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ABSTRACT 

The purpose of this paper is to provide a method for calculating 
special contingency reserves for investment losses. The method is derived 
by first building a stochastic investment model and then utilizing its 
probabilistic structure. The model is essentially the collective risk model 
used in various ways with respect to insurance claims (both life and 
nonlife). Several examples are examined in considerable detail. 

I. INTRODUCTION 

CTUARIES have become increasingly concerned with investment 
losses in recent years. The actuary's expectation of broad con- 
tinuities in investment performance has been disrupted by 

events such as serious drops in stock market  values accompanied by 
surrenders of equity-linked contracts. Because of the randomness of 
these events, it seems natural to build probabilistic models for invest- 
ment losses and utilize these models for planning purposes. An advocate 
of research on such stochastic models is Edward A. Lew, who has written 
on the subject in his presidential address [17] as well as in [18]. 

During the annual meeting of 1975, Mr. Lew was the moderator for a 
panel discussion on "Reserves, Contingency Reserves, and Surplus for 
Life Insurance Companies" [23]. His opening remarks provide an incen- 
tive to seek methods for calculating special contingency reserves for 
investment losses. The thrust of those remarks may be paraphrased as 
follows: 

An integrated system of reserves, contingency reserves, and unassigned 
surplus would be most helpful in difficult economic times. Companies should 
not freeze excessive portions of their total funds in reserves, which are not 
available to absorb sudden unexpected losses. The current unsettled economic 
climate emphasizes the need for contingency reserves and unassigned surplus 
to absorb such losses. 

Provision should be made for losses resulting from excessive fluctuations in 
investment values, which may change the valuation basis of some securities from 
an amortized basis to a market-value basis, as well as for losses due to forced 
asset liquidation. Such provision cannot be accomplished by assuming a lower 
interest rate in the reserve calculations, because this increases the reserves, 
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thus reducing funds available for surplus and contingency reserves. The 
determination of the contingency reserves should be on a prospective basis, 
and hence must recognize stochastic fluctuations in investment values. 

The present form of the mandatory securities valuation reserve (MSVR) 
diminishes its usefulness when investment values take sharp drops or when 
losses occur because of the liquidation of assets. The MSVR may drop in size 
dramatically when surplus is most needed. 

It is clear from the statements of the panelists and discussants at the 
1975 session that they were not all in favor of special contingency 
reserves. However, a careful scrutiny of their remarks reveals a common 
concern regarding investment risk. Moreover, several of the discussants 
expressed a concern for basic research into methods of calculating such 
reserves. 

The purpose of this paper is to provide one means of calculating 
special contingency reserves for investment losses. The paper does not 
attempt to convince readers of the need to set up such reserves. 

II. A STOClJ_ASTIC INVESTMENT MODEL 

Assume that X1, X~, X 3 , . . .  are positive-valued random variables 
representing losses from investments, where the subscripts indicate time 
of loss. Gains from investments will not be considered. This is analogous 
to applying collective risk theory to life insurance, and ignoring the 
negative claims from deaths of annuitants. Let {N(t), 0 _< t < co} be a 
nonnegative, integral-valued, stochastic process, independent of the 
X?s  and with N(O) -- O. This process counts the random number of 
losses. The time variable t is to be thought of as calendar time, rather 
than operational time, which has been used in collective risk theory. 
The transformation of calendar time to operational time yields a sto- 
chastic process with independent increments. Although this has certain 
mathematical advantages, it distorts the user's normal perception of 
time. Investment losses occur suddenly and irregularly, to a greater 
degree than is true even for insurance claims. 

Let S(t) --- ~N('~ X~ be a random sum of the random variables, repre- 
i = l  

senting the aggregate investment losses up to and including time t. 
Additionally, let 

u = Initial amount in a special contingency reserve for the investment 
operation; 

6 -- Portion of the loading designated for investment contingencies; 
and 

u(t) = Investment contingency reserve amount at time t 
= u +  6t - S ( t ) , O  < t < co. 
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We will be interested in the mean and variance functions for S(0, the 
u(t) stochastic process, and certain probability distributions. We will 
also be concerned with a method for computing an appropriate 8. 

