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ABSTRACT 

The statistical technique of hypothesis testing is applied to the inter- 
pretation of actual-to-expected mortality and morbidity ratios. Exact 
and approximate methods are used for both homogeneous and heteroge- 
neous populations. A format for a two-dimensional actual-to-expected 
report based on terminations from disability claim status is presented. 

INTRODUCTION 

T 
HE comparison of actual results with expected results has long 
been a feature of retrospective statistical studies. In particular, 
the Society of Actuaries' mortality studies usually include a 

"mortality ratio," which is the ratio of actual deaths to expected deaths 
for a given age-sex class whose expected counts are based on a theoretical 
probability of death applied to the actual exposed lives. This concept 
has general application to other life or casualty contingencies if we think 
of both "actual" and "expected" as applying to the passage of an 
individual or entity from one state to another--for example, lives passing 
from life to death, from active status to disabled status, or from disabled 
status to active status or death, or dwellings passing from a state of 
being undamaged by fire to a state of being damaged by fire. The concept 
of an "actual-to-expected ratio" can be used in this general sense. 

STATISTICAL BACKGROUND 

Consider a population of n individuals in a given state, each with 
expected probability q~ (i ~ 1 , . . . ,  n) of passing to another given state. 
The expected value of the number of individuals passing to the new 
state is 

e = ~ q~. (1) 
i*l  

* Mr. Kahn, not a member of the Society, is a senior analyst at CNA Insurance 
Company. 
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Suppose that  we observe a individuals passing to the new state. The 
actual-to-expected ratio is a/e. The natural  question is whether  the ratio 
is significantly different from 1. In other words, is the actual value 
sufficiently different from the expected to make us doubt  tha t  our popu- 
lation of n individuals is behaving according to the given q~'s? One way 
to answer this question is to place it in the f ramework of the test  of a 
statistical hypothesis. We state the "null hypothesis"  (H0) as follows: 

H0: The given qi's are the correct probabilities of termination for the 
n individuals. 

Assuming that  Ho is true, we then compute  the probabi l i ty  P of observing 
at  least a if a >_ e, or at  most  a if a < e (we use the "one- ta i led"  test  of 
//0 because it seems the most  appropriate  one in this situation). By 
convention, if this probabil i ty  is less than 0.05, we re jec t / /o  and say tha t  
the deviation between actual  and expected is "significant" or "significant 
at the 5 percent level." If  the probabil i ty is less than 0.01, we reject H0 
and say tha t  the deviation is "highly significant" or "significant at the 
1 percent level." For any  other value of P, H0 is not rejected. There is, 
however, no reason for the user to be bound by  the 0.05 or the 0.01 level 
of significance if it is inappropriate  in a given situation. 

We compute P by classifying the q~'s into one of five cases. 

CASE 1: at = q2 . . . .  = q, n < 5. 

Under //0, the actuals are distributed according to the binomial 
distribution, so that  the desired probabil i ty is given by  

CASE 2: qt = q2 = • - • = q, n _> 5. 

Again the actuals have a binomial distribution, but  for large n the 
computat ion t ime may  be too great. If  nq < 0.8, use the Poisson Gram- 
Charlier approximation to the binomial distribution. If  nq > 0.8, use the 
Camp-Paulson approximation to the binomial distribution. The  maxi- 
m u m  error of approximation is then less than 0.005. See the Appendix 
for a description of both of these approximations.  

CASE 3: At least one q~ is distinct; n is small. 

I Whether n is "small" or "large" depends on the user, who must decide whether 
to forgo the exactness of case 3 methods for case 4 and case 5 methods, which are 
approximate but far easier to apply as n increases. 
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The actuals are distributed as the sum of distinct Bernoulli distribu- 
tions (binomial with n = 1). We have a choice of using Waring's theorem 
[2, pp. 217-20] or one of several more recent methods [4], which require 
the use of a digital computer to obtain P exactly. However, the user 
should be aware of the numerical difficulties inherent in the use of either 
the latter methods or Waring's theorem (see Appendix). 

