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ABSTRACT 

The objectives of this paper are (1) to show why scientific laws of 
mortality are preferable to the continued use of graduation techniques 
on mortality tables; (2) to develop a new theory leading to a new mathe- 
matical law of mortality that reduces to Gompertz's law as a first ap- 
proximation, and to detail the biological justification for such laws; (3) 
to demonstrate an understanding of select mortality and produce a 
simple formula that  is reasonably consistent with it; (4) to develop 
methods to test this and other similar formulas on various bodies of 
data to establish their validity and usefulness; (5) to discuss the meaning 
of the results produced above and provide some examples of the use of 
the formula for purposes other than graduation; and (6) to discuss ex- 
tensions of the models. 

The authors believe that  the final formula is simple, easy to use, and 
considerably more useful than traditional graduation processes. The 
second-named author developed the models and wrote the sections 
dealing with their development and justification. The first-named author 
developed the techniques of regression analysis for testing and fitting the 
models and wrote the corresponding sections of this paper. 

I. INTRODUCTION* 

T 
I~E second-named author has been uncomfortable for many 
years with the use of graduation processes for smoothing mor- 
tality tables. Perhaps this is a result of his original training in 

the physical sciences, where the objective was always to discover the 
laws that  govern events, and then to use those laws to predict the out- 
come of experiments. By contrast, graduation produces smooth data but 
avoids theory, and can give no hint of results where no data are avail- 
able. Consider the following criticisms of graduation techniques: 

1. By relying upon graduation techniques, we divorce ourselves from the 
biological sciences underlying this phase of actuarial work. This paper may 

* The authors would Dike to thank Rachelle Klein, Leanore Naphtali, and James 
Swofford of the Equitable Life Assurance Society for their valuable computer pro- 
gramming assistance. 
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be viewed as a step toward re-grounding actuarial science in the sub- 
structure of biology and gerontology. 

2. The use of a graduated mortality table requires a religious level of faith. 
After disclaiming (by using a graduation technique) any understanding of 
what is actually going on, the graduator takes a leap of faith and uses the 
resulting table to predict what will occur in the future. 

3. Using graduation techniques, one can never be sure whether significant 
data are being left out or "smoothed." An example of such data is the dip 
in mortality in the late twenties. 

4. It is not possible to compare one graduated table with another simply, 
because such tables consist only of data points; they are not built on a 
small number of parameters having intrinsic meaning. Because of the 
construction methods used, each table is unique; there is no basis for com- 
parison of the whole entities. 

5. Because of the methods used to create a graduated table, there is no way 
to extend it to other ages or durations. Obtaining an estimate of mortality 
for ages beyond the central ages of groupings requires an extrapolation 
technique entirely foreign to the procedure originally used to create the 
table. 

6. The lack of reference to a theory prevents us from improving our under- 
standing of what is going on. If we are working from a theory, we observe 
deviations and thereafter improve the theory. If we are working with 
graduation techniques, we can only go on to the next graduation. 

The advantages of working from a mathematical  theory of mortal i ty  
are the reverse of the above-stated criticisms: 

1. We will have reestablished our relationship with the biological sciences, and 
particularly the recent developments in cellular biology and gerontology, 
and will be in a position to evaluate the effects on mortality statistics of 
changes in medical knowledge and treatment. 

2. We can use the resulting table to predict the future levels of mortality 
because we believe that we understand most of the biological processes 
involved. 

3. If systematic departures from our law appear in the data, we immediately 
become aware of them and make a positive decision as to necessary revisions 
in the law. 

4. We should be able to compare two tables by comparing only a few parame- 
ters that we believe have some objective meaning. 

5. A law should provide us with a built-in method of extrapolation beyond 
the range of the available data, or with other extensions of the usefulness 
of the available data. For example, a law of mortality might help us to 
estimate the effect on mortality differentials by age of the discrete changes 
in underwriting requirements as age advances. 

6. We will be encouraged to improve our theories and our understanding of 
the underlying processes. 
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II. MATHEMATICAL LAWS OF MORTALITY, HUMAN 

"VITALITY, AND GOMPERTZ~S LAW 

An at tempt to develop a law for select mortality would seem first to 
require some understanding of the work already done on laws of mor- 
tality that apply to unselected groups of lives, work that has preoccupied 
the actuarial profession over a large part  of its history. We might begin 
by asking the question, what should be required for a mathematical 
relationship to be called a law of mortality? I t  seems to the authors that  
there are several generally accepted requirements: 

1. The law should have been observed over a period of years and in different 
environments. 

2. It  should be usable for predictive purposes. 
3. It  should be consistent with other bodies of information, so that it is plausible 

from the point of view of such other disciplines and sciences as may be 
applicable. 

4. There should be enough logical analysis behind it so that we can feel confi- 
dent that we understand what influences would cause the crucial parameters 
to change. We should be able to judge when changes in the environment 
would necessitate changes in the parameters of the equation. 

Laws of mortality can, and in special environments do, take on 
special forms. A law of mortality for birds in the wild seems to be that  
the rate of mortality is constant--in this environment, the accidental 
death factor apparently predominates. Mortality of soldiers is related 
more closely to the time spent in actual combat than to any other factor. 
Similarly, duration of exposure to radioactive emission seems to be an 
important factor in the total life span of experimental animals. These 
last two examples suggest the possible importance of a temporary 
deleterious environment. The law of mortality for chickens on an ocean 
cruise, where the same number can be expected to die every day, is a 
very special example of the environmental effect. The law of mortality 
for salmon--the rate becomes 1.0 after spawning--is another form that  
is consistent with our present knowledge of the biology involved. 

These laws of mortality emphasize the importance of the effects of the 
environment. However, actuaries normally have been concerned with 
the changes in mortality rate associated with aging, sex, and race or 
nationality. The earliest law of mortality still in use is that  of Gompertz. 
His paper [7] before the Royal Society in 1825 is still of interest. Un- 
fortunately, his law was simply a statement of his observations; it 
seemed to be true for mortality tables then in existence. 

Actuaries are familiar with the original Gompertz law, ~, = Bc*, and 
also with Makeham's first modification, ~ , - -  Bc • + A. They are not 
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generally familiar with Makeham's  second modification, u ,  = Bc • + 
A + Hx, or with the addition of the quadratic term /z, = Bc~c~', al- 
though the latter has been used at least once [5]. Can any of these pass 
the required criteria for a law of mortality? 

Consider Gompertz's  original ins ight- - that  mortal ity increases as an 
exponential function, with age as the power of some constant. How wide 
is the support for this observation? Figure 1, taken as are mos t  of the 
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illustrations in this paper from the Handbook of the Biology of Aging [6], 
gives graphic evidence of the widespread observations that  follow this 
exponential increase. In every case, the mortality of males becomes a 
straight line on semilog paper after the age of maturi ty of the organism, 
about age 30. Figure 2 shows a series of mortality graphs for females in 
Sweden from 1751 to 1950. These graphs exhibit the same pattern. 
Variations in mortality, such as the dip in mortality in the late twenties 
attributable to reduced accident rates, or the relationship between 
female mortality and the period of childbearing, are not exceptions to 
the law of increasing mortality with age but  rather modifications of it. 
Mortality at the younger ages currently seems related to accident rates 
and genetic weaknesses; these ages precede the period of effect of the 
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ing, Inc. Reprinted by permission of Van Nostrand Reinhold Company.[ 



124 NEW MATHEMATICAL LAWS OF MORTALITY 

increase-with-age law. Landahl [13] developed a law of mortality based 
upon acquired immunity to disease, which was useful during the period 
in our history when infectious disease was an important cause of death 
among the young; however, this no longer seems to be an important 
factor. Figure 3 shows the mortality of various series of laboratory 
mice. Data (not shown) on the mortality of the common housefly pro- 
vide further support for the general applicability of Gompertz's law, at 
least as a first approximation. Figures 4 and 5 show that the same basic 
pattern exists for specific causes of death in man and in rats. 

The above examples appear to provide adequate justification for the 
claim that Gompertz's law passes the first stated test--i t  has wide 
applicability, not only for humans but for other life forms. The second 
criterion was the use of the law for prediction. Since it has been used for 
this purpose in the construction of annuity tables over man)' years, and 
many companies have succeeded by putting their money on its correct- 
ness, this criterion would seem to be satisfied also. The crucial remaining 
criteria, and they are ones that do not seem to have been handled 
satisfactorily over the years, are those having to do with plausibility, 
consistency with other bodies of knowledge, and enough understanding 
so that modifications could be made when needed. 

Before these problems are examined directly, we should first review 
what is known currently about the rate of deterioration in the various 
systems of the body. The surprising factor here is that the effectiveness 
of the various physical systems of the body does not decrease exponential- 
lv with age but rather decreases linearly. Perhaps the most crucial ex- 
ample of this linear trend is that of the actual ability of cells to reproduce 
themselves. Hayflick [6, p. 160] reports the results of a variety of studies 
on this subject. The evidence seems clear that a human cell can reproduce 
between forty and sixty times during its lifetime. More important, 
however, are the studies that show that  the number of possible repro- 
ductions remaining for a given cell is reduced by 0.20 for each year of 
attained age of the donor. These figures apply only to normal cell popula- 
tions, not malignancies, and the statistics have been subject to some 
criticism, but the general observation about the loss in function seems 
well supported. 

Figure 6 shows the decline with age in various physiological functions 
of the human body. The general pattern of the loss of a constant per- 
centage of the original value for each year of age seems obvious. Figures 
7 and 8 show the decline in vital capacity and filtration rate of the 
kidneys for normal men and women. The linear decrease in physiological 
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functions seems as well established as the exponential increase in mor- 
tality with age. 

In order to make Gompertz's law plausible, we must  explain how a 
linear decrease in physiological function leads to an exponential increase 
in mortality with age. There have been a number of recent attempts at 
such an explanation. The one that  is probably most familiar to actuaries 
is that  of David Brillinger [3]. Brillinger points out that  death is the 
result of the failure of one of the systems of the body necessary for life 
and that the probability of death is the sum of the probabilities of failure 
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of each of the individual systems. He then proposes a model in which 
each year the value of each of these systems is represented by a designated 
value. Then, using the extreme-value theory of Fisher and Trippet (later 
developed in a most practical fashion by Gumbel [8]), he develops the 
statistical laws that can represent the lowest values selected from the 
assumed identical distributions of vitality in each such system. This 
reasoning leads to the very general law 

u, = Z H , ( x  - -  B,)" - '  + X A / ( b  s -- x),i+' + Z EkdT. 

The authors of this paper have some difficulty in accepting the ap- 
propriateness of this model. Is aging represented simply as the successive 
results of choosing a value from a randomly distributed variable, with 
death the result of the lowest value being below some present level? The 
model would be equally applicable if none of the physiological variables 
discussed above were changing with age. The fact that they are changing 
with age argues against the applicability of a purely statistical model. 
An additional problem with this approach is that the law that finally 
results is too general. We do not observe the vast multitude of terms 
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made possible by this equation. While the approach is undoubtedly 
valid, and could be modified to consider the changing physiological 
parameters, it does not explain why one relatively simple pattern should 
dominate. 

