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ABSTRACT 

This paper arose from an investigation into the concept of yield rate. 
The paper first outlines the difficulties involved in comparing financial 
transactions strictly on the basis of yield; it then develops an approach 
that does not depend on yield rates. This approach clarifies the true 
meaning of yield rates and helps explain such phenomena as multiple- 
valued and nonexistent yields. Various applications are discussed. 

I. INTRODUCTION 

T 
I~E theory of compound interest generally is considered to be 
among the most elementary topics in actuarial science. Most 
actuaries probably feel that they understand the subject com- 

pletely. There are, however, certain paradoxes and ambiguities that  
suggest that some revision of the theory may be desirable. 

In this paper we consider a new approach to the fundamental problem 
of comparing two financial transactions. If we are given, for example, a 
choice between two investments, or between two lenders, how do we 
decide which is preferable? Traditionally, we at tempt  to make the 
comparison on the basis of yield rates. We choose the investment with 
the higher rate of return, or borrow from the lender charging the lower 
rate of interest. Unfortunately, a complete reliance on yield rates for 
such comparisons leads to difficulties. One problem with yield rates is 
that there may be either too many of them or not enough. In other words, 
the yield rate on a given transaction may be multiple-valued or non- 
existent. In addition, even in cases where a unique yield rate exists it 
may not adequately reflect the true value of the transaction. 

Section IV provides a few simple examples that  illustrate the problems 
mentioned above. The examples are not completely original; some of 
these phenomena are well known and have been noted by many actuaries. 
We hope, however, that  all readers will find some new ideas in this 
section. Section V develops an approach to the comparison problem 
that  avoids all the difficulties inherent in the use of yield rates. Sections 
VI and VII  apply the ideas of Section V to produce a classification of 
financial transactions. We hope that these sections will clarify certain 
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problems in the interpretation of yield rates and will help to explain 
such occurrences as multiple-valued and nonexistent yields. In Section 
VII,  for example, we show that any financial transaction, even though 
it may not have a unique yield, can be considered as the composite of 
two transactions, each of which has a unique yield. 

Additional extensions of the theory are discussed in Sections VII I ,  
IX,  and X. In Section VI I I  we give a generalization of a criterion of 
Kellison [5] for uniqueness of yield. 

II. PSYCHOLOGICAL ASPECTS 

There are psychological factors that  help explain the overreliance on 
yield rates in judging financial transactions. The attraction of yield 
rates stems in part  from an apparent compulsion to summarize compli- 
cated situations by a single real number. We see evidence of this same 
phenomenon in the theory of probability and statistics, where there 
seems to be an overwhelming urge to average. Given a probability 
distribution, a common initial reaction is to compute the mean. There is 
often a tendency to look only at this figure and to ignore other important 
features of the distribution. All students of statistics learn quite early 
that  at least the standard deviation, as well as the expected value, is 
needed for any reasonable interpretation of a probability distribution. 
We will show that, analogously, the proper interpretation of a financial 
transaction requires more information than just the yield rate. 

The concept of order may help explain why many people seek to 
describe situations by a single real number. Faced with a problem such 
as determining which financial transaction is preferable, our natural 
reaction is to at tempt to find a solution. The more basic goal, however, 
should be first to decide whether or not a solution exists. We will show 
that,  in general, there is no unqualified solution to the above problem. 
For some pairs of transactions, it is certainly possible to say that one is 
better than the other. In most cases, however, we cannot state that one 
transaction is preferable; the choice will depend on the particular 
individual contemplating the transaction. I t  is this idea and its ramifica- 
tions that constitute one of the basic themes of the paper. 

In mathematical terms, a set of financial transactions is a partially 
ordered set. This is to be distinguished from a totally ordered set, where it is 
possible to compare any two distinct quantities. The most common 
example of a totally ordered set is the real number system. Given any 
two distinct real numbers, we can always say that one is greater than 
the other. Our familiarity with the real number system may lead us to 
expect that this type of ordering holds universally. We use real-valued 
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functions, such as yield rates, in an a t tempt  to transfer the total-order 
property to other situations. We may,  however, be led to invalid con- 
clusions when the situation in question admits only a partial ordering. 
A more detailed discussion of order, including precise definitions, is 
given in Appendix II.  

ni. NOTATION AND TERMINOLOGY 

In this section we list some basic notation and terminology that  will 
be used in the remainder of the paper. 

We work throughout with a fixed, but  unspecified, time period and 
monetary unit. All interest rates will refer to effective rates for this 
period. 

By a transaction T, we mean simply a finite sequence, (co, cl, . . . , c,), 
of real numbers. This represents the transaction that  provides net 
payments  of c, units at the end of k periods. For example, consider a 
loan of 3 units that  is to be repaid by 2 units at time 1 and 2 units at 
time 3. From the point of view of the lender, the transaction is the 
sequence ( - 3 ,  2, 0, 2). 

The subscript of the last nonzero entry will be called the duration of T. 
So, for example, the previous transaction has duration 3. 

I t  is possible, of course, to consider more general types of transactions. 
We may  wish to consider payments  made at arbitrary times rather 
than just at  the end of each period, or we may consider continuous 
payments.  To simplify the presentation, however, we will work with the 
above definition of a transaction for most of the paper. Generalizations 
will be discussed in Section X. 

For a transaction T = (co, cl , .  • . , cn) and any real number i > --1,  
we let P~(T) denote the present value of the payments  of T at interest 
rate i. Tha t  is, 

P,(T) = ~ c~(1 + i) -~ . 
k~O  

Writing Pi(T) in terms of v = (1 + i) - t ,  we obtain a polynomial 

] ( v )  = ~ c ,v  ~ , (1)  
k = 0  

which we will refer to as the polynomial associated with T. 
We say that  i is a yield rate of T if P~(T) = 0. Note that  a yield rate 

corresponds to a positive root of equation (1), while the more usual case 
of nonnegative yields corresponds to roots in the interval (0, 1]. I t  is, 
therefore, practical and mathematically convenient to include i > - 1  
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in the definition of yield. Negat ive  yields m a y  apply,  for example, if one 
considers the real value of monetary  units  in a t ime of inflation. We do 
not,  however, consider values of i _< - 1, since it is difficult to visualize 
a pract ical  in terpre ta t ion  for a negative or zero value of 1 + i. 

We  can define addi t ion and scalar mult ipl icat ion of t ransact ions in the  
obvious manner.  If  S = (co, cl, . . . , cn), T = (do, dl, . . . , d,) ,  and r is 
any  real number,  then 

S + T  = ( c 0 + d 0 ,  c t W d l , . . . , c a + d n )  
and 

r S  = ( r c o ,  r c l  . . . .  , r c , )  . 

In part icular ,  ( - - 1 ) T  will be denoted by  - -T ,  and S + ( - T )  will be 
denoted by S - T. The sum S + T represents the composite t r ansac t ion  
tha t  results when both S and T are under taken.  In  a two-par ty  t rans-  
action T, such as one involving a lender and a borrower, - T  represents  
the t ransact ion from the other  pa r t y ' s  poin t  of view. 

Note  tha t  for the  definition of S + T we can always consider the two 
t ransact ions to be represented by  sequences of the same length  by  
including sufficient zero entries. We assume, of course, tha t  two t rans-  
actions are identical  if they  differ only by  zero entries at  the r ight -hand 
end. 

I t  is easy to verify tha t ,  for fixed i, P~(T) is a linear function of T; 
t ha t  is, given two t ransact ions S and T and a real number  r, 

P,(S  q- T) = P,(S) + P,(T) , P,(rT) = rP , (T ) .  (2) 

For  the  more technically minded reader,  we can summarize the above 
discussion by  saying tha t  the mathemat ica l  framework of the paper  
consists of the vector  space of real sequences with all but  finitely many  
entries equal to zero and the family of linear functionals P ;  defined on 

this space. 

IV. LIMITATIONS ON TttE USE OF YIELD RATES 

Example I. This example was suggested in part by example 5.12 of [51. Suppose 
that a loan consists of payments to the borrower of 1 unit now and 6 units at 
the end of 2 periods. The total loan is to be repaid by a single payment of K 
at time t. In the case where t >__ 2 there is no problem, and it is not hard to 
verify that there is always a unique yield (it is, of course, negative for K < 7). 
Moreover, for fixed t >__ 2 the yield increases as K increases, so, as we expect, 
the higher the value of K, the higher the yield, and the more attractive the 
transaction is to the lender. Complications arise when t < 2. Consider, for 
example, the case t = 1. For K = 7, we get two very different yield rates: 
i = 0 and i = 500 percent. I t  is no longer clear how the yields behave when 
K changes. For K = 5, we again have two yields: i = 100 percent and i = 
200 percent. For K = 4, there are no yield rates! 
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Example 2. Paradoxes also arise in cases not involving multiple-valued or 
nonexistent yields. Consider two loans, each of which consists of a payment of 
1 to the borrower now, to be repaid by a single sum at time 1. In loan l the 
repayment is 2, for a yield of 100 percent, while in loan 2 the repayment is 1, 
for a yield of zero. I t  is obvious that loan 1 is more advantageous than loan 2 
for the lender, while the reverse is true for the borrower. Consider a natural 
generalization of this simple example. Assume we are dealing with unique 
yield rate situations that avoid the complications of example 1. Is it always 
true that the higher the yield rate, the more favorable a loan is to the lender 
and the less favorable it is to the borrower? Most people would probably 
answer yes. However, consider the following two loans. Loan 3 consists of a 
payment to the borrower of 2 at time 1, to be repaid by 1 unit now. This is 
the transaction (1, - 2 ) ,  and the yield is clearly 100 percent. Loan 4 consists 
of a payment to the borrower of 1 at time 1, to be repaid by 1 unit now. The 
yield is zero. Obviously the lender will prefer loan 4, the one with the lower 
yield ! 

One can easily ant ic ipate  the cries of protes t  t ha t  p robab ly  are arising 
in the  mind of the  reader. I t  will be claimed, no doubt ,  tha t  I am simply 
playing with words,  and t ha t  the so-called loans 3 and 4 are not  really 
new loans at  all bu t  merely loans 1 and 2 from the borrower 's  viewpoint.  
(Indeed,  for any  t ransact ion,  T and - T  represent  opposing viewpoints,  
but  they have exact ly the same yields.) I t  is t rue tha t  in this simple 
case it is easy to dist inguish between a loan t ransact ion and a borrowing 
transaction.  The  question is whether  we can do so in general. The 
example is in tended to i l lustrate  the impor tance  of this question. With-  
out  an answer, we cannot  even tell whether  we desire a higher or a lower 
figure when comparing two t ransact ions on the basis of yield. We will 
answer this question in Section VI. 

Some readers m a y  object  to example 1 as well, not ing tha t  the same 
type  of t ime-reversal  tr ick was used. Both  examples involve a repayment  
of a loan pr ior  to the  t ime the loan itself is completed.  This  is, of course, 

cont ra ry  to the normal pa t t e rn  of loans, bu t  it  is possible. The  fact tha t  

an example involves a highly unusual  s i tuat ion is not  a sufficient reason 

to disregard it. E i the r  a mathemat ica l  theory  such as tha t  of compound 

interest ,  which is designed to apply  to real-life si tuations,  should apply  

universal ly to all cases, or we must  a t t empt  to del ineate clearly the 

cases to which i t  does not apply.  

Example 3. Suppose that an investor begins with absolutely nothing. He 
borrows 100 units now, agreeing to repay the loan with 10 percent interest at 
the end of 1 period. He then lends the 100 units immediately to a third party, 
who agrees to repay the principal with 20 percent interest at time 1. What  is 
his yield rate on the entire transaction? I am sure that many people have been 
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perplexed by the problem of computing a yield for this familiar situation. The 
difficulty comes solely from our preconditioned belief that yield rates must 
always exist, whereas in this case they obviously do not. 

We can easily verify this formally. The net payment at time 0 is 0 units, 
since the 100 received is immediately reinvested. The net payment at time 1 is 
10 units (120 units received minus 110 units repaid). The transaction is given 
by the sequence (0, 10), and there is clearly no yield rate. 

Some may wish to assign a yield of co to the above si tuation,  since the  
investor  begins with nothing and has 10 units after 1 period. There  are  
objections to this, however. For  an investor  interested in assessing the  
worth of a t ransact ion,  it  is not  very sa t i s fac tory  s imply to state tha t  the  
yield is infinite. In  addition, there does not appear  to be any appropr ia t e  
mathemat ica l  method  of including co as a possible yield rate. I t  m a y  be 
tempt ing  to define T as having a yield of o~ if 

l im PI(T) = O. 
i---~ o0 

This equation does, in fact, hold for the  t ransact ion T = (0, 10) of the  
preceding example.  Notice, however, tha t  we have, for all T, 

l im P~(T) = co. (3) 
i - -+o0 

This definition would result in an infinite yield whenever Co = 0, which 
is not  a desirable si tuation.  

We now turn  to more mundane examples  and avoid the complicat ions 
of mul t ip le-valued or nonexistent yields, unusual  repayment  pa t te rns ,  
and the like. I t  is well known tha t  problems still arise in in terpre t ing  
yields when we must  consider re inves tments  at  different rates. Two 
simple examples follow. 

Example 4. Consider two investment opportunities, each of which requires a 
present investment of 100 units. The first provides for a return of 150 units at 
time 1, the second for a return of 180 units at time 2. I t  would be naive, indeed, 
to suggest that the investor should choose the first simply because it has a yield 
of 50 percent as compared with 34.2 percent for the second. He would, of course, 
prefer the first investment if and only if he could reinvest the proceeds for one 
period at a rate greater than 20 percent. 

Example 5. Consider the case of consumer loans. From the lender's standpoint 
the yield rate has some validity, since it is usually a reasonable assumption 
that the repayments will be invested in contracts similar in nature to the 
original one. However, it almost never wi]l be true that the borrower can 
reinvest his money at the yield rate of the loan. This means that from the 
borrower's viewpoint, a comparison of loans strictly on the basis of yield rates 
is somewhat invalid. 
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For example, compare a 5 percent, 20-period loan, with level periodic repay- 
ments, with a 4.5 percent loan that requires only interest at the end of each 
period, the principal being due at the end of 20 periods. Assume that in the 
latter case the borrower decides to amortize the principal by level periodic 
deposits to his bank account, which earns 2[ percent interest. For the 4.5 
percent loan, the periodic cost per unit borrowed is 0.045 + (s~0.0~s) - 1 =  
0.0841, compared with (a~0.0s) -~ - 0.0802 for the 5 percent loan. 

This example represents a typical situation. I t  may be preferable for a 
consumer to choose a loan with a higher yield if it also provides for faster 
repayment. The reason, of course, is that the repayments constitute an invest- 
ment at the loan rate, which is usually higher than the rate the borrower could 
receive elsewhere. 

Example 6. This example has nothing to do with compound interest or yield 
rates. We wish to pursue the analogy with probability theory and expected 
values, to which we alluded in Section II. 

Suppose you are forced to choose between two games of chance, each costing 
$10,000 to play. The expected value of the winnings is $10,000 for game 1 and 
$20,000 for game 2. Which game is better? The "obvious" answer of game 2, 
based on the relative size of the expected winnings, may not be correct. Assume, 
for example, that both games consist of drawing a card randomly from ten 
cards, one red and nine black. In game I you win $10,000 regardless of which 
card is drawn. In game 2 you win $200,000 if the red card is drawn, but nothing 
if a black card is selected. Those with sufficient capital might find game 2 an 
attractive choice. I imagine, however, that most people would, if actually 
faced with this decision, choose game 1, which is the game we all play auto- 
matically when we elect not to gamble. There are not many who would risk a 
90 percent chance of losing $10,000 by playing game 2. 

The question of which game to play is like the question of which investment 
to choose in example 4. The answer depends on the circumstances of the 
individual making the decision. 

Example  6 adds fur ther  insight into the analogy between expected 
values and yield rates. Just as the  va l id i ty  of the concept  of yield ra te  
depends on the oppor tuni t ies  to reinvest  funds in similar t ransactions,  so 

the  va l id i ty  of the concept  of expected value depends on the oppor tuni t ies  

to replay the  same game many  times. In  game 2 of the  above example,  

the high cost coupled with the low probabi l i ty  of a win would mean 

tha t  most  people would not  have such an oppor tuni ty .  

V. INTEREST PREFERENCE RATES 

The solution to the  problem of comparing two t ransact ions  is qui te  

simple. The  individual  must  assess a t ransact ion by  using quant i t ies  

tha t  depend solely on his par t icu la r  circumstances and tha t  are indepen- 
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dent of the transaction itself, as opposed to using yield rates, which 
depend solely on the transaction and are independent of any particular 
individual. 

We postulate that  for a given individual we can find a real number  
i > - 1  that  is the payment  required by that  individual at time 1 in 
order to induce him to forgo 1 unit for 1 period. We call i the interest 
preference rate of the individual, since it measures his degree of preference 
for present as opposed to future capital. In  essence we are adopting the 
basic definition of interest rate tha t  an economist would give, allowing 
it to vary by individual. 

For our purposes, we need not be concerned with the reason for an 
individual's choice of interest preference rate i. I t  may  simply reflect his 
desire for present as opposed to future consumption. On the other hand, 
it may  be that  the individual (which could be some type of institution) 
has ready access to investments tha t  yield i, and therefore will not  
forgo capital for a lesser rate. In  the latter case, if T is a typical transac- 
tion undertaken by the individual, then the interest preference rate may 
correspond to the yield rate of T. 