Company records could be used to estimate E{Xi}, E{N(t)}, Var 
{Xi}, and Var {N(t)}. I t  would not be surprising if a sequence of past 
losses revealed an inflationary trend. Ideally, this could be handled by 
assuming different distributions for the X/s. For example, if m = 
E{X1}, one could assume that u~ = E{X,} = ul[1 + 0.005(i -- 1)], for 
i --- 2 , . . . .  This would allow for a 0.5 percent inflationary trend in the 
expected values of losses. However, while this refinement is only mar- 
ginally superior to assuming an inflationary trend for each year's aggre- 
gate claims, it greatly complicates obtaining distributions for S(t) and 
functions of S(t). Thus, we will assume that  the X / s  are identically 
distributed, but replace the random sum S(t) by S(t) + f(t), where f(t) 
can be thought of as AE{S(t)}. A value of A equal to 0.05 implies a 
5 percent inflationary rate. One can thus view the aggregate random 
losses as being measured from the trend function f(t), t >_ O. At any 
point to, S(to) is the random aggregate loss above the trend function 
value f(to). Simultaneously, we will replace 6t, the provision for invest- 
ment contingencies, by ~t + f(t), a provision for investment contingencies 
and inflation. 

In some situations, there is evidence of dependence among investment 
losses. I t  would be very difficult for our model to provide for all types of 
dependency. However, we will provide for "positive contagion" in the 
numbers-of-losses process. Btihlmann ([11], pp. 43 and 52-53) has 
shown that the {N(t), t > 0) process has an intensity of loss frequency 
M =  a + b ( n - -  1) for n =  1, 2, 3 , . . . f o r  a > 0 ,  b > 0 ,  where the 
index n represents the number of losses. Thus M, the intensity of fre- 
quency of the 'n th  loss (transition from n -- 1 to n losses) grows, and 
losses become increasingly common, on the average. This form for X, 
leads to a negative binomial distribution for N(t). By contrast, when 
b = 0 and Xn = a, there is no contagion, and the intensity does not 
increase as the losses unfold. In this case, N(t) has a Poisson distribution. 
If the random variable T represents the random time between losses, 
the Poisson assumption implies that  P{T _< t} = 1 -- e -"t, t > 0, for 
some value of a. Andersen [2] generalized this interloss time distribution 
to P{T < t} = 1 -- 0.25e -°.4. -- 0.75e -2t, t >_ 0. In the examples that  
follow, N(t) and T possess these various distributions. 

The investment contingency reserve at time t can be expressed as 

u(O = u + {~e + f(O] - Is(t) +/(t)]. (t) 
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Sincef(t) is assumed to be monotonically increasing, the contribution to 
the special contingency reserve for the time period [0, T] is ~T + f (T) .  
I t  is possible to refine the provision for inflation to include a cyclic 
effect (see [4], p. 581, second example). 

The mean and variance functions for S(t) and u(t), t > O, are 

E {S(t)} = E{Xx} E{N(t)} , (2a) 

E{u( t ) }  = u + 6t -- E { X ~ } E { N ( t ) }  , (2b) 

Var {u(t)} = Var {S(t)} (3) 

= E{N(t)} Var {X~} + Var { N ( t ) } ( E { X 1 } )  2 . 

These results follow from Feller ([14], p. 301, problem 1) with minor 
changes. 

u(t) 

E [ u ( t ) i  - kS,D. lu(t)} 

P t 

F I G .  1 

The mean and standard deviation (S.D.) functions can be used, as 
s h o ~  in figure 1, to help visualize the sample function behavior of the 
u(t) process. Note that E(u(0)} = u, and Var {u(0)} = 0. The actuary 
is interested in the proportion of the sample paths (portfolio histories) 
that dips below the lower confidence contour in the figure. This may be 
formulated as 

P{u( t )  < L(k; t) for some t E [0, T]} , (4) 

where 
L ( k ;  t) = E { u ( t ) )  - k S.D. { , , ( t ) ) .  (5) 

The 0 and T in [0, T] represent the initial and closing times for observa- 
tion. 

The probability (4) depends on the assumed distributions for N(t), 
0 < t < T, and {X~}. We will assume that N(t) has one of three distribu- 
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tions: Poisson, negative binomial, or generalized Poisson. Our assumed 
distributions for {Xi} will be uniform, or Paretian. Even though a pair of 
assumptions for N(t) and {Xi} may not apply to an entire investment 
portfolio, it could provide a reasonable model for a subset of the portfolio. 

