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ABSTRACT 

 

This paper develops a new technique, which allows the analyst to maximally use all the historical 

interest rate information available in forecasting interest rates.  Interest rates’ daily changes do not 

follow a stationary random process over long time periods.  Instead, the process is comprised of 

stationary periods, each a few years long, with relatively short transitional periods between different 

stationary periods.  This finding has two practical implications: (i) it is impossible to reliably 

forecast statistical properties of interest rates on a period longer than a few years using models 

based on stationary random processes, and (ii) one should use only a stationary piece of data for 

model calibration.  We developed a technique for identification of stationary periods in historical 

data.  This  is useful for evaluating distribution parameters in parametric models.  This technique 

leads to better evaluation of the historical distribution of random variables, such as interest rates, 

stock prices, currency exchange rates.  Finally, we propose a technique for the identification and 

separation of different economic periods.    Long-term forecasts need to consider mean reversion.  

Given an arbitrary distribution of daily changes and the mean reversion speed, we derived an 

analytic solution for the distribution of interest rates in N days.  Our long-term technique yields 

better tail estimates than the Vasicek and Cox-Ingersoll-Ross models.  The tail estimates are better 

for both interest rates and options on interest rates.  There are efficient numerical algorithms 

suitable for implementation of the long-tem technique either as a separate software product or as 

part of a forecasting or risk management package.  Finally, we applied our method to forecast 

payoffs of very high-risk instruments such as out-of-the-money options with good results.  
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1. Introduction 

 

Interest rate forecasting is one of the most important and widely studied problems related to 

managing fixed income securities.  Numerous researchers and practitioners have studied this topic 

and published many papers suggesting different approaches and methods. Among facts that have 

been established the most fundamental are that interest rates exhibit stochastic fluctuations, and that 

it has been impossible to find any deterministic pattern in these fluctuations.  

 

Basic properties of the interest rates fluctuations are: 

• The daily changes of interest rates are almost independent identically distributed (i.i.d.) 

random variables.  

• The distribution of daily changes is not normal. 

• The distribution has fat tails. 

• The distribution is not universal, for example, it depends on the maturity.  

• The interest rate changes exhibit mean reversion, i.e. they tend to stay near the mean value.  

 

The tail areas of interest rate fluctuations are of special practical significance. They provide the 

probabilities of relatively infrequent but most dangerous big drops and jumps in interest rate values.  

 

There are a number of different models underlying statistical methods used for the estimation of 

interest rate parameters. These models establish equations governing interest rate fluctuations.  The 

equations are relatively simple, i.e. they contain only few unknown coefficients. Statistical methods 

based on these models facilitate finding values of the coefficients to secure the “best fit” of the 

formula with the data available.  

 

The simplest model is the geometric Brownian motion with normal distribution of the interest rates 

increments. This approximation underestimates the effect of thick tails.  More advanced models 

incorporate the effect of fat tails to some extent.  However, they approximate the distribution of 

interest rates changes by a function with several fitting parameters.  
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The analytically solvable models provide advantages including clarity and the ability to trace the 

effect of input parameters on final results. As data from financial random processes accumulated, 

models have become more and more complex. Most recently, proposed models are not analytically 

solvable, and in many cases it is even impossible to show that there exist “good” solutions to those 

models. Models with a small number of fitting parameters based on normal random processes 

seldom yield good quantitative descriptions of real financial data. Meanwhile, the major purpose of 

the quantitative approach is to develop reasonably precise techniques for computing expected prices 

of financial instruments. The only reason to prefer one model is its better precision in describing 

market prices. The choice of a good model is based on the following criteria:  

 

• Maximum information on the random process governing interest rates should be extracted 

from historical data.  

• The validity of any simplification or approximation should be tested on historical data.  

• Analytically treatable models a priori have no advantage over any other computable model 

or approximation. The only criterion of model goodness is its precision in description of 

historical data. 

 

Our approach includes powerful techniques that have not been widely used in financial 

mathematics:  

• Nonparametric statistic for the historical data. 

• Statistical hypothesis testing to evaluate the properties of historical data and for model 

validation. 

• The Fourier transforms. 

 

The logic of our method is as follows.  

1. Assume that the daily changes of interest rates are independent identical distributions (i.i.d.); 

random variables with an arbitrary distribution. We show that the n-day distribution can be 

expressed in terms of the Fourier transform of the daily probability density function (PDF).  

2. Use the interest rate histogram as the daily PDF and compare the computed n-day 

distribution against the historical one. Namely, we test the hypothesis that the historical N- 
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day changes belong to the computed statistic. Since the distribution is arbitrary we use the 

nonparametric Kolmogorov-Smirnov and Kuiper tests.  

3. Tests are separated into two groups.  

a. The model validation tests evaluate the degree of consistency between the model and 

historical data.  

b. The forecast tests show the model’s forecasting ability.  

We found the approach based on i.i.d. daily interest rates increments yields good or 

acceptable short-term forecasts with time horizons up to half a month. The discrepancy for 

longer time scales is attributed to mean reversing.  

4. Finally, we determine the n-day distribution from the distribution of daily changes with 

mean reversion. The general solution of the problem involves the Fourier.  The long time 

horizon limit is important and so we reviewed it particularly and compare our results to 

historical data.   In addition we performed the same tests on the popular Vasicek and Cox-

Ingersoll-Ross models.  

 

A considerable part of the paper discusses empirical research into the statistical properties of 

interest rates.  Indeed, our nonparametric models as well as all other interest rates models assume 

that the interest rates increments exhibit a stationary random process.  We tested the hypothesis that 

the historical series represent a stationary process and found that it is not always the case. The 

historical process consists of relatively long stationary periods separated by short transitional 

periods. The distributions of interest rates changes in different stationary periods typically differ 

significantly. So there are major limitations in the choice of historical series for calibration and in 

the expected time horizons for long-term forecasts. 

 

 

1.1 Nonparametric approach 

 

This paper presents a nonparametric technique for interest rates forecasting. In contrast to the 

popular parametric model approach where the distribution of daily increments of interest rates is 

approximated by some function with a few fitting parameters derived from historical data, this 

technique employs no model assumptions for the interest rates increment distribution. 
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We wanted to eliminate the assumption that the random process governing interest rates can be 

described by an analytical model with a few fitting parameters.  In general, a nonparametric 

distribution yields better precision than any parametric one as the class of nonparametric 

distributions contains all parametric ones as a subset, typically of zero measure.  Furthermore, we 

consider time to be discrete, reflecting the reality of financial data.  Changes in interest rates and 

other financial variables such as stock returns or currency exchange rates are not independent.  

However, historical daily changes of interest rates are almost independent.  Longer time frames 

require additional analysis. 

 

We start with a series of arbitrarily distributed independent random variables.  The distribution of 

the interest rates in n-day can be expressed in terms of the Fourier transform of the distribution of 

daily increments.  This solution has an analytically closed form. What is even more important, the 

solution can be easily obtained numerically thanks to the efficiency of the fast Fourier transform.  If 

this solution is more precise than other ones, it is certainly better from our pragmatic point of view.     

 

To show how the nonparametric approach approximates market data, we compare predicted non-

normal distributions of interest rates with historical data.   

 

 

1.2 Market data as a stationary stochastic process and model calibration 

 

All interest rates models including our nonparametric models presume that the random process 

governing the interest rates is stationary. This assumption is critical.  If the process were not 

stationary, the models would need to be built differently. In checking whether the interest rates 

series do represent a stationary random process, we used the statistical hypothesis testing approach 

to determine whether a series of data represents a stationary random process. The methodology 

follows. Take a series of historical data and cut it into two halves. For each half, compute the 

distribution of daily changes. If the process is stationary, both samples belong to the same statistics. 

Therefore, we have to test the hypothesis that the samples from both halves belong to the same 
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statistics. Since the distribution of historical daily changes is arbitrary we again applied the 

Kolmogorov-Smirnov and Kuiper tests.  

 

We found that the hypothesis that the historical data represent a stationary process does not always 

hold.  Typically, long series of interest rates data are not stationary.  However, they are piece-

stationary, i.e., they consist of pieces of stationary series separated by rather short transitional 

periods.  The typical length of stationary periods is a few years; and the typical length of a 

transitional period is a few months. The distributions of interest rates changes in different stationary 

periods typically differ significantly.  We interpret the stationary periods as periods of stable 

economic development.  After a transitional period the economical situation changes, and therefore 

expectations of interest rates change.  This results in different interest rates distributions in different 

stationary periods. 

 

Our results can be summarized as follows:   

• First we observe that the stationary periods based on the Kolmogorov-Smirnov criterion are 

of the same length or longer than those based on the Kuiper criterion.   

• Since the Kuiper test is more sensitive to the discrepancy in the distribution tails than the 

Kolmogorov-Smirnov test, this implies that the mean area of the interest rate distributions is 

more stable in time than the tails.  So, to forecast the mean behavior of interest rates, the 

longer historical periods based on the Kolmogorov-Smirnov criterion can be used.  

However, if big changes in the interest rates are the major concern, stationary periods based 

on the Kuiper criterion are better.   

• Another important observation is that the longer the maturity, the longer the stationary 

periods.  This is not surprising since the interest rates are the average estimates of the profit 

that the market participants expect to receive from lending money.  Definitely, the long-term 

estimates are more stable than the short ones.  Practically this implies that our chances of 

making a “good” forecast for the long-term instruments are higher than those for the short-

term instruments. 

• Stationary periods are not cyclical: they reproduce neither their lengths nor their 

fundamental statistical properties.  
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The existence of well-defined stationary periods in historical data leads us to two conclusions: 

• One can use data from only one stationary period for calibration of a model. Contrary to the 

common belief, the use of long series of data that contain more than one stationary period 

reduces the calibration precision, because the data in such a long series represents a mixture 

of several different distributions.  

• The time horizon of forecasts based on stationary models is limited by the length of a 

stationary period; it cannot exceed a few years. 

 

In this paper, we always use one stationary period for model calibration and testing.  The use of data 

from different stationary pieces would introduce inconsistencies. We believe restricting the 

construction of forecasting models to a single stationary period improves the precision of any model 

calibration.  This approach is recommended for any risk management practice.    

 

 

1.3 Model validation as a hypothesis testing problem  

 

When we use a model to describe a random process, we implicitly accept the hypothesis that the 

model correctly describes the market data, even though it is never obvious that a model does yield a 

correct description of the market data.  We are given a finite sample of historical market data and 

the theoretical distribution of interest rates that follows from the model.  This distribution can be 

obtained either analytically or numerically.  Whether a model provides a reasonable quantitative 

agreement with market data can be decided using statistical hypothesis testing.   Namely, does the 

sample belong to the statistic obtained from the model given a reasonable confidence level?   We 

either accept the model when the probability that the historical data fit the forecasted distribution 

exceeds the confidence level, or reject the model otherwise.  

 

In this paper we use the nonparametric distribution-independent Kolmogorov-Smirnov and closely 

related Kuiper statistics for hypothesis testing.  Both are distribution independent and their results 

are easy to interpret.  The Kolmogorov-Smirnov test is more sensitive to the closeness of the sample 

to the central part of the distribution.  The Kuiper test is more sensitive to the tail distribution.  
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We perform two statistical tests of mathematical models against historical data, model validation 

tests and forecast tests. Model validation tests are necessary to verify a model, i.e., to accept the 

statistical hypothesis that the model does correctly describe a stationary period of historical data. 

The forecast tests compare the forecasted results with historical data that are not in the data set used 

to construct the model, but are in the same stationary period.   

 

First we perform test aimed at model validation.  

 

Classifications of the model quality are:  

• Excellent - Confidence level above 90%  

• Good - Confidence level above 50%  

• Possibly acceptable - Confidence level between 10% and 50%  

• Questionable - Confidence level below 10% 

• Poor - Confidence level below 1% 

 

To perform a model validation test, take a series of historical data and find the empirical distribution 

of daily increments.  Using this distribution, compute the distribution of n-day changes.  From the 

same series of data, obtain the distribution of n-day changes of the interest rates.  To validate the 

model, test the hypothesis that the historical sample of n-day changes belongs to the computed 

statistic.  The model validation test indicates how well the model agrees with the historical series; 

however it does not tell about the predictive abilities of the model.  

 

This method for hypothesis testing was used to validate a number of popular interest rates models. 

The results are rather remarkable. Confidence levels for the geometric Brownian motion, Vasicek, 

and Cox-Ingersoll-Ross models are poor, well below 1%. The confidence level of our 

nonparametric model is typically higher but still too low to be accepted as a good model. Only on 

time horizons from 2 to 10 days does the nonparametric model exhibit acceptable to good 

confidence levels.  
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1.4 Fat tails and forecast precision 

 

Forecast tests evaluate the forecast precision. Start with hypothesis testing. First choose a 

calibration series of data as the basis for the forecast, and, using this series, forecast the distribution 

n-day (We used N = 2, 5, 10, 15 and 20.) after the end of the series. Next, consider a new calibration 

series one day longer than the initial calibration series, and forecast the distribution n-day after the 

end of the new calibration series. Continue this process and collect a large number of forecasts with 

an n-day time horizon.  Compare these forecasts with the actual changes of interest rates in n-day 

after the end of each series. Using the Kolmogorov-Smirnov and Kuiper tests we compare the 

historical and predicted distributions. We found that the forecast results are close to those of model 

validation tests. 