For an individual with interest preference rate i, a single unit  at the 
end of t periods is worth (1 + i) - t  at the present time. Hence, for any 
transaction T, the number Pi(T) equals the present value of the gain 
accruing to such an individual should he undertake the transaction. To 
say that  i is a yield rate of T means that  an individual with interest 
preference rate i will neither gain nor lose on the transaction. 

We now have an easy answer to the comparison problem. An individual 
with interest preference rate i will prefer transaction T to transaction S 
if and only if PI(T) 2> Pi(S). By virtue of the linearity equations (2), 
this is equivalent to 

P,(T  -- S) >_ O. (4) 

Example 7. In actual practice one does not need to make an exact calculation 
of an interest preference rate in order to compare two transactions. For exam- 
ple, let T = (10, - 9 ,  - 9 )  and S = (10, -4 .5 ,  -14.5). This is a simplified 
version of example 5 involving two loans, one with level repayments and the 
other with payments of only interest until the end. The yields are 50 percent 
and 45 percent, respectively, but, as we have stressed before, this is immaterial. 
We have T - S =  (0, -4.5,  5.5), and P ~ ( T - S ) =  v(5.5v-4.5) ,  which 
equals zero for v = xgr, or i = ~-. P,(T - S) is then greater or less than zero 
according as i is less than or greater than ]. Using formula (4), we see that the 
individual need only decide whether his interest preference rate is greater than 
or less than ~. If it is greater than ~, he will choose transaction S; otherwise, 
he will choose transaction T. 
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It is of interest to note that the procedure for comparing T and S 

does involve the calculation of yield rates. The yield rates are not those 
of T or S, however, but rather of the difference, T - S. 

Note that, as with yield rates, we have included values in the interval 
( - 1 ,  0) as possible interest preference rates. This may seem quite 
strange at first glance. An individual with a negative interest preference 
rate actually prefers future to present consumption. As compared with 
the "live it up today for tomorrow we may die" attitude of the person 
with a high positive interest preference, he takes the attitude of "saving 
for a rainy day at all costs." This does not appear quite so unusual, 
however, if we reflect on the fact that all of us who invest in fixed-return 
securities during a time of inflation, when it is almost certain that their 
real value will fall, exhibit some negative interest preference tendencies. 

The quantity Pi(T) ,  considered as a function of i for --1 < i < ~o, 
will be called the interest preference function of the transaction T. A basic 
principle of the interest preference function is that it completely deter- 
mines the transaction. We state this precisely as follows: 

THEOREm 1. Let S and T be two transactions such that P,(S) = Pi(T)  
for all i. Then S = T. 

Proof. In our present context this follows immediately from the fact 
that P~(T) as a polynomial in v determines the coefficients. In fact, we 
can even give an explicit formula. This is just the usual identity, 

c, = f(~(O) , (5) 

where f(v) = Pi(T) ,  is the polynomial (1) associated with T. 
The principle illustrated by this theorem does not depend on the fact 

that f(v) is a polynomial. For the more general types of transactions 
that we mentioned in Section I I I ,  f(v) is not a polynomial and equation 
(5) does not hold. The theorem is nevertheless true, as we will see in 
Section X. 

Theorem 1 provides further evidence of the importance of the interest 
preference concept. I t  says, in effect, that  complete information about a 
financial transaction T is embodied in the present value of the gain under 
T accruing to the various interest preference classes. 

We will call the graph of the interest preference function the interest 
preference curve of T. Given transactions S and T, it usually is the case, 
as we have seen, that  their respective interest preference curves will 
cross at one or more points, namely, those corresponding to the yield 
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rates of S -- T. I t  may  happen, of course, that  the interest preference 
curve of T will lie above that  of S;  that  is, 

P i ( T )  >_ P i ( S )  for all i .  (6) 

We then say that  T is universally better than S, and we can give an 
unqualified answer to the question of which transaction is preferable. 
(Note tha t  we do not imply by our wording that  T is strictly better for 
all i. I t  may  happen that  P~(T) = P d S )  for some values of i. We are 
following the usual mathematical convention regarding the ordering of 
functions.) 

I t  is of interest to derive criteria for such universal comparability. 
I t  seems difficult to find easily described sufficient conditions for formula 
(6), other than the obvious case where all the payments  in one transaction 
are greater than the corresponding payments  of the other. However, if 
we confine ourselves to nonnegative interest preference rates (the case of 
most general interest), we can give a simple sufficient condition for 
universal comparability. 

Given S = (b0, b,, . . . , b~) and T = (Co, cl, . . .  , ca), let 

k 
dk = c , - -  bk and sk = ~ d s  

jffi0 

f o r k =  0, 1 , . . . , n .  

THEOREM 2. I f  sk >__ 0 for  k = O, 1, . . . , n, then 

P~(T)  > P , ( S )  f o r  al l  i ~ O . (7) 

Proof. We will show that, for all v in the interval [0, 1], 

~_, dkv ~ > s,,v '~ . (8) 
kffi0 

This will imply that  PI(S  - T)  > 0 for all i > 0, and by formula (4) 
the theorem follows. We verify inequality (8) by induction on n. I t  is 
obvious for n = 0, since do = So. Assume it is true for n - 1. Then 

dkv k = Y ]  dkv ~ + d,,v" 
k = O  k = O  

>_ s,,_lv"-'  + d,,v '~ (9) 

> s,,_lv" + d,,v" (10) 

~ -  SnVn. 

In (9) we use the induction hypothesis, and in (10) the fact tha t  s~_: _> 0 
and 0 < v < 1. 
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Theorem 2 becomes reasonably evident  if we in te rpre t  the conditions 
verbal ly;  they s imply say tha t  at  the end of any time period, the total  
sum of the payments  received under T is greater  than or equal to the 
total  sum received under S. 

Example  8. Compare the transactions T = (3, - 1 ,  4, 0, 2) and S = (1, 1, 3, 
- 1,4). We have So -- 2, sl = 0, s2 = I, s3 = 2, s4 = 0. The criterion of Theorem 
2 holds, and we can say without further calculations that T is preferable to S 
for all individuals with nonnegative interest preference rates. 

In order for inequal i ty  (7) to hold, we need both So _> 0 and sn > 0, 
since 

s~ = P 0 ( T  - S ) ,  ( 1 1 )  

and, from equation (3), 

So = lira P i ( T  --  S )  . 

However,  it  is not  necessary tha t  s~ _> 0 for all k, as the following ex- 
ample shows. 

Example  9. Let T = (2, 2, 2) and S = (1, 6, - 2 ) .  Then P i ( T  - S) = (1 - 
2v) 2, which is nonnegative for all i > 0 (in fact, for all i > - 1 ) ,  but s~ = --3.  

Combining Theorem 2 with formula (11) we obta in  

COROLLARY 1. Given S = (bo, bx, . . . , bn) and T = (co, c l , . . .  , c~), 

w i th  ci > bl f o r  i = O, 1 , . . .  , n - 1, then (7) holds i f  and only  i f  

The  s i tuat ion given in the corollary occurs qui te  frequently.  One 
example is when the  t ransact ions represent  loans at  the same interest  
rate  and  for the same amounts,  but  with the repayments  under T higher 
than those under S. To compensate,  the final paymen t  of S must  then 
be higher than t ha t  of T. We will use Corollary 1 in Section IX. 

VI. NORMAL TRANSACTIONS 

For  the  usual t ransact ion tha t  one encounters in pract ical  s i tuat ions 
there is a unique yield rate tha t ,  if proper ly  interpreted,  gives per t inent  
information about  the transaction. Such transactiGns will be called 
normal .  They  will be defined precisely, and discussed, in this section. 

We define a t ransact ion T to be L - n o r m a l  if there exists a number  
io > - 1  such tha t  

P d T )  > 0 f o r - !  < i < i o  
and 

P ~ ( T )  < 0 for io < i .  
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By continuity of the interest preference function, the number io must be 
the unique yield of T. 

Similarly, we define a transaction T to be B-normal if there exists a 
number io > -- 1 such that Pi(T)  < 0 for - 1  < i < io, and P~(T) > 0 
for io < i. I t  is clear that T is B-normal if and only if - T  is L-normal. 
The reader should note that  any statement in the remainder of the paper 
about one type of normality implies a corresponding statement about 
the other type, which will not always be expressly given. 

We will denote as normal a transaction that is of either of the above 
types. 

Not all transactions with a unique yield are normal (see example 9). 
The following lemma will be useful in classifying unique-yield transac- 
tions. 

LEMMA 1. Let T = (co, cl, . . •,  c,,), c,, # O, be a transaction that has 
at most one yield. Let ck be the first nonzero entry. Let s = Zi"_ o c i. 
Then 

(i) I f  ck < 0 and c, > O, then T is L-normal and the yield i is 
respectively positive, negative, or zero as s is positive, negative, or zero. 

(ii) I f  ck > 0 and cn < O, then T is B-normal and the sign of the 
yield is opposite to that of s. 

(iii) I f  ck and c,, are of the same sign, we have no information as to 
the existence or sign of the yield. 

Proof. We note first that  

c, = lim (1 + i )"P, (T)  (12) 

and 
ck = lim (1 + i ) k P , ( T ) .  (13) 

i--* co 

Suppose, for example, that ck < 0 and c, > 0. We know from equation 
(13) that, for sufficiently large values of i, (1 + i)kPi(T) is negative and 
hence P~(T) is negative. Similarly, from equation (12), Pi(T)  > 0 
for sufficiently small values of i. This shows that  T has at least one 
yield; this fact, coupled with the hypothesis that there is at most one 
yield, means there is exactly one yield io. I t  is clear that io satisfies the 
definition of L-normality. The condition on the sign of io follows im- 
mediately from the fact that  s = Po(T). This proves (i), and the rest of 
the lemma follows by similar reasoning. 

Our terminology is chosen to reflect the fact that  L-normal transactions 
behave as the usual loan transaction, while B-normal transactions 
behave as the usual borrowing transaction. In the L-normal case, for 
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example, a lender with an interest preference rate less than the yield 
will gain from the transaction, just as a lender would expect to gain by 
lending money at a rate higher than his usual one. Similarly, a lender 
with an interest preference rate greater than the yield will lose on the 
transaction. Hence, in the case of normal transactions, the unique 
yield, together with the type of normality, gives us the qualitative 
information needed to determine which individuals will gain and which 
will lose. We are now able to distinguish between loan transactions and 
borrowing transactions; thus, we have answered the question posed in 
example 2. If S and T are both L-normal transactions and T has the 
higher yield, then T is more desirable to the community of lenders as a 
whole, since more of them will profit from T than from S. The reverse is 
true for B-normal transactions. 

Note that  the above does not say that  if S and T are L-normal, then 
the higher-yield transaction is universally better. In general, two L- 
normal transactions will not be universally comparable. However, sup- 
pose that S and T are transactions that  we know are universally com- 
parable. I t  is then true that  if either S or T is L-normal, the higher- 
yield transaction is better for the lender, while if either S or T is B- 
normal, then the lower-yield transaction is better for the lender. Let i be 
a yield of S, j a yield of T, and suppose that  i < j. If  T is L-normal, we 
have Pi(T) > 0 = P~(S), showing that T must be the universally better 
transaction. If S is L-normal, then Pi(T) = 0 >_ Pi(S), showing again 
that  T is better. Similar reasoning handles the B-normal case. 

If we confine ourselves to nonnegative yields, these conclusions 
obviously hold when S and T satisfy the restricted universal compara- 
bility as given by formula (7). 

Some readers may perceive an apparent conflict in the above results 
if one of the transactions is B-normal and the other is L-normal with a 
higher yield. Our statement would seem to say that if these transactions 
are universally comparable, then each is better than the other. The 
answer is simply that a normal transaction can never be universally 
better than a transaction with the opposite type of normality. If, for 
example, T is L-normal and S is B-normal, then Pi(T  -- S) is greater 
than zero for sufficientlv small i and less than zero for sufficiently large i. 

We define a transaction T to be strongly L-normal if 

(a) T is L-normal with unique yield i; and 
(b) There exists/ '  > i such that  Pj(T) > Pk(r) for -- l < j < k < i'. 

(In other words, the interest preference curve is decreasing, at least up to 
the point where it crosses the horizontal axis.) 
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The least upper bound of all i '  satisfying (b) will be called the critical 
value of T. Note that in the case where P,(T)  is decreasing over its 
entire domain, we will have a critical value of co. 

We define strong B-normality in an analogous way, so that T is 
strongly B-normal if and only if - T is strongly L-normal. 

We will discuss the significance of these definitions later. We will 
give first a basic example of a strongly L-normal transaction; it will 
consist of negative payments followed by positive ones. 

THEOREM 3. Let T = (Co, O, • • •, c.) be such that there exists an index 
k, satisfying 

< o ,  j = k (14) 
c. > 0 ,  k + l  < j < n  

O, j = n .  

Then T is strongly L-normal. 

Note that the above pattern is typical of the usual loan from the 
lender's viewpoint. I t  consists of a series of expenditures, which constitute 
the loan, followed by a series of repayments beginning after the loan is 
completed. 

To show the L-normality of such a transaction, it is sufficient by 
Lemma 1 to show that T has at most one yield rate. This problem has 
been considered before, and I believe that the results first appeared in 
[4]. The simplest approach is to apply Descartes's rule of signs ([2], Art. 
547) to the associated polynomial f(v). This rule states that the number 
of positive roots of a polynomial is bounded by the number of sign 
changes in the coefficients, which in this case is 1. 

It  is not difficult now to deduce the strong L-normality by applying 
Descartes's rule to the derivative/~(~). 

There are some defects in this approach. In the first place, the use of 
Descartes's rule does not seem to give one any intuitive feeling of why 
the result is true. A more pertinent objection is that this proof does not 
carry over to the more general types of transaction for which f(v) is no 
longer a polynomial. We will present two other proofs here. Both of 
these are easily modified to apply to more general situations, and we will 
do so in Section X. 

Alternate proof of Theorem 3. We will show that for any io such that 
Pio(T) > O, we have Pi(T)  > Pio(T) for all i < io. Taking io to be the 
largest yield, it is then clear that it is the only yield, and that P~ is 
decreasing on ( -  1, io). 



Let  

and 

Then 

A N E W  A P P R O A C H  TO T H E  T H E O R Y  OF I N T E R E S T  67 

A = ~ ci(1 + io)-J, B = ci(1 + io) - j ,  
j=o j= k+l 

l + i o  
q = l + ~  

k k 

j~o  j - o  

>_ qkA , (15) 

since each term in the sum is negative or zero and qi ~ qk for j = 0, 
1 , . . . ,  k. Similarly, 

~'~ cs(1 + i)-J > qk+~B > qkB. (16) 
jffik+l 

The result follows by adding expressions (15) and (16) and noting t ha t  
A + B  = P~o(T) >_0. 

For those who prefer calculus to algebra, we present another  proof. 
We first need the following mathemat ical  result. 

LES~q~A 2. Let g be a real-valued function with a continuous derivative 
g' defined on an open interval (a, b), - o~ <_ a < b <_ oo .  Suppose 
that there exist points s and t in (a, b) such that g(x) < O for s < x < b 
and g'(x) > O for t < x < b. Then if g' has at most one zero in (a, b), 
the same is true for g. Moreover, the zero of g is less than that of g' 
when they both exist. 

Proof. Suppose g' has one zero c in (a, b). By continuity,  g' cannot  
change sign in (c, b), so, using the condition for g', we must  have g'(x) > 0 
for all x in (c, b). Then g is increasing on this subinterval,  and by the 
condition for g we must  have g(x) < 0 for x in (c, b). Similarly, g is 
monotone on the interval (a, c) and can have a t  most  one zero. This same 
fact is true on the entire interval (a, b) in the case where g' has no zeros. 

Proof of Theorem 3 using Lemma 2. Consider the function g(i) = P ~( T) 
and its derivative 

g'(i) = ~ --jcs(1 + i) -(s+x) 
jffil 

defined on ( - 1 ,  o~). We use induction on k to show tha t  g has at  most  
one zero. For k = 0 this is clear, since g' is negative, showing tha t  g is 
decreasing. For k > O, we see tha t  - g ' ( 1  + i) 2 is a function of the same 
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form as g, but with an index of k - 1 in place of k. By the induction 
hypothesis, --g'(1 + i) 2, and hence g', has at most one zero. Moreover, 
we see from formulas (12) and (13) that the conditions of Lemma 2 
are satisfied, so we may apply that lemma to conclude that g itself has 
at most one zero. 

This shows that T is L-normal. From the last statement in Lemma 2, 
we know that g' has no zeros on the interval ( - - I ,  io), where io is the 
unique yield, and the strong L-normality follows. 

The first proof of Theorem 3 can be adapted to give a very quick 
method of estimating the yield in a strongly L-normal transaction. 

LEMMA 3. For T as in formula (14), let s = [Co + cl + . . . + ck], 
and t = c~+x + . . .  + c~. Let io denote the unique yield. 

(a) I f  t > s ,  0 < io <_ (t -- s ) / s  ; 

(b) Z f t < s ,  0 > i o > _ ( t - s ) / s .  