CASE 4: At least one q~ is distinct, and the qi's are neither all small 
(<0.05) nor all large (>0.95); n is large. 

Use the central limit theorem. The normal distribution that approxi- 
mates the sum of the Bernoulli distributions has mean ~%, q~ and 
variance Zi~ , qi(1 - q~). 

CASE 5: At least one q~ is distinct, and all q~'s are small (<0.05). If all 
q~'s are large (>0.95), use symmetry to apply this case to the p~'s 
(Pi = 1 -- q0; n is large. 

Use the Poisson approximation (see Appendix) to the sum of Bernoulli 
distributions. The mean is identical with the mean of the corresponding 
normal distribution for case 4. 

Thus we can decide whether the actual outcome is significantly differ- 
ent from the expected outcome by testing Ho. 

APPLICATION TO AN ACTUAL-TO-EXPECTED REPORT 
BASED ON DISABILITY INCOME TERMINATIONS 

Consider a population of disabled claimants under disability income 
policies. 

Each claimant is classified in two ways: by attained age and by dura- 
tion of disablement. We can use a morbidity table such as the 1964 
Commissioners Disability Table (1964 CDT) to compute the probability 
of termination within a given time period for any claimant. Table 1 
shows probabilities of termination based on the 1964 CDT. For any mix 
of claimants classified by attained age and duration of disablement, we 
can calculate the expected number of terminations, e, from equation (1) 
and apply the test of Ho. The actual number of terminations, a, is then 
used along with e and the number of claimants, n, to compute P, the 
probability of observing the difference between a and e, the method used 
depending upon which of the cases 1-5 applies. 

The quantity P is extremely important. I t  replaces subjective judg- 
ments about mortality ratios and morbidity ratios based on varying 
sample sizes by  a single number that  can be used to judge whether an 
actual result differs significantly from the expected result, or whether 
.the difference is due to random fluctuation. In other words, this procedure 
"substitutes facts for appearances and demonstrations for impressions." 
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TABLE 1 

PROBABILITIES OF TERMINATION BASED ON 1964 CDT 

DUI~A- 

TION 

O~ 

DIS- 
ABILITY 

(MoN Xl~S 

0 . . . . . .  

1 . . . . . .  

2 . . . . . .  

3 . . . . . .  

Jz . . . . . .  

5 . . . . . .  

42 . . . . .  
43 . . . . .  

22 

0.640 
0. 530 
0. 447 
0.371 
0.300 

O,OlS 
0.017 
0.017 

AGE AT D I S A B L E ~ N T  

27 

0,640 
O, 529 
0.447 
O, 369 
O, 297 

0.1}16 
0.016 
0,015 

32 

0,630 
0.519 
0,445 
0.368 
0. 297 

o.614 
0.014 
0.014 

37 

0-Z  
0,610 
O. 500 
O, 442 
O. 366 
O. 294 

0.013 
0.013 
0.012 

42 

0.590 
0.480 
0419 
0.348 
0.279 

o.612 
0.011 
0.0l l  

47 

O, 559 
O. 450 
O. 391 
0.322 
0.256 

o.611 
0.010 
0.010 

52 

O. 532 
0.414 
O. 354 
O. 289 
O. 229 

0.()I0 
0.010 
0.010 

57 

0. 498 
0. 369 
0. 306 
0. 245 
0. 186 

OOlO 
0.009 
0.009 

62 

O. 522 
O, 449 
0,315 
O. 251 
0.199 
0.148 

0.61o 
0.009 
0.009 

TWO-DIMENSIONAL ACTUAL-TO-EXPECTED REPORT 

Table  2 is a reproduct ion of a two-dimensional  actual- to-expected 
terminat ion report .  The  first dimension of the repor t  is real t ime (calen- 
dar  period), which increases in the horizontal  direct ion from right to left 
across the page. The  second dimension of the  report  is dura t ion  of 
disablement  upon terminat ion,  which increases in the vert ical  direct ion 
down the page. No te  tha t  both  dimensions are expressed in terms of t ime,  
in contras t  to the  conventional  mult idimensional  report ,  where one 
dimension might be calendar  t ime and another  might  be type  of disable- 
ment.  As we poin t  out  later ,  the  use of t ime for bo th  dimensions gives the  
repor t  a certain advantage .  