The various models for N(t) have been used by many researchers in 
the field of casualty insurance (see [30], [28], [11], and [27]). The Weber 
paper involved a large amount of data from the 1964 California Driver 
Record Study. I t  used the negative binomial distribution for the number 
of accidents ,~ithin the total population. This total population was sub- 
divided into homogeneous groups, for each of which a Poisson distribu- 
tion could be used to describe the number of accidents. The six criterion 
variables--sex, marital status, residence, age, conviction history, and 
accident history--were used to partition a sample of 148,000 individuals 
into 2,880 groups. There were 193 of these groups that contained 100 or 
more individuals. Poisson distributions were fitted to these groups, and 
were acceptable (at the 0.05 level of significance) in 167 of the groups. 

There is a useful analogy between aggregate investment losses and 
aggregate casualty losses. With proper choice of criterion variables, an 
investment portfolio could be subdivided in a manner similar to that 
used in the Weber study. Two obvious choices for such variables are 
type of investment and measure of risk at time of investment. Since the 
Poisson distribution implies very small probabilities for multiple events, 
it can model the rare events of multiple investment losses. Positive 
contagion among investment losses could be handled through the nega- 
tive binomial distribution as explained previously. 

Assume either 

e{N(O = k} = e-"t(Xt)" (6) 
k~ 

o r  

P{N(t) = k} = / e -X' (Xt)k  d' X~_,e_oXdX c > O, b > 0 (7) 
k! r(b) ' " 

Equation (6) describes a Poisson distribution, while in equation (7) 
the parameter X has a gamma distribution. After integration, equation 
(7) becomes 

P{N(t)  = k} F ( k + b ) (  c "~b{'._~_t ) k 
= k ! F ( b )  \ c + t / k c W t /  " (8)  

This is the negative binomial distribution. 
For the Poisson distribution, E{N(I)} = Vat {N(t)} = Xt. For the 

negative binomial distribution, E{N(t)} = bt/c, and Vat {N(t)} = 
bt(c + t)/c 2. It  is easy to verify that for the former, Vat {u(t)} = p2xt, 
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whereas for the latter, Var {u(t)} = btp~/c "4-bt2p~/c ~, where Pi = 
E{Xi}, i = 1, 2, 3, . . . . Extensive tables from, and references to, works 
that  fit these distributions to numbers of observed accidents of many 
types can be found in Seal [27]. 

Let the observation period be from 0 to T. We would like to find k 
such that P{u(t) ~ L(k; t) for all t C [0, T]} = 0.99, or some other 
suitably large number. This is similar to 1 -- ~(u, T) = 0.99 in collective 
risk theory. Excellent fast Fourier transform techniques are now available 
for obtaining ~k(u, T). Considerable research has been conducted in this 
area by Bohman, Seal, Thorin, and Wikstad. References to much of 
their work will be found in the papers of the forthcoming Proceedings of 
the Brown University Actuarial Research Conference. Although fast 
Fourier transform techniques would be excellent methods for determining 
k, they have not been implemented by many actuaries. Therefore, we will 
select a simpler method that  is familiar to more actuaries. 

We will seek a constant k such that 

P{u(T) >_ L(k; T)} = 0.99. (9) 

Note that the focus is now on the single time point T, rather than all 
time points t in the interval 0 < t < T. 

By using the definitions of u(T) and L(k; T), equation (9) can be 
restated as 

P{S(T) <_ ptE{N(T)} + kv} ~ 0.99. (10) 

This is similar to F(plE{N(T)} + k~, T ) =  0.99 in collective risk 
theory. Thus the contribution to the special contingencies reserve for 
the period [0, T] is 

6T + f(T) = ptE{N(T)} + ka + f(T) (11) 

for k determined as above. 
Consider the standardized process 

u * ( t )  u ( t )  - E { u ( t ) )  0 < t < oo 
= S . D . ( u ( t ) )  ' - 

Equation (9) is equivalent to 

P{u*(T) >_ --k} = 0.99. (12) 

In the Poisson case, where 

~ { u ( t ) }  = u + at  - p , ~ t  
and 

Var {u(t)} = p~kt, for 0 < t < ao , 
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equation (10) becomes P(S (T )  ~_ p l kT  -'k k(p~XT) 1/2} = 0.99. From 
equation (26) of Cram~r [12], 

c,  4:,<"> ( - k)  P { S ( T )  > p , x r  + k(p, XT) xl'} = O ( - k )  + 3!(hT)V---------- q 

(13) 
e,t lOc~ q'(~)(-- k') 

q- 41.~  ¢(*>(-k)  "q- 6!XT " " -4- O(T-'t*) " 

Here, 

• (x) -- (21r)-u*_/exp ( - - P / 2 ) d t ,  4,g)(x) = di¢(x ) /dx  j , 

c. = p . /  p,~/2 , 

and O(T -3/2) indicates that [ Remainder[ < A T -s/z for large T and some 
positive constant A. 