Proof. If t > s, Lemma 2 shows that 0 < io. Now apply the first proof 
of Theorem 3 with i = 0. Using the first inequality in formula (16), we 
obtain 

t 
- s  + T-~-~o > 0,  

and part  (a) of the lemma follows. If t < s, the yield is negative, and we 
argue similarly, noting, however, that  with i -- 0 > io, the inequalities 
in (15) and (16) are reversed. 

I t  is quite easy to verify Lemma 3 by general reasoning. If t > s, for 
example, then the amount received is greater than the amount invested 
and the yield is obviously positive. The natural estimate of the yield is 
the ratio of the gain to the amount invested. This estimate generally will 
be higher than the true yield, since the estimate does not account for the 
loss of interest occasioned by the fact that receipts are deferred more 
than the expenditures. 

The condition of strong L-normality gives us an additional feature 
that we expect from loan transactions: not only do those with interest 
preference rates less than the yield gain from the transaction, but the 
lower the interest preference rate, the higher the gain. 

Note that there is a lack of symmetry here, since we do not require 
that P / T )  be decreasing for values of i greater than the yield. If we take 
T as in (14), then this will happen for k = 0, since P~(T) < 0 for all i 
in that case, but for k > 0 it is not necessarily true. We can explain 
this as follows. For io < i < j ,  where io is the yield, the j interest prefer- 
ence individual will incur a greater loss at the time the loan is repaid 
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than  the i in teres t  preference individual.  However,  the  higher ra te  of 
discounting may more than compensate  for this  when we consider 

present  value. Consider the following example. 

Example 10. Let T = (0, -400 ,  800), which satisfies (14) with k = 1. T has 
a yield of 100 percent. An individual with an interest preference rate of 300 
percent will incur a loss of 800 units at time 2, since he receives only 800 instead 
of the 1,600 his interest preference rate requires. This 800-unlt loss is worth 50 
units at time 0. The individual with a 400 percent interest preference rate incurs 
the greater loss of 1,200 units at time 2, but at time 0 this is worth only 48 units. 

We now have seen tha t  the set of all t ransact ions T satisfying (14) is 
contained in the set of all s t rongly L-normal  transactions,  which in 
turn is contained in the set of all L-normal transactions.  Following are 
some examples to show tha t  these inclusions are str ict ;  t ha t  is, there  are 
s t rongly L-normal  t ransact ions tha t  do not  satisfy (14), and there are 
L-normal t ransact ions tha t  are not  s t rongly L-normal.  

We use the fact tha t  for an L-normal t ransact ion T with yield io, 

strong L-normal i ty  is equivalent  to showing tha t  the associated polyno- 

mial / satisfies 
i f (v )  >__ 0 ,  v > (1 -4- i o ) - ' .  (17) 

Example 11. Let T = ( - 3 ,  4, - 1 8 ,  24). The associated polynomial,/(v) = 
- 3  + 4v - 18v 2 + 24v*, factors as (4v - 3)(6v 2 + l), showing by Lemma I 
that T is L-normal with a unique yield of 33~ percent. Also, if(v) = 4(6v -- 1) 
(3v -- 1) is nonnegative for v >_ ~-. So T is strongly L-normal with critical 
value 200 percent; however, T does not satisfy (14). 

Example 12. Let T = (--15, 60, --76, 32). The associated polynomial, f(v) -- 
--15 + 60v - 76v ~ + 32v a, factors as (2v -- 1)(16v 2 -- 30v + 15). The second 
factor has no real roots, so T has the unique yield rate of I. By Lemma 1, T is 
L-normal. Now i f ( v ) =  4 ( 6 v -  5 ) ( 4 v -  3) is negative on the interval ~-< 
v < •, so P d T )  is increasing on the interval ] < i < ½. T is not strongly 
L-normal. 

The  above examples were found by  using some cri teria tha t  relate 
strong L-normal i ty  to the nonposit ive roots of the associated polyno-  
mial. Because these results are more of theoret ical  interest  than  of 
pract ical  use, we will discuss them in Appendix I. In  practice,  the best  
way to test  a t ransact ion for s t rong L-normal i ty  is by  using criterion (17). 

vii .  DECOMPOSITION OF TRANSACTIONS 

Theorem 3 shows tha t  t ransact ions tha t  are not  normal  can a lways  
be wri t ten  as the  sum of two normal  transactions.  For  example, given 
T = (co, q , .  • • , c,) with n > 0, let  ao, bo, a~, and b, be any numbers  
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such that a 0 < 0 ,  a ~ > 0 ,  b 0 > 0 ,  and b ~ < 0 .  Let a 0 4 - b 0 =  co, and 
a ,  4 - b n =  on. F o r k =  1, 2,.  . .  , n - -  1, welet  

and 

a k  = Ck if 0k < 0 

= 0 if  ck > 0 

bk = Ck ifck > 0 

= 0 if  ck < 0 .  

Then by Theorem 3, S = (ao, a l , .  • .  , an) is L-normal (in fact, strongly 
L-normal), R = (bo, b~, . . .  , bn) is strongly B-normal, and T = S 4- R. 
Those who are still uncomfortable with negative yields should note, 
using Lemma 1, that  by adding a sufficiently large positive constant to 
a,  and subtracting it from b,, we can, if we want, ensure that the yields 
on both S and R are greater than zero. 

A decomposition of T as the sum of normal transactions is not unique; 
it generally can be done in an infinite variety of ways. This observation 
can be used to give an explanation of multiple-yield transactions. 

Example  13. Consider again the transaction T = ( - 1 ,  7, - 6 )  of example 1. 
Some of the ways of decomposing T are the following: 

(a) T = ( - -1 ,1 )  + ( 0 , 6 , - - 6 )  ; 

(b) T = ( - -1 ,6 )  4- ( 0 , 1 , - - 6 ) ;  

(c) T =  ( - -1 ,3 )  4- ( 0 , 4 , - - 6 ) .  

In (a) we view the transaction as one of lending 1 unit for 1 period at 
0 percent interest, followed by borrowing 6 units at  0 percent interest, 
while in (b) we see it as lending 1 unit at 500 percent, followed by borrow- 
ing 1 unit at 500 percent. This explains the two yields of i = 0 and 
i = 500 percent. 

In (c) we view the transaction as lending 1 unit at 200 percent and 
then borrowing 4 units at 50 percent. Those with an interest preference 
rate between 50 and 200 percent gain on both of these subtransactions. 
Those with an interest preference rate less than 50 percent lose on the 
borrowing but gain on the loan, while the reverse is true for those with 
an interest preference rate more than 200 percent. I t  is only those with 
an interest preference rate of 0 percent in the former group and 500 
percent in the latter group for whom the gain and loss will balance 
each other. 

Going through an analysis such as the foregoing should serve to 
dispel the surprise that some may feel at the existence of multiple yields. 
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In fact, it may even tend to make one surprised that there are actually 
transactions with unique yields! 

We now consider decompositions into normal transactions of the same 
type. A natural question is whether the sum of two L-normal transactions 
is itself L-normal. Suppose that S and T are L-normal with yields of j 
and k, respectively, with j _~ k. An individual with interest preference 
rate r will gain on both transactions if r < j ,  and will lose on both if 
r > k. If, however, r is in the interval (j, k), the individual will lose on 
S and gain on T. Hence, S + T may have multiple yields in this interval 
and will not then be L-normal (see example 14 below). 

However, suppose that  S and T are both strongly L-normal and that  
k _< j ' ,  the critical value of S. Then Pi(S + T) is decreasing on the 
interval ( -  1, k). Moreover, Pi(S + T) = Pi(T) > 0, and Pk(S + T) = 
Pk(S) < 0. So S + T is itself strongly L-normal with yield h in the 
interval (j ,  k), and critical value h' > k. 

Note that  in the familiar situation of a loan consisting of a single 
payment, that is, k = 0 in formula (14), we have a critical value of co. 
The above result then implies that we can add any strongly L-normal 
transaction of a higher yield to preserve strong L-normality. 

Example 14. Let S = O, 0, -40,  48) and T = (--1, 11). Then S + T = 
( -  1, 11, -40 ,  48) has yields of i = 2 and i = 3. The difficulty here is that the 
yields are too far apart. T has a yield of 10, which is greater than 0.8, the 
critical value of S. 

We can summarize the above discussion verbally as follows. Suppose 
we take two investments, each consisting of the usual pattern of pay- 
ments and having a unique yield. Making both investments will result 
in a composite transaction with a unique yield between the two given 
yields, provided that these yields are sufficiently close. If  the two yields 
are very far apart, the composite investment may have multiple yields. 

The importance of the concept of the critical value of a strongly 
L-normal transaction is that  it defines precisely what is meant by the 
phrase "sufficiently close" in this situation. 

We now turn our attention to transactions T with nonexistent yields. 
For such a T, we must have either P~(T) > 0 for all i, or Pi(T) < 0 for 
all i. We will call the former transactions universally profitable, and the 
latter universally unprofitable. Clearly, T is universally profitable if and 
only if - T is universally unprofitable. 

Examples of universally profitable transactions are (i) the transaction 
in example 3, which consisted of borrowing capital and then lending the 
proceeds at a higher rate, and (ii) the transaction (1, - 4 ,  6) (the nega- 
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tire of a transaction in example 1). This  lat ter  transaction is similar to 
the one in example 3, which we can see by  writing it as (1, - -2)  + 
(0, - 2 ,  6). I t  consists of borrowing money  at 100 percent and then 
lending it out a t  200 percent. 

I t  is easy to see tha t  all universally profitable transactions can be 
considered in this way. Let  T be universally profitable, and consider any 
decomposition T = S + R, where S and R are normal. S and R cannot 
both be L-normal,  for as we have seen, those with a sufficiently high 
interest preference rate will lose on T. Similarly, they cannot both  be 
B-normal. I t  must  then be true tha t  one of these subtransactions, say 
R, is B-normal  with yield j ,  and S is L-normal  with yield k. We must  also 
have j < k; otherwise, we would have Pi(T) <_ 0 for i in the interval 
[k, j]. In other  words, the only way to make  money  for everybody  is by  
borrowing and then lending the proceeds at  a higher rate. 

Note,  however, tha t  not all transactions of the type described above 
are universally profitable. As we saw in example 13(c), if T = S + R, 
where R is B-normal with yield j and S is L-normal with yield k > j ,  we 
can have yield rates in the intervals ( - -  1, j )  or (k, oo ). We will return to 
this si tuation in the next section, after first developing some more theory. 

VII I .  OUTSTANDING I N V E S T M E N T  ANALYSIS 

In this section we show how the concept of outstanding investment  
unifies some of the results obtained in preceding sections. 

Given a transaction T -- (Co, cl . . . .  , co), a number  i > - 1 ,  and a 
nonnegative integer t, we let B~(T) denote the outstanding inves tment  
in T at  t ime t for interest rate i; tha t  is, 

t 

B~(T) = ~ cs(1 + i )*- i ,  
j=0 

the value a t  t ime t of all payments  up to tha t  time. (We let ci = 0 for j 
greater than  the duration of T.) 

I t  is clear tha t  B~ is a linear function of T for i and t fixed, and is 
related to P~ by  

P,(T) = (1 + i)-"B~(T) (18) 

for all T of duration not  greater than  n. 
We have the recursive relation 

B~(T) = B~- ' (T)(1  + i) + ct .  (19) 

Kellison ([5], sec. 5.7) shows tha t  if i is a yield rate of T and if B~(T) > 0 
for t = 0, 1, 2 , . . .  , n, then i is a unique yield. In the course of deriving 
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this fact, Kellison actually shows tha t  more and stronger results can be 
obtained. I t  is shown, in fact, using equation (19), that ,  given any i > -- 1 
and a transaction T satisfying 

B~(T) _> 0 ,  t = 0, 1 , . . . ,  n -- 1 , (20) 

then for any interest rates j < i < k, 

B~(T) < B~(T) <_ B~(T) (21) 

for t = 0, 1, 2 , . . . ,  n. Moreover,  the inequalities are strict unless cr = 0 
for all indices r < t. ( I t  is impor tan t  to note tha t  the upper index of 
t is n - 1 in (20) and n in (21).) 

From (21) we see tha t  (20) will hold for all interest rates higher than  
i. Hence, (20) implies that ,  given j < k, k > i, 

B'~(T) < B'~(T), (22) 

with equality holding only if cr = 0 for r = 0, 1 , . . . ,  n -- 1. 
Suppose tha t  ck is the first nonzero paymen t  of T. Then, for all i, 

B~(T) = O, t < k; 

B~(T) = ck ; (23) 
and 

lim B (T) 
i~® (1 + ~)~-~ = ck,  t > k .  

From this we see tha t  if ck > O, then (20) will hold for sufficiently high 
values of i. 

We now use the concept of outstanding investment  to discuss the 
question of speed of repayment .  Wha t  does it mean to say tha t  one loan 
is being repaid faster than another? Intui t ively we think of this 
occurring when, at  the end of each t ime period prior to matur i ty ,  the 
amount  owed by  the borrower on one loan is less than the amount  
owed on the other. Hence, if the loans are represented by the B-normal 
transactions R and S of duration not greater than n, we would like to 
think of R as admitt ing faster r epayment  if 

B~(R) < B~(S) , t = 0, 1 , . . . ,  n --  1 .  (24) 

This has no meaning without fur ther  qualification, since it depends on 
the value of i tha t  is used. Indeed, condition (24) holds for sufficiently 
high values of i simply under the hypothesis that ,  for the first place 
where the payments  of S and R differ, the one in S is higher. This follows 
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from equations (23), taking T -- S -- R, and using the linearity. Simi- 
larly, taking T --- S - R in (20) and (21), we see that  if (24) holds for 
some values of i, it will also hold for all higher interest rates. With these 
points in mind, we are led to the following formal definition. 

Given B-normal transactions S and R, we say tha t  R is faster than S 
if (24) holds for i equal to the maximum of the two yields and n equal to 
the maximum of the two durations. 

Note that  condition (24) applies only to times tha t  are strictly prior 
to the matur i ty  of one of the loans. We do not want to require (24) for 
t = n; in fact, it will never hold for the maximum yield if R and S are 
both of duration n and R has the lower yield. If S has yield i, which is 
greater than the yield of R, then by B-normality, By(R) > 0 = B"~(S). 

As an example of faster repayment,  we have the following. 

LEMMA 4. Let R --- (bo, ba, . . .  , b~) and S = (co, cl, . . .  , c,) be B- 
normal transactions with yields of i and j,  respectively, with i > j. 
Suppose that for some nonnegative k <_ n, 

b t <  ct ,  t = O , . . . , k  
and 

b r a c t ,  t = k + l  . . . .  , n .  

Then R is faster than S. 

Proof. Let T = S - R =  (do, d l , . . . ,  d,), where d r =  c t -  bt. For 
t = 0, 1, . . .  , k, dt >_ 0, and obviously B~(T) > O. For t > k, we use 
induction on n - t. Given that  B~-a(T) is nonnegative for some value 
t > k, we can conclude that  B~(T) is nonnegative from the fact that  
dt <_ 0 and the relation 

B~(T) = [B',+'(T) - d,](1 + i) -~ . 

The induction starts with the fact tha t  P,(T)  = P~(S) >_ O, so that,  
from formula (18), B~(T) > O. 

Note that  if k = n - 1, we can drop the assumption that  i >_ j, but in 
general we cannot do this, as the next example shows. 

Example 15. Let R = (20, 
R and S satisfy the condition 
yields of 0 and 0.5. We have 
than S. 

-10, - 5 ,  - 5 )  and S = (20, 0, -27 ,  -27) .  Then 
of Lemma 4 with k --- 1, but they have respective 
B~(R)  -- 25 and B~ s(S) = 18, so R is not faster 

We must confess to one pathological feature in the definition of 
faster repayment. The terminology suggests tha t  if R is faster than S, 
and S is faster than T, then R should be faster than T. However, this 
transitivity property does not always hold. 
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Example 16. Let R = (16, -13 ,  --3), S = (20, --18, -18) ,  and T = (22, 
-20 ,  --2). These are all B-normal with respective yields of 0, 0.5, and 0. Since 
B~o~(R) = 11, Bto.5(S) = 12, and Bto.~(T) = 13, we see that R is faster than S 

t and S is faster than T. But Bto(R) = 3 > 2 = Bo(T), so R is not faster than T. 

Note tha t  the transitivity will hold in the above situation whenever 
the maximum yield of the three transactions occurs for either R or T 
rather than S. In particular, it holds when all transactions have the same 
yield. 

One can develop an alternate definition for faster repayment  by using 
the minimum yield in place of the maximum. This is more restrictive, 
however. As we saw in the preliminary discussion, using a lower interest 
rate means that  there will be fewer cases for which we can state that  one 
transaction is faster than another. Also, this definition will not solve 
the lack-of-transitivity problem. I t  is easy to find counterexamples 
similar to example 16 for transitivity in the minimum-yield definition. 
We would need to have the yield on either R or T strictly less than the 
yield on the other two. Note also that  in example 15 the conclusion is 
the same using the minimum yield. 

Still another definition arises if we vary  i in (24), allowing it to assume 
the yield rate for each transaction. This may  appear more natural, at 
first, and we do indeed obtain transitivity. With this definition, however, 
the corollary to Theorem 4 is no longer valid. 