The  table indicates,  by  means of an asterisk (*) or a double asterisk 
(**), those cells for which the actual  terminat ions  are significantly differ- 
ent from the expected terminat ions  at  the 5 percent  and 1 percent  levels, 
respectively. An actual- to-expected report  in this format  enables the 
user to spot significant t rends in terminat ion from disabi l i ty  without  being 
d iver ted  by  devia t ions  tha t  can be a t t r ibu ted  to random fluctuations. 

The  user should, however, be aware tha t ,  in an actual- to-expected re- 
por t  with k cells, one can expect (0.05 - 0.01)k = 0.04k cells with a single 
asterisk,  and 0.01k cells with a double asterisk,  even if the claim popula-  
t ion does t e rmina te  in accordance with the  given morbidi ty  table. This  
is because the hypothes is - tes t ing  procedure implies tha t  a t  the 5 percent  
level of significance we reject H0 5 percent  of the t ime even w h e n / / 0  is, 



TABLE 2 

ACTUAL TERMINATIONS (A) AND ACTUAL-TO-EXPECTED RATIOS (A/E) 

DURATION OF 
DI SAB LEM'EN'T BEFORE 

TERMINATION 
(Mo~-Vtts) 

1-2: 
A . . . . . . .  
A / E  . . . . .  

2-3: 
A . . . . . . .  
A / E  . . . . .  

3-4: 
A . . . . . . .  
A / E  . . . . .  

~-5: 
A . . . . . . .  
A / E  . . . . .  

5-6: 
A . . . . . . .  

A / E  . . . . .  
5-9: 

A . . . . . . .  
A / E  . . . . .  

~-12: 
A . . . . . . .  

A / E  . . . . .  
12-15: 

A . . . . . . .  
A / E  . . . . .  

15-18: 
A . . . . . . .  
A / E  . . . . .  

18-24: 
A . . . . . . .  
A / E  . . . . .  

24-36: 
A . .  . . . . .  
A / E  . . . . .  

t6-48: 
A . . . . . . .  
A / E  . . . . .  

18-00: 
A . . . . . . .  
A / E  . . . . .  

~0-84: 
A . . . . . . .  
A / E  . . . . .  

~4-120: 
A . . . . . . .  

A / E  . . . . .  

Total:  
A . . .  
A / E .  

CALENDAR PERIOD 

1978 1977 

57 84 
0.96 0.97 

• . 8 6 * *  

•. 0.83 

. 106 
• 0.89 

. .  8 7 * *  

• 1 , 2 8  

• 5 8 * *  

• 1 . 2 6  

• 174 
• 0.98 

• 99 
• 1 . 0 6  

• 50 
. 0.85 

• 38 
• 0 .89 

• 51" 
• 0.78 

. 7 2 * *  

• 0 .76 

. 52 

. 0.95 

. 35 

. 1 . 0 8  

. 31 
• 0.99 

• 25 
. 1 . 0 6  

• 1 , 0 2 1 "  