The development of Gumbel, using extreme-value theory, leads to 
Gompertz's law and provides the interesting additional insight that 
extreme age at death and average age at death are inversely related. 
Unfortunately, Gumbel begins with the assumption that  the initial 
variate is of the exponential type. He has assumed the required form of 
Gompertz's law. This analysis by Gumbel should be sound once the 
basic riddle is solved. 

Two other theories of mortality have been presented that  are essential- 
ly biological in orientation. The Strehler-Mildvan theory [25] accepts 
the linear loss of vitality as a basic fact and develops Gompertz's law 
from the assumption that the stresses of life are distributed according to 
the Maxwell-Boltzmann distribution. However, since the form of the 
Maxwell-Boltzmann distribution is exponential, the Strehler-Mildvan 
theory cannot be regarded as an explanation of the rate of increase in 
mortality, despite the interesting results that  follow from this approach. 

The other modern biologically-oriented theory is that of Sacher- 
Trucco [21], which also accepts linear loss of function as a basic premise. 
The new assumption is that vitality (death resistance) at any age is 
distributed normally in the population. The mean of the distribution 
decreases linearly with age, but, as age increases, the proportion of the 
population falling below a minimum level of vitality, and therefore dying, 
increases at more than a linear rate. The theory is well developed, but 
Strehler has pointed out that the rate of loss of vitality required to fit the 
known increases in mortality is far greater than that actually observed. 
In addition, the theory is deficient for purposes of this discussion, since 
it does not answer the basic question of why an exponential increase 
should be observed at all. The Sacher-Trucco theory also introduces 
the exponential factor as the result of a specific additional assumption-- 
that of the normal distribution of vitality. Such an assumption implies 
the existence of a small but real group with extraordinarily high vitality 
for their age. No such group seems to exist. Neither of these theories can 
rationalize the exponential form. 

Each of the previously discussed theories can produce a rationale for 
Gompertz's law, but each of them must start with the assumption of the 
basic form. The Gumbel extreme-values-theory approach does not 
demand an exact exponential as a start, but it does require something of 
an exponential form. Similarly, the biologically oriented Strehler and 
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Sacher-Trucco theories depend upon the introduction of an exponential 
f o r m .  

III .  A NEW THEORY OF ULTIMATE MORTALITY 

In their paper " A  Critique of Theories of Mortality," [15] Mildvan 
and Strehler list three specific criteria for a scientific theory of mortality: 

1. The assumptions must not be qualitatively or quantitatively inconsistent 
with observation. 

2. The theory must not make predictions that are qualitatively or quantita- 
tively inconsistent with natural law or observation. 

3. The number of assumptions should be kept to a minimum. 

The observations that  are listed as crucial in judging a theory are the 
following: 

1. The law must be consistent with Gompertz's law over the large range of ages. 
2. The rate of loss of physiological function for the system of the body is linear. 
3. A large value of B in the Bc* quantity of the Gompertz law is accompanied 

by a depressed value of c, and conversely--a relationship observed in many 
human populations. 

4. The relation between continuous and intermittent exposure to radiation is 
such that continuous exposure to radiation increases the value of c in the 
Gompertz equation, while intermittent exposure increases the value of B but 
not the value of c. 

5. The Gompertz function seems to apply to specific diseases as well as to total 
mortality. 

6. Mortality seems to fall away from the Gompertz law at great ages. 

Mildvan and Strehler conclude in their article that  only the Strehler- 
Mildvan theory explains the first five observations. Sachet has elsewhere 
argued that  the Sacher-Trucco theory is preferable, although Mildvan- 
Strehler's criticism is not answered. None of the reviewed theories 
explains the sixth observation. 

The second-named author has never come across the following theory, 
which he believes is consistent with all six observations and involves 
much simpler assumptions than either the Strehler-Mildvan or the 
Sacher-Trucco theory. I t  produces the basic exponential form naturally 
and simply, as opposed to the two previously mentioned theories, which 
must specifically introduce it. 

The theory is based upon the acceptance of the observation of linearity 
of loss of function of biological systems with age and the assumption 
that  the essential nature of biological systems is redundancy. The 
observation of linearity seems well established in biological literature, 
and only some of the evidence in favor of it has been presented. Since 
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acceptance of it is also one of the Mildvan-Strehler criteria, it will be 
considered proved without further comment. 

The second assumption of the theory, however, does require justifica- 
tion. Anyone who studies biological systems must be impressed by their 
basis of organization--they exhibit redundancy; that is, they contain 
backup systems in excess of those needed for functioning. If we consider 
the nervous system in particular, we are impressed with the parallelism 
of its operation. There are many connections between nerve fibers, and 
the basis for the connections is parallelism. A nerve fails to transmit a 
message only if all, or almost all, of the various cells fail. Similarly, other 
systems of the body fail only when all components fail. 

If a system fails only when all components fail, and there are n com- 
ponents, each with a probability of failure f, then the probability of 
failure of the system is q, and 

q0 = f " .  

If, over a period of time, a number x of the components are eliminated, 
then the new probability of failure of the modified system is 

q z = f  n-= . 
The ratio of q= to qo is 

q= /°-= 1 (7_)= 
Vo --- = ? -  - ; 

thus, 

q~ = qo = f "  • 

This obviously has the form of Gompertz's law, and the loss of x com- 
ponents corresponds to the linear loss of vitality of biological systems. 

If there are two systems, the failure of either of which will cause death, 

qo = fn + f n  __fV~ = 2f. __f2. 
and 

q~ __ p -=  + i ~ - = _  p-z/~-~ - 2/n-= _p¢~-~) .  

The ratio q , /qo  is no longer so simple. Instead, it forms a series: 

a , f  -~ + A2[ - ~  . 

The law of mortality is then 

q: = q o ( A ~ f - = - t -  A2/-2:), 
or  (+)= q~ = Bx + B2 

Similarly, if there are three or more subsystems, the failure of any of 
which causes death, the number of terms that enter into the various 
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constants  increases, and the form is now 

As a final i l lustrat ion,  consider three systems. The  failure of the  first 
two "crucial"  systems will cause death,  but  tha t  of the third "semi- 
crucial" system will create only a probabi l i ty  a of death.  Now 

qo = f ,  -4- f ,  A- a.[, - p ,  - a p ,  - a f~ ,  A- a p  . 

= (2 + a ) f "  - (1 + 2a)f  2" -4- a f t " ;  

q, = (2 + a ) f  "-~ - (1 -5- 2a) 2"-'x A- aft "-3. ; 

(±yx. 
qoqYX _ Al(f)x.jr A,(f)'x'.ar_ A3k, f /  ' 

and 
q,  = B l c  ~ + B2c  2~ A- B3c a* • 

While we know tha t  there are a number  of systems in the body,  we 
cannot, given the current  s ta te  of our knowledge, say what  they are 
or how many  there are. There  m a y  be a number  whose failure causes 
only a fractional  probabi l i ty  of death.  There m a y  be a master  system, 
such as the  immunological  sys tem or the basic abi l i ty  of cells to divide. 
Nonetheless,  the formula for q, always develops the  same basic f o r m - - a  
power series in c (or 1/ / ) .  

The reader  must  de termine  whether  consideration of the organization 
of organic systems as parallel  s t ructures  is a reasonable assumption 
consistent with observat ion,  the  first cri terion of Mi ldvan  and Strehler. 
We can, however, easily conform with their  other  crucial observat ions:  

1, The Gompertz law is the first term of the expansion and, therefore, the 
first approximation of the stated theory. 

2, Linear rate of loss is taken as a basic assumption. 
3. If the number of crucial systems is increased or if the value of a in semi- 

crucial systems is increased (an unfavorable environment), the higher-order 
terms become more important, and an attempt to fit the simple Gompertz 
law will develop a lower value of c, the slope variable. A higher value of B 
in the term Bc z will correspond to a lower value of c. Tests of the law with 
two terms does not seem to support any significant variation in the value of 
c in different environments. 

4. Exposure to radiation would cause a more rapid loss of the redundancy of 
the systems during the period of exposure. This, according to the model, 
would mean a change in the slope for continuous exposure, but only a 
change in the level for intermittent exposure. 

5. Not only is the argument consistent with the observation that Gompertz's 
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law applies to specific diseases; in fact, the power-series form must follow 
if separate causes of mortality follow Gompertz's law. 

6. The natural development of powers of c • provides an automatic reduction 
in the rate of mortality rate increases at higher ages. The addition of only 
the second-order term radically improves the fit. Further tests will be 
published at some future time. 

Only two further comments seem necessary. First, the theory is 
consistent with the addition of the constant Makeham term. I t  is only 
necessary to assume a small probability of exposure to an environmental 
hazard that  always overwhelms all systems. Second, the formulas can 
be easily solved by linear regression techniques. Of course, there must be 
a number of tests for values of c to find the value that  provides the best 
fit. Since c falls between 1.06 and 1.1, a limited number of trials, at  most, 
may be necessary. 

IV. SELECT MORTALITY 

The following is an attempt to describe, very carefully and precisely, 
the development of select mortality rates over a period of years after 
selection. As such, it follows in the line of work of Levinson [14], Ziock 
[27], and Berger [2]. Unlike these authors, the present writers will a t tempt  
to develop the ideas without the use of mathematical notation until the 
computational model has been developed. (An earlier version of the 
paper used tensor notation for this section; however, since no one seemed 
to understand it, the authors decided that the most useful system of 
notation was probably words. The mathematically sophisticated reader 
can supply either matrix or tensor notation as suits his background.) 

Underwriters contend that normally they are capable of distinguishing 
about fifteen separate mortality classes at any age. Let us assume that, 
with sufficient information, twenty different classes can be delineated. 
Unlike Levinson's classes, these classes are operational distinctions. We 
will assume that  all lapses and changes in class occur once a year. 

The selection process establishes that certain of these classes are 
eligible for standard insurance; about 90 percent of lives applying for 
insurance fall into these classes. There is a mortality rate for each of the 
twenty mortality classes for each year of attained age. The observed 
select mortality rate is the product of the rates for each select class times 
the number of lives in the class divided by the total number of lives in 
all select classes. 

Lapses also occur. In principle, it would be possible to establish 
separate lapse rates for each mortality class. In practice, we cannot 
develop such tables; nevertheless, we know that  if the lapse rates are 



NEW MATHEMATICAL LAWS OF MORTALITY 135 

higher in the lower mortality rate classes, the average mortality of the 
group will increase. Specifically, the ultimate group can show more 
rapidly increasing mortality (a higher Gompertz c) if these favored 
groups have high lapse rates. If an observed group of lives has unusually 
high lapse rates, it probably is safe to assume that a degeneration of the 
group is taking place. 