In the negative binomial case, 

u*(t) = ptbt/c - S(t) , 0 _ < t < ¢o . 

[btp,/c + p~xbf/c2] v~ 

As stated on page 41 of Seal [27], the asymptotic distribution of u*(t), 
as t ~ ~o, is also given by the right-hand side of equation (13) with )~T 
replaced by bT/c, where the o's are defined by the cumulants of S(T) .  
However, we will use the incomplete gamma distribution to approximate 
the distribution of u*(T), as various authors have done (see [19], [9], 
[3], [10], [5], [7], [24], and [21]). 

Convincing discussions of the accuracy of this approximation are 
contained in [24] and on pages 121-22 of [19]. Equation (3) of [24] states 
that 

for 

p t S ( T )  - T z l  1 ,,+,v. 
I < = (14)  - ~ - ~  ( e-vY'- tdY 

4 3 2 a = K # K , ,  (15) 

where K2 and K~ are cumulants of S(T) .  This assumes that E{N(T)}  -- 
T and that pl = I, but with minor changes E{N(T) }  -- XT can be 
handled, and if Pl ~ 1, it can be set equal to 1, provided the original 
p,'s are then divided by p~. 



16 A STOCHASTIC INVESTMENT MODEL 

III. EXAMPLES 

Assume tha t  t counts weeks, and the observation period is from 0 to T. 
We will let T = 52, 104, 156, and 208. Also assume tha t  the distribution 
of losses is uniform on [a, b], tha t  is, 

P { X i  < x} = x - -  a 
- b - - a '  

Then 

a < x < b .  

p, = (a + b ) / 2 ,  Ps = (a s 4- ab "4- bS)/3 , 

ps = (b* - -  a*)/[4(b - -  a) ] ,  p4 = (b 5 --  # ) / [ 5 ( b  - a ) ] .  

Let  the provision for inflation be 

/ ( t )  = 0.05piE{iV(t)} , t >_ 0 .  

In  the Poisson case, the standard deviat ion of aggregate inves tment  
losses is a = (xp2T) ~/2. In the negative binomial case, ~ = ( b T p # c  + 
bTSp~/c2) its. 

To apply equation (13), we first compute  c3 --- ps/p~/s and c4 = p4/p~. 
We will obtain values for k from equation (13) and the tables in [15], and 
then show values for 6T + f ( T ) =  1 . 0 5 p l E { N ( T ) }  + ka. The error 
magnitudes in equation (13) should be reassuring to readers, since 
T -a/2 --- 0.00267, 0.00094, 0.00051, and 0.00033, when T = 52, 104, 156, 
and 208, respectively. 

To  apply equation (14), we first compute  ot using equation (15). We 
will do this first for the Poisson case for compara t ive  purposes, and then 
for the negat ive binomial case. For the Poisson case, we have (using 
[27], p. 35, eq. [2.41]) 

a 4 ( k T p s ) S / ( k T p s )  ' 3 s = = 4 k r p , / p s .  (16) 

For the negat ive binomial case, Ks = Tbps/c  + T(b/c)2; Ks = Tbps /c  + 
3Tp~(b/c) s + 2T(b /c )  s (using formulas on p. 41 of [27], with the mone ta ry  
unit  of p~ [i.e., p~ = 1]). The  resulting a is 

4 ( b T / c ) ( p ,  + b /c )  3 
a = [p3 + 3p2b/c  + 2(b/c) ' ]  s" (I7)  

The  example will now be made more specific. Let  a equal 1 and b 
equal 11, where 1 represents a loss of $20,000, and 11 represents a loss of 
$220,000. Then  pl = 6, P2 = 133/3, ps = 366, and p4 = 3,221. Thus  
cs = 1.23990, and c, = 1.63882. We will assume tha t  the Poisson param-  
eter X is equal to 0 . I ;  thus, one loss is expected every 10 weeks, which 
allows for some suddenness and irregularity in time of loss. I t  is assumed 
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that the negative binomial constants b and c are 1 and 10, respectively. 
These values are comparable to m and r in Tables 1 and 2 of [30]. 