The speed of repayment  of a B-normal transaction is dependent on 
the "size" of the loan involved as well as on the repayment  pattern. 
For example, given any B-normal transaction T, the transactions T and 
2T involve the same underlying pat tern of repayment,  but  T is faster, 
since it represents a loan of one-half the amount.  This feature of the 

definition is necessary for the validity of the corollary to Theorem 4. 
However, it may  be of interest to introduce an auxiliary concept of 
relative speed of repayment  to eliminate this dependency on units. 

One approach to this would be first to define, for any nonzero B- 
normal transaction T, a positive number s(T) that  would reflect the size 
of the loan involved. There does not appear to be any completely obvious 
way to define s(T) for the general B-normal transaction, and we will not 
pursue the mat ter  further here. (One possibility would be to set s(T) 
equal to the present value of the positive payments  computed at the 
yield rate of T.) In  any event, we would want the natural requirement 
that,  for any positive r, 

s(rT) = r s ( T ) .  
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We then define the B-normal transaction S to be relatively faster than 
the B-normal transaction T if 

S T 
s(S) is fas ter  than  s(T) " 

I t  is clear that  for any positive r, the transactions T and rT exhibit 
the same relative speed of repayment .  

Note tha t  the lack of t ransi t ivi ty still remains with relative speed of 
repayment .  For example, let R = (100, - 30, - 30, - 40), S = (100, - 30, 
-30, - 225), and T = (100, -- 20, --45, --35). These are all B-normal  
with yields of 0, 0.5, and 0, respectively. In each case, there is a single 
loan paymen t  of 100 units, so any  reasonable definition of s(T) should 
assign the same "size" to each transaction. Direct calculations show 
tha t  R is faster than S, and S is faster than T, but  R is not  faster  than T. 

Additional comments  on speed of repayment  can be found in Appendix 
I I .  

We will use the concept of speed of repayment  to complete the dis- 
cussion begun at  the end of Section VII .  First, we state the main theorem 
on outstanding investments.  

TttEOREM 4. Let T be a transaction of duration not greater than n 
with ct # O for some t < n, and suppose that (20) holds for some i. 

(a) I f  B](r)  = 0 , 

(b) l f  B](r )  < 0 ,  

(c) I fB] (T)  > 0., 

T is B-normal with unique yield i .  

T is B-normal with unique yield > i .  

Pi(T) > O for j > i . 

Proof. Assume tha t  B'~(T) < 0. Let  ck be the first nonzero paymen t  in 
T. By assumption,  k < n, so, from (20), B~(T) > 0. Then,  from (23), 
we see first tha t  ck > 0 and then tha t  B~(T) > 0 for j sufficiently large. 
By the continuity of B~(T) as a function of j ,  there exists i '  > i with 
BT,(T) = 0. Now, f o r j  < i ' ,  we see from (22) that  B~(T) < 0, and from 
(18) tha t  P~(T) < 0. Similarly, for j > i ' ,  we will have P~(T) > O. 
Hence, T is B-normal with yield i ' .  This proves par t  (b), and the same 
reasoning demonstrates  (a) and (c), taking i '  = i. 

Note  tha t  par t  (a) of the theorem contains Kellison's original result 
on uniqueness of yield. Par t  (c) generalizes Theorem 2. Noting tha t  
B~(T) is the sum of the payments  up to t ime t, we see tha t  Theorem 2 
is just  the part icular  case of par t  (c) for i = 0. 
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COROLLARY 2. Suppose that S and Q_ are B-normal transactions with 
respective yields of i and j, i <_ j. 

(a) I f  S is faster than Q, then S -- Q is L-normal with yield > j. 
In particular, 

Pk(S -- Q) > O, - 1  < k < j .  (25) 

(b) I f  Q is faster than S, then 

Pk(S -- Q) ~_ O, i ~ k .  (26) 

Proof. Let T = Q -- S, and let n be the duration of T. 
For par t  (a) we have, by  definition, tha t  B~(T) > 0 for l = 0, 1, . . .  , 

n -- 1. Also, BT(T) = -B~(S)  < 0, so we can apply par t  (b) of Theorem 
4 to conclude tha t  S - Q = - T is L-normal. 

To  show par t  (b), it is clear tha t  relation (26) holds for i < k < j .  T o  
see tha t  it holds for j _ k, we apply par t  (c) of Theorem 4 to - T. 

This corollary applies to the situation discussed at  the end of Section 
VII .  S - -  Q represents a composite transaction resulting from borrowing 
at interest rate i and then lending at  the higher rate j .  Pa r t  (a) says 
that  if we do this and then repay the loan faster than our debtor repays 
us, the lending component  of the transaction dominates,  and the result 
is L-normal. In  particular,  the transaction is not universally profitable. 

To interpret  pa r t  (b), we recall from Section VI I  that  those with 
interest preference rates not  less than i will gain on the borrowing but  
lose on the lending. Par t  (b) says tha t  if our debtor  repays us faster than 
we repay our lender, then the gain will be more than the loss. In  this 
situation, the transaction m a y  or may  not be universally profitable. We 
have no information about  P~(T) for k < i. 

We can also view pa r t  (a) as making a s ta tement  of comparison about  
the two loans S and Q. I t  reflects the general principle illustrated in 
example 5 that  for those at  the lower end of the interest preference 
range it is bet ter  to repay loans as fast as possible. Formula (25) says, 
in fact, tha t  if one loan combines both a lower yield and faster repay-  
ment,  it is necessarily more at t ract ive to individuals with low interest 
preference rates. 

IX. CONSUMER LOANS REVISITED 

In this section we will consider transactions involving a loan tha t  
consists of a single p a y m e n t  made at  the present  time. We wish to com- 
pare various repayment  schemes. In doing this, we will make  use of the 
corollary to Theorem 4 (Corollary 2) and the resulting inequality (25), 
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which deals with interest preference rates lower than the yield rates. 
This reflects the fact that we wish to regard the loans from the stand- 
point of the typical consumer borrower, who, as indicated in example 5, 
can be expected to have an interest preference rate lower than the 
yield rates on the loans he is offered. His objective is to minimize his loss. 
We do not concern ourselves with those having interest preference 
rates higher than the yield; they will gain from the transactions in any 
event. 

One of the main objectives of this section is to clarify the point ex- 
hibited in examples 5 and 7 that we mentioned at the end of the previous 
section. In Theorem 5 we will show that  there is some limitation on the 
extent to which a loan can be more favorable than one with a lower 
yield. 

We wish to consider transactions of the form 

S = ( 1 , - c l , - c 2 , . . . , - c , )  

with (27) 

c ~ > 0 ,  k = 1 , . . . , n  and Y~ck>__ 1. 

By Theorem 3, such a transaction is B-normal with a yield rate i > 0. 
(For simplicity, we confine ourselves in this section to the usual case of 
nonnegative yields.) 

We will call a transaction S satisfying (27) an I.P. transaction (the 
initials standing for "interest paid") if B~(S) <_ 1 for t = 0, 1, . . .  , n, 
where i is the yield rate of S. This simply says that  at least the interest 
on the original loan of 1 unit is paid at the end of each period. 

Examples satisfying (27) with duration n and yield i are 

(a) R . ~ .  with c, = (a--l¢)-l, k = 1,2 . . . .  , n ;  

(b) I , , - ,  with ck = i ,  k = 1 , 2 , . . . , n - -  1,  c, = 1 + i ;  

(c) E . . ; ,  with c k = 0 ,  

k =  1 , 2 , . . . , n - - I ,  c , = ( l + i ) " .  

In (a) the loan is repaid by level amounts; in (b) interest only is paid 
until maturi ty;  in (c) nothing is paid until maturity. Clearly (a) and 
(b) are I.P., while for n > 1, (c) is not. 
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LEMMA 5. Suppose that S satisfies relations (27) and has duration not 
greater than n and yield not greater than j. Then 

(a) PdS)>Pd~,.A, - l < k < j .  

(b) If, in addition, S is I.P., then 

P~(S) > P~(I.,s) , - l  < h >_ j .  

Proof. In  both cases, we simply apply par t  (a) of Corollary 2. I t  is 
clear tha t  S is faster than (E,.i) (an easy case of Lemma  4, with k = 
n - 1). I f  S is I.P., it is by definition faster than  I , . j ,  since B~(I,.j) = 1 
f o r i =  1 , 2 , . . . , n -  1. 

We now want  to consider the following functions of two variables. 
For any positive integer n, and i > 0, we define 

= ( n )  ~," 
g(n, i) k ~ /  -- 1 

and 

h ( n ,  i )  = - -  

= *), ~ h (n ,  i ) ,  So i f i '  g(n, " " "=  

(1 + i ' ) " - -  1 + n i "  = n . (28) 
a ~  

I t  is not hard to verify tha t  

g(n, i) < h(n, i) < i ,  (29) 

with equali ty if and only if either i = 0 or n = 1. The  second inequality 
in (29) comes from the familiar ident i ty 

1 1 
= - - + i  

a ~  s-- 1 

and the fact tha t  s~ > n. 
The significance of these functions is shown by the following theorem. 

T r t E O R ~  5. Given any positive integer n, and i > O, let S satisfy (27) 
with duration not greater than n. Then 

(a) I f  the yield o r s  is not greater than g(n, i), 

Pk(S) > P k ( R , . , ) ,  0 < k <_ i .  (30) 

(b) I f  S is I.P., then (30) holds, provided that the yield of S is 
not greater than h(n, i). 
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Proof. (a) If  j ( g (n ,  i), then ( 1 - k j ) n (  n/a~,. By Corollary 1, 
P~(E,,i) >__ Pk(R~.j) for k > 0. We now apply  pa r t  (a) of Lemma 5. 
(b) If j ( h(n, i), then (1 -k n j) ~_ n/a~i. By Corollary 1, Pk(I~.i) ~_ 
Pk(R~.j) for k >_ 0, and we apply  par t  (b) of Lemma 5. 

Some sample values of g(n, i) and h(n, i) are shown in Table  1 and 
Table  2, respectively. The  following is an example to show how we may  
in terpre t  these figures. Suppose tha t  a lender who charges 20 percent 
interest  on a 10-period level -payment  loan is accused of charging an 
unjust if iably high rate. He may  t ry  to defend his posit ion by cit ing 
examples (like example 5 or example 7) tha t  show tha t  some lower-yield 
loans may  be even less favorable to the typical  borrower. We see from 
Theorem 5, however, t ha t  there is some l imitat ion to this defense. Any 
loan of durat ion 10 or less with an interest  rate  lower than g(10, 0.2) = 
9.1 percent  is necessarily more favorable than  a 10-period level -payment  
loan at  20 percent.  Hence,  if 9.1 percent  is still considered an excessive 
rate,  the lender 's defense loses force. 

The  restriction is more drast ic  if we l imit  ourselves to I .P.  loans. In  
this case, any loan of durat ion 10 or less with an interest  rate lower 
than  h(10, 0,2) = 13.9 percent  is more favorable than  the original 

TABLE l 

= (  n ~  lln 
g(n, i) \ ~ ]  -- 1 

n i ~ 0 . 0 1  

5. .005 
10. .005 
20 . . . . . .  005 
50 . . . . . .  005 

i = 0 , 0 5  

.029 
• 026 
• 023 
• 020 

i ~ 0.10 i = 0.20 i ~ 0.50 

.056 •108 ,235 

.050 .091 ,177 

.044 .073 .122 
,032 .047 •066 

J 

TABLE 2 

n i = 0 . 0 1  

5. .006 
10 .005 
20, 005 
50, .006 

i = 0 . 0 5  

.031 
• 030 
.030 
.035 

i ~ 0.10 

.064 

.063 

.068 
•081 

i ~ 0 , 2 0  

• 134 
,139 
. 1 5 5  

.180 

i = 0 . 5 0  

,375 
.409 
.450 
. 4 8 0  
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level-payment loan. The restriction to I.P. loans seems a reasonable one 
to make in practice. We would expect that  the typical lender in a con- 
sumer loan transaction would not allow the loan balance to increase. 

We conclude this section with some estimates for values of g(n, i) 
and h(n, i). From Table 1, it appears that  g(n, i) increases with i and 
decreases with n. I t  seems to be close to i/2 in many cases, with the 
ratio of g(n, i) to i decreasing as either i or n increases. We can prove a 
general inequality that  bears out some of these observations. 

F o r 0 < i  < 1, w e h a v e  

n(n + 1) i2 + . . . ,  (31) (1 + i ) - "  = 1 - -  n i +  2 

from which we can derive the familiar expansions 

and 

a-q _ 1 n + l i + ( n + l ) ( n + 2 ) i 2 + . . .  
n 2 3! 

(32) 

- + 1 i  ~ A .  . . . .  n. = 1 + 2 - -  + z~-k- (33) a--] 

(See [5], formulas 3.24 and 3.25.) Let  i '  denote g(n, i). Using the s tandard 
alternating series estimates in (31) and (32), we have 

1 - n i '  < (1 + i ' ) - "  - 
a~i 

n 

from which it foUows that  

g(n,i) > ig(1 
L \  

n + 2 i~ (34) 
3 ] 

I t  is of interest to consider a continuous analogue of the function 
g(n, i). For a positive integer n and 6 > 0, we define g(n, 6) to be the 
number  6' such that  

en ~, ---~ _ n 

where an  is at a force of interest & 
We now show that  

(3s) 
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The left-hand inequality in (35) follows in a way similar to (34), by  
use of the expansions 

an-" ] (n~)~ 
= 1 - - ~  + 

n ~ + " "  
and 

e - " ~ =  1 -  n ~ + ~ +  . . . .  
2 !  

For the right-hand inequality in (35), we use the series 

s ~  e "~ - I 1 + nL ~ (na) k 
n - n ~  = ~ .  + + "'" + k + 1---- '~.  T + "'" (36)  

and 

e a n =  1 +  + ~ ( +  . . .  + 5~.T + . . . .  (37) 

Since 2 * >_ k + 1 for all k, a comparison of (36) and (37) shows tha t  

e nSt2 ~ rs--~-n~. (38)  
n 

Multiplying (38) by e - ' a  and taking reciprocals, we have 

- a.--] ' 

and we take logarithms to complete the derivation of (35). 
The behavior of h(n, i) is somewhat different. We see from Table 2 

that  this function increases with i, as is immediate from the definition. 
For large values of n, it increases as n increases. In fact, it is clear from 
the definition that  

lim h(n, i) -- i . 

We can derive a much higher lower bound for h(n, i) than we did for 
g(n, i). If i" = h(n, i), then, from (33), 

and it follows that 

l + n i , , =  n__~> l + n + l i  
a ~  - -  - - 2  ' 

i h(,;, i) > ~ . 
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X. GENERALIZATIONS 

In  this section we will discuss some possible generalizations of the 
preceding ideas. As previously suggested, we can consider a more general 
definition of a transaction to provide for payments  at  arbi trary times. 
From this point of view, a transaction T is a function, r ~ c~, defined 
on [0, co ), such that  c, --- 0 for all but  finitely m a n y  points. We think of 
c~ as denoting the payment  at  t ime r. Our original definition was in 
fact similar to this, except tha t  then we had the restriction that  c~ = 0 
for all noninteger values of r. 

As before, we define the interest preference function 

P,(T) = ~ (1 + i)-~c~. 

Theorem 2 holds in this setting with an almost identical s ta tement  and 
proof. The  only difference is that  we must  define sk = 2;i_~k di ,  and the 
induction is on the number  of values of r < n for which cr ~ 0. 

The  s ta tement  of Theorem 3 and both  al ternate proofs hold with 
similar modifications. In  the proof involving derivatives, the induction is 
again on the number  of values of r < k for which c, # 0, and the term 
- g ( 1  + i) 2 must  be replaced by  - g ( 1  + i) ~''+~), where r '  is the smallest 
such positive r. 

As we mentioned before, Theorem 1 is still true; however, we need a 
different proof. Suppose tha t  T and S are represented by the functions 
r --~ cr and r --~ b~, respectively, and let d ,  = c ,  - b~. Then P d T )  = 

P ~ ( S )  for all i s imply means tha t  

Y,, d ,v*  = 0 (39) 

for all positive v. We want  to show tha t  d, = 0 for all r. If  not, let s be 
the min imum value of r for which d, # O. Dividing by  v ~ in (39) results in 

d ,  = - -  Y., d , v*-"  , 

and taking the limit as v --> O, we have de = O, a contradiction. 
The  reader familiar with vector-space theory may  have noticed 

already tha t  Theorem 1 follows immediately from the linear independence 
of the functions (x~: r ~ O} in the space of real-valued functions on 
[0, ~ ) .  The  derivation given above essentially provides a proof of this 
fact. 

We now proceed to fur ther  generalizations. The  discussion in the 
rest of this section will assume a familiari ty with Stieltjes integrals. See 
Apostol ([1], chap. 7) for an exhaustive and reasonably elementary 
t reatment .  Also, see Huffman [3] for an application of Stieltjes integrals 
to actuarial  questions. 
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The ultimate generalization is to define a transaction T by a distribu- 
tion function a t  on [0, co). By this we mean tha t  at(t)  represents the 
total of all units received up to and including time t. For technical 
reasons we impose the following conditions on a t .  

(a) -r(o)  = o. 
(b) cw is of hounded variation ([1], Definition 6.4). 
(c) a r  is right-continuous on (0, ~o ); that  is, 

lira Jar(t)] = aT(s) for all s in (0, ~o) . 
t ~ s +  

With this definition we can handle continuous as well as discrete 
payments, and even transactions that  have both continuous and discrete 
components. 