Considering only deaths and lapses, we would end each year with the 
same classes we had at the beginning of the year, although the relative 
proportions may have been changed by lapses. There is a third modifica- 
tion of the grouty--class transformation. The various hazards and 
environmental influences transform each class. In fact, each class is 
transformed into each of the twenty classes. The vast majority of the 
members of any class are transformed into the same class, but there is 
some proportion that goes into each of the other classes. 

In principle, in the absence of cost constraints, these transformations 
actually could be observed. The membership in each class at the begin- 
ning of the second year contains representatives from all classes existing 
at the beginning of the previous year. One peculiarity of the transforma- 
tion process is that it always changes the ultimate group into itself. This 
corresponds mathematically to the fixed point of a stochastic matrix. 
This characteristic of the transformation process also means that any 
initial distribution of classes is transformed gradually into the distribu- 
tion of the ultimate or unselected group. 

In the second and later years, the same processes take place. The 
aggregate mortality rate of the originally standard group is now affected 
by the presence of other than standard class members, even though the 
set of mortality rates for each class depends only on attained age. Lapses 
again can have the effect of changing the relative proportions in the 
various classes, and the transformation process once again moves the 
composition closer to that of the ultimate group. 

The key ideas of this exposition are intended to be the following: 

1. The characteristics of the transformation process. 
2. The possible effects of lapses perhaps causing degeneration in the class 

composition even to mortality levels worse than in the ultimate group. 
3. The fact that in this formulation every class composition, transformation, 

and mortality and lapse rate is, in principle, observable. There are no 
hypothetical unobservable groups or rates. 

V. COMPUTATIONAL MODEL 

We know that a body of ultimate lives usually follows Gompertz's law 
reasonably closely over the range of ages that are relevant for insurance 
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purposes and for which select mortality data are also available. We know 
that the select-to-select transition is very high--a continuous select 
body of lives exists. What pattern will continuously select life mortality 
follow? A good candidate for this pattern would seem to be the Gompertz 
formula. The arguments in favor of this particular pattern seem plausible. 

Who is in the select group, and how do the members of this group 
differ from the general body of lives? Only in that they can, year after 
year, pass a medical examination. What does this mean? Only that they 
have not developed the specific impairments that an examination would 
demonstrate: (1) they have no high blood pressure; (2) they have no 
heart murmurs; (3) they have no history of heart attacks; (4) they have 
no history of cancer; and (5) the)' have no history of the various other 
conditions listed on the nonmedical portion of the application. 

What we are really saying is that this group is immune to a variety of 
perceptible degenerations in the body. Other imperceptible losses do take 
place--immunity to disease is not perpetual youth. But the signs of 
these losses of vitality are not apparent to the underwriter. Many of the 
conditions to which the select group is immune follow the same slope as 
general mortality (see Fig. 4). If all diseases had the same rate of.increase 
with age, we would expect only the coefficient B in a select version of 
Gompertz's law to be different from that in the ultimate version. How- 
ever, some conditions do not follow the same slope, and some only start 
to appear or assume the general mortality slope after a specific age. For 
these reasons, the idea of a different exponentiated value seems consistent 
with the medical information presented in previous sections. We also 
must be aware of existing mortality data that show increasing per- 
centage differences between ultimate and select mortality. This increasing 
percentage difference implies a lower c for select lives. 

Even if Gompertz's law applied exactly to select lives, we would not 
expect perfect statistical obedience. Mortality statistics are subject to 
chance fluctuations. More important, even for a single company, the 
data are heterogeneous. Underwriting criteria change at discrete age 
intervals. The 40-year-old is selected according to different tests and 
criteria than the 39-year-old. The amount of insurance plays a varying 
role according to age. Underwriters change--the underwriter's frame of 
mind and the underwriting standards used can depend on the amount of 
pressure for new business at year-end. The underlying nature of the 
mortality involved is not constant. Styles in food and cigarette smoking, 
for example, change over the years. Incidence of cancer of the lung in 
men may seem to vary by age in the general population when all that 
is really happening is that the attitude toward cigarette smoking has 
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changed over the years and the effects of smoking are only now being 
exhibited. 

Although we would not really expect one select mortality curve to fit 
Gompertz's law exactly, in some cases the variations from it may give 
additional insight into the underwriting and epidemiological processes 
involved. If we can accept the idea that mortality for an ultimate group 
of lives follows Gompertz 's law and that the mortality of a group that  
remains continuously select also will follow Gompertz's law, with a 
different set of parameters, then the problem of developing a mathe- 
matical law that describes the progression of mortality rates over the 
select period is reduced to the problem of describing how mortality rates 
for an initially select group move from the select Gompertz curve to the 
ultimate Gompertz curve. The solution to this problem for this paper is 
presented in a conceptual form as formula (IA), the initial algorithm, 
which appears below. 

The argument for the initial algorithm is as follows. If we begin with 
a group of select lives some will have died at the end of the first year in 
accordance with Gompertz's law for newly selected lives. Of the remain- 
ing lives, a certain proportion s will remain select and the remainder 
(1 -- s) will become ultimate. The mortality rate for the combined group 
in the second year then will be sqtx+ll + (1 -- s)qx+l. In the next year 
the ultimate group will stay ultimate (by definition of an ultimate 
group), and the survivors of the select group can again be split into a 
portion that  continues as first-year select and a portion that  goes into 
the ultimate group. If  the proportion of select lives that remains select 
is the same as it was in the previous year and if the difference between 
the select and ultimate rates of mortality is small compared to the value 
of s (which can be demonstrated), then the mortality rate for the next 
year for the combined group will be s2qc,+2] + (1 -- s2)qx+2. Following the 
same argument for successive years leads immediately to formula (IA), 
which is 

uf~1+, = s'u~+,j + (1 - s')ux+,. (IA) 

We have already argued for the use of Gompertz's law for both select 
and ultimate mortality. Hence 

tTJ x+t  t \ ~  z+t  
Ut~]+~ sD,  c, + (1 -- = s ) t ~ . c .  ( t )  

The additional approximation involves replacing expression (1) by the 
geometric average: 

t t 
= t e C=+t\* i - -  z + t ~ l - ,  Ui,]+~ k , ,  ) ko~c~ ) • (2) 
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I t  can be shown that  equations (1) and (2) are approximately equivalent 
(see Appendix I). The use of equation (2) implies that  ~[,]+, follows 
Gompertz's law for all values of t. We will write equation (2) as follows: 

- . + t / B  . + t , ,  t U(,]+, = o c  t ~c3 / , (3) 

where B = B,, c = c,, B3 --- B . / B . ,  and ca = c, /c , ,  and refer to this as 
Model I I I  or Vanderhoof's law. This law actually involves two separate 
assumptions. The first is that  both select and ultimate mortality may be 
represented by Gompertz curves. The second is the specific way mor- 
tality goes from one curve to another. Other laws of select mortality, 
referred to as Model I and Model II ,  respectively, are given by 

r J  t z + t  
/ d [ z ] + t  = D l r l C l  , (4) 

viii+, = Bc~+'(B2c~-') a/~t+l)2 • (5) 

These three models will be considered in this paper. 
In Section VI we will compare characteristics of these three models. 

In Section VII  we will discuss the estimation of the parameters of these 
three models from data on crude mortality rates. The remaining sections 
deal with the application of these methods to obtaining estimated 
mortali ty models using the data of (a) Society of Actuaries 1965-70 
Basic Tables, (b) Society of Actuaries 1955-60 Basic Tables, and (c) 
Equitable male experience, 1965-70. The usefulness of these three models 
will be discussed and the fit to the real data assessed. 

Vl. CHARACTERISTICS OF THE MODELS FOR SELECT MORTALITY 

The first-named author believes that, in order to compare the three 
models of select mortality introduced in Section V, it is useful to repre- 
sent the force of mortality as ut,-,1+t. The resulting expressions yield the 
force of mortality corresponding to attained age x and duration t. From 
equations (4), (5), and (3), respectively, Models I, I I ,  and I I I  can be 
expressed as follows: 

I. ~t~-t]+, = Blrtc~ ; (6) 

II .  U[~-,I+t = Bc~(B~c~)l/(*+a) ; (7) 

t 
x 2 8 I I I .  uc,-tl+t = B c ( B s c a )  , 0 < s < 1. (8) 

Any select mortality law should have the following characteristics: (1) 
u[,-,l+, should be an increasing function of t, and (2) the limiting value 
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of/~t,-tT+t as t becomes arbitrarily large should be the ultimate Gompertz 
mortality curve, that  is, 

lira v t , - t ~ + t  = ~ = B c  ~ • 
t ~oo  

Models I, II, and I I I  satisfy characteristic 1, provided that r > 1, 
Bsc~ < 1, and B~c~ < 1 for all attained ages x. Models I I  and I I I  satisfy 
characteristic 2. Although Model I does not satisfy characteristic 2, we 
will consider it as a first approximation to the building of a select mor- 
tality model. 

All three models can be represented as Gompertz curves, for fixed 
duration t, as follows: 

Ut,-tT+t = B( t ) [c ( t ) ]  ~ • 

Model I assumes c ( t ) =  constant = cl, and B ( t ) =  Bir t ;  Model I I  
assumes that c(t) = cc~/~t+~ and B( t )  = BB~/(t+I);  Model I I I  assumes 
that  B( t )  = BB'3 t and c(t) = *t cc 3 . In Model I, the simplest case, it is 
assumed that  B ( t )  rises exponentially with duration. In Model I I I ,  if 
both B~ and ca are less than 1, both B( t )  and c(t) decrease with duration. 
If B3 > 1 and c3 < 1, then B( t )  increases with duration and c(t) decreases 
with duration. The case in which B~ and c3 both exceed 1 is impossible 
because this would violate the inequality Bsc~ < 1. The remaining case, 
Bn < 1 and ca > 1, is possible but did not occur in our empirical work. 
Model I I  exhibits the same trends as Model I I I  in this regard if we 
consider the parameters B2 and Ca. 

Equation (2) implies that, under Model I I I ,  

, t  l _S t  
I A f z - t ] +  t ~ -  ,l~[z]/Ax 

Thus, the force of mortality is a weighted geometric average of the ulti- 
mate force of mortality and the select force of mortality at  duration 0. 
Model I I  has the same property, since, from equation (7), 

= , , l l ( t + l ) n t l ( t + l )  
/ Z [ z - t l + t  ~ [ z l  ~ z  " 

A useful measure of comparison of the three models of select mortality 
is given by 

Q(t )  = 1 a#t,_t]+__., t 
i . t f~_t ]+t  o t  

Q(t)  measures the rate of increase of the force of mortali ty as duration 
increases for a fixed attained age, where the rate of increase is expressed 
as a proportion of the force of mortality. I t  can be shown from equations 
(6), (7), and (8) that, for Models I, I I ,  and I I I ,  respectively, 
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I. Q(t) = In r ; 

In (B2c~) 
I I .  Q ( t )  = - (t + 1 ) '  ; 

I I I .  Q(t) = s '  in (B3c~)(ln s) . 