A detailed discussion of the use of the tables in [15} will be found on 
page 67 (exercise 3) of {6]. 

Table 1 is the computational table for the two cases. For the Poisson 
case, k is determined by using equation (13). The coefficients are given 
in Table 2. 

T A B L E  1 

T 1.05ptE{N(T) } Poisson Negative Binomial 
• ~r 

52. I 32.76 15. 18332 34. 69832 
104. i ] 65.52 21.47246 65.99111 
156, i 98.28 26. 29829 97. 22428 
208. 131.04 30. 36665 128. 44132 

T A B L E  2 

.T .... cz/6(T/lO)l# c,/(2.4T) 10cl/(72T) 

52 . .  ~ . . . .  0.09062 0.01313 0,00411 
104. 0. 06408 0.00675 0.00205 
156 . . . . . . .  [ 0.05232 0.00438 0,00137 
208 . . . . . . .  0.04531 0.00328 0,00103 

The logical trial value of k is 2.33. For this value, the right-hand 
side of equation (13) equals the sum of four quantities Q~ as displayed in 
Table 3. In evaluating O;, use was made of the facts that 

• '(x) = f (x )  = (2r) -1/2 exp (--x~/2); 

¢~6>(x) = -- x¢ ~5>(x) -- 44 '¢4~(x) -- -- xf  ¢4~(x) -- 4f ¢3~(x) ; 

/(4)(_x) =/~'~(x); 

f<3~(_ x) = --f~S~(x) ; 

• ( 6~ ( -x )  = - * ~ 6 ~ ( x ) .  

More accurate values of k and the corresponding Qi's are given in Table 4. 
The contribution to the special contingency reserve can now be 

calculated from equation (11). The results are summarized in Table 5. 
Recall that 1 unit stands for $20,000. Comparing the columns of Table 5 
with that labeled 1.05pIE{N(T)}  in Table 1 reveals the portions of the 
contributions that  should provide for deviations from expected values. 
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W e  now reca l cu l a t e  va lues  of k a n d  c o n t r i b u t i o n s  to  t h e  specia l  

c o n t i n g e n c y  rese rve  b y  us ing  e q u a t i o n s  (14) a n d  (16). F o r  T = 52, 104, 

a n d  156, t h e  p r o b a b i l i t i e s  were  o b t a i n e d  b y  t w o - w a y  l inea r  i n t e r p o l a t i o n  

in t h e  t a b l e s  of [22]. T h e  p a r a m e t e r s  u a n d  p are  d e t e r m i n e d  f r o m  t h e  

e q u a t i o n s  u = a ~/~ + k a n d  p = a - -  1. T h e  f inal  v a l u e s  of u a n d  p a re  

s h o w n  in  T a b l e  6. F o r  T = 208, t h e  p r o b a b i l i t y  was  o b t a i n e d  f r o m  t h e  

TABLE 3 

52 
104. 
156. 
208. 

T Q1 

0.00990 
0.00990 
0.00990 
0.00990 

Q2 

0.01060 
0,00750 
0,00612 
0,00530 

Q3 

0.00196 
0,00098 
0.00066 
0.00049 

Q~ 

--0.00249 
--0.00124 
--0.00083 
--0.00062 

Sum 

0.01997 
0.01714 
0.01585 
0.01507 

TABLE 4 

T k Q1 

52 2.73 0.00320 
104. 2.60 0.00470 
156. 2.55 0.00540 
208. 2.53 0.00570 

07 

0.00562 
0.00501 
0.00445 
0.00398 

0* 

0.00153 
0.00087 
0.00060 
0.00046 

(?4 

-0 .00043  
-0 .00050  
-0 .00042 
- 0.00034 

Sum 

0.00992 
0. 01008 
0.01003 
0.00980 

TABLE 5 

52 104 156 208 T .  

Contribution in Poisson 
case. 74.21049 121.34840 165.34064 207.86762 

TABLE 6 

T a 

52 . . . . . . . .  13.52983 
104 . . . . . . .  27.05966 
156 . . . . . . .  40.58949 
208 . . . . . . .  54.11932 

k 

2.60 
2.55 
2.48 

7. 802 26.060 
8.921 39.589 

N(2.33422) 

Contribution Prob to 
{S*(T) _~k} Reserve 

0. 99006 74. 05863 
0.98991 121.34840 
0.98988 165.34064 
O. 99021 206. 34929 
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normal distribution tables and approximation (26.4.13) on page 941 of 
[1]. Let S*(T) denote the standardized S(T) random variable. In the 
probability calculation for T = 208, x 2 = 144.72728 and u = 108.23864. 
Note that the k's and contributions for T = 104 and 156 are the same 
as were previously calculated (see Tables 4 and 5), and are not much 
different for the other two T-values. 