Example 17. Let T = (7, - 2 ,  - 6 )  as in our original definition. Then 

,~T(t)  = o ,  t = o 

= 7 ,  0 < t < l  

= 5 ,  l < t < 2  

= - 1 ,  2 _ < t .  

Example 18. An annuity provides for continuous payments for 3 periods, the 
payment at time t being at the rate of t per period. In addition, there is a bonus 
of 1 unit paid at the end of 1½ periods. Suppose the annuity is purchased for 
5 units. Let T represent the entire transaction--the purchase payment and the 
annuity payments, We want to find at. 

For the continuous portion, we use integration instead of addition. Since 

we have 

t 

f sds = t~/2, 
0 

at( t )  = 0 ,  t = O  

= - - 5 + t 2 / 2 ,  0 < t < 1½ 

= - - 4 + t ~ / 2 ,  1½ < t < 3  

= ½ ,  3 < t .  

Some readers may  wonder why we define a t ( O ) =  0 rather than 
at(O) = c, if c is the payment  at time O. The reasons will be pointed out  
in the sequel as they arise. 

We can also generalize in another direction to allow for interest 
preference rates tha t  vary  with time. Let r(t) denote the amount that  
an individual will forgo at the present time in return for 1 unit at time 
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t. We will call the function r the interest pre/erence scale of the individual. 
We will assume tha t  any interest preference scale satisfies the following 
natural  conditions: 

(a) r is continuous on [0, =0); 
(b) r(0) = 1; and 
(c) r(t) > 0 for all t. 

In  our original case of a constant  interest preference rate i, the corre- 
sponding interest preference scale is r(t) = (1 + i)- t .  

For an individual with interest preference scale r, the gain resulting 
from undertaking transaction T is given by the Stieltjes integral 

c o  

P,(T) = f rda~, 
0 

provided tha t  the integral exists. 
For the particular case r(t) = (1 + i) -~ for some i > - 1 ,  we will 

denote Pr(T) by P~(T), and it is not hard to verify tha t  this coincides 
with our previous definition when T is as defined originally ([1], Theorem 
7.11). (This is one place where we need the requirement tha t  aT(0) = 0.) 

We will say that  a transaction T is of finite duration if there is a real 
number  n _> 0 such tha t  aT(t) = aT(n) for all t > n. (The interpretat ion 
of this is simply tha t  there are no more payments  after t ime n.) The  
greatest  lower bound of all n satisfying the above will be called the 
duration of T. I t  is easy to see tha t  this definition agrees with our previous 
definition of durat ion for T. 

If T is of duration not greater  than n, then 

0 0  n 

f rdaT = f rdaT, 
0 0 

and, by the basic existence theorem for Stieltjes integrals ([1], Theorem 
7.27), it follows tha t  P'(T) exists. 

We now consider the problem of generalizing some of the previous 
theorems. For simplicity we will consider only transactions of finite 
duration, and hence there will be no need to worry about  the existence 
of the integrals. We expect tha t  mdst transactions tha t  one encounters 
in practice are of finite duration. There are of course some except ions--  
perpetuities, for example. 

THEOREM 2'. Suppose that T and S are transactions of finite duration 
such that aT(t) > as(t) for all t > O. Then for any decreasing interest 
preJerence scale r, Pr(T) >_ Pr(S). 
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Proof. Let  n be the maximum of the durations of T and S. Let  ~ -- 
a t  - as. From the integration-by-parts formula ([1], Theorem 7.6), 

n 

P'(T) -- P'(S) = f rd'r 
0 

It 

= r(n)'r(n) -- r(O)'r(O) -- f v d r .  (40) 
0 

Now 
n 

f "rdr <_ O, 
0 

since 3, is nonnegative and r is decreasing. Moreover,  r(n) and ~,(n) are 
nonnegative, and ~,(0) -- 0 (another use of the fact that  aT(0) --- 0). 
This shows that  the expression in (40) is nonnegative, completing the 
proof. 

We come now to the generalization of Theorem 3. 

THEOREM 3'. Let T be a transaction of finite duration n. Suppose 
there is a number k, 0 < k < n, such that 

0 <_ s < t < k implies aT(s) > at ( t )  

and 

k < s < t implies aT(S)  <__ aT(t)  . 

(In other words, aT is decreasing on the inter~al [0, k] and increasing 
on [k, n].) Let r and s be interest preference scales such that the function 
sir is increasing on [0, n] and P~(T) >_ O. Then 

P ' (T)  > Pr(T).  

Proof. The  proof is almost identical with the first alternate proof of 
the original Theorem 3, except that  integrals are used in place of sums. 
Let q = s/r. Then 

k k k 

f sdaT = f qrdar > q(k) f rdar .  (41) 
0 0 0 

This follows directly from the definition of the integral, noting tha t  
q(t) <_ q(k) for all t in [0, k] and that  aT is decreasing on this interval. 
Similarly, 

n n 

f qrdc~T >_ q(k) f rdar .  (42) 
k k 

Adding (41) and (42) and noting that  q(k) >_ q(0) = 1 gives the desired 
conclusion. 
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This theorem shows in particular that  if r is a "yield" of T (in the 
sense that  Pr(T) = 0), we cannot  have another yield s for which sir 
is increasing, or (applying the theorem to s) for which r/s is increasing. 
Now for r(t) = (1 + i)  - t  and s(t) = (1 + j)-t ,  sir is increasing if and 
only if j < i, which shows that  we have indeed generalized the unique- 
ness par t  of Theorem 3. 

The following result deals with the question of the sign of P'(T) and 
generalizes parts of Lemmas 2 and 3. 

LEMMA 3/, Let T be as in Theorem 3'. 

(a) Suppose a(n) > O. 
(1) If  r is increasing on [0, n], then Pr(T) > O. 
(2) I f  r is decreasing on [0, n] and if for some c in the interval 

(o, k), 

r(k) t~(c) l (4s) 
~(c) -< . ( n )  - ~ ( k ) '  

then P'(T) < O. 
(b) Suppose a(n) < O. 

(1) I f  r is decreasing on [0, n], then Pr(T) < O. 
(2) I f  r is increasing on [0, hi, and if for some d in the interval 

(k, n), 
r(d___)) > l,~(k) l 
r(k) ~(n) - ~ ( d ) '  

then P'(T) > O. 

Proof. For simplicity we will let aT be denoted by a. Since 

n 

f l . d a  = a(n) , 
0 

part  (a)(1) follows immediately from Theorem 3', with s replaced by r, 
and r replaced by the interest preference scale that  takes the constant 
value 1 (that  is, a constant interest preference rate of zero). Similarly, to 
prove (b)(1), we note that,  if Pr(T) > 0, we can apply Theorem 3' with 
s = 1, to conclude that  a(n) > 0, contradicting the hypothesis. 

To prove (a)(2), we write 

¢ k n 

P'(T) = f rda + f rda + f rda.  
0 c k 
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Since a is decreasing on [c, k], the second integral is negative or zero, and 
¢ n 

P'(T) < f rda + f rdo, ; 
0 k 

since r is decreasing, 

P'(T) < r(c)a(c) + r ( k ) [ a ( n )  --  a(k)] 

,(k) 

< , (c ) [~(c)  + I - ( c )  11 = o .  

Similarly, to derive (b)(2), we note tha t  in this case 

k n 

e,(T) > f rd~ + f rct,~ 
0 d 

>_ r ( k ) a ( k )  + r (d ) [a (n )  - -  ,-(k)] 

7(-~r(d) ~(d)] 1 > r(k) ~ ~(k) + [,~(n) - 

>__ r(k)[o,(k) + ¢~(k/f] -- O. 

At first glance, Lemma 3' may not  look much like Lemma 3, but  it is 
indeed a reasonably close analogue. Suppose, for example, that  r(t) = 
(1 + i) -~ and T is as in Theorem 3. We apply (43) with c = k on the 
right-hand side and c = k -- I on the left. With these two changes, the 
statement of Lemma 3'(a)(2) says tha t  P i ( T ) <  0 for (! + i) -~ <2 
s / ( t  - s), which is exactly equivalent to the statement of Lamina 3(a). 

We have left for the end the generalization of Theorem l, since it 
involves more advanced methods of mathematical analysis. A natural 
way to generalize this theorem would be to show that  if S and T are two 
transactions of finite duration such that  P' (S )  = P ' ( T )  for all interest 
preference scales, then S = T. In  fact, we will do better than this and 
show as we did before that  a transaction is determined by the value of 
the resulting gain or loss for constant interest preference rates. 

THEOREM 1'. Let S and T be two transactions of finite duration such 

that P~(T)  = PalS) for  all i > --  1. Then S = T. 

Proof. To say that  S = T means in our present context that  a s  ~ a t .  
Let n be the maximum of the durations of S and T, and let 3, = a r  - as. 
We want to show that  7 = 0, given that  

n 

f v t d v  = 0 for all v > O. (44) 
0 
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Now consider the collection of functions F = {t-}v*: v > 0}. We 
note tha t  any continuous function on [0, n] can be uniformly approxi- 
mated  to within any desired accuracy by a linear combination of func- 
tions in F. This follows from standard theorems on approximations. 
Perhaps the fastest method is to note tha t  F is closed under multiplica- 
t i o n - t h a t  is, v~v~ = (vlv~)t--and use the Stone-Weierstrass theorem 
([6], Theorem 7.32). 

From the linearity of the integral and the continuity of the linear 
functional, 

f ~ f f dc~  
0 

([7], sec. 4.32-10), we can then deduce from (44) tha t  

f /d-r = o 
0 

for all continuous functions on [0, n]. Now, since "r(0) = 0 and "t is 
right-continuous, it is a well-known theorem tha t  "y must  equal zero ([7], 
p. 198). 
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APPENDIX I 

A CRITERION FOR STRONG NORMALITY 

What  significance can we at tach to the nonpositive roots of the 
associated polynomial of a transaction? These do not represent yields, 
so one may  feel tha t  these quantities have no bearing on compound 
interest theory and should be ignored. This is not the case, however,  
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since we can derive a criterion for strong normality and critical values 
in terms of these roots. The result is as follows. 

THEOREM 6. Suppose that T = (Co, c l , . . . ,  c,) is L-normal with 
unique field i. Let b = max {Re (z): z a nonpositive root of the 
associated polynomial f} and let r = (1 + i) -~, the unique positive 
root of f. I f  b ~_ r, then T is strongly L-normal and the critical value 
i' satisfies 

(1 + i') -1 < ( n -  1)r + b 
n 

i g  ~ CO 

i f b  > - - ( n - -  1)r ,  

qb  < - ( n -  1 ) r .  
(45) 

Proof. The associated polynomial can be written as f(x) = (x -- r)q(x), 
where q(x) has no positive roots. By L-normality,  q(x) > 0 for all x > 0. 
Differentiating, 

e ( x )  = ( x  - r ) q ' ( x )  + q ( x )  

= q(x)[(x  -- r)q-~q-q'(x) 1] , x >  0 . (46) 

Suppose that  the real nonpositive roots of q(x) are al, a 2 , . . .  , a,~, and 
the complex roots are zl, z2 , . . .  , zl together with their conjugates. We 
have m -[- 2l = n - 1. Let  b i -- Re (z i ) , j  = 1, 2 , . . .  , l. Then 

q ( x )  = c ( x  - a , )  . . . ( x  - a , . ) ( x  - ~ , ) ( x  - ~ , )  . . .  ( x  - z , ) ( x  - ~ , )  , 

where c is a positive constant. Now 

q'(x) d [log q(x)] -- ~ 1 + ~ 2(x - bj~ (47) 
q(x) = dx k=l x a-----~ j=l i x  "~ ~V i" 

Let 

b, = m xt0 1 - -  ° 

n 

We will show that,  for x > b', 

f'(x) > O, (48) 

which will complete the proof (see formula [17]). We do this in two 
steps, showing inequality (48) separately for the case x ~ r and the 

c a s e r > x >  b'. 
For x ~_ r, each term in expression (47) is nonnegative, and inequality 
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(48) follows from equation (46). (At this point we have established the 
strong L-normality.) 

For x > b', 
1 1 

< - -  (49)  
x - - a k - - x - - b  

f o r k =  1 , 2 , . . . , r e ; a n d  

x -- b~. x -- bs 
Ix --  zi[ * -< [Re (x ' - - - z j ) ]  2 = 

1 1 
< - ~  (50) 

x - - b i - x - - b  

fo r j  = 1, 2 . . . .  , l, so that  from formulas (47), (49), and (50) we obtain 

( x -  r) ( r -  x ) ( 5 1 )  q'(x) n 1 < 
q(x) - x -- b" 

Now f o r b ' < x  < r ,  

( n - -  1 ) r + b  < nx  = ( n - -  1 ) x + x  
and 

( n - -  1 ) ( r - -  x) < x - -  b, 

so tha t  (48) follows from (46) and (51). 
In particular, the hypothesis of the theorem is satisfied when f ( x )  has 

no complex roots. We then have b < 0, so 

b' < ( n - -  1 ) r ,  
n 

and 
1 + i  

i ' > _ i + - -  
t~ 

APPENDIX I I  

PARTIALLY ORDERED SETS 

In this appendix we state the definition of a partially ordered set for 
the benefit of the reader not familiar with the concept, and we then 
illustrate the idea ~4th examples from the paper. 

DEFINITION. A relation < on a set X is called a partial order if it 
satisfies the following three axioms: 

(1) x _ < x f o r a l l x i n X .  
(2) If  x, y, and z are elements of X such that  x < y and y < z, 

then x < z. 
(3) If x and y are elements of X such tha t  x _< y and y < x, we 

must  have x = y. 
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If, in addition, < satisfies 
(4) Given any two elements x and y in X, either x < y or y < x, 

then < is called a total order. 

The typical example of a total order is, as we mentioned in Section II ,  
the usual ordering on the set of real numbers. There are many familiar 
examples in mathematics of partial orders that  are not total. One ex- 
ample occurs when X is the set of all subsets of a given set, and A < B 
means A is a subset of B. For another example, take X to be the set of 
all real-valued functions defined on a set S, and define] ~ g if f (s) _ g(s) 
for all s in S. 

The basic example in this paper is a variation on the latter example. 
We let X be the set of all transactions and define S ~ T if T is universally 
better than S. Then < is a partial order. Axioms 1 and 2 are verified 
immediately, while Axiom 3 is a direct consequence of Theorem 1. 

Let Y be the set of all B-normal transactions. If we define S < T if 
S is faster than T, then ~ is not a partial order, for, as we saw in example 
16, Axiom 2 does not hold. (In fact, neither does Axiom 3. Consider 
E,,.~ and End for two distinct interest rates i and j.) However, suppose we 
define S < T to mean that  S is faster than T and the yield of S is less 
than or equal to the yield of T. (Alternatively, we could require the 
yield of S to be greater than or equal to the yield of T.) In this case we do 
get a partial order. For the verification of Axiom 2, see the discussion 
following example 16. To verify Axiom 3, suppose that  we have S and 
T in Y with S < T and T _< S. Then S and T must  have the same 
yield i. If n is the maximum of the respective durations, we must  have 
B~(S) = B~(T) for t --- 0, 1 . . . .  , n -- 1, and also B'~(S) = B~(T) -- O. 
Now, using formula (19), we can deduce recursively that  S = T. 

Let  Y, denote the set of all B-normal transactions with yield i. If 
we restrict the above relation on Y to the subset Y~, we have the result 
that  S < T means simply that  S is faster than T. Hence, for B-normal 
transactions of fixed yield, speed of repayment  does constitute a partial 
order. 



DISCUSSION OF PRECEDING PAPER 

MARJORIE V. BUTCHER: 

In this masterful paper, Dr. Promislow presents a new way of analyzing 
and comparing financial transactions. He develops his thesis through dis- 
cussion and well-chosen examples that lead to his creation of the key con- 
cepts of the paper: the interest preference rate i of an individual; the 
interest preference function Pi(T) of a transaction T; and normal, and 
strongly normal, lender- and borrower-type transactions having unique 
yields and depending on the behavior of Pi(T). In practice, many if not 
most typical lender investments are strongly L-normal, and most bor- 
rower loans are strongly B-normal. Thus, the fresh ideas of the paper 
will be useful in financial analysis. 

Dr. Promislow formulates a considerable number of insightful theo- 
rems, corollaries, and lemmas. He provides elegant, succinct proofs and, 
as needed, additional definitions, discussion, and examples. Especially 
noteworthy are the comparison of transactions by using interest prefer- 
ence rates rather than yield rates, and the development of outstanding 
investment and consumer loan analysis. Throughout, the mathematics is 
superb and crisp. I found it essential to read and consider the ideas very 
carefully, because they are so new and plentiful as to be rather elusive. 

Curiously, a transaction T is universally belier than itself, and, if it is 
B-normal, alsofasler than itself! Also, in the example preceding Theorem 
4, different transactions R and S are faster than each other. These ap- 
parent anomalies are the result of definitions that are mathematically 
convenient and even necessary (as in the proof of Lemma 5). The prob- 
lem is chiefly semantic. The paper provides a way around the first of 
these anomalies: Since the statement (Sec. VII) "T  - - S  is universally 
profitable" means "For all i, P i ( T -  S)> 0," one could define the 
statement "T  is universally more profitable than S" to mean "For all i, 
PdT) > PdS)." One should compare the similar, but different, concepts 
"universally better" and "universally more profitable" as they relate to 
two comparable transactions T and S. 