• 0.95 

8 9 * *  

0.71 

120"* 
0 .84  

99** 
1 .2 l  

77** 
1.36 

238 
1.08 

122 
0.98 

92 
1.04 

58 
0.87 

76** 
0.80 

102 
1.00 

45 
0.90 

35* 
1.32 

35* 
1 . 3 4  

19 
0.95 

1976 1975 

TOTAL 

211 375 727* 
0.95 0.95 0.95 

202** 353 730** 
0.85 0.98 0.88 

208 317 751"* 
0 .96  0.99 0 .94  

147"* 211 '*  544** 
1.17 1,19 1.20 

101 155"* 391"* 
1.06 1.23 1.21 

318 385** 1,115"* 
1 . 0 4  1 . 1 9  1 . 0 9  

159 184'* 564 
0.98 1.18 1.05 

101 101 344 
0.97 1.05 0 .99  

59* 53* 208** 
0.83 0.83 0.85 

77 64** 268** 
0 .86  0.79 0.81 

93 69 336 
1.03 0.95 0.93 

32 25* 154"* 
0 .80  0.75 0 .86  

23 19 112" 
1.06 1.07 1.14 

22 19 107 
0 .94  0 .99  1.07 

18 17 79 
0.92 0 .76  0 .92  

1,291 L,771 2,347** 6,430 
0.98 0.97 1.04 0 .99  

* Indicates tha t  the diff~ence between actual and exp~ted  is significant a t  the 5% level, 
** Indicates that  the difference between actual  and expected is significant a t  the 1% level. 
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in fact, true. Conversely, we may fail to reject a false Ho simply because 
there is not enough information available to justify the rejection. The 
Appendix gives a test of the entire actual-to-expected report that will 
tell the user whether he is justified in examining individual cells of the 
report for significant deviation between actual and expected. 

Figure 1, A, is based on the accompanying list of hypothetical claims 
(see Table 3) and shows how claim records are used to build the two- 

I 

g 

I I  

l I  I 

6 5 4 3 2 

/ /  
/ /  E/,  / 
/ / / / /  
/ / I  

Calenda r  Quar t e r  

~ C a l e ~ l a r  M ~ t h  

I 

l I  

n i T o t a l  

1" 0 ~ 
0 .346  0 0  

1 ~ 0 '  
0 ,635 

0.165 

1' 
0 6 3 3  

Total 2' 0 T 2' 
0 447 0.0 0.262 

A B 

FIG. 1.--See text for explanation. Circled numbers identify claimants; a circJed T 
at the end of diagonal indicates termination. An asterisk (*) indicates significance at 
the 5 percent level; a dagger ($) indicates significance level not calculated. 

dimensional actual-to-expected report. A newly disabled claimant starts 
at the top of the report and proceeds diagonally downward and leftward, 
contributing expected terminations to the appropriate cells, row sums, 
and column sums, until he terminates or passes off the leftmost edge of 
the report. 

The individual cells in Figure 1, A, represent months on both the 
calendar-period and duration axes. However, the actual-to-expected 
report (Fig. 1, B) is based on quarterly periods in both directions, in 
order to illustrate better the hypothesis tests that are applied. The 
individual diagonal lines represent the passage of the individual claimant. 
Claimants who terminate are denoted by a T at the end of their diagonals. 

The two-dimensional actual-to-expected report is a valuable tool for 
the analysis of disability income claim termination experience because 
the user can 

1. Scan across the report to detect trends in morbidity ratios by calendar 
period. 

2. Scan down the report to detect trends in morbidity ratios by duration of 
claim before termination. 
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3. Scan diagonally downward and leftward to follow, in a general way, the 
experience of a cohort of claimants. This is a direct result of the use of time 
for each of the two dimensions of the report.  

All th ree  of t h e  above  capabi l i t ies ,  in c o m b i n a t i o n  wi th  the  abi l i ty  to 

iden t i fy  and  ignore  nons ign i f i can t  m o r b i d i t y  rat ios ,  h a v e  p roved  m o s t  

useful in t he  ana lys i s  of ac tua l - to -expec ted  repor ts .  

TABLE 3 

APPLICATION OF HYPOTHESIS TESTING TO 
ACTUAL-TO-EXPECTED RATIOS: EXAMPLE 

HYPOTHETICAL CLAIM RECORDS FOR FIGURE 1 

Claimant Age at Time 
of Claim 

32 
42 
42 
47 
52 

Calendar Month 
of Claim 

Calendar Month 
Terminated 

5 

CONTRIBUTIONS TO EXPECTED TERMINATIONS 

(Based on 1964 CDT) 

Contribution 
Cell Claimant to Expected 

Terminations 

Duration Quarter I, 
Calendar Quarter II . . . . . . . .  

