and a sub-portfolio of 20 similar contracts
of another type) could be found efficiently by combining Theorem 5.4 and Corollary 5.5.
We simply need to replace X® in Theorem 5.4 by X ()  the cash flow process of the v
sub-portfolio. Moments of X (%) are given, for each v, by Corollary 5.5.
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5.3. Moments of the future value. The process R, defined by (2.1), depends on the
process X: for fixed paths of RY and R!, different paths of X may result in different paths
of R. For this reason any quantity involving R is not very tractable. For instance, moments
of A;; would be difficult to obtain (unlike moments of A7), and the task would be even
more challenging for moments of F' (X, R). Thus, although it is in theory possible to compute
moments of F' (X, R) exactly (after a formidable amount of work), the result would probably
be complex to the point of being useless, and we are going to consider approximations instead.

5.3.1. First moment. Let B = {0,1}" be the set of all binary n-tuples. That is, each element
b of B could be written as b = (by,...,b,) with b; =0 or 1 for i = 1,...,n. Now, for every
b € B, let us introduce the process R’ = {Rb (t);0<t< tn} defined by

RV (t) = R (t) over t; , <t <t

fori=1,...,n.
For every b € B, let us also define

tj
A;?,j = exp { / R’ () dt]
t;

j
ai-’,j = exp [6 Z (tk — tkl)bk] s
k=i+1
with 0 << j <n.

To clarify these definitions, fix the paths of X and R°, and consider the binary n-tuple
B € B such that R® = R. Because of its dependence on X and R°, this binary n-tuple B is
in fact a stochastic process, that indicates over which periods the insurance company is in
a borrowing situation: when B; = 0 the company is lending over the period [t;_1,¢;), while
when B; = 1, the company is borrowing.

For an arbitrary b € B, Ai-’,j is the accumulation factor associated to R’. In particular,
AP = A;; for every 0 < i < j < n, since R¥ = R.

As for af,j, it represents the appropriate adjustment that must be applied to the lending
accumulation factor A?,j in order to get the accumulation factor Aé”j associated to R’. That
is, ay ; is such that A{ a?; = A?, for every 0 < i < j < n. In particular, A? a” = A;; for
every 0 <1< 5 <n.

Theorem 5.6. For every path of the processes X and R,
— i b
F(X,R) —rggél{F (X,R")}.
The proof is done by induction, after fixing the paths of X and R® and replacing F (X, R)

by S, (X, R).
Corollary 5.7. Let k be an odd integer. Then,

k < mi k B\

E[F*(X, R)] < min {E [F* (X, 7)]}
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Proof. By taking the expectation of Theorem 5.6 over all paths of X and RY,
k
. b
(s (r v} )|

= E [min{Fk (X, Rb)}} :

beB

E[F"(X,R)] = E

Then, we use the fact that the expectation of the minimum of several random variables is
always less than or equal to the expectation of each random variable. O

Unlike moments of F' (X, R), moments of F' (X , Rb) are easily computed thanks to the inde-
pendence of X and R’. For instance, the first moment is given by

En: X;AY,
=0

E[F(X,R)] = E

Unfortunately, in general E[F (X, R)] and E [F (X, R’)] are not the same. By Corollary
5.7, the latter overestimates the former:

(5.1) E[F(X,R) < E[F(X,R"], for every be B.
The idea is then to find the binary n-tuple b which minimizes £ [F (X, Rb)], and use it to
approximate F [F (X, R)]. Let us call b this particular n-tuple; i.e.,

E|F (X, R")| =min {E[F (X, R")]}.

beB
An iterative construction of b is given by the next theorem.

Theorem 5.8. Let so = E [ Xo|agy. Then, fori=1,...,n,

B' . 1 4f siq <0,
v 0 otherwise,
b

Sio = Sim1liqy

+ E [XZ] ai,n-

The proof is done by induction on 7, noting that s, = F [F (X, Rb)].
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Empirical evidence suggests that the upper bound given by (5.1) using b is rather close to
the correct value of F [F (X, R)]. This leads us to propose the approximation

(5.2) E|F(X,R)|~E [F (X, RE)] .