Since r > 1, B2c~ < 1, Bzc~ < 1, and 0 < s < 1 for all x,Q(t) > 0 for all 
three models. For Model I the proportional increase in the force of 
mortality as duration increases for fixed attained age is constant for all 
durations. For Model I I  the proportional increase is a decreasing hyper- 
bolic function of t, whereas for Model I I I  the proportional increase 
decreases exponentially with duration. Empirically, we will discover that 
the value of s in Model I I I  is in the range (0.7, 0.8). If we compare 
Model I I  with Model I I I  in terms of the rate of increase in the force of 
mortality as duration increases, the conclusion is that  the rate of increase 
decreases more sharply under Model II .  This effect is depicted in Figure 9. 

( o ,  B c ' )  = . 

Duration ( t I 

FIG. 9 . - -Graph  of the select force of mortal i ty  as a funct ion of duration (t) for 
fixed at tained age (x) for Models I, II, and III .  
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For Models I I  and I I I ,  the transition to the Gomper tz  ul t imate mor- 
tali ty curve is smooth. For Model I, Q(t) = constant.  Hence, the select 
mortal i ty  model does not tend to the ul t imate Gomper tz  curve for 
increasing durations. The  practical utility of these three models for 
describing the behavior of select and ult imate morta l i ty  will be tested 
empirically by  using data  on crude mortal i ty  rates. 

VII. ESTIMATION OF PARAMETERS BY WEIGHTED LEAST SQUARES 

The data  to which these mortal i ty  laws will be fitted are the crude 
rates ~t,-t~+t. In  order to estimate the parameters  of the three select 
mortal i ty  models discussed in the previous section, we must  relate the 
true mortal i ty  rates qt~-,~+t under these three models. Theorems 1, 2, 
and 3 state the results for Models I,  I I ,  and I I I ,  respectively. Theorem 
4 states the relationship between the true ul t imate mortal i ty  rates q~ and 
the parameters  of the ul t imate Gompertz  model. These theorems are 
proved in Appendix II .  

THEOREM 1. For Model I given by equation (6), 

Y~t = In [colog (1 - -  q f x - O + t ) ]  - -  Oto + atx + ot2t , (9) 

where 

and 

do = In (BI) + in (rcl -- 1) -- In (In rcl) , 

al  = In c ,  

a2 = l n r ,  

B l r ' c x ( r c l -  1)] 
qtx-,l+, = 1 - exp - In rct " 

THEOREM 2. For Model I I  given by equation (7), 

Y,t = In [colog (1 --  qtx-,~+t)] 

(, d0 + ~l(x + 0.5) + a2 \-~ T- ~ + '~ 

where 

d o =  l n B ,  ~a = I n c ,  a2 = lnc~ ,  a ~ =  l n B 2 ,  

and 

qt~-tl+t = 1 -- exp [--Bc~+°'5(B~c2~+°.5) 1/~t+°.5)] . 

(ao) 
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THEOREM 3. For Model H I  given by equation (8), 

Y~t = In [colog (1 -- qr,-tl+t)] 

"--. so + m(x + 05)  + sW+°.~(x + 0.5) + s W  +°.~ , 

where 

so = l n B ,  m = l n c ,  s2 = I n c a ,  aa = lnBa,  

and 
t+o .tj r ~ ~+0 5 z ~  :r+O 5\s 

q b r - t l + t  --'-- 1 - -  e x p  l - - t ~ c  t/JaCa ) ] .  

(11) 

THEOREM 4. Consider the ultimate Gompertz curve 

#~ = B c  • . 
Then 

Y, = In [colog (1 -- q,)] "=. ao 'b s i x ,  

where 
ao = l n B + l n ( c - -  1 ) - -  In ( l n c ) ,  

S l  = I n  C , 

and 
B ( c -  1)c" 7 7 

q, = 1 - -  exPl_ lnc- d"  

(12) 

Suppose we have available crude mortality rates that are defined as 
Otx-t]+t and ~. for the select and ultimate rates, respectively, for which 
the true rates of the underlying mortality table are qt.-tl+t and q., 
respectively. Under Models I, II, and III,  the true rates are e.vgressed 
as functions of x and t by equations (9), (10), and (11), respectively. 
In order to estimate the parameters in these select models, we can use 
linear least squares in the following manner: first transform the select 
crude mortality rates by the following equation: 

)~'.e = In [colog (1 - -  O t ~ - t l + t ) ]  ; ( 1 3 )  

then choose the parameters to minimize 

SS = ~t Z~ ( l P . ,  - y z t ) ~ ,  

where Y~t is given by equations (9), (10), and (11) for Models I, II, and 
III,  respectively. 

By transforming from the crude mortality rates to the Y~t variable, we 
have linearized the relationship for Models I and II. In Model I I I  the 
relationship is also linear if s is assumed known. Consequently, the 
methods of linear least squares in multiple linear regression as discussed 
by Draper and Smith [4] can be used to estimate the parameters for the 
various mortality models. 
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One of the assumptions of multiple linear regression is that the errors 
have equal variances. The implication is that the variance of }vx, for a 
given age-duration class is constant. This assumption is not valid. I t  is 
proved in Appendix III  that 

1 (14) 
Var (i>,,) - 0,--7' 

where 0,t is the number of deaths in the attained-age-duration class of 
the mortality study upon which the crude mortality rates are based. To 
correct for the inequality of the variances, a weighted-least-squares 
approach is adopted in which the parameters are estimated by mini- 
mizing 

WSS = Z,  Z, O,t( Y, ,  - ? . , )~ .  O5) 

We will use the method of weighted least squares throughout this 
paper. The general method of weighted least squares is discussed in 
Appendix IV. In order to carry out the computations of Appendix IV, 
the methodology contained in a computer package known as statistical 
analysis system (SAS) [1] was used on the data under discussion in this 
paper. This method will also be used to estimate B and c for the ultimate 
Gompertz curve. In this case, we will minimize 

w s s  = x ,  ( ? ,  - v , ) = 0 , ,  

where Y, is given by equation (12), O= is the number of ultimate deaths 
corresponding to attained age x, and 

lf', = In [colog (1 -- 0,)]- (16) 

VIII. APPLICATIONS OF THE MODELS TO EMPIRICAL DATA 

In Sections IX, X, and XI we present the results of fitting Models I, 
III, and II, respectively, using the method of weighted least squares 
discussed in the previous section. We will use five sets of select and 
ultimate crude mortality rates: 

1. Equitable Life Assurance Society's male experience for 1965-70. 
2. Male experience intercompany study for the 1965-70 Basic Tables [19]. 
3. Female experience intercompany study for the 1965-70 Basic Tables. 
4. Male experience intercompany study for the 1955-60 Basic Tables [18]. 
5. Female experience intercompany study for the 1955-60 Basic Tables. 

The data on select crude mortality" rates are based on amount of 
claims and amount of exposure. The select rates pertain to starting-age 
groups (20-24, 2 4 - 2 9 , . . .  , 65-69, over 70) and fifteen groups of policy 
years. In order to use these data for estimating the parameters in the 
various mortality laws discussed in this paper, the following assumptions 
were made: 
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a) The attained age x and duration t for a given crude mortality rate were 
assigned values x = m + p -- I and t = p - 1, where m is the midpoint 
of the starting-age interval and p is the policy year. 

b) Crude mortality rates corresponding to attained ages under 30 were not 
considered, thus avoiding the characteristic dip in mortality rates that is 
not consistent with Gompertz's law. 

c) Crude mortality rates in the over 70 starting-age group were not considered. 
d) Average face amounts of policies and average death claims were assumed 

not to vary significantly over the various age-duration cells considered. 

The last assumption is required because the values of the crude mor- 
tal i ty rates are based on amount  of claims rather than number.  To use 
weighted least squares, we require the number  of claims O~t as opposed 
to amount .  In  order to use amount-related data, we mus t  assume that  

the crude mortal i ty  rates based on amount  are close to the crude mor- 
tal i ty rates based on number  and that  the amount  of death claims is 
proportional to the number  of death claims in the age-duration cells. 

IX.  A P P L I C A T I O N S  OF MODEL I 

To determine the estimates of El, r, and cl in Model I as expressed by 
equation (6), we first use weighted least squares to estimate a0, al, and 
as of equation (9). This procedure was carried out on the five data sets 
described in the preceding section. The next step is to solve the equations 
in Theorem 1 for B~, r, and c in terms of ao, al, and a s ,  This  yields 

el --- exp ,~1, r = exp o~2, 

B1 = (a l  + as) exp ao 
e x p ( a l +  a s ) - -  I "  

Thus,  B 1 ,  r ,  and Cl can be estimated. 

Table 1 shows the estimated values of these parameters  along with 

TABLE 1 

ESTIMATES OF PARAMETERS OF MODEL I 

DATA SE~' 

PARAMETER 1 2 3 4 5 
Equitable Combined Combined Combined Combined 

Male Male Female Male Female 
1965-70 1965-70 1965-70 1955-60 1955-60 

B1X 10 ~ . . . . .  3.3262 3.9024 6.8879 3. 9508 3.3901 
r . . . . . . . . . . .  1.0323 1.0456 1.0486 1.0451 1.0414 
c . . . . . . . . . . . . . . . . . . . . . . . .  1. 0917 1. 0701 1. 0929 1,0856 
100R 2. . . . . .  95.6% 98.4% 87,8% 98.4% 84,2% 

* IOOR~ = percentage of explained variation. 
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the usual measure of fit 100R 2, where R 2 is the proportion of explained 
variation, defined as 

Z, X~ ( rx ,  - ?~,)~0x, 
R 2 = 1 - -  

z~ z~ (Yx, - ~)~0~ ' 
and 

Zt Y.. O~t 

Tests of significance on the individual parameters a0, at, and a2 (using 
the t-test for the significance of regression coefficients) indicate tha t  a0, 
al, and a2 are all nonzero (at the 5 percent significance level). This 
implies that  both r and c are greater than 1. 

From the results of Section VI, the parameter  defined by a2 = In r 
can be interpreted as Q(r), the proportional rate of increase in the force 
of mortali ty as duration increases for fixed at tained age. Model I assumes 
that  this rate of increase is constant for all durations and attained ages. 
Since this assumption is not expected to hold in general, we can interpret 
as = In r as the average proportional rate of appreciation in the force of 
mortality. This parameter  is useful for comparing the average effect of 
selection in different mortal i ty tables. For Equitable male data, this 
average rate of appreciation is 3.18 percent, whereas it is 4.56 percent 
for combined male experience (1965-70). 

I t  is interesting to note tha t  the values of Bt, r, and c, remain relatively 
stable for the two sets of combined male experience data (sets 2 and 4 of 
Table 1). This is not true for the combined female experience data. 
Model I fits male experience data  better than female experience data, as 
is evidenced by the higher R 2 for male experience data. 