In Section VI, in the third paragraph following Lemma 1, the author 
correctly states that if S and T are universally comparable (in the sense 
of one being the better), and if either one is L-normal, then the higher- 
yield transaction is better for the lender. In the supporting argument, the 
inequalities all should be strict. For instance, suppose that T is L-normal 

93 
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with yield j ,  and S has yield i. If  i < j ,  then PI(T)  > 0 = P d S ) ,  so T 
is the bet ter  transaction at  rate i and universally. But  if i -=  j ,  then 
P~(T) = P d S )  -- 0, and either S or T m a y  be universally the better. 
I found it instructive to construct  an example in which S is universally 
the better,  based on j = i = 100 percent. Let  the associated polynomial 
f of T be 

f (v )  = 4 ( v -  ½) = - -2  -t- 4v = - -2  q- 4(1 q- i ) - '  = P , ( T )  ; 

then T = ( - 2 ,  4) = ( - 2 ,  4, 0) is L-normal (as stipulated) with yield 
i = 1. For S to be universally bet ter  than T, we want  

P , ( S  -- T)  = P i (S )  -- P , ( T )  = g(v) - - f ( v )  > 0 ,  i ~ l(v ~ ½) 

= 0 ,  i = 1 ,  

where g is the associated polynomial  of S. A suitable choice is 

P i ( S - -  T) = 4 ( v - -  ½)5 = 1 -- 4 v q - 4 v  2, 

and so S -- T = (1, --4, 4). Thus,  

S = T +  ( S - -  T) = ( - -2 ,  4 ,0 )  + ( 1 , - - 4 , 4 )  = ( - - 1 , 0 , 4 ) .  

Clearly, S is also L-normal with yield 1, and, by our construction, it is 
universally bet ter  than T. (Given the L-normali ty  of T, S had to be either 
L-normal  or nonnormal.) 

The  first proof of Theorem 3 (based on Descartes 's  rule) requires some 
additional analysis, using calculus, to deduce strong L-normali ty.  I t  is 
fairly easy to show tha t  the critical value i '  is greater than  or equal to 
the yield rate i, but  it is not so readily apparent  tha t  i '  is greater than i. 
In  any event, Dr. Promislow provides an alternative proof of the theorem. 

The  proof of Corollary 2 proceeds by the separate cases i < j (of the 
paper)  and i = j ,  and produces stronger conclusions under (a) than 
those stated, namely, 

(a) If  S is faster than Q, then any nonzero [my addition] S - Q is 
L-normal with yield greater than j if i < j and equal to j if i = 
j. In particular,  

Pk(S -- Q) > O, - 1  < k <_ j ,  

except t h a t P , ( S - O )  = 0 i f i = j a n d k = j ,  o r i f S = Q .  

I was able to convince myself  of the proof of Theorem 5, as outlined, 
for 0 < k < g(n, i) = i' in (a) and for 0 < k < h(n, i) = i 'p in (b). To 
show the result in (a) for i t < k < i, one need only recall tha t  if S is 
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B-normal and k is greater than the yield of S, then Pk(S) > 0; similarly, 
Pk(R,,.i) ~_ O, so Pk(S) > P~(R,.i). The case i" < k < i, in (b), is similar. 

In general, throughout this complicated paper,  the author 's  choice of 
notation seems good. Occasionally, however, the same symbol is used 
simultaneously in two senses. For example, in Theorem 3 r, s is used to 
denote both time and an interest preference scale. 

I had a little trouble with the author 's  comparison of Lemma 3' 
and Lemma 3. However,  application of formula (43) with c = k on the 
r ight-hand side and c = k -- 1 on the left, r(l) = (1 + i) -1, and insertion 
of the notation of Lemma  3 (e.g., a(n) = t -- s > 0), give 

$ $ 
(1 + 0 -1 _< ( t -  s) + s = - / - '  

and i > (t - - s ) / s .  For such i, L e m m a  3'(a)(2) (as manipulated) sug- 
gests Pi(T)  < O. By Theorem 3, the T of Lemma  3(a) is strongly L- 
normal,  so for all i > io, Pi(T)  < 0. Since (t - s ) /s  >_ io in Lemma 3(a), 
clearly Pi(T)  <_ 0 for all i >_ (t -- s)/s, and the comparison is complete. 

Dr. Promislow states tha t  his paper  arose from an investigation into 
the concept of yield rate, and he mentions various difficulties, such as 
the phenomena of multiple-valued and nonexistent yield rates. In  our  
1971 book, 1 Dr. Cecil J. Nesbi t t  and I also explore certain questions of 
uniqueness of rates. For instance, problem 139 (p. 154) concerns the 
behavior of the basic interest funct ions--(1 + i) n, v n, s~i, and a~,--as  
functions of n (for fixed i > 0) and as functions of i >_ 0 (for fixed n > 0). 
We point out: " In  solution of equations of value for i or n, an important  
question is whether there is a unique (exact) result ." Following the 
analysis, we conclude: "Thus,  if f denotes one of the basic interest func- 

tions (those above or s~ 1 or a~X), the result of, say, inverse interpolation 
for i or n, based o n / =  a constant,  is an approximation to the unique 

exact result, except in the cases sE~ = 1 and s~X~ = 1 (which are satisfied 
by  all i >_ 0)." Again, in section 5.6, discussing the yield rate of a bond 
having a given book value at  purchase  and held to a fixed redemption 
date,  we show tha t  there is a unique, exact yield rate. 

Our principal effort in this direction, however, is in section 6.6, the 
mathemat ica l  setting of the interest  rate problem. We take the lender's 
or investor 's  viewpoint, but  our orientation is the opposite of Dr.  
Promislow's; we want  the outstanding principal to be positive while the 
borrower is in a debtor position, so we consider payments  f rom the lender 

1 M. V. Butcher and C. J. Nesbit t ,  Mathematics of Compound Interest (Ann Arbor, 
Mich.: Ulrich's Books, Inc., 1971). 
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to the borrower to be positive. To us, transaction T is (W0 > 0, W1,  . . . , 

W, ~ 0), and " the interest rate problem" consists of solving for v the 
equation 

~-~ |Vkv k = 0 ,  (1) 
k = 0  

or, as we prefer it, solving for u = 1 + i the equivalent equation 

~ ' ~ W k u  " -k  = 0 ,  (2) 
k = 0  

in order to obtain i. Since equation (2) is a polynomial equation of 
degree n, it has n solutions, real or imaginary, and we want to identify 
cases having unique positive solutions for the yield rate i. 

First, we consider the (retrospective) outstanding principal at the end 
of each period, namely, 

S h ( u )  =- W o u  h + W , u  h- '  + . . .  + Wh (h  = O, 1 . . . .  , n ) ,  (3) 

and deduce that  

i ~ s ~ ( u )  = S , ( u )  - t v~ .  (4) 
h=o h=O 

If u is a solution of equation (2), then S,~(u) = 0 and 

i ~ Sh(u) = - Wh,  (5) 
h--~= h=o 

each of these expressions representing the total interest at rate i on the 
successive principals outstanding. The investor wants i > 0, and nor- 
mally this is accomplished by having both 

Y~ Sh(U) > 0 and IVh < O. (6), (7) 
h = 0  h~o  

In fact, in lieu of formula (6), we impose the more restrictive condition 

S ~ ( u )  > O (h  = o, 1, . . . , n - 1 )  , (8) 

because if some S h ( u )  < 0, there is the question of what rate of interest 
should be credited when the original investor becomes, in effect, a bor- 
rower during the transaction. We call an)" transaction in which formula 
(8) holds a pure  i n v e s t m e n t  (at rate i = u - 1). I t  typifies the usual 
investment. 
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Now we come to our main theorem, 
Let Wo be greater than O, W ,  be not equal to O, and let relation (7) hold. 
Then there is at least one change of sign among the Wh(h = O, 1, . . . , 
n). 

Case 1: If  there is only one such change of sign, then S,(u)  = 0 has a 
unique solution ux > 1, il = u l -  1 > 0, and at interest rate il, 
transaction T is a pure investment. 

Case 2: If there is a positive even number of such changes of sign, then 
no solution ux > 1 of S,(u)  = 0 exists such that  T is a pure investment 
at rate il. 

Case 3: If there is an odd number, exceeding 1, of such changes of sign, 
then there is a positive number u0 such that  for all u > u0 the transac- 
tion is a pure investment, and for u > u0 the Sh(u) (h = 1, 2, . . . , 
n) are strictly increasing functions of u. Further, S,,(u) = 0 has at 
most one solution ul such that  ut > u0 and u~ > 1. If  u0 _< 1, or if 
min u0 = u0* ;> 1 and Sn(u~) <_ O, then there is a unique such ux (_>u*). 
If  Uo > 1 and S,(u~) > O, then there is no such ux(>u~). 

Since case 1 of this theorem includes the commonly encountered single 
advance W0 by the lender to the borrower, it contains the usual amortiza- 
tion and bond transactions, all of which therefore have unique yield 
rates. Only in case 1 and the first two subcases of case 3 is there a pure 
investment at a unique positive rate of interest. 

I t  is interesting to compare Dr. Promislow's ideas and ours. Allowing 
for opposite orientations, our case 1 is described by his relations (14); by 
Theorem 3, the T of case 1 is strongly L-normal. His Lemma 1 concerns 
transactions T with at  most one yield. Our case 1 (his Theorem 3) 
identifies some such T's, namely, those with just one change of sign 
among the W~, with W0 = --co > 0, and W~ = --c~ < 0; then (i) of 
Lemma 1 holds, and T is L-normal with unique yield (again) i > 0, 
since Y'~=0 Wh --- - -s  < 0. At  first it appears tha t  case 3 identifies other  
transactions with at most one yield, but  it is limited to solutions i~ > 0, 
whereas the lemma permits yields greater than -- 1. Case 2, as well, does 
not pertain. 

If  a transaction T satisfies Promislow's inequalities (20), then - - T  (to 
the lender) is a pure investment at rate i. By means of his relations (23), 
we see that,  for a lender, any transaction with its first payment  to a bor- 
rower is a pure investment at a sufficiently high interest rate. In  com- 
paring our theorem and Promislow's Theorem 4, we note that  both are 
concerned with yield rates for pure investments. On the one hand, we 
seek information about the number of yield rates for pure investments 
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at those yield rates. On the other hand, Theorem 4 hypothesizes that  - T  
is a pure investment at rate i and seeks information about yield rates 
for T, and hence - T ,  in relation to that  rate i. 

Like Dr. Promislow, we cite Jean's 1968 paper. Among other papers 
on the interest rate problem, we were intrigued by two 1965 papers bv 
Teichroew, Robichek, and Montalbano, 2 which offer an extensive gen- 
eral discussion of the problem and, in the context of capital budgeting, 
analogies to some of Promislow's work. Actuaries may recall the lively 
and often amusing probing of the interest rate problem, featuring exam- 
pies, in several issues of The Actuary, beginning in February, 1968. 

Dr. Promislow has made his own significant contribution to the theory 
of interest with his creation of interest preference rates, normal transac- 
tions, and so on, and their mathematical ramifications. I commend him 
highly for his truly remarkable, stimulating, and thorough paper. 

JAMES C. I-IICK~AN: 

To many actuarial students, the theory of interest has been a sterile 
subject. Unlike subjects such as statistics, risk theory, and investment 
management, which have been profoundly changed by a series of new 
ideas and rocked by intellectual controversy, the solid old theory of 
interest remains as it was in the nineteenth century, untouched by new 
ideas. Mr. Promislow has helped change that. His achievement is 
considerable. 

In his "new approach," the theory of interest is to be more than a 
description of commercial practice; it is to provide a framework for 
financial decision making. Consequently, he bases his theory on the time 
preferences of individuals. This is clearly the place to build a theory 
that will have decision consequences. 

Next, he introduces actuaries to the two decision criteria developed 
within management science for ordering or selecting transactions. In 
management science this process is called "capital budgeting." The two 
decision criteria are (1) ordering or selecting on the basis of yields (called 
"internal rates of return" elsewhere), and (2) ordering or selecting on the 
basis of discounted present values, as indicated by equation (4). In Sec- 
tions IV-VII ,  the author defines normal transactions and shows how this 
definition can provide insights into the use of the theory of interest as a 
decision tool. 

The main part  of this discussion will center on an elaboration of Section 

2 D. Teichroew, A. A. Robichek, and M. Montalbano, "Mathematical Analysis of 
Rates of Return under Certainty," Management Science (Ser. A) XI (January, 1965), 
395-403, and "An Analysis of Criteria for Investment and Financing Decisions under 
Certainty," Management Science (Ser. A) XII (November, 1965), 151~79. 
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VII I .  The  extension is due to Teichroew, Robicek, and Montalbano 
[2, 3]. 

We s ta r t  with a modification of equation (19), the definition of the 
outstanding investment  at  t ime I. We have 

B [ , , ( T )  = Co, l = 0 

= , , B t - X ( T ~  _ _  ( 1  + i)B~S~I(T) + c, , , , ,  : > 0 

= B * - a : T  ~ , = . . (1 + r ) B ~ J ( T )  + c , ,  i . r \  , < 0 t 1 , 2 ,  . , n .  

We note tha t  B~, i (T )  = B~(T), the symbol used in the paper. This 
richer model allows the outstanding balance to depend on two rates of 
interest. The  rate i is applicable if the outstanding balance is nonnegative 
and a loan or financing exists. The  rate r applies if the outstanding bal- 
ance is negative and investment  exists. 

The economic justification for this model is tha t  the financing or loan 
rate (i) associated with a transaction or project is not necessarily the 
same as the investment  rate (r). This more elaborate model provides 
insights into issues tha t  remain somewhat  puzzling in models using only 
one rate. First, it will tell us something about  the multiple roots that  may  
occur for internal rate of return equations. Second, it will lead to a com- 
prehensive selection rule. 

We can learn a great deal about  this model by  examining B~. , (T ) ,  the 
final value of transaction T. Figure 1 traces typical contours of the form 
BT.r(T)  = aj:  on the left-hand side, i0 is the smallest interest rate such 
tha t  B~,r (T)  is a function only of i ;  on the right, r0 is the lowest invest- 
ment  rate such tha t  B ' , r ( T )  is a function only of r. Tha t  is, if Co > 0, 
there is an interest rate i0 such that,  for i > i0, the transaction balances 
remain nonnegative and the value of B'~.r(T) depends only on i. Likewise, 

M i x e d  Pure 
financing 

~3 a4 

P u r e  
a4 investment 
a j  

ro az 

co > 0 c o < 0 

I:IG. l.--Typical contours of BT, r(T) = aj, ao < al < a.~ < a3 < a4 
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if Co < 0, there is an investment rate r0 such that  the transaction balances 
remain nonpositive and B~r(T) depends only on r for r 2> to. 

A region in the (i, r) plane where B~.,(T) is a function of i alone is 
called a pure financing region, and a region where B~.r(T) is a function of 
r alone is called a pure investment region. Where B~.r(T) depends on both 
i and r, the region is called a mixed region. We note that  an increase in 
the loan rate i will cause an increase in the final balance B~.r(T), and an 
increase in the investment rate r will cause a decrease in the final bal- 
ance B~.r(T). 

Within the pure investment and the pure financing regions, a result by 
Kellison [1], quoted bv Promislow, ensures a unique internal rate of 
return. Within the mixed region, multiple internal rates of return occur. 
To see this requires additional development. The equation 

BT.,(T) = 0 

implicitly defines two functions i = i(r) and r = r(i). Since B~.i(T) = 
(1 + i)"Pi(T), solving the equation Pi(T) = 0 for internal rates of return 
is equivalent to solving B~.i(T) = 0. The equation B~.i(T) --- 0 will have 
solutions when i = r(i). In  the pure financing region, where the final 
balance does not depend on r and B~.,(T) increases with i, there can be 
only one solution to the equation B?,~(T) = 0. Within the mixed region, 
i = r(i) and B~.r(T) = 0 for several values of i. One can see that  if a 
transaction has a mixed region, solving the equation B~.~(T) = 0 for i is 
restricting examination of the function to the line i = r. 

Teichroew, Robicek, and Montalbano also use their model in the 
selection of capital budgeting projects. Promislow uses his decision mod- 
els to create a partial ordering of possible transactions or projects. The 
selection model assumes that  the firm or individual selecting projects 
can obtain funds at rate k. In addition, it is assumed that  the financial 
goal of the firm or individual is to increase its present value. Then the 
rule is to accept transaction or project T if 

r(k) > k or k > i (k ) .  (1) 

Recall that  the functions r(i) and i(r) were defined implicitly by the 
equation B~.~(T) = O. 

The detailed justification of this selection rule is rather intricate. How- 
ever, that  it is plausible may be seen from an examination of the follow- 
i ng expressions: 

B~,k(r) > /~,r~k~(T) = 0 ,  
(2) 

~ , d T )  > BT~,~(T) = 0 .  
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Inequalities (2) hold if inequalities (1) prevail. They may be verified 
by recalling the impact on BT.r(T) of a change in i or r. Since 

B'~.k(T) = ~ (1 + k)"-tcj = Pk(T)(1 + k)" ,  
t = 0  

which may be interpreted as the final balance at the firm or individual's 
cost of money rate k, the rule is equivalent to accepting a project if 
Pk(T) > O. 
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PIERRE CHOUINARD: 

Papers on the theory of interest are too rare. Mr. Promislow must be 
thanked for his contribution to the field. 