 

This project aspired to develop a forecasting technique for big jumps and falls in interest rates. 

Therefore, we concentrated on forecast tests of extreme events. Since the number of such events is 

small and we are not aware of distribution-independent tests for tails, we used a naive approach, 

counting the frequency of large changes and compared the frequency with the computed 

probability. First, we counted big positive and negative daily increments of interest rates and 

compared that frequency with those in the nonparametric and the normal distribution.  Namely, we 

counted the increments greater than 1.65 standard deviations and smaller than –1.65 standard 

deviations.  These increments should have the frequency of 0.05 if they follow the normal 

distribution. Next, we found the greatest positive and negative daily increments and compared the 

frequency of such events with those from the nonparametric and the normal distribution. The 

counting tests indicated that both the nonparametric and the normal distribution yield close 

estimates of the frequency of large daily increments, and these estimates are close to the historical 

frequency. The nonparametric probabilities of the greatest increments and decrements are 

systematically closer to the observed frequency, which is equal to 0.01 for our series of 100 daily 

forecasts. 

 

In the case of long-term forecasts we compared the frequencies of extreme events obtained from the 

nonparametric, Vasicek, and Cox-Ingersoll-Ross models. We found the nonparametric model yields 
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the best frequency estimates, the Vasicek model is second, and the Cox-Ingersoll-Ross model trails 

behind.  

 

 

1.5 Mean reversing 

 

Finally, we examine mean reversion, the tendency of interest rates to stay near the mean value. 

First, generalize the Vasicek model for the case of an arbitrary distribution of the interest rates 

increments. Then obtain a complete analytic solution in terms of the Fourier transform and the 

finite-interval Hilbert transform. In the long time horizon limit, when the resulting distribution does 

not depend on the initial condition, the solution is simple. Typically, the time horizon of several 

months or longer is sufficient for application of the long-term asymptotic distribution. Compare the 

asymptotic distribution with the long time horizon limits of the Vasicek and the Cox-Ingersoll-Ross 

models and with historical data. The major results show: 

• The Cox-Ingersoll-Ross forecasts are inferior to those by the nonparametric and the Vasicek 

models both in the central area and in the tails.  

• There is practically no difference between the model-free and Vasicek forecasts near the 

center of the distribution.  

• The model-free forecasts are systematically more precise in the tail areas.  

 

As an example, the expected payoffs of interest rates option traded on the Chicago Board of Option 

exchange are computed and compared against actual historical payoffs. The expected payoffs 

computed with the nonparametric technique are systematically closer to historical ones than those of 

the Vasicek and Cox-Ingersoll-Ross models.  

  

2. Basic methodology and short-term forecasting  
 

Our starting point is the empirical distribution of historical daily changes, the Empirical Distribution 

Function  (EDF1 or simply EDF).  We use the EDF to obtain the n-day Nonparametric Distribution 

Function (NPDFn). We also obtain the n-day Normal Distribution Function (NDFn). We compare 

the NPDFn with the NDFn and each with the n-day Empirical Distribution Function, EDFn.  The 
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latter is the distribution of historical n-day changes.  Additional abbreviations are DF for 

Distribution Function and PDF for Probability Density Function.  

 

We start with a brief description of the methodology.   Then the calculated n-day NPDFns are 

compared with historical EDFns as well as with n-day NDFns computed under the hypothesis of 

normality of daily changes.  

 

 

2.1 Theoretical description and numerical algorithm 

 

We assume that daily values of interest rates y(t) (t=1,2,…,T) follow the stochastic process Y(t) 

(t=1,2,…,T), which is governed by the equation: 

),()()1( ttYtY ξ=−+      (2.1.1) 

where ξ(t) (t=1,2,…,T) are random variables describing the interest rate daily changes.  Eq.(2.1.1) is 

one of the simplest ways to describe the interest rate dynamics for a short time interval when the 

mean reversion property is negligible.  One may consider this equation as a finite difference form of 

the classical Vasicek model (cf. Vasicek [1977]) with the mean reversion coefficient equal to zero.  

In its original form, the Vasicek model stipulates that the random variables ξ(t) (t=1,2,…,T) are 

independent identical normal variables.  We replace this assumption with more realistic one that 

requires only that 

  

For all t = 1,2,…,T  the random variables ξξξξ(t) of Eq.(2.1.1) are independent and identically 

distributed with a known probability density function f(ξξξξ). 

 

The function f(ξ) is usually referred to as the probability density function of daily changes.  We do 

not assume any parametric form or representation for the function f(ξ).  In this section of the paper, 

we derive an explicit formula for the probability distribution function for n-day changes in interest 

rates based on the function of daily changes f(ξ). 

 

The random variable of n-day changes in interest rates ζ(n)(t) = Y(t+n) – Y(t) can be presented as a 

sum of daily changes: 
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Since the random variables ξ(t) are identically distributed for all t = 1,2,…,T, the random variables 

ζ(n)(t) are also identically distributed for all t.  Denote by gn [ζ (n)] the probability density function of 

the random variables ζ(n)(t).  Since we assume that ξ(t) are independent, Eq.(2.1.2) shows the 

random variables ζ(n)(t) is a sum of independent random variables and, therefore, (see, for example, 

Korn [1961], Sect. 18.5-7), the function  gn  is the n-fold convolution of the function f: 

Gn =  f ⊗  f ⊗ …⊗  f ,       

and the Fourier transform Gn of the function gn is the n-fold product of the Fourier transform F of 

the functions  f: 

Gn (λ) = [ F(λ)] n.      (2.1.3) 

Let ( )ϕ λ  be the logarithm of the Fourier transform F(λ), ( ) )].(ln[ λλϕ F=  

Then in the terms of Fourier images, formula (2.1.3) takes the form, which is remarkably simple 

and convenient for the numerical calculations: 

( ) ( )[ ].exp λϕλ nG n =  (2.1.4) 

Formula (2.1.4) underlies the following algorithm for computation of the Nonparametric 

Distribution Function of n-day changes (NPDFn) in interest rates: 

 

N-Day Changes Nonparametric Distribution Function (NPDFn ) Algorithm  

Step 1.  Select a “proper” basic historical period and build the Empirical Distribution Function 

(EDF) of daily yield changes f(ξ) using the data pertaining to that period.  

Step 2.  Calculate Fourier transform F(λ) of f(ξ) and, using formula (2.1.4), calculate the Fourier 

transform of the n-day yield changes ( )λNG . 

Step 3.  Calculate the NPDFn of n-day yield changes ( )ξng  as the inverse Fourier transform of 

( )λNG . 

 

The modern numerical methods featuring the Fourier transform (see, for example, Press [1992]), so 

called “Fast Fourier Transform Algorithms,” are very efficient.  Therefore, when the EDF of daily 
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yield changes f(ξ) is found, the implementation of Steps 2 and 3 can be done in a relatively short 

period of time. 

 

In the course of research we tested the NPDFn Algorithm on the daily data collected by the Federal 

Reserve Bank on the US Treasury Securities over the period January 3, 1983 through December 31, 

1998.  The following historical data were reviewed: yields on 3-Month, 6-Month, and 1-Year 

Treasury bills; yields on 2-year, 3-year, 5-year, and 10-year Treasury notes; and yields on 30-year 

Treasury bonds. 

 

Exhibit 1 illustrates how the NPDFn Algorithm transforms the distribution of historical daily interest 

rate changes into the Nonparametric Distribution Function of 2-day, 5-day, 10-day, 15-day, and 20-

day changes.  For better graphical display, cumulative distribution functions are shown.   Exhibit 

1.1 shows the original and n-day changes distributions for 3-month Treasury rates; Exhibit 1.2 

shows the original and n-day changes distributions for 10-year Treasury rates. 

 

 
2.2 Selection of basic period for NPDFn Algorithm: notion of stationary period 

 

The selection of basic period for the Nonparametric Distribution Function of n-day changes is the 

most important and trickiest part of the NPDFn Algorithm.  The choice of a particular historical 

period of interest rate development is basic to the algorithm.  The period defines the statistical 

characteristics of the underlying EDF of daily changes and, therefore, the statistical characteristics 

of NPDFn.  It is hard to expect that statistically different EDFs would yield statistically 

indistinguishable NPDFns.  So how can one choose which historical period should be the base one 

for the NPDFn Algorithm?   

 

Since NPDFn is to be used for forecasting, it is desirable for the basic period to be as long as 

possible.  On the other hand, the major assumption underlying the NPDFn Algorithm is that the 

interest rate development follows a stochastic process with stationary independent increments.   
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An arbitrary long series of interest rate observations may not represent a stochastic process with the 

same distribution of daily increments.  One of the earliest proofs of this is presented in the paper 

written by David Becker (cf. Becker [1991]) who showed that interest rates volatility is not constant 

in a series of consecutive years.  This seems reasonable since interest rates express the market 

expectations on gains from lending money.  These expectations depend on the economic situation as 

well as Federal Reserve Bank policies and the international situation.   A long series of data can 

represent several very different economic periods.  If one uses historical data for more than one 

economic period, the distribution of interest rate increments is a mixture of distributions 

corresponding to the different periods.  Such a mixture is not appropriate for a short-term forecast 

while the most recent economic period is expected to continue.  Forecasts based on arbitrarily 

chosen historical data periods often yield low precision or just wrong values. 

 

We developed a method to establish the longest time period when interest rates exhibit stationary 

daily changes.  Such a period is referred to as a stationary period in this paper. 

 

We assume a stationary period consists of one or more calendar years, so the shortest stationary 

period is one year.  We cannot provide a rigorous proof that a calendar year is the proper time unit 

for measuring the length of stationary periods.  However, looking at the history of global changes in 

the economy, we have observed that a typical time interval when the economic environment is 

stable runs from one to three or four years; and that relatively long stable periods are divided by 

relatively short, about one to three month, transitional periods.  See also Gwartney [1995], p. 507. 

 

Based on this observation, the following method is used to construct a stationary period for each of 

the maturities studied. 

 

1. For every year from 1983 to 1998 and every maturity – 3 month, 6 month, 1 year, 2 years, 3 

years, 5 years, 10 years, and 30 years - we obtained the cumulative empirical distribution 

function of daily changes in the interest rates: CEDF(M,Y).  In this notation, M stands for a 

maturity and Y stands for a year;  

M ∈ M = { 1M  = 3 month, 2M  = 6 month, 3M  = 1 year, 4M  = 2 year, 5M  = 3 year,  6M  = 5 

year, 7M  = 10 year, 8M  = 30 year}; Y ∈ Y = { 1Y  =  1983, …, 16Y  = 1998}. 
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2. For each maturity M ∈ M and for every pair of years Y, Y’ ∈ Y,  Y ≠ Y’, we used CEDF(M,Y) 

and CEDF(M,Y’) to test the hypothesis H(M; Y, Y’) that for the Treasury Security with the 

maturity M the empirical distribution of daily changes in the year Y and the empirical 

distribution of daily changes in the year Y’ are identical.  If the hypothesis H (M; Y, Y’) holds 

true, we conclude that for the maturity M the years Y and Y’ belong to the same stationary 

period.  If the opposite is true, we conclude the years Y and Y’ belong to two different stationary 

periods. 

 

Since the distributions of daily changes are not expected to have an analytic form, we applied two 

nonparametric criteria, the classical Kolmogorov-Smirnov criterion (Kolmogorov [1933], Smirnov 

[1939]) and its modification, the Kuiper criterion (Kuiper [1962]), to test the hypothesis H (M; Y, 

Y’).  (Please see, for example, Press [1992], pp. 623–628 or Von Mises [1964], pp. 490-493 for a 

detailed modern description of Kolmogorov-Smirnov and Kuiper criterions.)  The reason for 

applying two similar tests to compare the same pairs of cumulative empirical distributions of daily 

changes lies in the ways Kolmogorov-Smirnov and Kuiper tests weight the discrepancy in the tail 

areas of the compared distributions.   When analyzing the function employed by Kolmogorov-

Smirnov criterion to measure the distance between two distributions, it is easy to see that as soon as 

two compared distributions are close in their “central” (i.e., near the means) areas it does not “feel” 

even significant discrepancy in the distribution tails.  Kuiper test is more sensitive to the distribution 

tails and requires the compared distribution to be “uniformly” close in order to be accepted as 

identical. 

 

This method allowed us to establish stationary periods for all maturities by accepting or rejecting 

hypothesis H(M; Y, Y’) at a chosen significance level.  Exhibits 2.1 and 2.2 present all stationary 

periods for the 3-month and 10-year Treasury securities at the 10% significance level.  Each of 

these exhibits consists of two tables: the top table gives the stationary periods based on the Kuiper 

criterion, and the bottom table gives the stationary periods based on the Kolmogorov-Smirnov 

criterion. 
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In addition to indicating the correct historical periods to be used in the construction of empirical 

distribution functions of n-day interest rate changes, Exhibit 2 provides us with several important 

insights about the stability of the interest rate environment discussed in Introduction. 

• The stationary periods based on the Kolmogorov-Smirnov criterion are of the same length or 

longer than those based on the Kuiper criterion. 