Calendar Quarter I, 
all duration quarters. 

Duration Quarter II, 
all calendar quarters . . . . . . . .  

0. 687, 0. 590, 0. 480 
0. 480 
0. 653 
0. 615, 0. 532 

0. 737, 0. 630, 0. 519 
0.687,0.59O 

0.445,0.368 
0. 419, 0.348 

TEST OF SIGNIFICANCE OF DIFFERENCE BETWEEN ACTUAL AND 
EXPECTED TERMINATIONS FOR CALENDAR Q UARTER II, 

DURATION QUARTER I, USING WARING'S THEOREM 

qt=0.687, q~=0.590, qz-- 0.480, q4=0.4-80, q5--0.653, qs=0.615, q7=0-532 
Actual terminations = a = 1 
Expected terminations-- e= O. 687+0. 590+ . . . +0 .  532 = 4.037 
Prob (0 or 1 termination) = 1-- Prob (2 or more terminations) 

= 1--0.976= 0.024 
Significant at the 5% level but not at the 1% level 



592 DIFFERENCES BETWEEN ACTUAL AND EXPECTED 

MEANING OF ~tEXPECTED TERMINATIONS ~ 

The  phrase "expected terminat ions"  is ambiguous. I t  is impor tan t  
tha t  the  user recognize tha t  there  are at  least  two reasonable in terpre ta-  
t ions of the  term. 

Interpretation I (prospective).--This is the viewpoint of a user who, on New 
Year's morning of, say, 1980, estimates the total terminations from disability 
claim status that will occur during 1980, on the basis of the beginning 1980 
claim population and forecasts of claim incidence during 1980. The estimate 
is made at this time only and is not updated during the year. The expected 
terminations during 1980 are computed in two steps. First,  all claimants as of 
midnight on December 31, 1979, are classified according to attained age and 
duration of disability. For each individual, the probability of terminating 
during the next year is calculated from the appropriate morbidity table. The 
sum of these probabilities is the first component of the expected terminations 
for 1980. Second, an incidence table is applied to the active insured lives and 
expected insured lives to estimate the newly disabled claimants who will 
appear during 1980. These lives also will be classified according to attained age, 
and assigned a duration of zero. The sum of their probabilities of termination 
during 1980 will be added to the first component of expected terminations 
during 1980. This sum is the "expected terminations" during calendar year 
1980. I t  is a forecast of future results. 

Interpretation 2 (retrospective).--This is the viewpoint of a user who, just 
before midnight on December 31, 1980, uses each of the beginning monthly 
claim populations of 1980 to estimate the total terminations from disability 
claim status that should have occurred during that month. The 1980 "expected 
terminations" is the sum of these monthly expected terminations for 1980. 
At the end of calendar year 1980, we examine the claim populations at the 
beginning of each calendar month during the ),ear, and classify each according 
to attained age and duration of disability. The probability of terminating 
during that month is calculated from the appropriate morbidity table. The 
sum of these probabilities over all months of 1980 is the "expected terminations" 
during calendar year 1980. I t  is not a forecast of future results but rather a 
statement of what should have occurred during 1980. 

In te rp re ta t ion  2 (retrospective) generates month by  month a set of 
condit ional  probabi l i t ies  of terminat ion.  Since the sum of the probabil i -  
t ies is l ikely to exceed 1, a single c la imant  can generate  expected termina- 
t ions exceeding 1 over a quar ter  or year.  This apparen t  anomaly is 
outweighed by  the fact tha t  a claim populat ion t h a t  obeys the termina- 
t ion rates in the experience morb id i ty  table will generate  an actual- to-  
expected repor t  with all the actual- to-expected rat ios  equal to 1.00. 
Because of this desirable feature, in terpre ta t ion 2 was used for the 
actual- to-expected reports  discussed in this  paper.  
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APPENDIX 

All numerical examples are based on probabilities of termination found 
in the 1964 Commissioners Disability Table and shown in Table 1 of 
the paper. 