I used to teach the theory of interest, and I found that the concept of 
yield rate was made difficult by the reinvestment question. Students 
learn from the beginning that  an investment of $1,000 at compound rate i 
will accumulate to $1,000(1 + i)" at the end of n periods. In their words, 
they understand that $1,000 will grow to $1,000(1 + i)" if invested in a 
fund whose yield is i. When they get to the chapter on yield rates, a few 
months later, they learn that the yield rate of a transaction is the rate 
at  which the present value of inflows equals the present value of outflows, 
that is, the rate i satisfying 

~"~I,vi'= ~'~Otz'i', or P,(T) = O, (1) 
t~O t=O 

where I is an inflow and 0 an outflow. Because students are used to 
thinking of yield rate retrospectively, they inevitably raise the question, 
"what rate of reinvestment is implied by that definition?" They want to 
evaluate how much money the investor has in his hands by the end of 
the transaction. The easy answer to that question is, "No rate of re- 
investment is implied by that definition; apply it without question." 

Another answer is, "That  definition implies that the investor reinvests 
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his money at this same rate i." To reinforce this last point, we may 
rewrite (1) as 

/,(1 + i )" - '  = ~ 0,(1 + i ) ' - ' .  (2) 
t=O t =O 

Taking the example of a loan transaction, we observe that  the left-hand 
side of equation (2) represents the repayments of the borrower reinvested 
by the lender at rate i until the end of the transaction. The right-hand 
side of the equation represents the lender's original disbursements with 
interest at the steady "yield" rate of i. 

The second answer generally is more satisfactory to students, because 
they are able to see by general reasoning what may have happened. For 
most finance people, however, the first answer seems more satisfactory 
and less troublesome. Even if we could convince students of the reason- 
ableness of the first answer, they would not remain convinced after en- 
countering a loan problem ending with the question, "What  is the yield 
rate of this loan assuming that  Mr. A can replace his capital at a rate of 
4 percent?" where 4 percent is not the lending rate. You then would have 
to explain that a portion of each borrower's repayment is reinvested in a 
fund earning less than the lending rate, so that the fund will have ac- 
cumulated, by the end of the transaction, the capital disbursed at the 
outset of the transaction. The portion of the borrower's payment left 
over after the sinking-fund disbursement is the pure interest portion and 
leads to the yield when divided by the original price of the transaction. 

"Make up your mind, Prof. Is the definition of yield rate an objective 
one, independent of reinvestment, or do we have to make assumptions 
as to reinvestment? And, if we have to make assumptions, why do we 
assume that only a portion of the repayment is reinvested at a different 
rate? What about the reinvestment of the interest portion?" 

What I have always theorized (but never dared to say out loud because 
I thought I was the only one to worry about this silly reinvestment) is 
that  there should be two different yield rates: a prospective one, objective 
as it is now and aimed at problems not involving reinvestment, and a 
retrospective one, calculated as of the end of the transaction and neces- 
sitating hypotheses or facts as to reinvestment. The retrospective yield 
would be the rate i satisfying 

I,(1 + j ) " - '  - ~ O,(1 + i ) " - ' ,  (3) 
t=O t = 0  

where j is the rate at which the inflows are reinvested. Actually, the 
retrospective yield i turns out to be the rate of growth of the amounts 
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disbursed in the course of the transaction. If we assume j = i, we obtain 
equations (2) and (1) and conclude that the retrospective yield equals 
the prospective yield when j = i. 

By analogy with Mr. Promislow's approach based on individual prefer- 
ence rates, we might develop a retrospective yield approach in order, 
for example, to determine the most profitable among a series of transac- 
tions that are not readily comparable. Let us define F~.i(T) as 

Fi.s(T) = ~ It(1 + j ) ~ - t  -- ~ 0,(1 + i ) ' - t ,  (4) 
t~O t=O 

where the symbols have the same meanings as previously. The retro- 
spective yield rate of T is the rate iv satisfying 

F i r , y ( T )  = 0 

for a given rate j. Given two transactions T and S, we may, analogically 
with the critical individual preference rate (defined as the rate correspond- 
ing to the point of intersection of the respective interest preference curves 
of T and S), calculate a critical reinvestment rate, which is the ra te j '  at 
which i~ = is, that is, the rate of reinvestment that makes an investor 
indifferent in choosing between T and S. For all reinvestment rates ex- 
ceedingj', we will then say that either ir exceeds is or is exceeds/7, (but 
not both!), and vice versa for reinvestment rates below j ' .  

The graph of the retrospective yield rate i against the reinvestment 
rate j, for various transactions, provides a visual check of what has just 
been said. For transactions T and S, for example, the graph may take the 
form shown in Figure 1. The points of intersection ys and yr of line Y 

aA 

a~ J i 
j' Reinvestment Rate j 

FiG. 1.--Graph of retrospective yield rate i against prospective yield ratej 
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(i = j)  with curves S and T are the traditional prospective yield rates 
of S and T, respectively, since, at these points, the rates of reinvestment 
equal the yield rates (i = j),  and, as seen before, the retrospective yield 
equals the prospective yield when this condition is met. The point of 
intersection of S and T corresponds to the critical reinvestment rate j ' ,  
at which rate the retrospective yields of both transactions are equal 
( i t  = is). 

At this point, it is worthwhile to mention an interesting fact. Suppose 
we wish to compare two usual loan transactions T and S (each consisting 
of a single outflow at time 0 repaid by a series of inflows). We reach 
exactly the same conclusions using either the interest preference rate 
approach or the retrospective yield approach, provided that the amount 
lent at the outset is the same. In other words, two loan transactions in- 
volving the same single disbursement at time 0 will produce a critical 
interest preference rate identical with the critical reinvestment rate men- 
tioned above. Other interesting facts certainly will be brought to light 
with more research on this subject of retrospective yields and reinvest- 
ment rates. 

I will end my discussion by redoing example 7 of the paper with the 
retrospective yield approach and from the lender's viewpoint. The two 
loan transactions were T = ( -10 ,  +9 ,  -{-9) and S = ( -10 ,  +4.5,  
+14.5). The critical reinvestment rate is the rate j '  at which the two 
series of repayments will accumulate to the same amount after two years. 
Mathematically, it is rate j '  such that 

9(1 -b j ' )  + 9 = 4.5(1 + j ' )  + 14.5. 

I t  is no surprise to observe that j '  equals ~, that is, the critical interest 
preference rate found in example 7. Using well-known terms, ~j is the 
sinking-fund rate that will make an investor indifferent in choosing be- 
tween the two transactions. If he can r~invest his money in a sinking 
fund earning more than ~, he will choose transaction T, because the 
retrospective yield of T is then higher; otherwise, he will choose transac- 
tion S. 

WARREN R. L U C K N E R :  

Professor Promislow has written an excellent paper that is worthy of 
study b)" an)" student of interest theory. Although I do not consider my- 
self in the group of actuaries who "probably feel that the}" understand 
the subject completely," I do feel that I have a fairly good understand- 
ing of the subject. Professor Promislow has helped to present a new 
perspective on the concept of yield rate with his discussion of the concept 
of interest preference rate. My discussion is centered primarily on the 
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definition of yield rate, but also comments on some of the examples and 
attempts to expand upon some of the practical interpretations presented 
in the paper. 

Yield Rate 

Professor Promislow defines yield rate in a theoretical manner as fol- 
lows: "We say that i is a yield rate of T if Pi(T)  = 0." In this definition, 
Pi(T)  = X~-=I c~.(1 + i) -k denotes the familiar present value of a sequence 
of payments. The transaction T is denoted bv (co, c t , . . ,  cn), where c~. 
is the pay'ment at time k. 

Having taught interest theory from Mr. Kellison's text and having 
placed substantial emphasis on the definition of yield rate, I am par- 
ticularly interested in comparing Kellison's definition with the above. On 
page 117 of Kellison's text, yield rate to an investor is defined as follows: 
"The yield rate is that effective rate of interest at which the present value 
of his expenditures is equal to the present value of his returns." Mathe- 
matically, the two definitions are equivalent. 

I t  should be noted that the Kellison definition is presented in the con- 
text of an investor making a series of expenditures at various points in 
time and receiving payments in return at various points in time; but, as 
Professor Promislow points out, yield rates "depend solely on the transac- 
tion and are independent of any particular individual." 

The Kellison definition has some advantage in being more intuitively 
understandable than the Promislow definition, which is presented in 
strictly mathematical terms. However, the Kellison definition may be 
deficient in not discussing yield rate from the point of view of the bor- 
rower in the standard loan transaction. If one tries to apply the Kellison 
definition to the borrower, one may become somewhat confused. 

For example, consider a loan of L being repaid by equal annual pay- 
ments of P for n years, with the first payment due one year from the 
time of the loan. From the lender's point of view, the present value of 
expenditures is L and the present value of returns is Patio. The yield 
rate is determined by the equation "present value of expenditures equals 
present value of returns," or L = Parl~o. 

From the borrower's point of view the present value of expenditures 
is Pa~l~o, and the present value of returns is L. Then the yield rate is 
determined by the equation "present value of expenditures equals 
present value of returns," or Pa;li o = L. Both viewpoints yield the same 
equation. Does that mean that the borrower receives the same yield rate 
as the lender? Of course not. I t  supports Professor Promislow's point 
that yield rates depend solely on the transaction, and it points out the 
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importance of distinguishing between what Professor Promislow defines 
as L-normal and B-normal transactions. 

From the lender's point of view, the loan transaction just discussed is 
given by (--L,  P, P, . . .  , P) and thus is L-normal. From the borrower's 
point  of view, the transaction is given by (L, - -P ,  - P , . . . ,  - - P )  and 
thus is B-normal. 

As Professor Promislo~y points out, once the normality of the transac- 
tion is determined, the interest preference rate concept enables an 
individual to determine whether or not the transaction is to his ad- 
vantage. 

Examples 

The following comments briefly address the question of how the theory 
presented in the paper resolves the difficulties presented in some of the 
examples in Section IV ("Limitations on the Use of Yield Rates"). 

Example 1: The theory does not resolve the problem, but helps to analyze the 
reason for the problem. (Sec. VII:  "Decomposition of Transactions"). 

Example 2: Of all the examples in this section, this is the one that is perhaps 
most directly addressed by the basic theory presented in the paper. The 
categorization of transactions into L-normal and B-normal is undertaken 
specifically because of the difficulties presented in this example. 

Example 3: The paper introduces the concept of "universally profitable" to 
address the problem presented in this example. This example is similar to 
policy loan borrowing, which perhaps should remind one not to forget the 
practical questions of tax implications and the like when evaluating alterna- 
tive transactions. 

Example 4: This example serves to remind one that, in considering alternative 
investments, it is important to use comparable time periods. 

Example 5: The 4.5 percent loan arrangement in this example is interesting 
because the yield rate from the lender's point of view is 4.5 percent, while 
from the borrower's point of view the yield is not 4.5 percent. This problem 
is similar to example 5.4 in Mr. Kellison's text. Using the definition of yield 
rate in that text, the equation to be solved is the following: I = [0.045 + 
(s~-6]0.045)-t]a~-"~i0; which results in i0 - 5.56 percent. Thus, the borrower, by 
choosing the 5 percent loan (which has a 5 percent yield rate), is still choosing 
the loan with the lower yield rate. 

Practical Interpretations 

In  the discussion of the question of speed of repayment  in Section 
VII I ,  the test given is as follows: "Given B-normal transactions S and R, 
we say that  R is faster than S if (24) holds for i equal to the maximum of 
the two yields and n equal to the maximum of the two durations." The 
author  states that  condition (24) IBm(R) < B~(S), t ~ O, 1 , . . . ,  n - 1] 
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"holds for sufficiently high values of i simply under the hypothesis that, 
for the first place where the payments of S and R differ, the one in S is 
higher." One may have some difficulty in trying to interpret that state- 
ment intuitively. Considering B~(T) as the outstanding balance, it would 
seem that if, for the first place where the payments of S and R differ, the 
one in S is higher, then the outstanding balance in S should be lower, and 
hence B~(S) < B~(R) rather than B~(R) <_ B~(S). However, in considering 
B-normal transactions, payments on a loan appear as negative values 
and, in the context of the paper, the phrase "the payment is higher" 
does not mean that the loan repayment is higher but rather that the net 
payment (loan less loan repayment) is numerically greater under S at the 
first place where the net payments differ. 

For example, consider the following R and S transactions: 

R = ( 2 0 , - - 1 0 , - - 1 0 ) ,  S = ( 2 0 , - - 5 , - - 1 5 ) .  

One would like to say that R is faster than S. Note that at the first place 
where the payments differ, the payment  in S (--5) is greater than the 
payment in R (--10). Thus, the statement quoted above would suggest 
that  R is faster than S. 

What does the test indicate? Note that  both transactions have a yield 
rate of zero. Thus, we only need to consider Bto(S) and Bto(R) for t = 0, 
1, 2. The table below summarizes the results: 

l = 0  l = l  1 = 2  

Bg(R) . . . . . . . . . . . . . . .  20 10 0 
Bto(S) . . . . . . . . . . . . . . .  20 15 0 

Thus, B'o(R) <_ Bto(S) for t = 0, 1, 2, and R is faster than S. This simple 
example also points out the importance of considering speed of repay- 
ment as well as yield rate. 

Theorem 4 in Section VI I I  lends itself fairly easily to practical inter- 
pretation. Part  (a) says that, under the conditions given (B~(T) > 0, 
t = 0, 1 , . . . ,  n - -  1, a n d c t # 0 f o r s o m e t  < n), if at the end of the 
transaction period (i.e., at  time n), the outstanding balance, based on a 
certain interest rate i, is zero, then the transaction is a borrowing transac- 
tion with unique yield rate i. This is not surprising. 

Part  (b) says that  if at the end of the transaction period the outstand- 
ing balance, based on i, is less than zero, then the transaction is a borrow- 
ing transaction with unique yield rate greater than i. Does that make 
sense? Yes, because B~(T) < 0 means that the borrower paid too much 
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for the transaction to have a yield rate of i; that is, he paid enough to 
give the lender a somewhat higher yield rate. 

One might like to be able to say more in part (c). However, all that 
one can say is that if at the end of the transaction period the outstanding 
balance, based on i, is greater than zero, then all individuals with interest 
preference rate greater than or equal to i, will gain on the transaction. 
But that actually says quite a bit and gives some useful information. 

Conclusion 
In concluding this brief and elementary discussion of Professor 

Promislow's paper, I would like to make two observations. 
First, perhaps the main point of the paper is that when attempting to 

compare transactions, one should keep in mind that in most cases the 
choice will depend on the particular individual contemplating the transac- 
tion and that an analysis on the basis of yield rates is not always possible 
or conclusive. 

Second, some may say that for the usual cases, yield rate analysis is 
relatively simple and works well. However, even if that  is true, it is 
important to specify which cases are the "usual" cases. Professor Promis- 
low aids us in this area with the L-normal and B-normal categorizations. 
Moreover, example 3 is an illustration of an important situation in which 
yield rate analysis is deficient. 

MICHAEL A. B E N N E T T :  

I wish to thank Professor Promislow for his efforts to clarify the yield 
rate problems that sometimes arise in practical situations. I always have 
believed that it is very important to specify clearly what a yield rate is 
and is not supposed to be. If Professor Promislow is providing a new 
approach to the fundamental problem of comparing two financial transac- 
tions, as is claimed in his introductory comments, then I think that his 
mathematical exposition would be made much clearer with a definition 
of exactly what he means by one transaction as distinct from several 
transactions. A rigorous definition, both in mathematical terminology 
and in words, would be helpful, at least to me, in determining whether his 
examples involve one transaction, from which I would expect one yield 
rate, or several transactions combined, for which I would not be sur- 
prised at a result showing several possible answers. 

Kellison, on page 119 of his text The Theory of Interest, states: "Thus, 
if the outstanding investment is positive at all points throughout the 
life of the investment, then a yield rate will be unique. However, if the 
outstanding investment ever becomes negative at any one point, then a 
yield rate is not necessarily unique." 
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I suggest that this condition forms the basis of the definition required 
for "a transaction" and that, if the outstanding investment (including 
the interest consideration) ever does change its sign, then more than one 
transaction is being considered. 

Suppose we define the outstanding balance at any point r, just after 
the payment cr has been made, as B,--- 2;~=0 &.(1-t-i) T-k (following 
Kellison's notation). Taking Co, the initial part of the loan payment, as 
a negative amount and the repayments as positive amounts, as the 
author has done, then the condition suggested is that Br < 0 for 0 ~ r 
n a n d B r =  0 f o r t - =  n. 

Taking (1 "t- i) r outside the summation sign yields 

r 

n~ = (1 -b i) r ~]  ckv ~ , 
k~0 

which we require to be negative. 
That  is, since (1 -t- i)" > 0 for i ) --1, Professor Promislow's poly- 

nomial f(v) is less than zero for 0 ~ r < n, and the first time it becomes 
zero is at time n. 

To make an analogy with life contingencies, if a survival function 
s(x) is equal to [(25 - x)(100 - x)]/2,500, then the value of omega is 25 
and is unique. The fact that 100 also produces a value s(x) = 0 does not 
mean that two satisfactory values of omega exist. 

I suggest that  the author may have a different definition of one transac- 
tion. If so I hope he will help me to understand his paper by stating what 
it is. 