• The longer the maturity, the longer the stationary periods.  Comparing the stationary periods 

shown on Exhibit 2.1 (3-Month T-bill) with those shown on the Exhibit 2.2 (10-year T-note), 

the longest stationary period for 10-year T-note is 13 years (Kolmogorov-Smirnov) or 11 years 

(Kuiper), while for 3-Month T-bill the longest stationary period is 8 years (Kolmogorov-

Smirnov) or 7 years (Kuiper).  Again, this is an expected result.  Interest rates are the average 

estimates of profit market participants expect to receive from lending money.  Definitely, long-

term estimates are more stable than the short ones.   Practically this implies that the likelihood 

of making a “good” forecast for long-term instruments is higher than for short-term instruments. 

 

We believe that the question of finding and analyzing the stationary periods of interest rates is 

important and deserves additional research. 

 

2.3 Comparison tests for calculated nonparametric density function of n-day yield changes 

 

The tests are separated into two groups, model validation tests and forecast tests.  As described in 

the Introduction, model validation tests show how well a model describes a series of historical data. 

Forecast tests examine the predictive ability of a model.  A better model is expected to outperform a 

worse one for both kinds of tests.  However, a model that describes a series of historical data better 

is not necessarily also superior for forecasting. If one model systematically yields better model 

validation test results and another produces better forecasts, either at least one of the models is 

inadequate or the tests are insufficient. 

 

The purpose of the model validation test is to check whether a model is compatible with the market 

data.  For example, suppose that the historical returns distribution is far from normal and we employ 

the normal model. In this case, we would extract the mean value and the variance from the historical 

data.  However, the comparison of the empirical distribution with the normal one would indicate a 
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significant discrepancy, i.e., the model validation test would reject the normal model. The 

acceptance of the model validation test is a necessary condition for the model to be valid. In model 

validation tests the same series of data is used for calibration and testing.   

 

The forecasting tests verify the quality of forecasting.  Note that the success of a model validation 

test is a necessary but insufficient condition for the model to be accepted for any application, 

especially, for forecasting.  For forecasting tests the historical data was always separated into two 

non-overlapping parts. The first series of data is used for calibration and validation; and the second 

(later) series for testing of the forecasts.  

 

 

2.3.1 Model validation tests 

 

We performed the following tests comparing results obtained by using our nonparametric technique 

with those obtained by using the traditional approach, i.e. assuming the daily yield changes are 

normally distributed: 
 

1. Using the historical data, we obtained the historical EDFs of n-day yield changes, EDFn. 

2. We applied the convolution integral/Fourier transform technique (Steps 2 and 3 of the N-

Day Changes PDF Algorithm above) to calculate the Nonparametric Distribution Function 

of n-day yield changes, NPDFn. 

3. We obtained the n-day Normal Distribution Function, NDFn assuming that the underlying 

EDF of daily changes are normal.  

4. We calculated the difference between our NPDFn and the corresponding historical EDFn as 

well as the difference between the NDFn and the corresponding historical one. 

 

Note that if the daily changes were identically distributed independent random variables governed 

by a stationary random process and if the series of available historical data were infinite, then the 

NPDFn would equal the corresponding EDFn; and, in view of the Central Limit Theorem (see, for 

example, Breiman [1968]), NPDFn would converge to the normal distribution as n tends to infinity. 
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We have applied the following measure µ(f,g) to find the difference between the calculated f and 

historical g distribution functions of n-day changes in the interest rates:  

[ ] dxxgxfdxxgxfgf ∫∫ −=−= )()(1)()(
2
1),(

2
µ  

This measure is a slightly modified Lebesgue measure of the functional space ( )∞+∞− ,2L  of 

square integrable functions (see, for example, Kolmogorov [1961]).  Note that since a probability 

density function is non-negative and integrable, its square root belongs to ( )∞+∞− ,2L .  Measure 

µ(f,g) uniformly accumulates the difference between two distributions over the whole sample space 

and, therefore, well reflects the discrepancy in the tail areas.  This distance is always between 0 and 

1. 

 

The model validation test described above was applied to the yields on 3-month T-bills and 10-year 

T-notes in the period of January 4, 1996 through January 2, 1998.  Table 2.1 below presents the 

results of the comparison tests.  In this table, the first column contains the time lag in business days, 

columns 2 and 4 show the difference between NPDFn and correspondent EDFn, and columns 3 and 

5 show the difference between NDFn and correspondent EDFn.     
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TABLE 2.1 Lebesgue distance µ between indicated distributions and EDFn 

Time lag in 

business days 

3-month T-bills 10-year T-note 

n NPDFn NDFn NPDFn NDFn 

1 0 0.124 0 0.099 

2 0.059 0.116 0.046 0.081 

5 0.078 0.114 0.057 0.069 

10 0.095 0.121 0.057 0.065 

15 0.104 0.122 0.060 0.065 

20 0.105 0.119 0.063 0.066 

 

Note that first we used a series of data for calibration of the one-day NDF1 and for obtaining the 

one-day EDF1.  Then, we used the same series for comparison of the NDFn and EDFn with the 

historical n-day distribution NPDFn. 

 

 

2.3.2 Forecast tests 

 

The purpose of this project is to develop a forecasting technique for big jumps and falls in interest 

rates.  Therefore, we concentrated on forecast tests of the extreme events.   

 

We performed several series of tests of the forecasting technique on historical data.  For each time 

series started January 4, 1996 and ended January 2, 1998 we computed 100 forecasts with the time 

horizons 1, 2, 5, 10, and 20 business days.  We considered the largest positive and negative daily 

changes in the 100-day series. The results are summarized in the Tables 2.2.1 – 2.4.2. Each table 

contains 3 rows.  The first row represents results taken from historical series.  The columns show 

the largest positive and negative daily increments in the series measured in units of the standard 

deviation.  The second and the third rows show probabilities of corresponding events computed 

with NPDF and the Normal distribution of daily increments.  There are 100 events in the series. The 

largest positive and negative daily changes happen only once, so the frequencies of the extreme 
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events are equal to 1/100. Thus numbers of order of 1% in the second and third rows indicate good 

forecasts. The numbers well below 1% indicate that the tails are too light, and the numbers well 

above 1% indicate that the tails are too heavy. 

 

TABLE 2.2.1  3 month T-bill, time horizon = 1 day 

 Greatest positive change in 

standard deviations  

Greatest negative change 

in standard deviations  

Observation 4.087 -2.196 

NPDF probability 0.4% 2.5% 

Normal probability 0.002% 1.3% 

 

TABLE 2.2.2 10 year T-bond, time horizon = 1 day 

 Greatest positive change in 

standard deviations  

Greatest negative change 

in standard deviations  

Observation 2.339 -2.841 

NPDF probability 1.4% 1.2% 

Normal probability 1.0% 0.2% 

 

Table 2.3.1  3 month T-bill, time horizon = 5 days 

 Greatest positive change in  

standard  deviations  

Greatest negative change 

in standard deviations  

Observation 2.650 -2.084 

NPDF probability 1.0% 1.9% 

Normal probability 0.4% 1.8% 

 

Table 2.3.2  10 year T-bond time horizon = 5 days 

 Greatest positive change in  

standard  deviations  

Greatest negative change 

in standard deviations  

Observation 1.330 -2.095 

NPDF probability 6.6% 3.4% 
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Normal probability 9.1% 1.9% 

 

Table 2.4.1  3 month T-bills, time horizon = 10 days 

 Greatest positive change in  

standard  deviations  

Greatest negative change 

in standard deviations  

Observation 1.59 -2.069 

NPDF probability 5.8% 2.0% 

Normal probability 5.7% 1.9% 

 

 

Table 2.4.2  10- year T-bond, time horizon = 20 days 

 Greatest positive change in  

standard  deviations  

Greatest negative change 

in standard deviations  

Observation 1.228 -1.493 

NPDF probability 0.1% 0.1% 

Normal probability 0.1% 0.1% 

 

 

These results indicate that the NPDF yield good forecasts for short time horizons, up to 1 week. For 

longer time horizons, NPDF overestimates the tails, i.e. large fluctuations happen less frequently. 

We believe these results from mean reversion, the attraction of the interest rate to its mean value. 

Mean reversion corrections to the NPDF are discussed in Part 3. 

 

 

2.3.3 Discussion of test results 

 

The results presented in the tables suggest the following: 

 

1. For all time lags n = 1, 2, 5, 10, 15, and 20, the Lebesgue distance between the 

nonparametric NPDFn and the observed EDFn is less than that between the normal 
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distribution based NDFn and EDFn.  

 

2. While for the short time lags (n = 1, 2, and 5) the nonparametric NPDFn provides one with 

significantly better approximations of the observed EDFn than those yielded by the normal 

distribution based NDFn, for a longer time lags of two to four weeks (10 to 20 business 

days) NPDFn does not have any real advantage over NDFn. 

 

 

3. The frequency of largest daily increments and decrements of interest rates (0.01) is always 

close to the NPDF forecast. The NDF systematically underestimates the frequency of large 

fluctuations.  In other words, NPDFn always yields more precise approximation to the 

historical distribution EDFn in the tail areas, where most dangerous big jumps and falls 

occur. 

 

Conclusions (1) and (2) might appear contradictory at first reading.  However, both conform to the 

Central Limit Theorem; the PDF of n-day yield changes converges to a normal distribution when 

the time lag n increases.  The rate of convergence is faster in the vicinity of the distribution mean 

and slower in the tail areas.   

 

3. Mean reversion and long-term forecasting 
 

In Part 2 we developed a technique to anticipate the interest rates distribution in n-day using the 

historical distribution of daily changes.  Our tests indicated that this technique yields very good 

forecasts for short time horizons up to 5 business days but it overestimates the tails for longer time 

horizons.  We attribute this to mean reversion in interest rates.  

 

Mean reversion corrections significantly improve forecasts for longer time horizons.  This is due to 

the fact that the assumption that interest rates increments are i.i.d. random variables holds only for 

short time periods.  For longer time periods, interest rates exhibit mean reversion.  If it were not be 

the case, the range of n-day changes of interest rates would increase steadily while the time period n 

gets longer.  Analysis of historical data shows that the distribution of 200-day changes has 
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practically the same range as the distributions of 250-day changes, which in its turn is very close to 

the distributions of 300-day changes, and so on and so forth.  The theory of stochastic processes 

suggests that this phenomenon can only be captured by a mean reverting stochastic process that 

exhibits time convergence to a time independent asymptotic distribution. 

 

In Part 3 mean reversion is considered.  In Section 3.1, we obtain mean reversing corrections to the 

Nonparametric Distribution Function (NPDF) for discrete time series with arbitrary distribution of 

the random factor.  Also, in this section we obtain the asymptotic distribution for NPDF with mean 

reversing and show that this distribution can be effectively used to calculate the distribution of n-

day changes of interest rates in the uniform fashion.  

 

In Section 3.2.1 we compute interest rates forecasts using the most popular Vasicek and Cox-

Ingersoll-Ross models and compare theses forecasts with historical data.  These two models have 

analytic solutions that allow us to use them as benchmarks to perform detailed comparisons with 

our nonparametric approach.  We presented the results of these comparisons in Sections 3.2.3 and 

3.2.3.  

 

In Section 3.3 we show how asymptotic NPDF can be employed to calculate interest rates option 

payoffs and compare our results with those obtained by using Vasicek and Cox-Ingersoll-Ross 

asymptotic distributions. 

 

 

3.1 Distribution of n-day changes in interest rates under Vasicek type dynamic with 
nonparametric stochastic component 

 
3.1.1 Recursive method for finding distribution of n-day changes 

 

We assume that daily values of interest rates y(t) (t=1,2,…,T) follow the stochastic process Y(t) 

(t=1,2,…,T), which is governed by the equation: 

[ ] ),()()()1( ttYmktYtY ξ+−=−+       (3.1.1) 
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where ξ(t) (t=1,2,…,T) are random variables describing the stochastic component of the interest rate 

daily changes.  Eq.(3.1.1) is a finite difference form of the Vasicek model (cf. Vasicek [1977]) 

based on the Ornstein-Uhlenbeck process (cf. Uhlenbeck [1930]).  The Vasicek model is one of the 

most common ways to describe the mean reversion property of the interest rate dynamics, and, in its 

original form, this model stipulates that the random variables ξ(t) (t=1,2,…,T) are independent 

identical normal variables.  We replace this assumption with more realistic one that requires only 

that 

 
For all t=1,2,…,T  the stochastic components ξξξξ (t) of Eq.(3.1.1) are independent identically distributed 

random variables with a known probability density function f(ξξξξ). 

 

The function f(ξ) is usually referred to as the probability density function of daily changes.  We do 

not assume any parametric form or representation for the function f(ξ): it is taken as it is.  In this 

paper, we derive an explicit formula for the probability distribution function for n-day changes in 

interest rates based on the given function of daily changes f(ξ). 

 

The coefficient k in Eq.(3.1.1) determines how fast the stochastic process Y(t) converts to its mean 

m, usually referred to as the speed of mean reversion.  The coefficient k satisfies the following 

inequalities: 

0 < k < 1.              (3.1.2) 

The left part of the formula (3.1.2) indicates the stochastic process does converge, not diverge.  The 

right part of this formula indicates the mean reversion effect is observable only over a significant 

time interval. 