5.3.2. Second and third moments. As mentioned before, B indicates over which time periods
the company is in a borrowing situation. Approximation (5.2) replaces this stochastic process
B by the deterministic n-tuple b. In other words, it assumes that borrowing always occurs
over the same time periods!, regardless the paths of X and R’. Using the same idea to
approximate the second and third moment, we get

Z E [Xf] ai,i,n ((Zi},n>2 + 2 Z E [XZX]] aiyj,nainag’n.
=0

0<i<g<n

12

E [F(X,R)?]

12

EIFXRY] = 3 BN e () 43 3 BIXEX ] anig (e,)
=0

0<i<j<n

. SN2
+3 Y B[XX]] aiggaal, (a?n)
0<i<yj<n

a.,a
0<i<j<k<n
Note that when 0 = 0, that is, when borrowing and lending rates are the same, we have
R'=R = R=R" for every b€ B;
thus,
F(X,R)=F (X,R") for every be B.

In that situation, the preceding approximations for the first three moments of F (X, R)
become exact.

5.4. Moments of the present value. Recall that the future value and the equilibrium
present, value were defined in very similar ways. We could thus apply to the present value the
ideas we just used for the future value, and derive the same kind of moment approximations.
Let us simply state the result without giving any intermediate details.

!Interestingly, the borrowing periods indicated by b are not necessarily those periods where the company
expects to borrow money. To see this, note that whether the company expects to be in a borrowing or
lending situation over [t;_1,t;) depends only on what happens at time ¢; or before. On the other hand, the
construction of i)l by Theorem 5.8 relies on ;_1 5, which depends on [t;_1, 5]
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Construct {s};i =0,...,n} and b} € B as follows. First, let s/, = E[X,]v,,. Then, for
t=n,...,1, let

= 0 if 8; < 0,
i 1 otherwise,
siig = Svig;+ E[Xia] v,

where

—expléz tk_tkl ]

k=i+1
The first moments of P (X R) are then approximated by

2

E[P(X,R)] ~ ZE i o0l s,

B[P (X, B)]

12

ZE VOH(Ug;.) +2 % BIXX] vkl

0<i<j<n

ZE ] 0,1 (vgz)g +3 ) BXIX i (ng) v,

0<i<j<n

+3 Z E [XZXJZ] VO,i,j,jUg:i (Ug’ )

0<i<j<n

+6 Z E[XlXJXk] VOzijg ZU(I;’J,US'k

0<i<j<k<n

12

E [P(X,R)]

Once again, these approximations become exact when § = 0. Otherwise, as with the future
value, the first and third moments are overestimated.

5.5. Numerical examples. Tables 5.1 to 5.4 compare our approximations for the first
three moments against 95% confidence intervals of the same moments (based on 10 000 sim-
ulations), for the cash flow processes Xgani and Xgane. Those two examples are interesting
since the main source of randomness is mortality in the first case, and interest rate in the
second case. Moreover, borrowing occurs quite often in the first case, in a random and
unpredictable manner. On the other hand, borrowing almost never happens in the second
case. This is probably why the approximations seem better for the process Xgan2 than for
the process Xgani-
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Moment | Model | Approximation | 95% bilateral confidence interval |
T | B | (o
1|t ozt | TR Sy
RSN R

TABLE 5.1. Moments of F'(Xgani, R).

Moment

| Model | Approximation | 95% bilateral confidence interval |

Vasicek 98 655 (83 354, 95 059)

EP (Xraxt, B)] | "o 98 695 (83 421, 94 904)
21 | Vasicek | 9.822 x 10 (9.462 x 10™,9.960 x 10™7)
EIP X BT Tep ™| g'811 x 100 (9.134 x 10'°, 9.617 x 10'°)
31 | Vasicek | 2.041 x 10 (1.336 x 100, 1.738 x 10'°)
EIP X BYT Teqp ™| 5043 1010 (1.452 x 10'6, 1.833 x 10'6)

TABLE 5.2. Moments of P (Xgani, R).