CASE 1 

Use the binomial distribution. 
Example: Four claimants are all aged 47, disabled for two months. 

During the third month of disablement, two claimants terminate. 

ql = q2 = q~ = q4 = 0.450, q = 0.450; 

P = x=~ ~ (4)0.45x0.55,_ x = 0.609 (not significant); 

/-/0 is not re jected.  

CASE 2 

The references here are Raft [3] and Gebhardt [I]. The maximum error 
of approximation can be kept to 0.005 if we follow the rule already given, 
that is, use Camp-Paulson if nq >_ 0.8, otherwise use Poisson Gram- 
Charlier. Note that the first formula on page 1644 of Gebhardt's paper is 
in error. I t  should read 

B~(k, n, p) = R(k, np) + 0.5p(k -- np)r(k, np) . 

The Camp-Paulson approximation to the cumulative binomial distribu- 
tion, that is, to 

~' (nx)q-(l- q).-,, 
is given by the following: 

Let 

Y = [ ( a +  q)A 9 n - -  + a + ~ l  
Let 

Then 

I q)J 

z = o  N X l  
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4,(v) = (2zr ) - l l~f  exp (-tU2)dt 

(the cumulative distribution function of the standardized normal dis- 
tribution). The Poisson Gram-Charlier approximation to the cumulative 
binomial distribution is given by 

N ~, exp ( - -  nq) (nq) • ~=0z" x! + 0.5q(a -- nq) exp (--nq)(nq)~a! P 

Example: Forty claimants are all aged 22, disabled for five months. 
During the sixth month of disablement, seven claimants terminate. We 
have qt = q~ . . . . .  q39 = q40 = 0.300, and q = 0.300, n = 40, a = 7. 
Since nq >_ 0.8, we use the Camp-Paulson approximation, which gives 
P = 0.0552 (not quite significant at the 5 percent level). The Poisson 
Gram-Charlier approximation gives P = 0.0567. The normal curve 
approximation using the central limit theorem yields P = 0.0423. The 
answer, exact to 4 decimal places, is P = 0.0553. While the Camp-Paul- 
son approximation is appropriate here, the Poisson Gram-Charlier ap- 
proximation is quite good, considering the large value of q. 

CASE 3 

References [2] and [4] discuss methods appropriate for an exact compu- 
tation when the termination rates are heterogeneous. These methods, 
however, all require the summation of many terms of varying magnitude. 
I t  is imperative that  double-precision arithmetic be used when these 
summations are performed, in order to avoid answers that are completely 
erroneous. The fact that floating-point addition is not associative is too 
often ignored. To convince oneself of this fact, consider the quantities 
x l = 0 . 1 ,  x~= xa . . . . .  xl00=0.00001. The two sums x t + ( x 2 +  
xa + . . .  + xlo0) and xl + x2 + . • • + xl00 are algebraically identical, 
but using single precision on a computer with a 32-bit word length (24 
bits for floating-point mantissa) yields 0.1009900 for the first sum and 
0.1009855 for the second. If the second sum is done using double-precision 
arithmetic, the result is 0.1009900, which is correct to 7 significant 
figures. Double-precision arithmetic is almost always enough to give good 
answers for summations of many quantities. We could also separate plus 
and minus terms, sort in order of magnitude, and add them in increasing 
numerical order, but this requires additional machine time. Since most 
present-day computers use little additional machine time and almost no 
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extra programming time for double-precision arithmetic, the authors 
urge that double-precision arithmetic be the standard for all floating- 
point computations. 