R O B E R T  L.  B R O W N :  

I would like to thank Professor Promislow for presenting this paper 
for publication in the Transactions at this time, since it brings to the 
surface the importance and complexity of the theory of interest at a time 
when the Society is, unfortunately, deemphasizing that same topic. 

As Professor Promislow says, "The theory of compound interest gen- 
erally is considered to be among the most elementary topics in actuarial 
science. Most actuaries probably feel that they understand the subject 
completely. There are, however, certain paradoxes and ambiguities that 
suggest that some revision of the theory may be desirable." The author 
hits a very important nail squarely on the head. 

Professor Promislow's paper may not be the best example of those 
paradoxes or ambiguities, however. If the paper is written for the actu- 
arial community, then it is of limited value, since, as the author points 
out, "for the usual transaction that one encounters in practical situations 
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there is a unique yield rate that, if properly interpreted, gives pertinent 
information about the transaction." If the paper is written for the 
mathematical community, then it is of limited value, since the mathe- 
matical theory contained therein is familiar to any capable mathematics 
undergraduate. 

The real value of the paper, to me, lies in the fact that it illustrates in 
a clear and most interesting way just how varied and complex the theory 
of interest can be. As Professor Promislow states, most actuaries prob- 
ably feel that they understand the topic of compound interest completely. 
Perhaps that is little more than proof of the adage "the more you know 
the more you realize how little you know." 

Certainly, there is a very real danger that actuaries in the future will 
be desperately limited in their knowledge of the theory of interest. In an 
effort to satisfy the enrolled actuaries, the Society has reduced the 
requirement of demonstrable knowledge in the area of compound interest, 
at least superficially, to a level comparable to Life Office Management 
Association Part 6. Students of today's theory of interest need not be 
capable of taking a derivative or handling an integral. Continuous 
interest theory is virtually nonexistent. This is at a time when interest 
rates have dropped from around 20 percent to around 11 percent in 
three months and when the majority of North American financial 
institutions are introducing daily interest assumptions somewhere in 
their systems. This is also at a time when compound interest theory is 
becoming even more important in areas such as immunization, pension 
funding, and asset valuation. 

I t  is regrettable that future actuaries will have little feel for the con- 
tinuous case in the theory of interest. 

Furthermore, there are several compound interest topics that have 
never been explored properly in the Society's education material. These 
include the "rule of 78," which is used widely throughout North 
America; the nice rule of thumb for the doubling time of investments (or 
the halving time because of inflation), sometimes called the "rule of 70" 
(i.e., time to double = t ~ 70/i); the method of equated time, which 
takes on a new level of importance when applied to a daily interest 
setting; and applications of interest theory to noninterest topics (e.g., 
exponential growth of cells). 

In conclusion, the timing of this well-written paper is fortunate because 
it reinforces the variety and complexity of compound interest problems. 
Let us hope that the Society sees fit to return the theory of interest to 
its proper "cornerstone" position in our educational process. 
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R A L P H  E. EDWARDS:  

A subject so mathematically determinable as the theory of compound 
interest gives the impression that by now every avenue for possible 
further development has been thoroughly explored and found unpro- 
ductive. This excellent paper by Professor Promislow shows the extent 
to which that  feeling departs from the truth. A serious fault in the educa- 
tion of actuarial candidates may be our failure to disclose how far we 
are from the ultimate frontiers of knowledge even in subjects of this kind. 

A particular virtue of this paper is its introduction of the concept of 
interest preference rate. Tha t  I found it difficult to comprehend fully is 
not a criticism. We have colleges where this subject is new to the student 
and where the instruction process will determine whether or not this 
approach deserves perpetuation. Meanwhile, we have the advantage that  
something new and different has been made available. 

I did find a contradiction between the statement in the paper that 
"the typical lender in a consumer loan transaction would not allow the 
loan balance to increase" and, from T S A ,  XXVI,  255, "the loan amount 
increased during the first four months." While the latter seems incon- 
sequential, I hope Professor Promislow will express his view in his reply 
to the discussions. 

MARK D. J .  E V A N S :  

Dr. Promislow has made a valuable contribution to the theory of 
interest. Perhaps a few minor comments will be helpful. 

Theorem 3 does not handle the common situation where the first pay- 
ment is negative and all subsequent payments are zero or positive. One 
might put a zero at the front of T and view the transaction as if it had 
been initiated one time unit in the past, but this would change the 
critical value. Alternatively, one might propose a new theorem, Theorem 
3A. 

THEOREM 3A. Let T ~ (Co, cx, . . • , c,)  be such that there exists an 

index k satisfying 

c j < 0 ,  O < _ j < _ _ k  

> 0 ,  k + l < j < n  

> 0 ,  j = n .  

Then T is strongly L-normal.  

In introducing Lemma 3, the author states: "The first proof of Theorem 
3 can be adapted to give a very quick method of estimating the yield in 
a strongly L-normal transaction." Consider T = (0, - 9 . 5 ~ 4 9 ,  1, 1, 1, 1, 
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11). The yield is i0 --- ~ = 0.1111. Lemma 3 shows that 0 < io < 0.5640. 
Kellison's formulas (6.13) and (6.14) give i0 -- 0.1109 and i0 -- 0.1105, 
respectively. Lemma 3, however, should be helpful in obtaining a very 
broad interval containing the yield of less typical transactions. 

The proof of Lemma 5, part  (b), is difficult to follow. I t  would appear 
that  one could define S such that  S = I~d without violating any of the 
conditions stated in the lemma. In such case one would have Pk(S) = 
Pk(I,, d). 

(AUTHOR'S REVIEW OF DISCUSSION) 

S. DAVID PROMISLOW: 

I would like to express my sincere appreciation to all the discussants 
of my paper. 

I am indeed grateful to Mrs. Butcher for her several comments and 
suggestions and an illuminating analysis of some of her work with 
Dr. Nesbitt. Dr. Hickman has prepared an extensive discussion and pro- 
vided a valuable supplement to the paper through his excellent summary 
of the ideas of Teichroew, Robicek, and Montalbano. In fact, the dis- 
cussions of Butcher and Hickman have helped me to clarify my own 
thoughts on some aspects of outstanding investment analysis, on which 
I will elaborate at the end of the review. Mr. Chouinard has provided a 
useful addition to the paper by describing some of his own ideas on 
interest theory. Mr. Luckner has done an excellent job of illustrating 
and interpreting many of the concepts in the paper. Messrs. Bennett, 
Brown, Edwards, and Evans have all made interesting comments and 
asked stimulating questions. 

I would now like to consider some of these points in greater detail. 
I t  is always gratifying for the author of an actuarial paper to feel that 

his work max" have some effect on the education and examination process. 
I am therefore pleased that two of the discussants have made comments 
along these lines. I share Mr. Brown's concern over the downgrading of 
interest theory on the Society examinations. Mr. Edwards also has made 
some very pertinent remarks concerning education. 

As Mr. Evans notes, it is important to include the case Co < 0 in 
Theorem 3. I have done so, but possibly in a disguised form that may 
not be readily apparent. This occurs when the index k is equal to 0. 
There are now no indices satisfying the first inequality and therefore no 
zero payments at the beginning. 

I agree with Mr. Evans that the estimate of the yield as given by 
Lemma 3 can be quite crude. 

Mr. Edwards refers to his discussion of the paper "An Analysis of the 
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Rule of 78" by James H. Hunt  (TSA,  Vol. KXVI).  I am not sure that I 
understand the contradiction to which he alludes. In the example re- 
ferred to, the loan balance increases over the first four months when 
interest is credited according to the approximate "rule of 78." However, 
since the contract is one with level repayments, it certainly forms an 
I.P. transaction as defined in the paper. This phenomenon would seem 
to provide further evidence that for long-term contracts the rule of 78 
may not be very accurate, one of the main points of Mr. Hunt 's  paper. 

I would like to thank Mrs. Butcher, Mr. Evans, and Mr. Luckner for 
pointing out various errors in the original proofs. Mrs. Butcher notes 
that in the comparisGn of Lemma 3 p and Lemma 3 we must take c = 
k -- 1 on the left side of (43) rather than c = k + 1 as originally printed. 
Mr. Evans's  difficult)" with part  (b) of Lemma 5 arises from the fact that 
it was originally printed incorrectly with a strict inequality sign. 

There is possible confusion concerning the form of the definition of 
strong normality. This was first brought to my attention by Donald 
Sondergeld. I t  might have been preferable to define strong L-normality 
by simply requiring the interest preference curve to be decreasing up 
to i, the unique yield. This in effect postulates that the critical value i '  
is _>i rather than >i .  As Mrs. Butcher notes, it is this conclusion that 
is actually shown in the proof of Theorem 3. This alternative formulation 
is in fact equivalent to the one given. To see this, choose i' > i but small 
enough so that the derivative of the interest preference function has no 
zero in the interval (i, i'). The fact that the interest preference function 
has a value of zero at i and is less than zero after i means that its deriva- 
tive cannot be positive throughout this interval. Hence the derivative is 
negative and the function is decreasing on (i, iP). This shows that even 
with the alternate formulation the critical value is always strictly greater 
than the yield. 

Mr. Luckner uses the phrase "yield from the borrower's point of view." 
I t  is not clear to me how to give a precise definition of this concept that  
would apply in all cases. Consider the interest-only option of example 7 
in the paper, where the yield from the borrower's point of view is com- 
puted to be 5.66 percent. I t  is true that the yield on a new transaction 
obtained from the original one by incorporating the proposed sinking- 
fund arrangements is 5.66 percent, and in this case this provides an 
effective means of comparing the two options. I t  is possible, however, 
that  in some cases our information could be insufficient to determine a 
new transaction. Suppose, in the same example, that instead of being 
given the detailed sinking-fund plans, we were told only that the bor- 
rower had an interest preference rate of 2.5 percent. I do not believe that  
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we could then compute a yield from the borrower's point of view. How- 
ever, we still could compare interest preference curves to see tha t  the 
level payment  option is preferable to the borrower. 

In  any event, replacing a transaction with another one in order to 
reflect the particular circumstances of some individual is an interesting 
concept and merits further investigation. We can look upon Mr. Choui- 
nard 's  ideas in precisely this way. He takes a transaction T and an 
interest r a t e j  and obtains a new transaction by accumulating all positive 
payments  to the end of the term at rate j.  Let  us denote this new transac- 
tion by T'. I t  is always B-normal, so it has a unique yield it ,  which 
Mr. Chouinard calls the retrospective yield. Note that  

Pj(T)  = P j ( T ' ) .  

I would now like to give a generalization and extension of Mr. Choui- 
nard's  remarks on comparison. Let  S and T be two transactions with 
exactly the same negative payments.  Suppose that  j '  is a critical re- 
investment rate. Then S '  and T ~ have the same yield, bu t  since they 
differ only in the final payment,  we must  have S '  = T'. Using the above 
formula, we see that  P~,(S - T) = P~,(S' -- T') = 0. That  is, as noted 
by Mr. Chouinard in a special case, j '  is also a critical interest preference 
point. Consider now the question of what  we can say about - S  and - T  
in this case. They will have exactly the same positive payments.  From 
Chouinard's formula (3) we deduce an interesting reciprocity property.  
If  i is a retrospective yield of T at reinvestment rate j ,  then j is a retro- 
spective yield of T at reinvestment rate i. Combining this with our 
previous result, we see that  - S  and - - T  will have a critical reinvestment 
rate equal to the common value of is and/7- at rate j ' ,  and, at  this re- 
investment rate, the common value of i-,s and i_~- is j ' .  We illustrate 
with the given example. Let 

r = ( - -10,  9, 9 ) ,  S = ( - -10,  4.5, 14.5).  

Then S and T have a critical reinvestment rate of ~, as shown by Mr. 
Chouinard, and at tha t  rate is = v/2 -- i ;  similarly, - S  and - - T  have 
a critical reinvestment rate of x/2 --  1, and at that  rate i - s  = i-T = ~. 

Mr. Bennett  has raised a number of points to which I would like to 
reply. In  the first place, I do not agree with the survivor function analogy. 
In  that  case, o~ is clearly unique, since by definition it is the smallest zero 
of the survivor function. This is precisely the definition we want  for the 
use we make of w. One could achieve uniqueness of yield similarly by 
simply choosing the smallest such value, but  in this case there would be 
no meaning or purpose to the result. In  any event, the given example of 



DISCUSSION 115 

a survivor function needs modification, as it produces negative values 
of s(x) for 25 < x < 100. 

In reply to Mr. Bennett's question concerning the definition of a 
transaction, I do not believe that there is any other reasonable alternative. 
I view a transaction as simply a sequence of payments made at various 
points of time. If we simplify the definition by assuming finiteness of 
duration and periodicity, we necessarily are led to the definition given 
in Section II of the paper, where a transaction is represented by a vector. 

I do not see how in general we can distinguish between a single transac- 
tion and a combination of several transactions as Mr. Bennett suggests. 
If we simultaneously undertake each of a set of several transactions, the 
result of this combined operation is itself a single transaction, repre- 
sented mathematically as the vector sum of its components. 

It  is true, however, that one intuitively feels that there are certain 
basic transactions, typical of those normally encountered, having unique 
yields and such that every transaction is a combination of basic ones. 
The problem is to give a precise definition of this class. I have attempted 
to do so in the paper by defining normal transactions. There are, however, 
other possibilities. Mr. Bennett suggests considering transactions for 
which the outstanding investment does not change sign. This idea needs 
elaboration, for, as indicated in the paper, outstanding investments de- 
pend on a particular value of i. 

To simplify the terminology we will call a transaction T pure at rate i 
if the outstanding investment computed at that rate does not change 
sign; that  is, formula (20) of the paper holds for either T or - T .  (De- 
pending on which alternative holds and on one's orientation, T would 
be called a contract of pure financing or a contract of pure investment 
in the terminology used by Mrs. Butcher and Dr. Hickman). 

Modifying Mr. Bennett's suggestion, we can consider transactions T 
satisfying the following property (property *): 

T is pure at rate i, where i is a yield rate of T. 

Such transactions are precisely the content of the Butcher-Nesbitt 
analysis. Their work, together with Theorem 4 of the paper, gives us 
considerable information about this class, which we will now describe. 

Let T be any transaction with at least one yield, and let it be the 
maximum such yield. Let i0 be the minimum value of i for which T is 
pure. Section VIII of the paper shows that i0 exists (formula [23]) and 
that T is pure for all i > i0 (formula [21]). (Note that (1 + i0) is the 
u0* of the Butcher-Nesbitt case 3. Moreover, in the terminology used 
by Dr. Hiekman, {i >_ i0} is the pure financing region in the case of 
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nonnegative outstanding investments,  while {r _> i0} is the pure invest- 
ment  region in the case of nonposltive outstanding investments.  From 
Theorem 4 of the paper, it is not hard to see tha t  il > i0 implies that  T 
is normal. In the Butcher-Nesbi t t  theorem, this occurs in case 1 and the 
first two subcases of case 3. If T is not normal, we must  have il < io and 
there can be no yield a t  which T is pure; tha t  is, T does not satisfy 
proper ty  * above. In  particular,  this occurs in the Butcher-Nesbi t t  case 2. 
An even number  of sign changes clearly implies nonnormali ty,  as Pi(T) 
has the same sign for both  high and low values of i. 

Consider now the converse question. If T is normal,  is i0 less than ix? 
The answer is yes for the case of a single sign change (Butcher-Nesbit t  
case 1), but  not in general. We can take, for example, the transaction 

T -- (7, - -24,  24, - - 8 ) ,  

which exhibits three sign changes. Since 

P i ( r )  = 8[1 -- (1 + i)-t]3 _ 1 ,  

we see tha t  T is B-normal (in fact, strongly B-normal)  with a unique 
yield of 100 percent. On the other hand, we have i0 - 17 

7 " 

To summarize, we see tha t  the class of transactions satisfying proper ty  
• is a proper subclass of the normal transactions. These transactions will 
be L-normal or B-normal, respectively, depending on whether the out- 
standing investments a t  the yield rate are less than  zero or greater than 
zero. This class includes the prototype normal transactions involving a 
single sign change. From Section VI I  of the paper,  it then follows that  
every transaction can be written as a sum of transactions satisfying 
proper ty  *. 

I t  may  be instructive to compute the quantities B~.r(T) and r(i), as 
defined in Dr. Hickman ' s  discussion, for the example T given above. 

For i >_ ~-  (the pure region), 

B~.,(T) = 7i a -  3i 2 -  3 i - -  1 ,  

which we note is independent of r. 
For i < ~ (the mixed region), 

B~,,(T) = (7i - 17)(1 + i)(1 + r) + 24i + 16 

if (1 + r) < 24/(17 - 7i) 

= (7i - 17)(1 + r) 2 + 24r + 16 

if (1 + r) > 24/(17 - 7i) . 
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There is no value of r for which the second expression above equals 
zero and such that  (1 + r) ~> 24/(7 - 7i). Setting the first expression 
equal to zero and solving for r, we obtain 

_ -  [172  8 - 1] 
7i (17 - 70(1  + i )  " 

In this particular case, [r(i) -- i] is increasing and so r( i )  = i only for 
i = 1. In general, however, as noted by Dr. Hickman, the curve r ( i )  can 
cross the line r = i in several places within the mixed region. 

In  conclusion, I would like to thank again all those who discussed my 
paper. 