Moment | Model | Approximation | 95% bilateral confidence interval |
R AR
R U R
B LF G 0] | VSR ] T 109 | (5omtx 107 4548w 10%)

TABLE 5.3. Moments of F'(Xgang, R).

Moment

| Model | Approximation | 95% bilateral confidence interval |

Vasicek | 3.595 x 107 (3.567 x 107, 3.612 x 107)

EPXraxs )L | orp | 3603 % 107 (3.590 x 107, 3.632 x 107)
21 | Vasicek | 1.419 x 10% (1.404 x 10, 1.434 x 10%)

EP X BT Teqp ™| 1 408 100 (1.399 x 105, 1.430 x 10'°)
31 | Vasicek | 5.944 x 102 (5.866 x 10%%, 6.045 x 10%%)

B[P (Xeaw, B)] CIR | 5.881 x 1022 (5.821 x 1022, 6.014 x 1022)

TABLE 5.4. Moments of P (Xgang, R).

22
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6. DISTRIBUTION APPROXIMATION

Assume ¢ = 0 and consider the following two cases.

e Let RY be given by the Vasicek model and let the cash flow process X be as simple as
possible: a single deterministic cash flow. Then, F'(X, R) and P (X, R) both follow a
log-normal distribution.

e Let X be a portfolio of many similar contracts and let the interest process R’ be as
simple as possible: a deterministic scenario. Then, F' (X, R) and P (X, R) both follow
a normal distribution.

These two examples represent two very simple but somewhat opposite situations. Hence, if
we want to approximate the distribution of F' (X, R) and P (X, R) by means of an analytic
distribution, it seems desirable for this analytic distribution to fit well both the normal
and the log-normal distributions. The translated log-normal distribution, defined below,
possesses this property.

6.1. Translated log-normal distribution. Let Z ~ N (u,0?) be a normal random vari-
able with mean p and variance o2, and let 7 be a real constant. If

(6.1) L=1+¢”,
or if
(6.2) L=1—¢”,

then L is called a translated log-normal random variable. The distribution function of L
is

0 for x <,
Fi (z) = { Fyln(z —7)] for x >,

in the case (6.1), or

| 1—=Fyln(r—a)] for x <,
FL(x)_{l for © > 7,

in the case (6.2), where F is the distribution function of the normal random variable Z.
The central moments of the translated log-normal distribution follow from those of the
log-normal distribution:

my = B[L]=r1+e*37,
my = E[(L—m)] =t (e~ 1),
mg = FE [(L - m1)3] — tedutio’ <e3‘72 —3e7 ¢ 2) )

If p = oo, 02 = 0, and 7 — Foo such that m; and m, stay the same, the translated
log-normal distribution converges towards a normal distribution of mean m; and variance
mgy. Moreover, when 7 = 0, the translated log-normal distribution reduces to a log-normal
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distribution. Hence, the normal distribution and the log-normal distribution are just two
special cases of the translated log-normal distribution.

When the number of contracts is sufficiently large, a translated log-normal distribution
seems to be a good fit, in most cases, for the distributions of F' (X, R) and P (X, R). Just as
the normal distribution is traditionally used to approximate the present and future values
of a portfolio of many insurance contracts under deterministic interest rate, we propose to
use the translated log-normal distribution in the case of stochastic interest rate.

Solving the three equations above for the parameters, we obtain the moment estimator of
the translated log-normal distribution:

o ) (VA2 +4AX+ A+ 2)2/3 + 22/3 .
o n -1,
(VAT AN+ 20 +4)'°

~ 1 mo
po=ghilom—%)

S~ 1a2
~ my +eFT2% if my <0,
T = ~ 1~2
my — et 27 if mg > 0;

where A = (ms3)®/ (m3)®. We could then estimate the parameters of the translated log-
normal distribution based on the moment approximations of Section 5.