The disadvantage of Model I is tha t  we cannot obtain the estimates 
of the Gompertz ultimate curve to which the select mortali ty model 
tends as the duration increases. Models I I  and I I I  do allow the estima- 
tion of the ultimate curve and are discussed in the next two sections. 

X. APPLICATIONS OF MODEL III: THE VANDERHOOF MODEL 

To determine the estimates of B, c, B3, c3, and s in Model I I I ,  we can- 
not use linear least squares because Y,t, given by formula (11), cannot 
be converted to a linear combination of al and known functions of x and 
t. On the other hand, if s is known, we can express Y,t as 

Y.t = ao + atZ1 + a2Z2 + a3Z3, 
where 

Z1 = x + 0 .5 ,  Z~ = s~+°.5(x + 0.5) , Z3 = s *+°'5 • 

To estimate the parameters, we first guess at an initial starting value 
for s and use the method of weighted least squares to estimate ao, at, 
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a2, and a3 above. An iterative approach, discussed in chapter 10 of Draper 
and Smith [4], is then used to obtain better estimates of s, ao, ,~1, a2, and 
as. The iterations are continued until the reduction in the weighted sum 
of squares is insignificant. 

This process is available on SAS [1]. Initial values in the range 0.5 < 
s < 0.8 were used, and estimates of s, so, a~, a2, and as were obtained. 
The estimates of B, c, B~, and c~ can be obtained from the results of 
Theorem 3 as 

B = e x p a 0 ,  c = e x p a l ,  Ba = e x p a a ,  c3 = e x p a ~ .  

Table  2 shows the values of the  es t imated parameters  for the  five da ta  
sets under  consideration. The  values  of B and c correspond to the ulti-  

TABLE 2 

ESTIMATES OF PARAMETERS OF MODEL I I I  

PARAMETER 

BXI@ . . . . .  3.4922 
6 . . . . . . . . . . . . . . . . . . . . . . . .  
Bs . . . . . . . . .  2.9515 
c~ . . . . . . . . . .  0.96577 
s . . . . . . . . . . .  0.77136 
100R~ . . . . . .  96.4% 

DATA SET 

1 2 3 4 5 
Equitable Combined Combined Combined Combined 

Male Male Female Male Female 
1965-70 1965-70 1965-70 1955-60 1955-60 

5.2902 
1.0966 
1.2793 
0.97775 
0.76989 
99.1% 

10.9861 
1.0716 
0.54682 
0.99611 
0.76127 
87,5% 

6. 0969 
1. 0953 
0. 64532 
0. 99260 
0.78276 
98.9% 

5.0809 
1.0889 
0. 85167 
0.98622 
0.80948 
86.2% 

mate  Gompertz  parameters ,  whereas the values of B3 and cs represent  
the mult ipl icat ive  corrections to ad jus t  for the selection effect. If  we 
compare the values of R 2 in Tables  1 and 2, i t  is ev ident  t ha t  the fit of 
the  da t a  to Model  I I I  is an improved one, except for female mor ta l i t y  
rates from the 1965-70 data .  

For  a t ta ined age x, the value of B~c~ represents the rat io  of the force 
of mor ta l i t y  a t  t = 0 to the u l t imate  force of morta l i ty .  I f  c3 = 1, this 
ra t io  is independent  of a t ta ined  age. The values of ca are all less than 1, 
which implies tha t  the effects of selection increase wi th  a t ta ined  age. 
The  smaller the value of c3, the greater  is the decrease in selection effect 
for fixed Ba. The smaller the  value of Ba, the greater the  overall  selection 
effect. Table  3 tabula tes  the values of Boc ~ for various a t t a ined  ages and 
for the  da ta  sets under consideration. 

For  this model to be correct, the factor  B3c~ should be less than 1 for 
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all attained ages x. This holds true except when x < 32 in data set 1 
(Equitable 1965-70 male data). Upon examination of the crude mortality 
rates, it is evident that this is a sampling fluctuation for the following 
reasons: (1) in starting-age group 30-34, the mortality rates decrease as 
the policy year (t + 1) increases; (2) for these data, the selection effect 
was minimal in the lower age groups but more significant in the higher 
age groups; and (3) the model is valid only for attained ages in excess of 
30. 

TABLE 3 

ESTIMATED RATIO OF FORCE OF MORTALITY AT DURATION 0 TO 
ULTIMATE FORCE OF MORTALITY (MODEL III) 

DATA SET 

ATTA1NED 
1 2 3 4 5 

AGE 
Equi table  Combined Combined Combined Combined 

Male Male Female Male Female 
1965-70 1965-70 1965-70 1955-60 1955-60 

3 0  . . . . . . . . . .  
35 . . . . . . . . . .  
4 0  . . . . . . . . .  
45 . . . . . . . . .  
50 . . . . . . . . .  
55 . . . . . . . . .  
60 . . . . . . . . .  
65 . . . . . . . . .  
70 . . . . . . . . .  

1.038 
0.872 
0.733 
0.616 
0.517 
0.435 
0.365 
0.307 
0.258 

0.651 
0.582 
0.520 
0.465 
0,415 
0.371 
0.332 
0,296 
0.265 

0.486 
0.477 
0.467 
0.459 
0.450 
0.441 
0.433 
0.424 
0,416 

0.516 
0.497 
o. 479 
o. 462 
0.445 
o. 429 
0.413 
0.398 
0.384 

o. 562 
o. 524 
0.489 
o. 456 
0.425 
0.397 
0.370 
0.345 
o. 332 

F o r  d a t a  se t  1 ( E q u i t a b l e  m a l e  d a t a )  t h e  effects  of se lec t ion  v a r y  

s u b s t a n t i a l l y  as  a f u n c t i o n  of a t t a i n e d  age, F o r  d a t a  se t  3 (1965-70  

f e m a l e  c o m b i n e d  d a t a )  t h e  effects of se l ec t ion  a re  f a i r ly  c o n s t a n t  for  all 

a t t a i n e d  ages. T h e  o t h e r  d a t a  sets  fal l  b e t w e e n  the se  two  ex t remes .  

xI .  APPLICATIONS OF MODEL II 

T o  d e t e r m i n e  t he  e s t i m a t e s  of B,  c, B2, a n d  c2 in M o d e l  I I ,  w e i g h t e d  

l i n e a r  l eas t  s q u a r e s  h a s  b e e n  used ,  as  d i scussed  in A p p e n d i x  IV.  T h e  ou t -  

put  will yield estimates of a0, al, 
using the results of Theorem 2, 
estimated as 

B = e x p a 0 ,  c = e x p a l ,  

a2, and a3 of equation (10). Then, by 
the parameters in Model I I  can be 

B2 = expa3 ,  c2 = e x p a 2 .  

The estimated parameters are tabulated in Table 4. The values of R 2 
are all higher for Model I I  than for Model I, although the differences are 
not substantial. The values of B and c correspond to the ultimate Gom- 
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p e r t z  p a r a m e t e r s  a n d  c o m p a r e  f a v o r a b l y  w i t h  the  c o r r e s p o n d i n g  v a l u e s  

in T a b l e  4 fo r  M o d e l  I I I .  

XlI. COMPARISONS OF FIT TO MODELS I, II ,  

AND I I I  ~'OR SELECT MORTALITY 

For ease of comparison, Table 5 shows the values of 100R 2 for the five 
data sets and Models I, I I ,  and I I I .  From this table, we can see that  in 
terms of the value of the percentage of explained variation, the Vander- 
hoof model (Model I I I )  fits the male data best, whereas Model I I  fits 
the female data best. Since R 2 is a decreasing function of the weighted 
sum of squares, then, for a given data set, this latter measure of fit takes 
on its smallest value for Model I I I  in the case of the male data and for 
Model I I  in the case of the female data. 

Of course, the differences in the R ~ values are minimal. Models I, I I ,  
and I I I  contain three, four, and five parameters, respectively, so that  it 

TABLE 4 

ESTIMATES OF PARAMETERS OF MODEL I I  

DATA SET 

PARAMETER 1 2 3 4 S 
Equitable Combined C o m b i n e d  C o m b i n e d  Combined 

Male Male  Female Male Female 
1965-70 1965-70 1965-70 1955-60 1955-60 

B X 106 . . . . .  3. 1394 4~ 8442 9. 9028 5. 2945 4. 4060 
c . . . . . . . . . . . . . . . . . . . . . . . . .  1. 0995 1. 0749 1. 0988 1. 0926 
B~ . . . . . . . . .  6.9076 1.9187 0.76881 0.88982 1.90931 
c~ . . . . . . . . . .  0. 94123 0. 95853 0. 97782 0. 97583 0. 95568 
100R * . . . . . .  96.3% 99.0% 87.9°/0 98.8% 87.4% 

TABLE 5 

COMPARISON OF 100R 2 VALUES 

MODEL 

DATA SET 

1. Equitable male, 1965-70 . . . . . .  
2. Combined male, 1965-70 . . . . . .  
3. Combined female, 1965-70 . . . .  
4. Combined male, 1955-60 . . . . . .  
5. Combined female, 1955-60 . . . .  

I 

98.4 
87.8 
98.4 
84.2 

II III  

96.3°/o 96.4% 
99.0 99.1 
87.9 87.5 
98.8 98.9 
87.4 86.2 
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may be argued that the differences are not really substantial. A true 
picture of the situation can be obtained by comparing the residuals, 
which are the differences between the estimated and the observed 
mortality rates. It  was found that Model I I I  seemed to exhibit the most 
random pattern in the residuals. I t  was also found that the pattern was 
more random in the case of the Equitable male data and less random in 
the case of the combined male (1965-70) data. Since these crude rates 
apply over the same period of study, it is useful to compare the crude 
and estimated mortality rates over these two data sets. 