 

Denote x(t) = y(t) – m.  Then Eq.(3.1.1) implies that the stochastic process X(t) = Y(t) – m is 

governed by the equation  

),()()1( ttXtX ξλ =−+   where  λ =  1- k.   (3.1.3) 

Note that by its definition the parameter λ satisfies the same inequalities (3.1.2) as the speed of 

mean reversion: 

0 < λ < 1.      

Eq. (3.1.3) means that  



Nonparametric Approach to Forecasting Interest Rates 

 27   

   Pr{X(t+1) = x(t+1) | X(t) = x(t)} = f[ξ(t)],    (3.1.4) 

where  

)()1()( txtxt λξ −+= . 

Using the method of mathematical induction it can be proved that for any n ≥ 1  

)()()(
1

0

1 kttXntX
n

k

knn +=−+ ∑
−

=

−− ξλλ .     (3.1.5) 

Really, for n = 1 Eq.(3.1.5) is the same as Eq.(3.1.3).  Let us assume that the formula (5) holds true 

for n =  j-1, i.e., 

)()()1(
2

0

21 kttXjtX
j

k

knj +=−−+ ∑
−

=

−−− ξλλ ,  j ≥ 2.    (3.1.6) 

Note that  

)()1()1()()()( tXjtXjtXjtXtXjtX jj λλλλ −−++−+−+=−+ . 

Then due to Eq.(3.1.3) and the induction hypothesis (3.1.6), the equation above implies 
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which concludes the proof of formula (3.1.5). 

 

Similar to the interpretation (3.1.4) of Eq.(3.1.3), the formula (3.1.5) means that   

 Pr{X(t+n) = x(t+n) | X(t) = x(t)} = Pr{X(t+n) - λ n X(t) = x(t+n)  - λ n x(t)}, 

and the random variable X(t+n) - λn X(t) has the same distribution as the random variable ζ(n)(t) 

defined by the formula: 

∑
−

=

−− +=
1

0

1)( )()(
n

k

knn ktt ξλζ .      (3.1.7) 

In view of this, the probability density function of random variable ζ(n)(t) is referred to as the 

probability density function of n-day changes in interest rates. 

 

Note that if Z1, Z2,…, Zn are independent random variables and α1, α2,…, αn are positive numbers, 

then R1 = α1• Z1 , R2 = α2• Z2,…, Rn  = αn• Zn are independent random variables.   
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Really, let Fj be a distribution function of Zj, j= 1,2, …, n and F be a joint distribution function of 

the variables Z1, Z2,…, Zn.  Denote by Gj the distribution function of Rj, j= 1,2, …, n and let G stand 

for the joint distribution function of the variables R1, R2,…, Rn.  Then because α1, α2,…, αn are 

positive 

G(r1, r2,…, rn) = Pr{R1 ≤  r1, R2  ≤  r2,…, Rn ≤, rn } = Pr{α1• Z1≤  r1, α2• Z2≤  r2,…, αn• Zn≤  rn}  
 

= Pr{Z1≤  r1  ⁄ α1, Z2≤  r2  ⁄ α2,…, Zn≤  rn  ⁄ αn} = F(r1 ⁄ α1, r2  ⁄ α2,…, rn ⁄ αn ). 

Since Z1, Z2,…, Zn are independent random variables, the chain of equalities above implies that  

G(r1, r2,…, rn) = F(r1 ⁄ α1, r2  ⁄ α2,…, rn ⁄ /αn ) = F1 (r1 ⁄ α1) •  F2 ( r2  ⁄ α2) •… • Fn ( rn  ⁄ αn ) = 

Pr{Z1 ≤  r1  ⁄ α1 } • Pr(Z2 ≤  r2  ⁄ α2} •… • Pr { Zn ≤  rn  ⁄ αn} = 

Pr{R1≤  r1 } • Pr {R2≤  r2} •… • Pr { Rn≤  rn } = G1 (r1) •  G2 ( r2) •… • Gn ( rn ), 

which proves the independence of the random variables R1, R2,…, Rn. 

 

Denote by ξ (j) (t) the random variable defined by ξ (j)(t) = λ jξ(t).  Since the random variables ξ(t) 

are identically distributed for all t = 1,2,…,T, the random variables ξ (j)(t)  and ζ(n)(t) are also 

identically distributed for all t.  Denote by fj[ξ (j)] the probability density function of the random 

variables ξ (j)(t) and let gn[ξ (n)] stand for the probability density function of ζ(n)(t). 

 

An immediate corollary of the statement proved above is that since the random variables of daily 

changes ξ(t), ξ(t+1),…, ξ(t+n-1) are independent and λ > 0,   the random variable ζ(n)(t) is the sum 

of independent random variables ξ (n –1)(t), ξ (n –2) (t+1),…, ξ(t+n-1).  Therefore (see, for example, 

Korn [1961], Sect. 18.5-7), the function gn is the convolution of the functions  f,  f1,  f2,…, fn-1: 

gn =  f ⊗  f1 ⊗  f2 ⊗ …⊗  fn-1 ,       

and the Fourier transform Gn of the function gn is the product of the Fourier transforms F,  F1, 

F2,…,Fn-1 of the functions  f,  f1,  f2,…, fn-1 respectively: 

Gn(ω) =  F(ω) •  F1(ω)•  F2(ω)• …•  Fn-1(ω) .   (3.1.8) 
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In accordance with the formula for the linear change of variables and the definition of Fourier 

transform (see, for example, Korn [1961], Sect. 18.5-3 and Sect. 4.11),  








= jjj ff
λ
η

λ
η 1)(  and )()( ωλω j

j FF = .     

Hence we can rewrite (3.1.8) as  

Gn(ω) =  F(ω) •  F(λω)•  F(λ2ω)• …•  F (λ n-1ω)    (3.1.9) 

and calculate the probability density function gn of  n-day changes as the inverse Fourier transform 

of Gn:   

gn =F-1[Gn].        

 

3.1.2 Asymptotic distribution and its application to finding n-day distribution 

 

Note that since λ<1 the product λ jω converges to zero for all ω as j goes to infinity.  This implies 

that  

)()( ωλω j
j FF =  → 1 as j→∞ ,                                   (3.1.10) 

and, therefore,  if the time period n is large, the factors )()( ωλω j
j FF =  in the formula (3.1.9) with 

j exceeding some threshold  N do not contribute to the value of Gn(ω).   

 

This observation suggests the existence of an asymptotic formula for the calculation of the 

probability distribution function n-day changes in interest rates for a large time period n.   Namely, 

it implies that for any distribution of daily changes f(ξ) there is a number N such that for all n > N 

the Fourier transform Gn of the probability density function gn is well approximated by the function 

Ga that can be formally defined as 

∏
∞

=

−=
1

1 )()(
j

j
a FG ωλω .              (3.1.11) 

The function Ga(ω) is well-defined by equality (3.1.11) since in accordance with the multiplicative 

version of Cauchy convergence criterion (see, for example, Theorem 68 at Schwartz [1967], 

Chapter II) formula (3.1.10) implies that the infinite product of )( ωλ jF  converges for any ω.   
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Let φ(ω) be the natural logarithm of F(ω),  γn(ω) be the natural logarithm of Gn(ω), and γa(ω) be the 

natural logarithm of Ga(ω) :   

φ(ω) = ln[F(ω)],  γn(ω) = ln[Gn(ω)],  and   γa(ω) = ln[Ga(ω)]. 

Since the convergence of the infinite product of  )( ωλ jF  is equivalent to the convergence of 

infinite series of )( ωλϕ j  (see, for example, Theorem 69 at Schwartz [1967], Chapter II) formula 

(3.1.11) implies  

∑
∞

=

−=
1

1 )()(
j

j
a ωλϕωγ .               (3.1.12) 

Also, the formula (3.1.9) can be rewritten as 

∑
=

−=
n

j

j
n

1

1 )()( ωλϕωγ .               (3.1.13) 

Comparing the formulae (3.1.12) and (3.1.13) one can observe that for any ω the functions γn(ω) 

and  γa(ω) are bound by the equation: 

)()()( ωλγωγωγ n
aan −= .              (3.1.14) 

Equation (3.1.14) means that if the asymptotic function γa(ω) is known, the distribution of n-day 

changes for any number of days n can be found in the uniform fashion without going through 

laborious summation or multiplication process described by the equations (3.1.9) or (3.1.13). 

 

Note that for n = 1 equation (3.1.14) yields 

)()()()( 1 λωγωγωγωϕ aa −== .             (3.1.15) 

This equation provides us with a simple connection between the original distribution of one-day 

changes and the asymptotic distribution and allows us to find the asymptotic function γa(ω) directly 

from the function φ(ω).  Namely, let )ln(λµ =  and )ln(ω=x .  Then equation (3.1.15) takes the 

form: 

)()()( µγγϕ +−= x
a

x
a

x eee ,               

or 

)()()( µ+−= xuxuxv ,               (3.1.16) 
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where v is the composition of φ and the exponential function and u is the composition of γa and the 

exponential function.  Now let U(ω)  be the Fourier transform of u(x)  and V(ω)  be the Fourier 

transform of v(x).  Then equation (3.1.16) implies that U(ω) and V(ω)  are bound by the equation: 

]1)[()( ωµωω ieUV −= .  

Therefore, since V(ω) is known, the function u(x) can be found as the inverse Fourier transform of 

the function  ]1/[)( ωµω ieV − : 

ωω
π ωµ

ω

d
e

eVxu i

xi

∫ −
=

1
)(

2
1)( .   (3.1.17) 

Note that in a small vicinity of zero both, the numerator V(ω)  and denominator ωµie −−1  under 

the integral above, are well approximated by ω: 

V(ω)  ≈ ω  and  ωωµ ≈− ie1 . 

This implies that ω=0 is not a singular point and the function u(x) calculated by the formula 

(3.1.17) is well-defined for any x. 

 

The results of this section bring us to the following algorithm for the calculation of distribution of n-

day changes given the distribution of one-day changes: 

Algorithm for Calculation of Asymptotic and N-Day Changes Nonparametric Distribution 

Functions (NPDFa and NPDFN ) with Vasicek Type Mean-Reversion 

Step 1.  Select a “proper” basic historical period and build the Empirical Distribution Function 

(EDF) of daily yield changes f(ξ) using the data pertaining to that period.  

Step 2.  Calculate Fourier transform F(ω) of f(ξ) and the natural logarithm φ(ω) of F(ω). 

Step 3.  Calculate function v(x) using the equation: )()( xexv ϕ= . 

Step 4.  Calculate Fourier transform V(ω) of  the function v(x). 

Step 5.  Calculate inverse Fourier transform u(x) of the function ]1/[)( ωµω ieV −  with 

)1ln( k−=µ , where k is the speed of mean reversion. 

Step 6.  Calculate function γa(ω) using the equation: )][ln()( ωωγ ua = . 

Step 7(A).  Calculate function Γa(ω) using the equation: )](exp[)( ωγω aa =Γ . 
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Step 8(A).  Calculate the asymptotic distribution ga (ζ ) of interest rate changes by taking the 

inverse Fourier transform of the function Γa(ω). 

Step 7(N).  For any number of days n calculate function γn(ω) by applying the formula: 

)()()( ωλγωγωγ n
aan −=  and Γn(ω) using the equation: )](exp[)( ωγω nn =Γ . 

Step 8(N).  Calculate the distribution gn (ζ ) of n-day changes in interest rates by taking the inverse 

Fourier transform of the function Γn(ω). 

 

One can observe that while the algorithm described above appears to be more complex than one, 

which was presented in Section 2.1, it does not involve anything that goes beyond simple algebraic 

equations and Fourier transforms.  The numerical experiments we conducted showed that by 

employing software packages (such as Mathematica and MatLab) featuring Fast Fourier Transform 

Algorithms (see, for example, Press [1992]), the implementation of Steps 2 through 8 can be done 

in a relatively short period of time. 

 

 

3.2 Comparison tests for Nonparametric Distribution Function with mean reversion 

 

3.2.1 Benchmark models 

 

We consider two popular interest rates models, Vasicek (cf. Vasicek [1977]) and the Cox-Ingersoll-

Ross (cf. Cox [1985]) as benchmarks for testing our results.  These models feature the mean 

reversion and have known analytic solutions that allow us to perform a detailed comparison of these 

models with our non-parametric approach. 

 

The Vasicek model (a finite difference form) stipulates that daily values of interest rates y(t) 

(t=1,2,…,T) follow the stochastic process Y(t) (t=1,2,…,T), which is governed by the equation: 

[ ] ),()()()1( ttYmktYtY ησ ⋅+−=−+      

where η(t) (t=1,2,…,T) are independent standard normal variables.  The only difference between 

our technique (please see Eq.(3.1.1)) and the Vasicek model is that the latter assumes that the 
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distribution of random variables ξ(t) = σ ⋅η(t)  is normal. The mean reversion level m and the speed 

of mean reversing k are the same.   

 

We have tested the hypothesis that the distribution of ξ(t) is normal by applying the Kolmogorov-

Smirnov (KS) and Kuiper (KP) tests.  The KS and KP probabilities (P-values) for the period from 

January 4, 1996 to January 2, 1998 are given in Table 3.2.1 below.  