6.2. Numerical examples. Figures 6.1 to 6.4 compare the distributions obtained by sim-
ulation against the translated log-normal distributions whose parameters are obtained from
the moment approximations of the previous section. From the pictures, we see that the trans-
lated log-normal distribution is able to fit a variety of shapes: skewed to the left, skewed to
the right, or centered.

We could also use the distribution function of the translated log-normal distribution to
approximate the percentiles of the present and future value distributions, without relying
on Monte-Carlo simulations. Tables 7.1 and 7.2 display the results for P (Xgrani, R) and
P (Xgranz, R). Those percentile approximations could then be used to approximate the cost
of mismatch, as explained in section 4.4.

7. CONCLUSION

In this paper, we defined the equilibrium present value of future cash flows as the amount
of money that should be subtracted today in order to arrive at a zero accumulated value
at the end of the time horizon. The cost of mismatch is then some high percentile of the
difference between the present value under a base scenario and the present value under
stochastic interest rates. We took a macroscopic point of view where a short rate models
the global rate of return of the company. We considered two different short rate generators
(Vasicek and CIR).

Based on the examples of this paper, it appears that a scenario testing approach gives
a rough measure of the interest rate risk, but this measure is not entirely consistent with
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a stochastic approach. In particular, the method does not provide an idea of the spread
of the distributions that is consistent across different types of portfolios. This statement is
true even with deterministic cash flows, or cash flows that are stochastic only because of
mortality. The lesson to draw is that scenario testing should be used with extreme caution:
the extra provision for interest rate risk (the cost of mismatch) may be sufficient with very
different probabilities, depending on the type of the portfolio.

We considered a relatively simple model, for which it was possible to derive analytic
(approximate) expressions, allowing us to compute the cost of mismatch without resorting
to simulation. Eventually, the stochastic approach used in this paper should be extended
to term structure interest rate models, more complex and realistic investment strategies
(hedging, risk minimizing, etc), and interest or equity dependent cash flows. Of course we
then cannot expect to obtain analytic expressions as in the present paper.
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| I
— Simulations
————— Approximation

Density

!
0 2 x 106

Future Value

FIGURE 7.1. Distribution of F' (Xgani, R) in the Vasicek model.

T
—— Simulations

_____ Approximation

Density

—10° 0 108

Present Value

FIGURE 7.2. Distribution of P (Xgani, R) in the Vasicek model.
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Simulations
Approximation -----

]
1.6 x 10°

0.8 x 10?
Future Value

FIGURE 7.3. Distribution of F' (Xgan2, R) in the Vasicek model.

T
—— Simulations
_____ Approximation

Density

3 x 107 6 x 107

Present Value

FIGURE 7.4. Distribution of P (Xgan2, R) in the Vasicek model.
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Vasicek CIR

Percentiles | Approximation Simulations | Approximation Simulations
.01 -649 787 -677 045 -648 966 -643 660
.05 -411 049 -434 541 -410 582 -416 656
.10 -289 320 -304 651 -289 004 -293 852
.25 -94 125 -102 907 -94 009 -101 443
.50 111 257 109 412 111 222 104 410
.75 305 190 299 870 305 071 295 328
.90 470 477 458 510 470 334 454 994
.95 565 388 540 270 565 253 545 832
.99 735 709 700 152 735 628 706 128

TABLE 7.1. Percentiles of P (Xgan1, R).
Vasicek CIR

Percentiles | Approximation Simulations | Approximation Simulations
.01 5 770 449 5126 116 12 732 876 13 067 926
.05 16 077 044 15 202 589 19 230 731 19 309 393
10 21 134 671 20 949 178 22 779 878 22 748 398
.25 28 964 398 28 929 571 28 845 945 28 809 219
.50 36 827 358 36 832 909 35 789 910 36 033 601
.75 43 895 935 43 932 449 42 955 362 43 134 732
.90 49 645 151 49 917 436 49 599 709 49 802 545
.95 52 831 291 52 772 491 53 666 828 53 650 239
.99 58 336 643 58 520 239 61 484 106 61 326 416

TABLE 7.2. Percentiles of P (Xgane, R).
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