Tables 6 and 7 exhibit the estimated-to-crude ratios of the Model I I I  

TABLE 6 

R A T I O  OF E S T I M A T E D  TO C R U D E  M O R T A L I T Y  R A T E S  

FOR M O D E L  I I I  A N D  E Q U I T A B L E  M A L E  D A T A  

l I , AGE. AT IssUE 

0 . . . . . . . . . . . . .  
1 . . . . . . . . . . . . .  
2 . . . . . . . . . . . . .  
3 . . . . . . . . . . . . .  
4 . . . . . . . . . . . . .  
5 . . . . . . . . . . . . .  
6 . . . . . . . . . . . . .  
7 . . . . . . . . . . . . .  
8 . . . .  0.721 
9 . . . .  0.873 
10. . . 0.913 
11, 1.547 
12. . . 1.806 
13. 1.039 
1 4 . . .  1.171 

22 27 

0.914 
1.017 
1.140 
0. 438 
0.831 
1. 044 
1. 309 
0.891 
1.323 
1.119 
1.090 
1,043 

32 

0.811 
1.178 
0. 890 
1. 289 
1.203 
0. 890 
1. 264 
0.881 
0. 972 
1. 107 
0.877 
O. 828 
1 091 
1.202 
1.021 

37 

0.953 
0. 866 
1.390 
0. 770 
1. 137 
1.074 
0.987 
0. 992 
1. 047 
0.925 
O. 923 
1.035 
0. 986 
1.073 

42 

1. 294 
1.186 
0. 736 
1.115 
0.970 
1.014 
1.128 
1. 006 
0. 754 
1.041 
1.073 
1.025 
1. 035 
0.934 
1.065 

47 

0.976 
1.053 
1.304 
0.818 
1 O16 
0.948 
1.231 
0. 864 
1.247 
1.239 
1.188 
1,005 
O. 9,t4 
1. 099 
1.219 

52 

0. 791 
1 0 7 4  
1.051 
1.077 
1.217 
0. 950 
1.100 
1.016 
I. 332 
0.982 
1.010 
0.977 
1.076 
0.877 
1,110 

57 

1.002 
0.939 
1.234 
0.909 
1. 085 
1.056 
1.017 
1.036 
0. 888 
0. 867 
0 .984 
1. 144 
1.261 
0. 548 
1.321 

62 

1.248 
1.664 
0 .600 
0 827 
1.611 
0.709 
0. 793 
1.180 
1. 765 
1. 854 
1. 524 
1.387 
1. 032 
0. 772 
1.156 

67 

0.913 
0. 205 
1.256 
1.032 
0.777 
I. 709 
0. 690 
1. 806 
1.221 
0 .605 
1.021 
1.317 
0.539 
1,005 
0.939 

T A B L E  7 

R A T I O  OF E S T I M A T E D  TO C R U D E  M O R T A L I T Y  R A T E S  FOR M O D E L  I I I  

A N D  C O M B I N E D  M A L E  E X P E R I E N C E ,  1 9 6 5 - 7 0  

# [, , AGE AT ISSUE 

0 . . . . . . . . . . . . .  
1 . . . . . . . . . . . . .  
2 . . . . . . . . . . . .  

iiii!! iiiiii!! 
6 . . . . .  I . . . . . . . .  

71111 ' !  f . 6 f 2 "  
9 . . . .  I 1.081 
1 0 . . .  I 1.017 
1 1  . . 1,002 
12 . . . .  1. 135 
1 3 . . .  I 1.003 
14 . . . .  , 1.072 I 

22 27 

1.137 
.074 
.124 

0.989 
1.116 
1. 134 
1.207 
1. 064 
1 ~ 160 
1.187 
1. 065 
1.078 

32 

1. 004 
0. 793 
0. 896 
1.028 
1.097 
1.289 
1.104 
1.105 
1. 068 
1.092 
1,014 
0.988 
1,020 
1.072 
1 0 3 0  

37 

1.184 
1.073 
1.071 
0 .976 
1.024 
0. 996 
1. 092 
1 017 
1.018 
0. 995 
0.991 
0. 984 
0 .978 
0.937 
0 .982 

42 

1. 108 
0.937 
0.872 
0. 869 
1.056 
0.976 
0. 940 
0 9 4 7  
0.946 
0 9 5 8  
0.969 
1.003 
1.001 
0.918 
0. 898 

47 

1.026 
1.068 
0.946 
0. g68 
0,995 
0. 878 
1.082 
0 .993 
1.015 
0.978 
1. 000 
0.989 
0. 907 
0.920 
0. 892 

52 

1.117 
0 9 3 8  
1. 109 
0.957 
1 0 2 7  
0.927 
1. 128 
0 .914 
1.073 
0.959 
0. 980 
O. 899 
0.951 
0.941 
0 .910 

57 

1.038 
1. 055 
0. 845 
0.995 
1.005 
1. 080 
1. 207 
1.190 
1. 173 
1.038 
1.144 
l .  160 
1.072 
0. 964 
1.082 

62 

0.822 
1. 464 
1. 100 
0. 808 
1,265 
1.213 
0.969 
1. 196 
1. 339 
1. 062 
1.030 
0.991 
1.202 
1.251 
1.057 

67 

0.815 
1.537 
1.177 
0 .836 
0,735 
1.201 
O. 900 
1.370 
1.310 
1.088 
1.174 
1.196 
1.282 
1.079 
1.796 
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mortal i ty rates for these two data  sets. The estimated mortal i ty rates 
were calculated by using the formula in Theorem 3. A ratio in excess of 1 
implies overestimation, whereas a ratio less than 1 implies underestima- 
tion. Upon examination of Tables 6 and 7, several trends are evident: 

1. In the case of the Equitable data, there is no systematic underestimation 
or overestimation as we increase t for fixed starting ages or as we increase 
the starting ages for fixed t. The ratios deviate from 1 both positively and 
negatively in a random fashion. 

2. For the combined male experience, there appears to be more overestimation 
in the lower starting ages (22-32) and more underestimation for starting 
ages in the range 37-52 when t > 7. Neither trend, however, appears to be 
overly significant. 

3. The deviation from I in the ratios for the combined male experience seems 
to be less than for the Equitable experience. This is an expected result, since 
100R 2 = 99.1 percent for the former and 96.4 percent for the latter. 

I t  is also important  to point out tha t  Model III,  the Vanderhoof 
model, was based on a theoretical argument. Model I I  was presented as 
an alternative to Model III,  which has the same properties in tha t  the 
limiting mortal i ty law is tha t  of Gompertz (see Fig. 9). Model I is an 
alternative simple model tha t  fits surprisingly well. The authors believe 
tha t  a model tha t  is to be adopted should have some theoretical justifi- 
cation as well as empirical validation. The Vanderhoof model seems to 
satisfy these two requirements. I t  seems to perform better  for male data 
than for female data. 

X l I I .  FIT OF THE ULTIMATE MORTALITY DATA 

Using the ultimate crude mortal i ty rates available for the five data 
sets discussed in Section VI I I ,  we fit Gompertz 's  law using the method 
of weighted least squares. To carry this out, we minimize 

( ? ~  - ,*0 - ~ x x ) 2 0 ~  = W S S  , 

where ~'~ is given by equation (16). This process yields estimates of no 
and sl. To estimate B and c, we solve the two equations in Theorem 4 
for B and c in terms of s0 and czl. Thus 

B = sx exp so 
e x p s 0 - -  1 '  c = e x p s l .  

Table 8 tabulates the values of B, c, and R 2 for the five data sets under 
comparison. Also tabulated are the corresponding parameters of the 
ultimate curve as estimated from the select Model I I I  (previously shown 
in Table 2). 
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We  do no t  expect  these  two  u l t i m a t e  curves  to  be the  same,  because 

the  u l t i m a t e  d a t a  are  based on medica l  and nonmedica l  issues whereas  

the  e s t ima ted  u l t i m a t e  curve  f rom the  select  d a t a  is based only on 

medical  issues. Tab l e  9 shows the  ra t io  of the  u l t i m a t e  force of m o r t a l i t y  

based on the  G o m p e r t z  crude m o r t a l i t y  ra tes  to the  u l t ima te  force of 

m o r t a l i t y  e s t ima ted  f rom the  select  curve.  T h e  E q u i t a b l e  d a t a  on males  

TABLE 8 

PARAMETERS IN GOMPERTZ ULTIMATE MORTALITY LAW 

DATA SET 

PAaAUZ~a 1 2 3 4 5 
Equitable Combined Combined Combined Combined 

Male Male Female Male Female 
1965-70 1965-70 1965-70 1955-60 1955-60 

Ultimate Parameters Estimated Using Crude Ultimate Mortality Rates 

B)< I0 s . . . . . .  5. 1507 6.3129 3. 196l 7.8473 2.2221 
c . . . . . . . . . . . . . . . . . . . . . . . . .  1.0959 1.0994 1.0932 1.106 
100R ~ . . . . . . .  9 9 . 6 %  9 9 . 8 %  9 5 . 4 %  99.4% 96.7% 

Ultimate Parameters Estimated from Select Model I I I  

B×10 s . . . . . .  3.4922 ] 5.2902 10.9861 ] 6.0969 5.0809 
c . . . . . . . . . . . . . . . . . . . . . . . . .  ] 1. 0966 1. 0716 [ 1. 0953 1. 0886 

TABLE 9 

RATIO OF ULTIMATE FORCE OF MORTALITY DERIVED FROM 

CRUDE ULTIMATE RATES TO ULTIMATE FORCE OF 

MORTALITY DERIVED FROM SELECT RATES 

DATA SET 

ATTAINED 
AOZ 2 3 4 5 

x Combined Combined Combined Combined 
Male Female Male Female 

1965-70 1965-70 1955-60 1955-60 

30 . . . . . . . . .  1.171 0.617 1.215 0.704 
40 . . . . . . . . .  1.163 0.810 1.192 0.825 
50. 1.156 1.047 1.169 0. 966 
60 . . . . . . . . .  1 . 148 1.353 1.147 1. 132 
70 . . . . . . . . .  1.141 1.747 1.125 1.327 
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were not used because the ultimate curve was based on male and female 
experience combined, and it was not possible to separate the corre- 
sponding data. 

As can be seen from Table 9, these ratios are always greater than I for 
male mortality. However, for female mortality, the ratios are less than 
1 for lower attained ages, rising to a level greater than 1 for higher 
attained ages. For male data the ratios decrease with age; the opposite 
is true for female data. We believe that  the ratios are consistent with 
the underlying data, since female mortality in both select and ultimate 
periods exhibits variations from the expected pattern of mortality 
increasing with age and duration. 

XlV. CONCLUSION AND DISCUSSION 

In this paper we have presented theoretical arguments in favor of 
Gompertz's law as the first approximation of a more complete law of 
mortality and have then developed from logical and biological argu- 
ments the Vanderhoof model of select mortality. 

This model was tested by using several bodies of data, and com- 
parisons were made of the fit of this model with that  of two other similar 
models. While all models had high R 2, only our preferred model seemed 
to have a random distribution of residuals. This model also seems to 
provide the most useful information about the various bodies of data. 
The value of s, which relates to the rapidity of wearing off of selection, 
seems stable over the bodies of data considered. Values of this variable 
for other data would be interesting. The parameter c represents the 
ultimate Gompertz curve implied by the select data. The values of c for 
males are very close to the values found by fitting the available ultimate 
data for men. The values of B for men seem consistent with the knowl- 
edge that the select and ultimate data sets are not homogeneous. Tests 
of the ultimate data set of medically issued risks would be interesting. 
Tests of the forms for substandard lives would be interesting, and the 
implication of the value of s about the rate of change from standard to 
substandard might be informative. The model's implied ultimate values 
for women were not satisfactory. 