 

Table 3.2.1 

P-values 

 3-Month Rates  3- Year Rates 10-Year Rates 30-Year Rates 

KS 0.019 0.014 0.045 0.165 

KP 1.664E-6 9.796E-7 2.007E-3 4.346E-3 

 

Table 3.2.1 shows that given 5% significance level the hypothesis of ξ(t) normality should be 

rejected by the Kuiper criterion for all maturities.  If the Kolmogorov-Smirnov is applied, this 

hypothesis can only be accepted for 30-year rates. 

 

The results indicate that the hypothesis that the Vasicek model quantitatively describes historical 

data is less than 5% and unacceptable.  

 

Even though the Vasicek model does not correctly approximate the distribution of the daily changes 

of interest rates it may yield reasonable forecasts for longer time horizons.  It follows from the 

Ornstein-Uhlenbeck analytic solution (cf. [13]) that the values of 
nkemtYmntY ⋅−⋅−−−+ ])([])([ ; t=1, 2,…,T 

are normally distributed with zero mean and standard deviation ( )
k
e nk

n 2
1~

2 ⋅⋅−−= σσ . 

This implies that for a large time period n the distribution of random variable Y(t+n) does not 

depend on the distribution of “initial” random variable Y(t) and can be well approximated by the 

normal distribution with mean m  and standard deviation 
ka 2

~ σσ = . 
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The Cox-Ingersoll-Ross (CIR)  (a finite difference form) stipulates that daily values of interest rates 

y(t) (t=1,2,…,T) follow the stochastic process Y(t) (t=1,2,…,T), which is governed by the equation: 

[ ] ),()()()()1( ttYtYmktYtY ησ ⋅⋅+−=−+    (3.2.1) 

where η(t) (t=1,2,…,T) are independent standard normal variables.  This implies that the random 

variable ν(t) defined by the formulae    

,
)(

)()1()(
tY

tXtXt λν −+=   ,)()( mtYtX −=  k−= 1λ       (3.2.1) 

is normally distributed.  

 

We have tested the hypothesis that the distribution of ν(t) is normal by applying the Kolmogorov-

Smirnov (KS) and Kuiper (KP) tests.  The KS and KP probabilities (P-values) for the period from 

January 4, 1996 to January 2, 1998 are given in Table 3.2.2 below.  

 

Table 3.2.2 

P-values 

 3-Month Rates  3- Year Rates 10-Year Rates 30-Year Rates 

KS 8.181E-3 3.173E-4 0.051 0.052 

KP 4.234E-7 9.811E-10 9.45E-4 4.847E-3 

 

Table 3.2.2 shows that given 5% significance level the hypothesis of ν(t) normality should be 

rejected by the Kuiper criterion for all maturities.  If the Kolmogorov-Smirnov is applied, this 

hypothesis should be rejected for 3-month and 3-year rates and can be accepted for 10-year and 30-

year rates. 

 

We concentrated on the most important case of the long time horizon where the distribution of 

interest rates does not depend on the initial value.  In this limit interest rates obey the asymptotic Γ-

distribution (cf. Feller [1951]. We performed a model validation test of the hypothesis that the 

interest rates distribution is the Γ-distribution.  We used the Kolmogorov-Smirnov and Kuiper 

statistics on the 500 days time series from January 4, 1996 to January 2, 1998 for this test.  The 
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following table shows the hypothesis is always rejected at the 5% confidence level.  One can see 

that the Kuiper tests yield especially low estimates for the asymptotic Γ-distribution.  

 

Table 3.2.3 

 3-Month Rates  3- Year Rates 10-Year Rates 30-Year Rates 

KS 0.03 4.566E-3 6.07E-6 1.513E-8 

KP 2.149E-5 3.979E-8 <1E-15 <1E-15 

 

 

3.2.2 Model validation and forecasting tests 

 

In the case of mean reversion, the distribution function depends on three variables: the time horizon, 

the initial interest rate and the final interest rate.  Without mean reversing, the distribution depends 

only on two parameters, the time horizon and the difference between the final and initial interest 

rates.  Therefore, one needs to carry out tests of two-dimensional distributions for every fixed time 

horizon in the case of mean reversing.  It requires much more data to make a reliable comparison of 

two 2-dimensional distributions.  Fortunately, the most important long-term distribution is the 

asymptotic distribution that depends on the final interest rates but does not depend on the initial 

ones.  The asymptotic distribution is one-dimensional, so we concentrated our tests on it.   

 

To perform the model validation test we take a series of historical data, find the distribution of daily 

increments, obtain the mean value m, determine the volatility σ of daily increments, and the speed 

of mean reversion k.  Using the daily increment distribution and the mean reversing parameter, we 

obtain the asymptotic NPDF, the asymptotic Vasicek distribution, and the asymptotic Cox-

Ingersoll-Ross distribution.  Test the hypothesis that the historical series used to obtain the daily 

distribution and the mean reversing parameter belong to the asymptotic distribution.  Note that the 

length of the data series T should be large so that the product kT is significantly larger than 1.  This 

allows one to apply the asymptotic distribution to the data.   
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The forecast tests use two series of data.  The earlier historical data are used to obtain the speed of 

mean reversion and the asymptotic distribution from the daily distribution.  The asymptotic 

distribution is compared with the historical distribution of the later data.   

 

If the historical process is stationary and random the results of the model check and the forecasting 

check should not differ significantly.  Any significant difference between these tests indicates that 

the underlying process is either not stationary or not entirely random.  The latter is quite possible 

because of nonrandom activities of the Federal Reserve Bank that controls the interest rates 

according to certain policies.  

 

Detailed data for the model validation tests are presented in Exhibit 3.A.  

• For each maturity, we considered 15 series of 256 daily data starting from January 2, 1983.   

• For each series, we obtained the daily PDF, the mean reversing parameter, and the 

asymptotic NPDF.  

• We compared the historical interest rates in each series with the asymptotic NPDF using the 

Kolmogorov-Smirnov and Kuiper tests.  

• We computed the average P-values of the 15 series of 256 days.  

• The average results are presented in Tables 3.2.4 and 3.2.5.   

 

Table 3.2.4  

Average P-values of model validation tests based on the KS statistics 

 3-Month Rates  3- Year Rates 10-Year Rates 30-Year Rates 

NPDF 0.022824 0.015158 0.004085 0.003351 

Vasicek 0.026747 0.0059 0.002835 0.018239 

CIR 0.001828 0.000754 0.00228 9.47E-06 
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Table 3.2.5  

Average P-values of model validation tests based on the Kuiper statistics 

 3-Month Rates  3- Year Rates 10-Year Rates 30-Year Rates 

NPDF 0.007269 0.000318 9.49E-06 9.49E-06 

Vasicek 0.004371 0.000505 1.9E-05 1.9E-05 

CIR 3.14E-07 1.18E-07 5.16E-07 5.16E-07 

 

 

The tables indicate the asymptotic NPDF and the asymptotic Vasicek distribution better describe 

historical data than the Cox-Ingersoll-Ross model.  However, there is no clear indication which of 

the two models is better.  The asymptotic NPDF and the Vasicek distributions are practically 

indistinguishable except in the remote tails, where the NPDF is asymmetric and has thicker tails.  

 

Exhibit 3.B displays a series of forecasting tests that correspond to the model validation tests.   

• We chose 14 series of 256 historical daily data and computed the forecast distributions using 

the asymptotic NPDF, and Vasicek and CIR models.  

• Next we found the historical distribution of interest rates in a series of 256 days following 

the first data series.  

• We compared the computed and the historical distributions using the Kolmogorov-Smirnov 

and the Kuiper tests. 

• A summary of the test results is presented in the following tables. 

 

Table 3.2.6  

P-values of forecasting tests based on the KS statistics 

 3-Month Rates  3- Year Rates 10-Year Rates 30-Year Rates 

NPDF 0.000225 0.007342 0.015098 0.01904 

Vasicek 0.001221 0.008079 0.029572 0.034038 

CIR 0.001959 5.2E-145 1E-147 1.01E-05 
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Table 3.2.7  

P-values of forecasting tests based on the Kuiper statistics 

 3-Month Rates  3- Year Rates 10-Year Rates 30-Year Rates 

NPDF 9.99E-09 5.28E-05 0.0044 0.001905 

Vasicek 6.33E-08 0.000119 0.002893 0.002893 

CIR 3.36E-07 6.8E-147 7.4E-150 9.65E-13 

 

Please see Figure 1 for a typical picture of the historical and forecasted distributions of interest 

rates. 

 

In general, the results of the forecasting tests are very close to those of the model validation tests: 

the Cox-Ingersoll-Ross model significantly overestimates the tails. The asymptotic NPDF and the 

Vasicek distribution are closer to the market data, and in the above graph are difficult to distinguish.  

There is no significant difference between these two models from the point of view of the 

Kolmogorov-Smirnov and the Kuiper tests.  

 

  

3.2.3 Extreme events tests 

 

The main advantage of our nonparametric approach over models based on the normal distribution of 

interest rates is better precision in the tail area, which produces better forecasts of extreme events.   

The tests shown in Exhibit 3.C were aimed at comparing the actual frequency of extreme deviations 

of interest rates from the mean value with the probabilities predicted by the NPDF, Vasicek, and 

Cox-Ingersoll-Ross models.  

 

Consider pairs of consecutive time periods.  The first period is used to estimate the distribution of 

daily changes of interest rates and the mean reversing parameters.  These parameters are used to 

forecast the interest rate distribution for the next period.  Then the forecast is compared with 

historical data, with special attention to the tails of the distributions.  
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The following test was used to compare the forecasted tail distribution against the observed one. We 

chose a small frequency of events η, which was equal to 0.01 in our tests. Then we found the 

deviation of interest rates from their mean value y0, δ- and δ+, such that the frequency of events with 

y - y0 < δ- and y - y0 > δ+ is equal to η. In other words, (y0 + δ-) and (y0 + δ+) are η and (1- η) 

percentiles of the historical distribution.  Next we computed the probabilities of large fluctuations 

with y < y0 + δ- and y > y0 + δ+ according to the NPDF, Vasicek, and Cox-Ingersoll-Ross models.  

 

Denote the forecast cumulative distribution function of interest rates as F(y - y0).  If this distribution 

function coincided with the observed historical distribution, we would get  

F(δ-) = η and 1 – F(δ+) = η.  

Let’s define P- = F(δ-) and P+ = 1 – F(δ+). The deviations of P- and P+ from η measure the errors of 

the forecasts in the left and right tails.  The value of (P± - η) always lies between – η and 1 – η.  If 

this value is negative, the forecast underestimates the frequency of large deviations of interest rates.  

If it is positive, the forecast overestimates the frequency of the tail events.  Both errors are 

dangerous. Underestimates of interest rate fluctuations can cause big losses.  Overestimates can 

force the investor to buy unnecessary insurance against possible losses.  Each investor should 

weight these errors according to his/her investment strategy and risk preferences. In this paper, we 

applied a weight function that places the errors in the interval from –1 to 1: 

( ) .
21

)(
ηη

η
+−

−=
P

PPw  

This measure weights both kinds of errors roughly equally.  Distributions that overestimate tails 

have positive values w(P), underestimates result in negative w(P).  A good forecast should yield 

small values of w.  In a series of tests, a better forecast has a smaller mean value of w and smaller 

fluctuations of this value.   This suggests a better forecast is one with a smaller mean square value 

of w for a series of tests.  

 

The length of each time period is 256 business days, around 1 year.  As we showed in Part 1, longer 

periods do not represent a single stationary process and the mean reversing is much weaker for 

longer periods.  It appears a single mean reversion time is between one and two months.  No single 

mean value during a long time period is representative.  Instead, there are several different values 

that attract the interest rates on different subsets of the period.  This results in smaller values of the 



Nonparametric Approach to Forecasting Interest Rates 

 40   

mean reversing parameter and in a wider interest rate distribution for longer time periods and these 

distributions overestimate the tails.  Shorter time periods yield a strong tendency to the mean value, 

but they are less interesting from the practical point of view.  Furthermore, application of 

asymptotic formulas to a period shorter than a few mean reversion times is questionable.   

  

Table 3.2.8 and 3.2.9 show summary results from Exhibit 3.C.   

 

The mean squares of the measures w- = w(P-) (left) and w+ = w(P+) (right) averaged over 14 series 

of forecasts for four maturities are given.  One can see that NPDF has the smallest value of w- for  

each maturity, i.e., NPDF gives the best estimate for the probability of large negative fluctuations of 

interest rates.  

 

Table 3.2.8 

  3-Month Rates 5-Year Rates 10-Year Rates 30-Year Rates 

w- 0.493381 0.462539 0.463719 0.482224 NPDF 

W+ 0.609075 0.467221 0.513906 0.570651 

w- 0.756885 0.63032 0.593758 0.617438 Vasicek 

W+ 0.612291 0.498277 0.517129 0.568891 

w- 0.566857 0.669731 0.701424 0.712453 CIR 

w+ 0.697422 0.741977 0.767592 0.770756 

 

The following presents the sums of w- and w+, which reflect the total precision of each model and 

for each maturity.  

 

Table 3.2.9 

 3-Month Rates 5-Year Rates 10-Year Rates 30-Year Rates 

NPDF 1.102456 0.929761 0.977625 1.052875 

Vasicek 1.369175 1.128597 1.110887 1.18633 

CIR 1.26428 1.411708 1.469017 1.483208 
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One can see that the sum w = w- + w+ for NPDF is the smallest for each maturity. Thus, the 

asymptotic NPDF yields significantly more precise forecasts of large interest rates fluctuations 

compared to the Vasicek and CIR models. 