Let us now consider the negative binomial case, where b = 1 and 
c = 10. Setting Pl = 1 yields P2 = 1.2314815 and pa = 1.6944444. Table 
7 was derived using equations (14) and (17). 

TABLE 7 

T a k 

[2. 11.30636 2.75 
[04. 22.61272 2.63 
[56. 33.91908 2.58 
~08. 45.22544 2.55 

6.112 
7. 385 
8.404 
9.275 

10.306 
21.613 
32.919 
44.225 

Prob Contribution 
IS*(T) <:kl to Reserve 

O. 98995 128.18038 
O. 98997 239. 07662 
0.99009 349.11864 
0.99012 458.56537 

The contributions to reserves for the negative binomial example are 
considerably larger than for the Poisson case. This is consistent with our 
earlier remarks that the negative binomial distribution allows for 
dependence among investment losses. This was done through positive 
contagion in the numbers-of-losses process, which, on the average, 
allows for increasingly frequent losses. 

IV. eRACTICAL Im'LEMENTATION 

Suggestions for the practical implementation of the method are given 
in this section. Company records could be used to estimate the mean 
and variance of the distribution of individual investment losses. Such 
records also could be used for estimating the means and variances of 
the distributions of the numbers of losses for various time periods. These 
quantities would be sufficient to estimate the means and variances of 
aggregate investment losses for various time periods. Formulas (2a) and 
(3) would be used for these calculations. A provision for inflation could 
be determined as a fraction of the expected aggregate investment losses 
for the various time periods. 

Recall that p~ = E(Xi}, i = 1, 2 , . . . .  These are the theoretical 
moments for the distribution of individual investment losses. I t  has been 
suggested that Pl and Var (X} could be estimated from company 
records. This must also be done for P3 and P4. We now have the quantities 
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needed to compute k from equation (13), or equation (14), assuming 
that the numbers of losses follow either the Poisson or the negative 
binomial law. The discussion following equation (5) and the references 
cited should be helpful when fitting the two distributions to observed 
data. 

Given k, one can calculate the contribution to the special contingency 
reserve for the period [0, T]. In words, it is the sum of (1) expected 
aggregate investment losses, (2) k times the standard deviation of 
aggregate investment losses, and (3) provision for inflation to time T. 
Such calculations would be made for various values of T. 

V. EXTENSIONS TO PARETO DISTRIBUTIONS 

The model developed in Section I[ assumed that Var {X,} < ~. 
This is not true if we assume that the distribution of an individual loss 
follows a typical Pareto distribution law, and such an assumption would 
be appropriate for certain sets of data. Hickman [16] provided actuaries 
with a very useful guide to the work of Mandelbrot ([20]; see also [13]), 
who used the stable Paretian class of distributions to describe the 
family of distributions for stock price changes. The only member of the 
stable Paretian class that has a finite variance is the normal distribution. 
As explained by Professor Hickman, Mandelbrot used the Paretian 
class for three reasons: (I) to allow for the heavy extreme tails in the 
distributions (i.e., they contain more of the total probability than they 
would in the case of a normal distribution) ; (2) because a sum of indepen- 
dent Paretian random variables also has a Pareto distribution; and (3) 
because random price changes over days, weeks, months, years, and so 
on, have distributions that belong to the same class. 

Both Mandelbrot [20] and Fama [13] recommend stable Paretian 
distributions for use in models of speculative markets, such as commodity 
and securities markets. The stable Paretian hypothesis "implies that 
there are a larger number of abrupt changes in the economic variables 
that determine equilibrium prices in speculative markets than would be 
the case under a Gaussian hypothesis" ([13], p. 303). Both researchers 
acknowledge that the infinite variances prohibit the use of many statis- 
tical techniques. However, they do give some suggestions on estimating 
the needed density parameters ([13], pp. 299-300, and [20], pp. 310-11). 
Moreover, a number of actuarial researchers now have used Paretian 
densities for modeling claim losses (see [8], [26], [25], and [29]). Fortu- 
nately, some excellent numerical inversion work of Laplace-Stieltjes 
transforms of Pareto-type collective risk probabilities has been done, and 
we will utilize tables so produced to illustrate our ideas. 
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If the loss distribution is Paretian, the technique involving the stan- 
dard deviation does not  work. However, from the earlier formulation, 
one would seek a value for 6 such that  P { u  + ft -- S(I) > 0 for 0 _< 
t <_ T} = 0.99, or some other suitably large number. Again note tha t  a 
provision for inflation, f(t), can be added without affecting the proba- 
bility statement, since u + ~t - S(t)  = u + [fit + f(t)] - [S(t) + f(t)], 
for 0 < t < T. 