The acid test of this model should be a comparison of the fits with the 
actual graduations produced by the Committees on Mortality and 
Morbidity of the Society of Actuaries; a comparison of R 2 values is 
shown in the accompanying table. As would be expected, the Society of 
Actuaries' graduation has higher values of R 2. However, the Society of 
Actuaries' graduation uses more parameters and provides for smoothness 
only between successive durations for the same issue age. There is no 
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VALUES OF 100R ~ 

153 

Data Set 2 
Combined 

Male 
1965-70 

DATA SET 

Data Set 5 
Combined 
Female 
1955-60 

Data  Set 3 Data Set 4 
Combined Combined 
Female Male 
1965-70 1955-60 

88.7% 99.6% 
87.5 98.9 

3ociety of Actuaries. . 99.4% 89.3% 
~Iodel I II  (Vanderhoof). 99.1 86.2 

inherent smoothness between attained ages. Our preferred model has 
perfect smoothness between ages and durations. The crude data  have an 
R ~ of 100. To achieve smoothness by duration for the 1965-70 male 
data, the Society of Actuaries'  graduation gives up 0.60 percent of the 
R ~. To achieve the additional smoothness by age, our model requires an 
additional loss of only 0.30 percent of the R 2. This argument  does not  
apply to the 1955-60 data  but  does apply much more forcefully to the 
female sets. Our preferred model provides an additional dimension of 
smoothness as compared with traditional graduation techniques, with 
very little loss of fit to the underlying data. 

The value of this formula to the practical actuary should be obvious: 

1. A practicing actuary may wish to work with a mortality table that has the 
same ultimate mortality rates as the most recent Society data, but where 
the relationship between the ultimate rates and the first-year select rates 
is that of his own company. Alternatively, he might wish to accept his own 
company's data for the ultimate rates but use Society data to implant 
either first-year select rates or the relationship between select and ultimate 
rates. The formula makes the preparation of such "mosaic" tables simple. 

2. Safety margins can be introduced easily. 
3. The common procedure of using a constant percentage coefficient for 

modifications in a table is justified. 
4. The effects of withdrawal rates on mortality probably can be observed 

through the values of s and c where a low and high value, respectively, 
imply mortality affected by high lapses. 

5. Regression analysis and least-squares techniques are very easy to apply to 
company data. 

A possible extension of the Vanderhoof model to take into account 
irregularities in mortali ty with attained age is the final algorithm of the 
approach: 

~ t ~ + t  = K'rC~+t)Bc~+t(B~cs~+t) "* , (FA) 
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where f ( x  + t) is some numerically determined function of attained age 
from outside data. The addition of this term would, it is hoped, take into 
account such irregularities as the dip in mortality in the late twenties for 
males and the development of a local maximum or point of inflection in 
the female mortality curve, reflecting, in the former case, accident rates 
for males and, in the latter, fertility rates for females. 

APPENDIX I 

GEOMETRIC AND ARITHMETIC AVERAGES 

In this appendix we prove that equation (1) is approximately equiva- 
lent to equation (2). Consider equation (2): 

In X+ £', a ¢1~ ~ + / ~ l - - s  t #[~]+t ~ LD, C, ) kt~uc,, ) 

~.s 14.1--1 t 
J l J 2  

1 ,)" 
. . . .  

N o w  

Thus 

o r  

f~ 

Select mortality rate 
Ultimate mortali ty rate 

< 1 .  

= s~'l + ( 1 -  s')f2, 

utxl+, = s tr~.c. ~ + (B,,c,, ) (1 - -  s ' ) ,  

which is equation (i). 

APPENDIX II 

RELATIONSHIP BETWEEN MORTALITY RATES 
AND THE FORCE OF MORTALITY 

In Section VII we stated four theorems concerning the relationship 
between qt~-tl+t and ulx-tl+t. In this appendix, we prove these results. 

Proof of Theorem I. The relationship between the force of mortality 
and the mortality rate is given by Jordan [11] as 

1 

--ln (1 -- qtx-,l+O = fU~,_t~+t+,dz. 
0 
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From equation (6) we have 

colog (1 qf.-tl+t) = r ,  t+, ~+,. - -  J - O l r  Cl  a:g 
0 

1 
t ¢ 2 = Blr c x f ( r c l )  dz. 

0 

Thus  
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t Bit cl(rcl -- 1) 
colog (1 -- q[z-*l+t) = In rcl 

I f  we take natural  logarithms of both sides of the above equation, 
equation (9) follows, which was to be proved. 

Proof of Theorems 2 and 3. To prove Theorems 2 and 3, we use the 
approximate  result 

colog (1 -- q~-t]+t) = U[~-t~+t+0 s 

as given by Jordan. From equations (7) and (8), we obtain, for Models 
I I  and I I I ,  respectively, 

colog (1 -- qt~-tl+,) = Bcx+°'5(B2c~ ~'+°'5)I/c'+I"~, 

colog (1 -- q[,-t]+~) = Bc ~+° 5(B3c~+° 5) "'+°'~ • 

If  we take logarithms of both sides of the above two equations, we 
obtain equations (10) and (11), respectively. 

Proof of Theorem 4. Theorem 4 is proved by  Jordan [11, chap. 1]. An 
al ternate proof is to consider Theorem 1 in the specific case where r = 1, 
cl = c, and B1 = B. Equat ion (9) reduces to equation (12). 

APPENDIX I I I  

VARIANCE OF THE COLOG OF THE 
SELECT SURVIVAL RATE 

The  justification for weighted least squares is equation (14) for select 
rates. In  this section, we prove this result. 

T~IEORE~ 5. Let ~'xt and ~ be defined by 

~ . t  = In [ co log  (1 - -  0t , - t l+*)]  , 

~'z = In [colog (1 --  0~)], 
"l~3here 

O, = OJEx, 0t,-,l+, = O~,/E,, ; 

Ox and E,  are, respectively, the number of deaths and the number of 
exposed at attained age x for ultimate experience, and Oxt and Ex, are 
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the number of deaths and the number of  exposed at attained age x and 
duration t for  select experience. Then 

V[I?:,] -- 1 /0 : , ,  V[I~=] = 1 /0 : .  

Proof  of  Theorem 5. Following Rao [20], we have 

V [ I ( X ) ]  - [ f ' ( t t ) 1 2 V ( X ) ,  

where X is a random variable with mean ~. Thus  

F 1 _ 1 q).]2V((t) ,  V(~,~) 
-colog (i  -- q) (I  

where 0 = O~,-t~+t. If we t rea t  OE,, = O,t as a binomial variate,  we 
obtain 

V(O) = q(1 --  q ) /E ,~  , 

where q = E(0) is the true morta l i ty  rate. Hence 

q(1 -- q) 
V(~.t)  = Ext(1 -- q)2[colog (1 -- q)]2. 

Making use of the approximations 

colog (1 --  q) "=. q ,  qE,  t - O,t , 1 - q - 1 , 

we have 
1 1 

V[ ?=,l - o , , (1 -  q) ox," 

The second equation follows similarly. 

APPENDIX IV 

METHOD OF WEIGHTED LINEAR LEAST SQUARES 

The method of weighted least squares involves minimizing equation 
(15). We can rewrite this equation as 

WSS -- ~ IV;(Y, - )9)2,  (17) 
i ~ l  

where the Wi's are the weights, or in this case, the number  of deaths in 
a t ta ined-age-durat ion class i; ~"i is given by equation (13) for the same 
at ta ined-age-durat ion class; and Y~ = In [colog (1 -- qi)]. Here  q~ is the 
t rue morta l i ty  rate in a t ta ined-age-durat ion class i. Equat ion (15) can 
be fur ther  rewritten as 

WSS = ~ ( Y ~ -  ]~'~ 
i ~ l  
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where 

IZ~ = w~/2Y,, ?~ = w~ '~? , .  

For Models I and I I ,  and for Model I I I  in the case where s is a known 
constant,  Y'i can be expressed as 

Y" = aoZo~ + ~lZl~ + ,~2Z2i + a3Z~. 

Consequently, to estimate s0, al, a2, and a~, linear least squares can be 
used. The  steps are as follows: 

1. Transform 0~ to I?~ = In [colog (1 -- Oi)]. 
2. Transform ~ ,  to 1~" i = W~/~'¢. 
3. Determine Z0~, Z1i, Z2,', and Z3~ for the model of interest according to 

equations (9), (10), or (11) for Models I, I I ,  and I I I ,  respectively. 
For example, for Model I I ,  

Zo, = w~/~, z , ,  = w~/~(x + o.s ) ,  

z~, = w~/~(~ + o.s)/( l  + o.5) ,  z~, = w',/~l(l + 0.s) .  

4. Perform linear least squares through the origin, using ~i as the  
dependent  variable and Zol, Zu, Z~, and Z~i as the independent 
variables. 
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DISCUSSION OF P R E C E D I N G  PAPER 

W I L B U R  M, BOLTON" 

The authors are to be congratulated on their at tempt to formulate an 
ultimate mathematical model to represent the varieties of mortality 
rates in different populations. This discussion will record the results of 
an at tempt to fit a Makeham model to part  of the Commissioners 1980 
Standard Ordinary Mortality Tables, and to the unloaded basic tables 
from which these tables were developed by the Special Committee to 
Recommend New Mortality Tables for Valuation. 

The first step was to solve for a set of values of ~ by Jordan's formula 
(1.21), that is, 

12l~ 

Since the basic data from which these tables were constructed were 
divided into quinquennial attained-age groups, it seemed appropriate to 
use only data at the assumed central attained ages of these groups. In 
this manner, interpolated rates are retained at the pivotal ages, and the 
effect of the choice of graduating function actually used would be 
minimized. 

Also, since the hypothesis was that  a geometric curve could be passed 
through the data points, it seemed appropriate to employ as a measure 
of fit not only the customary deviation between the "observed" values 
and graduated values but also a measure of "relative" fit: 

Observed ~ - Graduated t~, 
Relative deviation = 

Observed t~, 

Using this measure of "relative" fit, a deviation of 1 death per 1,000 
at an age where the observed value is 40 deaths per 1,000 would have no 
greater significance than a deviation of 0.1 death per 1,000 at an age 
where the observed value is 4 deaths per 1,000. Such a test seems in- 
tuitively appropriate where the underlying function is expected to fol- 
low an exponential form. 

For the range of 50 attained ages illustrated, a best fit was determined 
for the value of A such that,  in the equation 

In ( ~  -- A) ---- l n B  + x l n  c ,  

159 
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the coefficient of determination, 

[ , y R 2 = Y. x i l n ( ~ , - -  A)  - -  l ~ X ~ l n ( . ~ _  A)  
n 

X l [~x~ (~-x')~'][~S [In (~. -- A)P--[ZIn("~---A)]2-]I-' 
¢ n ..I n 

would be maximized. 
These graduations were done by an exponential-curve-fitting program 

on the HP-25. Table 1 shows the result for a limited range of ages 
(attained ages 45-94) for male lives, and Table 2 shows corresponding 
results for female lives. Review of these results showed that the fit for 
female lives was less than half as good as the fit for male lives for this 
range of ages. The average relative deviation for females was 4.06 percent, 
compared with 1.76 percent for males. 

In an at tempt to determine whether the problem with obtaining a fit 
was an artifact of the type of loading formula used in developing the 
loaded table, a similar graduation was applied to the underlying basic 
tables. (See Exhibit 3 in the report of the Special Committee.) The re- 
sults are shown in Tables 3 and 4 for males and females, respectively. 