 

 

3.3 Example: forecasting of interests options payoffs 
 

To test the technique we have applied it to forecasting payoffs of interest options. We chose options 

as test instruments because they amplify the risk and they are more sensitive to underlying 

fluctuations. Particularly, the expected payoffs very are sensitive to the tails of the distributions.  

 

There are standardized options on US treasuries yields traded on the Chicago Board of Option 

exchange (CBOE).  We consider hypothetical long-term options (LEAPS) created according to the 

CBOE standard.  They are European style options that expire on the third Saturday of June and 

December each year from 1984 to 1998.  The underlying assets are the 3-month, 5-year, 10-year, 

and 30-year yields.  The strikes change from 3% to 12% by 0.25%.   The main difference between 

the hypothetical instruments and the real ones is that strikes of interest rate LEAPS traded at CBOE 

have a much narrower spectrum near the current yield value.  We need such a wide strike spectrum 

in order to compare the precision of forecasts over the 15-year period when the interest rates 

changed from 10% to 3%.  

 

 

3.3.1 Rough tests 

 

We chose a starting date 120 business days before each expiration date, i.e., the time horizon of the 

forecast, T, is 120 days. We computed the expected value of options payoffs based on NPDF, the 

Vasicek model, and the Cox-Ingersoll-Ross model. We used historical data available on the starting 

date for calibration and used the period of 128 days preceding the starting date for calibration in 

order to increase the forecast precision.  As discussed in Part 1, longer time periods may include 

shorter periods, each with a different distribution, calibration based on longer series can yield less 

precise or even completely incorrect estimates. Since the mean reversing parameter of interest rates, 
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α, is typically between 0.03 and 0.04, the mean reversion time is between 25 and 33 days.  Using 

128 days for calibration means and 120 for the time horizon means both these periods are 

significantly longer than the mean reversion time and we can apply asymptotic formulas for the 

forecast. We employed the asymptotic mean reversed NPDF, the Vasicek model, and the Cox-

Ingersoll-Ross model to compute the expected options payoffs.  The expected payoffs computed 

according the asymptotic NPDF, Vasicek, and Cox-Ingersoll-Ross models are presented in Exhibit 

4. A. 

 

To estimate the forecast precision we computed distances between the expected and historical 

payoffs. We defined the distance for each expiration date and for each type of options, put and call, 

averaging over the strikes. If the expected and historical payoffs for the strike yK are EK and HK the 

distance is 

( )
2/1

1

21
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The distances for each expiration and for each kind of options are presented in Exhibit 4.B.  In 

Tables 3.3.1 and 3.3.2 we present the distances averaged over all expiration dates.   

 

Table 3.3.1  

Averaged distances for call payoffs. 

 NPDF Vasicek CIR 

30-Year Rates 0.795735 0.79318 2.895947

10-Year Rates 0.578861 0.578269 0.955465

5-Year Rates 1.108692 1.107851 1.316207

3-Month Rates 0.668122 0.666409 1.895664
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Table 3.3.2  

Averaged distances for put payoffs. 

 NPDF Vasicek CIR 

30-Year Rates 0.58967 0.589507 0.965161

10-Year Rates 0.987179 0.98753 1.049722

5-Year Rates 0.634321 0.634214 1.198192

3-Month Rates 0.838893 0.8385 1.781132

 

 

The CIR forecast is worse than the NPDF and Vasicek forecasts.  This is a result of highly 

overestimated tails in the CIR model as it is shown in Fig. 3.2 and discussed in Section 3.2.  

 

The NPDF and Vasicek forecast results are very close, and the small differences between these two 

distances probably are due to the limited precision of the asymptotic NPDF computation rather than 

to model differences.  The distances for these two models are almost identical because their 

distributions practically coincide near the center, significant differences occur only in the tails. The 

main contribution to the expected payoffs of in-the-money and at-the-money options comes from 

the center of the distribution. Only the expected payoffs out-of-the money options depend entirely 

on the tail behavior.  However, the out-of-the money expected payoffs are small compared to those 

of in-the-money and at-the-money options.  Therefore they do not significantly contribute to the 

distances in Tables 3.3.1 and 3.3.2.  

 

Thus, the major conclusion of Section 3.3.1 is that the Cox-Ingersoll-Ross model yields 

significantly worse forecasts than the forecasts by NPDF and Vasicek distributions. To compare the 

last two forecasts additional detailed tests are needed. 

 

 

3.3.2 Detailed tests 

 

To compare NPDF and Vasicek forecasts we computed expected payoffs of out-of the-money 

options.  More precisely, we considered European put and call options with the 120-business day 
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maturity whose strikes are 1.00 % out-of the money with respect to the historical mean value. For 

calibration, we took the same 128 days period preceding the starting date. First, we have to find a 

suitable measure for the out-of-the money options.  

 

The L2 measure is useful for comparison of in-the-money and at-the-money options payoffs.  It is 

inappropriate for out-of the-money options.  Historical payoffs of out-of-the-money options are 

typically equal to zero, but sometimes they are substantial. The expected payoffs, EK, are small. So 

the main contribution to the L2 measure comes from the terms with non-zero historical payoffs, HK.  

Consequently, the L2 measure does not necessarily reflect the relationship between the expected 

payoff and the mean payoff. 

 

There is no universal measure to compare the payoffs of out-of-the-money options.  One approach 

is to use several data points; we compare the historical payoffs and the expected payoffs averaged 

over many expiration dates. This reflects profits and losses of an investor who systematically 

purchases the same amount of options for insurance. The average historical payoffs and the average 

expected payoffs computed with the right distribution must coincide when the interest rate 

distribution is stationary and the number of expiration dates tends to infinity.  

 

In Tables 3.3.3 and 3.3.4, we present the averaged historical and expected payoffs of out-of-the-

money options.   Detailed results can be found in Exhibit 4.C.  

 

Table 3.3.3  

Averaged actual and expected payoffs of out-of-the-money call options. 

 Averaged payoff NPDF Vasicek 

30-Year Rates 0.024333 0.005377 0.004985

10-Year Rates 0.053 0.012911 0.012304

5-Year Rates 0.079667 0.019202 0.018462

3-Month Rates 0.076667 0.00087 0.000699
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Table 3.3.4  

Averaged actual and expected payoffs of out-of-the-money put options. 

 Averaged payoff NPDF Vasicek 

30-Year Rates 0.202333 0.042274 0.040068

10-Year Rates 0.167 0.018377 0.016806

5-Year Rates 0.213 0.031608 0.030481

3-Month Rates 0.158 0.043321 0.042438

 

The NPDF forecasts are always closer to the historical payoffs because the NPDF has thicker tails.  

 

Figure 1 

Typical picture of the historical and forecasted distributions of interest rates 

 
1 (solid line) – historical data 

2 (dashed line) – asymptotic NPDF 

3 (dotted line) – the Vasicek model 

4 (dot-dashed line) – the Cox-Ingersoll-Ross model  

z is the deviation of the interest rates from the mean value measured in volatility units; 

( ) σ/0yyz −= , y0 is the mean interest rate.
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EXHIBIT 1 
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EXHIBIT 2 

 
Exhibit 2.1  3-Month Maturity Significance Level = 10% 

         

Base Year Kuiper Stationary Periods         

1983 1983 1984 1985 1987 1989   

1984 1983 1984 1985 1987 1989   

1985 1983 1984 1985 1987 1988 1989   

1986 1986 1988 1990 1991 1994 1998   

1987 1983 1984 1985 1987 1989   

1988 1985 1986 1988      

1989 1983 1984 1985 1987 1989   

1990 1986 1990 1991 1994 1997 1998   

1991 1986 1990 1991 1995 1996 1997 1998 

1992 1992 1993 1996      

1993 1992 1993       

1994 1986 1990 1994 1998    

1995 1991 1995 1996 1997 1998   

1996 1991 1992 1995 1996 1997   

1997 1990 1991 1995 1996 1997 1998   

1998 1986 1990 1991 1994 1995 1997 1998 

         

Base Year Kolmogorov-Smirnov Stationary Periods   

1983 1983 1984 1985 1987 1989   

1984 1983 1984 1985 1987 1989   

1985 1983 1984 1985 1986 1987 1988 1989 1998

1986 1985 1986 1989 1990 1991 1995 1998 

1987 1983 1984 1985 1987 1989   

1988 1985 1988 1994      

1989 1983 1984 1985 1986 1987 1989   

1990 1986 1990 1991 1994 1995 1997 1998 

1991 1986 1990 1991 1995 1997 1998   

1992 1992 1993 1995 1996 1997   

1993 1992 1993       

1994 1988 1990 1994 1998    
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1995 1986 1990 1991 1992 1995 1996 1997 1998

1996 1992 1995 1996 1997    

1997 1990 1991 1992 1995 1996 1997 1998 

1998 1985 1986 1990 1991 1994 1995 1997 1998
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Exhibit 2.2   10-Year Maturity Significance Level = 10%     

              

Base Year Kuiper Stationary Periods                 

1983 1983 1984 1985 1987 1994 1996       

1984 1983 1984 1985 1986 1987        

1985 1983 1984 1985 1987         

1986 1984 1986            

1987 1983 1984 1985 1987 1990 1994       

1988 1988 1989 1990 1992 1993 1994 1995 1996 1998    

1989 1988 1989 1990 1991 1992 1993 1995 1997 1998    

1990 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1998   

1991 1989 1990 1991 1992 1993 1995 1997 1998     

1992 1988 1989 1990 1991 1992 1993 1994 1995 1996 1998   

1993 1988 1989 1990 1991 1992 1993 1995 1997 1998    

1994 1983 1987 1988 1990 1992 1994 1996      

1995 1988 1989 1990 1991 1992 1993 1995 1996 1997 1998   

1996 1983 1988 1990 1992 1994 1995 1996 1998     

1997 1989 1991 1993 1995 1997 1998       

1998 1988 1989 1990 1991 1992 1993 1995 1996 1997 1998   

              

Base Year Kolmogorov-Smirnov Stationary Periods             

1983 1983 1984 1987 1988 1990 1994 1996      

1984 1983 1984 1985 1986 1987 1988 1990 1994     

1985 1984 1985 1986 1987         

1986 1984 1985 1986           

1987 1983 1984 1985 1987 1988 1990 1994 1996     

1988 1983 1984 1987 1988 1989 1990 1991 1992 1993 1994 1996 1998  

1989 1988 1989 1990 1991 1992 1993 1995 1997 1998    

1990 1983 1984 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1998

1991 1988 1989 1990 1991 1992 1993 1995 1997 1998    

1992 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998   

1993 1988 1989 1990 1991 1992 1993 1995 1997 1998    

1994 1983 1984 1987 1988 1990 1992 1994 1996     

1995 1989 1990 1991 1992 1993 1995 1997 1998     

1996 1983 1987 1988 1990 1992 1994 1996 1997 1998    
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1997 1989 1991 1992 1993 1995 1996 1997 1998     

1998 1988 1989 1990 1991 1992 1993 1995 1996 1997 1998   
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EXHIBIT 3 

Exhibit 3.A 

 

Table A1. Results of model validation tests for 3-month interest rates 

 

Start Length KS test Kuiper test 

  NPDF Vasicek CIR NPDF Vasicek CIR 

0 256 2.33E-07 8.06E-08 2.92E-08 7.33E-26 2.75E-25 2.81E-29

256 256 8.57E-10 8.46E-08 2.39E-13 2.45E-19 9.65E-17 3.41E-40

512 256 2.09E-16 1.58E-19 9.06E-21 4.79E-33 2.34E-36 5.75E-53

768 256 3.45E-18 1.02E-19 0.026512 3.71E-51 4.50E-50 4.70E-06

1024 256 0.000109 1.15E-05 2.13E-16 1.70E-09 4.38E-11 1.65E-49

1280 256 5.08E-23 4.43E-24 0.000165 1.25E-76 1.38E-78 1.45E-11

1536 256 1.18E-07 3.06E-09 2.51E-21 1.26E-20 2.23E-22 3.40E-45

1792 256 1.39E-27 2.88E-26 2.52E-06 3.23E-71 1.07E-68 2.41E-16

2048 256 4.34E-38 4.55E-36 1.69E-11 1.99E-111 2.49E-108 2.20E-39

2304 256 1.17E-18 9.56E-19 2.00E-06 3.04E-62 2.49E-64 4.74E-22

2560 256 5.98E-09 2.37E-10 5.87E-11 1.73E-22 2.84E-23 9.69E-20

2816 256 3.61E-29 1.03E-28 2.78E-10 1.97E-103 1.34E-106 4.26E-27

3072 256 1.99E-12 4.48E-14 0.000742 1.60E-42 6.29E-38 1.48E-10

3328 256 0.00681 0.002284 3.05E-10 1.35E-07 3.29E-08 1.69E-30

3584 256 0.335449 0.398905 2.28E-13 0.109042 0.065559 4.32E-48

Average  0.022824 0.026747 0.001828 0.007269 0.004371 3.14E-07
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Table A2. Results of model validation tests for 10-year interest rates 

 

Start Length KS test Kuiper test 

  NPDF Vasicek CIR NPDF Vasicek CIR 

0 256 2.59E-17 5.30E-16 7.39E-10 3.18E-58 1.56E-57 2.10E-34

256 256 0.002029 0.000185 1.22E-24 3.93E-09 4.90E-10 1.89E-73

512 256 5.71E-11 1.76E-10 1.11E-05 3.69E-27 6.25E-27 3.81E-19

768 256 1.08E-10 8.12E-11 1.14E-10 1.53E-23 5.42E-23 4.46E-30

1024 256 0.000851 0.001189 3.40E-13 1.64E-11 1.73E-08 5.24E-40

1280 256 2.00E-06 5.13E-05 1.68E-08 1.64E-15 3.86E-13 1.09E-30

1536 256 6.51E-06 5.13E-07 1.47E-20 4.21E-18 6.30E-22 6.10E-46

1792 256 0.000434 0.001339 5.97E-11 3.46E-11 1.32E-09 1.51E-35

2048 256 8.18E-10 2.06E-07 8.62E-13 2.04E-17 8.77E-19 1.18E-40

2304 256 7.78E-12 1.60E-11 0.03418 5.38E-34 4.07E-35 7.74E-06

2560 256 0.021169 0.007496 1.92E-07 7.98E-06 3.43E-06 1.80E-26

2816 256 0.004431 0.008498 7.33E-23 3.71E-06 3.24E-07 1.40E-74

3072 256 0.029788 0.010663 6.51E-11 4.45E-06 1.34E-05 1.86E-36

3328 256 0.002562 0.013105 1.18E-13 0.000126 0.000267 9.51E-40

3584 256 1.08E-08 4.16E-10 1.67E-06 1.85E-27 2.31E-27 2.01E-13

Average  0.004085 0.002835 0.00228 9.49E-06 1.9E-05 5.16E-07
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Exhibit 3.B 

 

Table B.1 Results of forecast tests for 3-month interest rates. 