Example: Four claimants are aged 27, 32, 47, and 62, disabled for 
three, one, four, and two months, respectively. During the next month of 
disablement, three claimants terminate. Use Waring's theorem [2]: 

ql = 0.447, q~ = 0.630, q~ = 0.322, q4 = 0.315 , 

P = Prob (3 or more terminations) 

= 0A47 * 0.630 * 0.322 + 0.447 * 0.630 * 0.315 

+ 0.447 * 0.322 * 0.315 + 0.630 * 0.322 * 0.315 

- 3 * 0.447 * 0.630 * 0.322 * 0.315 

= 0.203 (not significant). 

CASE 4 

Use the central limit theorem. 
Example: There are twenty-seven claimants, three from each of the 

nine age classes, disabled for two months. During the next month of 
disablement, eighteen claimants terminate. The mean of the normal 
distribution is given by 3(0.530 + 0.529 + 0.519 + . . .  + 0.315) -- 
12.318, while the variance is 3(0.530 * 0.470 + 0.529 * 0.471 + . . .  + 
0.315 * 0.685) = 6.558, and the standard deviation is 2.561. Then, 

Prob (a > 17.5) = Prob [(a - 12.318)/2.561 > 2.023] = 1 -- ~(2.023), 

where 

~b(v) = (2~r)- 'n~f exp (--t~/2)dt 

(the cumulative distribution function of the standardized normal dis- 
tribution). Since (a - 12.318)/2.561 is distributed as a normal random 
variable with mean 0 and variance 1, the observed value of a is 2.023 
standard deviations away from its mean. The probability can be found 
from a table of normally distributed random variables and is 0.022. 
Thus, the result is significant at the 5 percent level but not at the 1 
percent level. 

Unfortunately, there seems to have been no work done in estimating 
an upper bound to the error of approximation made by using the central 
limit theorem in this case of heterogeneous probabilities. 

CASE 5 

We justify the use of the Poisson distribution as an approximation to 
the sum of Bernoulli distributions by the following line of reasoning: 
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The moment generating function of a Bernoulli random variable is 

Mx(t) = (I --  q) + q exp (t) . 

Thus the moment generating function of the sum of n such random 
variables, each with parameter q~, is 

n 

Ms(t) = I I ( 1  + ql [exp (t) -- 1]}, (2) 
i = 1  

where S = X"i=l Xi. Rewrite equation (2) as 

Ms(t) = e x p ~ ' ~ . l n  {1 + q,[exp ( t ) -  1]} '~,  

and, since the q~'s are small, replace the logarithm term by the first 
nonzero term of its Maclaurin series, resulting in 

Mx(t) = exp {[exp (t) -- llX} . 

This is exactly the moment generating function of a Poisson random 
variable with mean and variance X -- 2~" i = 1  ql. 

Example: There are nine claimants, one from each of the nine age 
classes, each disabled for forty-three months. During the forty-fourth 
month of disablement, two claimants terminate. The Poisson random 
variable has parameter (mean and variance) equal to 0.017 + 0.015 + 
0.014 + . . .  + 0.009 = 0.107. The probability that a > 2 is 

1 

P = 1 - Y'~ [exp (-0.107)0.107"]/x!  = 0.00523, 
z E 0  

which is significant at the 1 percent level. 
Just as in case 4, there appears to be no literature on an estimate for 

the upper bound to the error of approximation in this case of heteroge- 
neous probabilities. 

TESTING THE ENTIRE ACTUAL-TO-EXPECTED REPORT 

Suppose the entire actual-to-expected report has k cells, and actual 
terminations for each cell occur according to expected terminations. We 
would expect to find (0.05 - 0.01)k cells with one asterisk, and 0.01k 
cells with two asterisks. We can use the chi-square test to tell us whether 
the actual number of no-asterisk, one-asterisk, and two-asterisk cells is 
different enough from the expected number of such cells to cause us to 
reject the null hypothesis (H0) given by 

H'0: The expected terminations for all cells in the actual-to-expected 
report are the correct ones for the population under study. 
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The table is shown below: 
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Actual ao ax a2 