Consider an example in which the claim distribution is Paretian. A 
family of Paretian distributions is given by P { X  < x} = 1 - {1 + 
x / A }  -~, x > 0, A > 0, B > 0. If A is chosen equal to B - 1, the mean 
value is 1. As B increases, the "dangerousness" or extreme variability 
of the distribution diminishes. 

Thorin and Wikstad [29] used a Paretian distribution in two of their 
nine tables. In  Table 5 of [29], the distribution of individual losses is 

TABLE 8 

u 
i 

100 . . . . .  
1,000... 

& = t , 0 5  ~ 1 , 1 0  

0.00114 0.00113 

5=1,15 di=l.20 5~t,25 ~=1,30 

0.00113 0.00112 0.00112 I 0.00111 

5 = 2 . 0 0  

0.02130 
0. 00105 

assumed to be P { X  < x} = 1 - (1 + 2x) -3/z, x > 0. The  variance of 
this distribution is infinite and the mean is 1. Thus Pt = 1, our unit  of 
money. The interloss time distribution P { T  <_ t} = 1 - -e  -t, t > O, also 
has a mean of 1. This distribution is equivalent to a Poisson distribution 
for numbers of losses, N(t ) ,  with E { N ( t ) }  = t. Using the values for 
T -- 100 from Table 5 of [29], we obtain the probabilities tha t  P { u  + 
6t -- S(t)  >__ 0 for 0 < t < 100}, for various values of f and u. These 
probabilities are shown in Table 8. 

To illustrate the use of Table 8, assume u = 100 units and f ( t )  = 
O.05plE(N( t )} .  A further contribution to the special contingency reserve 
of 205 units would hold the probability of excessive losses to 0.02130. 
An extrapolation based on f-values and u = 100 indicates tha t  8 would 
have to be approximately 2.55 to reduce the probability to 0.01. Thus, 
a total special contingency reserve of 360 units is required to reduce the 
probability of excessive losses to 0.01. This is considerably more than the 
121.35 units needed for the uniform distribution example in which T -- 
104. This result is consistent with the greater "dangerousness" of the 
Pareto distribution. 

As a second example, assume the same Pareto distribution for losses, 
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but now assume that  the interclaim time distribution is P { T  <_ t} =- 
1 -  0.25e --°.4. - 0 . 7 5 e  -~t, t >_ 0. This distribution for time between 
losses also has a mean value of 1 and was used by Andersen [2] as a 
generalization of the Poisson distribution for N(t). Again assume that 
T = 100. This dual assumption about the individual loss distribution 
and the interclaim time distribution was made by Thorin and Wikstad 
in obtaining probability values contained in Table 6 of [29]. We utilize 
that table to obtain the set of complementary probabilities for various 
values of ~ and u shown in Table 9. 

If u = 100 units, and f(t) = O.05piE{N(t)}, Table 9 shows that a 
further contribution to the special contingency reserve of 205 units will 
hold the probability of excessive losses to 0.02219. An extrapolation 
based on four points indicates that  ~ would have to be approximately 

TABLE 9 

u 5 = 1 . 0 5  5 = 1 . 1 0  5 = 1 . 1 5  ~1=1.20 [ $ = 1 . 2 5  5 = 1 . 3 0  
I 

tiM). .0.04057 0.03870 0.03702 0.03549 0.03411 0.03284 
,000... 0.00115 0.00114 0.00114 0.00113 0.00113 0.00112 

6 = 2 . 0 0  

0.02219 
0.00106 

2.70 to reduce the probability to 0.01. Thus, a total special contingency 
reserve of 375 units is required to reduce the probability of excessive 
losses to 0.01. Note that this is 15 units greater than in the previous 
Pareto example. 
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