 

Start Length KS test Kuiper test 

  NPDF Vasicek CIR NPDF Vasicek CIR 

0 256 1.82E-21 8.82E-20 2.92E-08 5.24E-56 1.26E-54 2.81E-29

256 256 8.12E-13 1.74E-15 2.39E-13 1.48E-33 4.11E-35 3.41E-40

512 256 0.00012 8.35E-06 9.06E-21 2.43E-09 7.83E-11 5.75E-53

768 256 0.000215 2.45E-06 0.026512 2.04E-11 1.83E-14 4.70E-06

1024 256 9.51E-24 1.01E-23 2.13E-16 6.03E-78 1.18E-78 1.65E-49

1280 256 1.63E-10 3.15E-12 0.000165 2.06E-29 2.02E-31 1.45E-11

1536 256 5.93E-16 5.00E-15 2.51E-21 1.03E-43 9.24E-43 3.40E-45

1792 256 7.99E-40 8.25E-39 2.52E-06 3.43E-118 2.11E-116 2.41E-16

2048 256 2.78E-09 2.03E-08 1.69E-11 3.95E-24 1.32E-27 2.20E-39

2304 256 2.20E-05 2.51E-10 2.00E-06 2.31E-12 6.71E-21 4.74E-22

2560 256 1.60E-44 4.43E-45 5.87E-11 8.85E-173 6.93E-172 9.69E-20

2816 256 3.64E-05 0.001506 2.78E-10 7.29E-12 3.58E-11 4.26E-27

3072 256 1.08E-11 3.15E-08 0.000742 2.42E-24 7.90E-23 1.48E-10

3328 256 0.002761 0.015579 3.05E-10 1.37E-07 8.86E-07 1.69E-30

Average  0.000225 0.001221 0.001959 9.99E-09 6.33E-08 3.36E-07
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Table B.2 Results of forecast tests for 10-year interest rates. 

 

Start Length KS test Kuiper test 

  NPDF Vasicek CIR NPDF Vasicek CIR 

0 256 3.21E-17 7.84E-18 2.80E-226 6.53E-48 9.47E-49 1.80E-224

256 256 0.000165 0.001242 1.32E-146 6.59E-09 8.36E-09 9.64E-149

512 256 2.07E-05 7.85E-07 6.70E-226 8.61E-17 4.62E-18 4.33E-224

768 256 2.99E-14 3.30E-13 2.52E-226 1.10E-35 4.77E-34 1.63E-224

1024 256 1.81E-10 4.04E-09 2.52E-226 9.70E-33 3.02E-31 1.63E-224

1280 256 1.90E-25 6.02E-26 2.52E-226 3.13E-64 1.73E-65 1.63E-224

1536 256 0.000863 0.034786 2.52E-226 1.03E-05 0.000343 1.63E-224

1792 256 3.63E-13 1.22E-11 2.52E-226 1.39E-31 2.87E-32 1.63E-224

2048 256 0.000987 0.000502 2.52E-226 1.01E-08 3.79E-09 1.63E-224

2304 256 6.11E-07 4.71E-06 2.52E-226 1.64E-21 8.86E-21 1.63E-224

2560 256 0.189648 0.343285 2.52E-226 0.057189 0.037272 1.63E-224

2816 256 0.004589 0.004617 2.52E-226 5.10E-08 4.96E-08 1.63E-224

3072 256 5.81E-11 7.41E-12 2.52E-226 5.95E-34 2.95E-33 1.63E-224

Average  0.015098 0.029572 1E-147 0.0044 0.002893 7.4E-150
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Exhibit 3.C 

 

Detailed results of the comparison of the tail forecasting are presented in Exhibit. The starting day 

of a test is shown in the first column.  In the second two columns the lengths of the calibration 

period and of the forecast period are shown.  Next, the value of the parameter η is given. In two 

columns under the title NPDF, the values of w± for the NPDF forecast are given for each pair of 

historic periods. Below those columns, the mean value, the standard deviation, the variance, and the 

mean square of data are shown. Finally, the mean square of both columns, Total Mean, is presented.  

The next two pairs of columns represent the values of w± , their mean values, and mean squares for 

the Vasicek and Cox-Ingersoll-Ross models the same way as it is done for NPDF. 

 

 

Table C.1. Distances of extreme events for 3-month interest rates. 

 

Start Percentile NPDF  Vasicek  CIR  

  W- W+ W- W+ W- W+ 

0 0.01 -0.84464 -1 -0.99757 -1 0.762404 0.33863

256 0.01 -0.14123 0.826081 -0.26346 0.811018 0.926958 0.956959

512 0.01 -0.69648 0.332512 -0.95578 0.285532 0.820004 0.928898

768 0.01 -0.8179 -0.52195 -0.99999 -0.58502 0.016822 0.869181

1024 0.01 -0.90888 -0.99823 -0.99978 -0.9982 0.241921 0.64851

1280 0.01 -0.77502 0.632665 -0.98972 0.573741 0.747667 0.939051

1536 0.01 -0.0253 -0.99832 -0.03014 -0.99103 0.925026 0.810965

1792 0.01 -0.76742 -1 -0.99904 -0.99999 0.640017 0.467109

2048 0.01 -0.54419 -0.13736 -0.93054 -0.16083 0.712201 0.880277

2304 0.01 -0.38729 0.595982 -0.87108 0.630984 0.523552 0.905759

2560 0.01 -0.90727 -1 -1 -1 -1 -1

2816 0.01 0.512029 0.636578 0.573816 0.567995 0.927446 0.924396

3072 0.01 0.819402 0.805867 0.844017 0.773665 0.953429 0.944107

3328 0.01 -0.89486 -0.79973 -0.98687 -0.91523 0.624061 0.771865

Mean  -0.45565 -0.18756 -0.61472 -0.21481 0.558679 0.670408
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St. dev.  0.554752 0.786155 0.638868 0.78083 0.523765 0.51677

Var.  0.30775 0.61804 0.408153 0.609696 0.27433 0.267051

Mean sq.  0.493381 0.609075 0.756885 0.612291 0.566857 0.697422

Total mean  0.554254884 0.688394584 0.63550183 

 

Table C.2 Distances of extreme events for 10-year interest rates. 

 

Start Percentile NPDF  Vasicek  CIR  

  W- W+ W- W+ W- W+ 

0 0.01 -0.79966 -0.9107 -0.99835 -0.92999 0.821558 0.896011

256 0.01 -0.00053 0.018801 -0.09046 -0.03051 0.943539 0.938731

512 0.01 -0.77351 0.850316 -0.97983 0.839128 0.864039 0.960761

768 0.01 -0.95779 -1 -1 -1 -0.86516 -0.09341

1024 0.01 0.897715 0.639526 0.907516 0.65071 0.969026 0.946782

1280 0.01 -0.91547 -0.98528 -1 -0.97711 -0.04793 0.850501

1536 0.01 0.604395 0.466615 0.639615 0.393041 0.950766 0.937463

1792 0.01 -0.22042 -0.98109 -0.28161 -0.98062 0.919002 0.839497

2048 0.01 -0.35406 -0.68404 -0.57437 -0.72148 0.897406 0.888051

2304 0.01 -0.83112 -0.61372 -0.99996 -0.67576 0.364102 0.878771

2560 0.01 -0.39145 0.303809 -0.24684 0.063594 0.890335 0.907383

2816 0.01 0.05143 0.771056 0.024857 0.733669 0.922797 0.948294

3072 0.01 0.797023 0.603301 0.824449 0.520765 0.955666 0.931346

3328 0.01 -0.81964 -0.43188 -0.98214 -0.6204 0.757874 0.881039

Mean  -0.26522 -0.13952 -0.33979 -0.19535 0.667359 0.836516

St. dev.  0.650873 0.729708 0.717698 0.718198 0.525122 0.270281

Var.  0.423636 0.532474 0.515091 0.515809 0.275753 0.073052

Mean sq.  0.463719 0.513906 0.593758 0.517129 0.701424 0.767592

Total mean  0.48945624 0.556763483 0.735253179 
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EXHIBIT 4 

Exhibit 4.A 

 

In Tables 4.A.1 and 4.A.2, we present the results of expected payoff according asymptotic NPDF, 

Vasicek, and Cox-Ingersoll-Ross formulas, and the historical payoffs of interest 30-year rates puts 

and calls expired in December 1998. 

 

Table 4.A.1 Actual and expected payoffs of calls expired in December 1998. 

 

Strike Actual Payoff NPDF Vasicek CIR 

3 2.01 2.879571 2.872791 1.971955 

3.25 1.76 2.629412 2.622791 1.800457 

3.5 1.51 2.379261 2.372791 1.62896 

3.75 1.26 2.129119 2.122791 1.457462 

4 1.01 1.878988 1.872791 1.285964 

4.25 0.76 1.628869 1.622791 1.114467 

4.5 0.51 1.378764 1.372791 0.942969 

4.75 0.26 1.128677 1.122791 0.771472 

5 0.01 0.878611 0.872791 0.599991 

5.25 0 0.628573 0.622791 0.42902 

5.5 0 0.378587 0.372805 0.263747 

5.75 0 0.135653 0.130755 0.124837 

6 0 0.008316 0.00737 0.040141 

6.25 0 1.62E-05 1.25E-05 0.007972 

6.5 0 0 2.75E-10 0.000931 

6.75 0 0 5.90E-17 6.30E-05 

7 0 0 1.10E-25 2.49E-06 

7.25 0 0 1.69E-36 5.83E-08 

7.5 0 0 2.06E-49 8.30E-10 

7.75 0 0 1.98E-64 7.36E-12 
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8 0 0 1.47E-81 4.16E-14 

8.25 0 0 8.45E-101 1.53E-16 

8.5 0 0 3.71E-122 3.78E-19 

8.75 0 0 1.25E-145 6.36E-22 

9 0 0 3.18E-171 7.44E-25 

9.25 0 0 6.15E-199 6.18E-28 

9.5 0 0 9.03E-229 3.70E-31 

9.75 0 0 1.00E-260 1.62E-34 

10 0 0 8.41E-295 5.30E-38 

10.25 0 0 0 1.31E-41 

10.5 0 0 0 2.47E-45 

10.75 0 0 0 3.60E-49 

11 0 0 0 4.12E-53 
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Table 4.A.2 Actual and expected payoffs of puts expired in December 1998. 

 

Strike Actual Payoff NPDF Vasicek CIR 

3 0 0.000375 3.38E-145 1.09E-40

3.25 0 0.000439 9.25E-122 4.34E-33

3.5 0 0.000511 1.93E-100 1.14E-26

3.75 0 0.000593 3.09E-81 2.89E-21

4 0 0.000685 3.80E-64 9.64E-17

4.25 0 0.00079 3.64E-49 5.45E-13

4.5 0 0.000909 2.73E-36 6.49E-10

4.75 0 0.001045 1.64E-25 1.95E-07

5 0 0.001203 8.07E-17 1.75E-05

5.25 0.24 0.001389 3.46E-10 0.000544

5.5 0.49 0.001626 1.45E-05 0.006769

5.75 0.74 0.008915 0.007964 0.039356

6 0.99 0.131802 0.13458 0.126158

6.25 1.24 0.373726 0.377222 0.265487

6.5 1.49 0.623933 0.627209 0.429943

6.75 1.74 0.874157 0.877209 0.600573

7 1.99 1.12438 1.127209 0.77201

7.25 2.24 1.374604 1.377209 0.943505

7.5 2.49 1.624827 1.627209 1.115003

7.75 2.74 1.875051 1.877209 1.2865

8 2.99 2.125274 2.127209 1.457998

8.25 3.24 2.375498 2.377209 1.629496

8.5 3.49 2.625721 2.627209 1.800993

8.75 3.74 2.875945 2.877209 1.972491

9 3.99 3.126168 3.127209 2.143989

9.25 4.24 3.376392 3.377209 2.315486

9.5 4.49 3.626616 3.627209 2.486984
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9.75 4.74 3.876839 3.877209 2.658482

10 4.99 4.127063 4.127209 2.829979

10.25 5.24 4.377286 4.377209 3.001477

10.5 5.49 4.62751 4.627209 3.172975

10.75 5.74 4.877733 4.877209 3.344472

11 5.99 5.127957 5.127209 3.51597

11.25 6.24 5.37818 5.377209 3.687468

11.5 6.49 5.628404 5.627209 3.858965

11.75 6.74 5.878627 5.877209 4.030463

12 6.99 6.128851 6.127209 4.20196
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Exhibit 4.B 

 

Table 4.B.1 Distances between actual and expected payoffs of calls on 3-month interest rates.  