Expected e0 el e~ 

We compute the usual Pearson chi-square statistic as follows: 

~-, ( a ~  - ei) 2 x 2 
i=0 e i  

with 2 degrees of freedom. 
For example, Table 2 has 38 cells with no asterisks, 6 cells with one 

asterisk, and 16 cells with two asterisks. The table is 

Actual 38 6 16 

Expected 57 2 1 

The chi-square statistic is 

X2 .-~ (38--57 57)2 + (6--2 2)2 + (16--1 1)2 = 239.3, 

which is significant at the 1 percent level. Only now are we safe in examin- 
ing individual cells of the table and making conclusions about whether 
actual and expected counts differ significantly with respect to the absence 
or presence of asterisks. 
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DISCUSSION OF PRECEDING PAPER 

WILLIAM H. WOODALL: 

The probability P is correctly used by the authors to determine 
whether the null hypothesis, tto, should be accepted or rejected. However, 
the suggested values of 0.05 and 0.01 are not the levels of significance 
for the tests. This results from the fact that the proposed tests are not 
one-tailed tests. They are, in fact, two-tailed tests. 

The level of significance of a test is the probability of rejecting //0 
when Ho is true. If we define a' to be the random variable that takes the 
observed value a, then by their rules H0 is rejected if and only if 

P(a' > a) < a 
o r  

P(a' < a) < a ,  

where these probabilities are calculated under H0 and a -- 0.05 or 0.01. 
But this rule implies that H0 is rejected with probability 2a when H0 is 
true. It  is incorrect statistical reasoning to let the location of the rejection 
region of a test depend upon the observed value of the test statistic. A 
one-tailed test is appropriate in this case only when the direction of the 
difference between the actual and expected results is specified a priori. 

For a level of significance of a, the P-values for the tests should be 
compared not to a but to a/2. This rule change reverses the conclusion 
drawn in case 5. 

(AUTHORS' REVIEW OF DISCUSSION) 

EDWARD J. SELIGMAN AND SHELDON KAHN: 

Mr. Woodall's point is valid in the context of what is known as a 
"prospective" experiment. For example, an experimenter who wishes to 
test the effect of a chemical fertilizer on crop yield would construct his 
test before observing the experimental outcome. On the other hand, 
consider the following "retrospective" experiment. A gambler is engaged 
in a coin-tossing game where he wins a dollar for every head that appears 
and his opponent wins a dollar for every tail. After 100 tosses, he finds 
that 80 tosses have landed tails. At this point, the gambler certainly will 
ask a question based on the null hypothesis that the coin is unbiased. 
One question might be, "What is the probability of observing exactly 
80 tails in 100 tosses?" Another is, "What is the probability of observing 
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80 or more tails in 100 tosses?" We believe that the gambler has a right 
to be impatient with the statistician who refuses to answer an)" questions 
at all because they were not asked before the experiment began. It  is the 
statistician's duty to explain that the first question may be relevant for 
a prospective experiment but is irrelevant for this retrospective experi- 
ment. We believe, however, that the second question is relevant for both 
prospective and retrospective experiments of the coin-tossing variety. 

This is exactly what we are doing in each of cases 1-4, where we observe 
an experimental outcome based on disability income terminations. The 
actuary encounters principally the outcomes of retrospective experiments 
simply because he is seldom able to control the experimental conditions. 
Further, if the experimental outcome is affected by economic conditions, 
these conditions may not become known until the experiment is well 
under way or even completed. 

However, for the actual-to-expected report (Table 2), we used a two- 
tailed test of the null hypothesis for each cell rather than the one-tailed 
test used in cases 1-4. The critical region for each test was set before 
the outcome was observed. Our reasoning was that we have a set of 
outcomes rather than a single result selected in advance. The question 
asked here was, "Does this cell represent a significant deviation from the 
expected result?" It is obviously very important that the experimenter 
realize what the null hypothesis and question are, and then construct the 
statistical test to be consistent with the question. 