 

Expiration NPDF Vasicek CIR 

8406 0.740432 0.748196 1.953743

8412 1.312698 1.305306 4.570649

8506 1.919081 1.910406 7.696159

8512 0.538621 0.531483 3.038471

8606 0.641953 0.639308 0.419936

8612 0.588279 0.581926 1.029046

8706 0.097049 0.103299 0.168238

8712 0.144562 0.147276 0.157765

8806 0.238829 0.240935 0.739738

8812 1.414019 1.418904 1.107198

8906 0.609771 0.612491 0.378241

8912 0.633124 0.623992 2.916685

9006 0.067388 0.063057 0.542994

9012 0.776348 0.774049 0.291459

9106 1.008339 1.005931 0.732979

9112 0.855862 0.85163 0.736539

9206 0.497805 0.495332 0.468988

9212 0.147983 0.146008 0.066842

9306 0.012956 0.011257 0.010411

9312 0.001711 0.002073 0.003059

9406 0.256755 0.257297 0.260451

9412 0.757865 0.759409 0.775866

9506 0.328931 0.331094 0.326436

9512 0.241405 0.238594 0.166548

9606 0.098769 0.097139 0.294817
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9612 0.040568 0.038737 0.317289

9706 0.048373 0.04626 0.287964

9712 0.062887 0.066352 0.21966

9806 0.01768 0.016195 0.325042

9812 0.280043 0.278219 0.10406

Average 0.668122 0.666409 1.895664
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Table 4.B.2 Distances between actual and expected payoffs of puts on 3-month interest rates. 

 

Expiration NPDF Vasicek CIR 

8406 0.472037 0.474354 1.424551

8412 0.997968 0.996201 0.479137

8506 1.55194 1.550021 0.765843

8512 0.534338 0.531628 1.613037

8606 0.781921 0.781271 1.059265

8612 0.819515 0.817267 0.441554

8706 0.163133 0.164889 0.179759

8712 0.22594 0.227136 1.229338

8806 0.335617 0.336812 2.963845

8812 1.580336 1.582078 2.686177

8906 0.585545 0.586446 0.922864

8912 0.550018 0.54713 0.802062

9006 0.05907 0.05768 0.35524

9012 0.833964 0.833485 1.387583

9106 1.297393 1.29686 1.591106

9112 1.803948 1.80289 2.115999

9206 1.229703 1.229011 1.40017

9212 0.608378 0.608631 2.770261

9306 0.043471 0.043565 1.706929

9312 0.056375 0.055433 3.589005

9406 1.035527 1.033833 2.905249

9412 1.758607 1.758756 0.709733

9506 0.597129 0.597925 0.576412

9512 0.389665 0.389097 1.587599

9606 0.16813 0.168026 1.915096

9612 0.073185 0.073116 2.275675
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9706 0.085399 0.085192 2.023568

9712 0.119209 0.119919 0.838789

9806 0.027684 0.027508 1.989126

9812 0.574627 0.574473 2.341326

Average 0.838893 0.8385 1.781132
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Table 4.B.3 Distances between actual and expected payoffs of calls on 10-year interest rates.  

 

Expiration NPDF Vasicek CIR 

8406 1.757745 1.757605 4.284245

8412 2.414662 2.409176 1.511155

8506 1.006825 1.003712 2.235486

8512 1.143259 1.138716 1.312025

8606 1.044693 1.040973 0.446065

8612 0.200154 0.19487 0.176241

8706 0.857899 0.859797 0.373244

8712 0.396911 0.402316 0.185487

8806 0.154773 0.158232 0.847866

8812 0.249286 0.256284 0.74063

8906 0.567797 0.565716 0.219072

8912 0.284003 0.281317 0.430486

9006 0.510445 0.512625 0.52681

9012 0.179934 0.176169 0.218583

9106 0.129145 0.134563 0.521073

9112 0.889213 0.887917 0.832218

9206 0.27517 0.277687 0.078257

9212 0.260897 0.257896 0.725897

9306 0.437146 0.432941 1.287895

9312 0.021269 0.018645 1.156334

9406 0.844373 0.848282 0.674354

9412 0.402122 0.407633 0.69331

9506 1.06127 1.055847 1.384658

9512 0.208829 0.206534 0.747458

9606 0.791025 0.794549 0.359252

9612 0.241217 0.237679 1.399288
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9706 0.039528 0.041747 0.879127

9712 0.430872 0.428243 1.311545

9806 0.15418 0.151613 1.304387

9812 0.411184 0.408794 1.801504

Average 0.578861 0.578269 0.955465
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Table 4.B.4 Distances between actual and expected payoffs of puts on 10-year interest rates. 

 

Expiration NPDF Vasicek CIR 

8406 4.074393 4.082543 1.493311

8412 0.649841 0.648645 1.197004

8506 0.864427 0.862164 0.520571

8512 0.202274 0.196971 0.127022

8606 0.823196 0.82527 0.342289

8612 1.958674 1.947573 1.859354

8706 0.31272 0.31684 0.187679

8712 0.130165 0.130415 0.852951

8806 0.118475 0.121014 0.732411

8812 0.180935 0.185693 0.602237

8906 0.429567 0.428287 0.198277

8912 0.252158 0.249995 0.455341

9006 0.446062 0.448028 0.468886

9012 0.148036 0.145181 0.209403

9106 0.113102 0.117506 0.498207

9112 0.867011 0.866021 0.813471

9206 0.307456 0.310353 0.095939

9212 0.291452 0.288303 0.746472

9306 0.566814 0.561789 1.437482

9312 0.028778 0.024688 1.371464

9406 1.083993 1.090536 0.645733

9412 0.407503 0.413301 0.537063

9506 1.178504 1.173861 1.434322

9512 0.294406 0.291214 0.948585

9606 1.054007 1.06017 0.367311

9612 0.295108 0.29089 1.411169
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9706 0.052858 0.055817 0.964407

9712 0.593916 0.590569 1.547352

9806 0.23713 0.233095 1.624015

9812 0.766464 0.762235 2.487316

Average 0.987179 0.98753 1.049722
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Exhibit 4.C 

 

Table 4.C.1 Actual and expected payoffs of out-of-the-money calls on 3-month yields. 

 

Expiration Strike Payoff NPDF Vas. 

9812 6.03 0 1.54E-06 0 

9806 6.06 0 0 0 

9712 6.05 0 0 0 

9706 6.04 0 0 0 

9612 5.97 0 0 0 

9606 6.32 0 1.56E-05 0 

9512 6.66 0 0 0 

9506 5.79 0 0.004885 0.003981 

9412 4.57 0.99 0.000982 0.000491 

9406 4.03 0.09 0 0 

9312 3.97 0 0 0 

9306 4.1 0 0 0 

9212 4.8 0 0 0 

9206 6.02 0 0 0 

9112 6.82 0 0 0 

9106 8.27 0 0 0 

9012 8.75 0 0 0 

9006 8.78 0 0 0 

8912 9.47 0 0 6.18E-09 

8906 8.27 0 0.013557 0.011024 

8812 6.94 1.22 0.003746 0.003186 

8806 6.95 0 7.22E-06 1.85E-06 

8712 6.6 0 0 0 

8706 6.46 0 0 1.57E-09 

8612 7.54 0 0 0 
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8606 8.13 0 0 0 

8512 8.82 0 0 4.77E-09 

8506 10.65 0 8.91E-05 0 

8412 10.47 0 0.002807 0.002273 

8406 9.98 0 8.13E-06 4.17E-06 

   

Average  0.076667 0.00087 0.000699 
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Table 4.C.2 Actual and expected payoffs of out-of-the-money calls on 10-year yields. 

 

Expiration Strike Payoff NPDF Vas. 

9812 6.6 0 0 0 

9806 7.1 0 0 0 

9712 7.62 0 0 0 

9706 7.59 0 0 0 

9612 7.3 0 0.001676 0.000835 

9606 7.12 0 0 0 

9512 8.11 0 0 0 

9506 8.54 0 0.000111 0.000128 

9412 7.51 0.3 0.037491 0.032943 

9406 6.62 0.52 0 7.63E-08 

9312 7.17 0 0 0 

9306 7.71 0 0 0 

9212 8.32 0 0 0 

9206 8.7 0 0 0 

9112 9.08 0 0 0 

9106 9.56 0 0 0 

9012 9.54 0 0 0 

9006 9.03 0 0 0 

8912 10.02 0 0 0 

8906 10.02 0 0 0 

8812 9.67 0 0.00041 0.000478 

8806 9.97 0 4.59E-07 1.72E-05 

8712 8.73 0.16 0.03944 0.034709 

8706 8.3 0 0 0 

8612 9.12 0 0 3.37E-07 

8606 11.09 0 0 0 
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8512 12.22 0 0 2.59E-09 

8506 13.42 0 0 0 

8412 13.54 0 0.308206 0.299998 

8406 12.6 0.61 0 3.29E-09 

   

Average  0.053 0.012911 0.012304 
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Table 4.C.3 Actual and expected payoffs of out-of-the-money puts on 3-month yields. 

 

Expiration Strike Payoff NPDF Vas. 

9812 4.03 0 0.000116 0 

9806 4.06 0 0.001411 0 

9712 4.05 0 0.001614 0 

9706 4.04 0 0.00053 0 

9612 3.97 0 0.001136 0 

9606 4.32 0 0.00024 0 

9512 4.66 0 0.002235 0 

9506 3.79 0 0.001436 0 

9412 2.57 0 0.002581 0 

9406 2.03 0 0.001989 0 

9312 1.97 0 0.002199 0 

9306 2.1 0 0.001427 0 

9212 2.8 0 0.002025 0 

9206 4.02 0.37 0.170162 0.176799 

9112 4.82 1.08 0.001684 1.09E-09 

9106 6.27 0.7 0.005396 0.00409 

9012 6.75 0.22 0.000564 0 

9006 6.78 0 0.000144 0 

8912 7.47 0 0.003984 0.000792 

8906 6.27 0 0.001071 0 

8812 4.94 0 0.002139 0 

8806 4.95 0 0.001733 0.000395 

8712 4.6 0 0.000108 0 

8706 4.46 0 0.003202 0 

8612 5.54 0.03 0.004516 0.001246 

8606 6.13 0.03 0.000228 0 
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8512 6.82 0 0.107898 0.109186 

8506 8.65 1.61 0.972095 0.98059 

8412 8.47 0.7 0.002533 2.59E-07 

8406 7.98 0 0.003229 5.23E-05 

   

Average  0.158 0.043321 0.042438 
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Table 4.C.4 Actual and expected payoffs of out-of-the-money puts on 10-year yields. 

 

Expiration Strike Payoff NPDF Vas. 

9812 4.6 0.02 0.000196 0 

9806 5.1 0 0.001 5.66E-09 

9712 5.62 0 0.002456 1.82E-09 

9706 5.59 0 0.002568 1.26E-05 

9612 5.3 0 0.002056 1.11E-10 

9606 5.12 0 0.004094 0.000613 

9512 6.11 0.36 0.081897 0.083493 

9506 6.54 0.33 0.002803 1.42E-09 

9412 5.51 0 0.002991 3.91E-09 

9406 4.62 0 0.003113 2.77E-10 

9312 5.17 0 0.001869 4.05E-07 

9306 5.71 0 0.001661 3.81E-10 

9212 6.32 0 0.002029 1.36E-08 

9206 6.7 0 0.019685 0.018597 

9112 7.08 0.11 0.000623 0 

9106 7.56 0 0.004059 0.00052 

9012 7.54 0 0.001555 1.89E-09 

9006 7.03 0 0.000813 0 

8912 8.02 0.22 0.029849 0.028444 

8906 8.02 0 0.000905 0 

8812 7.67 0 0.004861 7.33E-06 

8806 7.97 0 0.004118 0.000468 

8712 6.73 0 0.003923 6.05E-07 

8706 6.3 0 0.00033 0 

8612 7.12 0.02 0.059338 0.059113 

8606 9.09 1.49 0.147389 0.150037 
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8512 10.22 1.18 0.068747 0.067894 

8506 11.42 1.08 0.094177 0.094989 

8412 11.54 0.2 0.002026 0 

8406 10.6 0 0.000177 0 

   

Average  0.167 0.018377 0.016806 
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