T A B L E  1 

MAKEHAM GRADUATION OF COMMISSIONERS 1980 STANDARD ORDINARY 
MALE MORTALITY TABLE, AGES 45-94 

i7. 
52, 
57, 
52. 
57. 

72 . .  
77,. 
~2,. 
37,, 
92.. 

Age 

(t) 

Total  

1,000q= 

(2) 

5.32 
7.96 

12.49 
19.19 
30.44 

47.65 
77.12 

117.25 
179.55 
253.45 

Observed 
1,000 ~x 

(3) 

5.129 
7.646 

12.038 
18.501 
29.550 

46.437 
76. 649 

118.967 
189. 662 
280. 967 

785.546 

Makeham 
1,000 ~x 

(4) 

5.070 
7.766 

12.044 
18.835 
29.615 

46.724 
73.882 

116.988 
185.409 
294.010 

790. 343 

Observed minus 
Graduated 
I(3)-(4)] 

(S) 

O. 059 
- -0 .120  
- -0 .006  
-- O. 334 
-- O. 065 

- -0 .287 
2.767 
1.979 
4.253 

- -13.043 

- -4 .797 

Relative 
Deviation 
[too(s)/(3)} 

(6) 

1.15~ 
- -1 .57  
- 0 . 0 5  
- 1 . 8 1  
- 0 . 2 2  

- -0 .62  
3.61 
1 . 6 6  
2.24 

- -4 .64  

- o. 25% 

Makeham constants :  

A = 0.00048; B X 106 = 5.96645+;  c = 1 .0968+;  100/~ = 99.971; 
:glrelative deviationsl = 17.57%; average relative deviation = 1.76%; 

number  of sign changes = 3. 
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TABLE 2 

MAKEHAM GRADUATION OF COMMISSIONERS 1980 STANDARD ORDINARY 
FEMALE MORTALITY TABLE, AGES 45-94 

Observed minus Relat ive Observed Makeham 
Age 1,000qz 1,000#z 1,000#z Graduated Deviation 

[(3)-(4)1 [100(5)/(3)1 
(1) (2) (3) (4) (5) (6) 

47 . . . . . . .  
52 . . . . . . .  
57 . . . . . . .  
62 . . . . . . .  
67 . . . . . . .  

72 . . . . . . .  
77 . . . . . . . .  
82 . . . . . . . .  
87 . . . . . . . .  
92 . . . . . . . .  

4.05 
5.70 
8.03 

1 0 . 9 6  

17.43 

26.87 
48.04 
82.40 

143.32 
228.81 

3.929 
5.512 
7.834 

10.567 
16.856 

25.787 
46.512 
80.980 

146.358 
246.489 

4.024 
5.231 
7.330 

10.982 
17.332 

28.374 
47.578 
80.976 

139.055 
240.059 

-0.095 
0.281 
0.504 

-0.415 
-0.476 

-2.587 
- -  1.066 

0.004 
7.303 
6.430 

- -  2 . 4 2 %  

5.10 
6.43 

-3.93 
-2.82 

- 10.03 
--2.29 

0.00 
4.99 
2.61 

Total . . . . . . . . . . . .  590.824 580.941 9.883 - 2.36°/0 

Makeham constants: 
A = 0.00239; B X 10 ~ = 0.89985+; c ~ 1.1170+; 100R 2 = 99.840; 
Z [relative deviations [ = 40.62%; average relative deviation = 4.06%; 

number of sign changes = 3. 

Review of these tables shows that  the male basic table for the age range 
40-89 could be graduated fairly well using Makeham, with an average 
relative deviation of 1.15 percent and a nice al ternation of the signs of 
deviat ion of graduated values from observed values. Adding data for 
younger and /or  older ages causes substant ial  deterioration in the fit of 

graduated to observed rates. 
However, the female basic table for the same age range develops 

Makehamized values tha t  underpredict  deaths consistently at at tained 
ages 45-59, overpredict deaths substant ial ly at a t ta ined ages 60-79, and 

underpredict  again at  ages 80 and over. The average relative deviation 
exceeds 7 percent, compared with 1.15 percent for male lives. Again, 
adding data  for younger ages makes the fit poorer. 

The same features of wide underprediction in the fifties and overpre- 
diction in the 60-79 age range for females result whether the chosen 

pivotal values are the ten from the age range 42-87 or the ten from 47- 
92. I t  would seem that  proponents  of the mathematical-law approach to 
graduation need an explanation or a mechanism to account for this hump 

and dip for female at tained ages 45-79 in comparison with the "best fit" 
Makeham curve. 



TABLE 3 

MAKEHAM GRADUATION OF 1970-75 BASIC MALE TABLE, AGES 40-89 
(FIRST 5 POLICY YEARS EXCLUDED) 

I Observed minus Relative Observed Makeham Graduated Deviation 
Age 1,000q~ 1,000~z 1,000t*j, 1(3) -(4)] [100(5)/(3)I 

(1) (2) (3) (4) (5) (6) 

4 2  . . . . . . .  
47 . . . . . . .  
52 . . . . . . .  
57 . . . . . . .  
62 . . . . . . .  

6 7  . . . . . . .  
72 . . . . . . .  
77 . . . . . . .  
82 . . . . . . .  
87 . . . . . . .  

2.36 
3.84 
6.08 

10.06 
15.95 

26.01 
41.38 
68.00 

103.61 
158.63 

2.253 
3.673 
5.798 
9.644 

15.313 

25.147 
40.121 
67.221 

104.354 
165.743 

2.244 
3.652 
5.922 
9581 

15.476 

24.976 
40.285 
64.955 

104.711 
168.776 

0.009 
0.021 

- 0 .  124 
0.063 

- 0 . 1 6 3  

0.171 
--0.164 

2.266 
--0.357 
--3.033 

0.40% 
0.57 

- 2 . 1 4  
0 6 5  

--1 .06 

0.68 
--0.41 

3.37 
- 0 . 3 4  
- 1 . 8 3  

Total . . . . . . . . . . .  439.267 440.578 - 1 . 3 1 1  - 0 . 1 1 %  

Makeham constants: 

A = --0.00006; B X l0 s = 4.18532; c = I . I 001+ ;  100R z = 99.988; 
:~lrelative deviations] = 11.45%; average relative deviation = 1.15~; 

number of sign changes = 7. 

TABLE 4 

MAKEHAM GRADUATION OF 1970-75 BASIC FEMALE TABLE, AGES 40-89 
(FIRST 5 POLICY YEARS EXCLUDED) 

Age  

( t )  

~r2. .  

52.. 
57,. 
62,. 

6 7 . .  
72.. 
77.. 
82,. 
87.. 

1,000q, 

(2) 

1 . 8 l  
2.77 
4.11 
6.01 
8.33 

13.88 
21.89 
40.72 
71.11 

125.07 

Observed 
1 , 0 0 0 ~ x  

(3) 

1.716 
2.672 
3.951 
5.851 
7.986 

13.367 
20.874 
39.175 
69.358 

126.468 

Makeham 
1,000~z 

(4)  

1.798 
2.471 
3.614 
5.551 
8.836 

14.408 
23.858 
39.885 
67.065 

113.161 

Observed minus 
Graduated 
[(3)-(4)] 

(5) 

--0.082 
0. 201 
0.337 
0.300 

--0.850 

- -  1 . 0 4 1  
-- 2. 984 
--0.710 

2. 293 
13.307 

Relative 
Deviation 

[100(5)/(3)] 
(6) 

- -4 .78% 
7.52 
8.53 
5.13 

- -  10.64 

--7.79 
--14.30 

--1.81 
3.31 

10.52 

Total '. . . . . . . . . . . .  ' 291. 418 280. 647 10. 771 -- 4.31% 

Makeham constants: 

A = 0.00083; B >( 105 = 1.14469; c = 1.1114+; 100R 2 = 99.609; 
2; [ relative deviations I = 74.33~/c ; average relative deviation = 7.43cfc ; 

number of sign changes = 3. 
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A conjecture may be made that this experience will not follow a true 
Makeham curve because, even though the first five policy years are ex- 
cluded, it contains some "select" lives in policy years 6-15. I t  seems to 
me that this conjecture would be more applicable to male insured lives 
than to female insured lives in this age range; further, review of Exhibits 5 
and 6 of the report of the Special Committee shows that female insured 
mortality is relatively closer to female population mortality than is the 
case for the corresponding male experience. 

I t  is interesting that in Tables 2, 4, and 5 of the paper the authors also 
show a significantly lower value of 100R 2 for the female experience than 
for the male experience, indicating a poorer fit of the actual and gradu- 
ated tables for females. 

I t  also seems peculiar that, in the tables in this discussion, the derived 
values of A, the constant to allow for random or accidental death in the  
Makeham formula, are much smaller for males than for females in both 
the "loaded" recommended valuation table and the basic table. This is 
contrary to our a priori knowledge that the accidental death rate for 
males is consistently higher than for females in modern studies. 

Perhaps the authors can offer a verbal interpretation for the negative 
value of A resulting from attempting to Makehamize the 40-89 age rang e 
of the 1970-75 Basic Male Table. I don't  have one. 

My conclusion from the work underlying this discussion is that the 
Special Committee to Recommend New Mortality Tables for Valuation 
was eminently correct in not attempting to force either the new basic 
tables or the new valuation tables into a Makeham mold. Distortion of 
the results, particularly in regard to females, would have been unac- 
ceptable. However, if the authors can hypothesize sex- and age-dependent 
factors that will account for the major observed twists and turns in 
adult  mortality, future generations of actuaries will be greatly in their 
debt. 

Certainly the authors should be commended for reminding us that the 
search for a mathematical law of mortality should not be totally aban- 
doned by our profession simply because no one up to now has succeeded 
in developing one that fits all major features of the data. 

K. S. BROWN:  

The authors are to be commended for their statement that models of 
mortality should be based on reasonable biological assumptions and 
should not be just mathematical functions in which the parameters have 
no biological interpretation. 

However, after a well-organized review of the relationships between 
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the linear decline of physiological function with age and the exponential 
increase in mortality rates with age, the authors propose a model that  is 
neither biologically plausible nor mathematically correct. 

The authors assume that there exists a biological system of n compo- 
nents and the probability that any component in such a system fails isf .  
(Although this is not stated, it probably is assumed that f is the probabil- 
ity that  a component fails in a one-year period.) Given these assumptions, 
q0 = f~ (i.e., components fail independently, and if all components fail 
between ages 0 and 1, then the individual dies between those ages). 

Under what assumptions wouldf be independent of age? Is it not more 
reasonable to assume that f would be a function of age, with a greater 
chance of failure the older the component, or have the authors assumed 
that failures are the result of random events? 

Second, if more than one system becomes involved, why is it assumed 
that each system has the same number (n) of components, and that each 
component has the same probability (f) of failure? 

Finally, if q, -- f , -x  as the authors claim (but see below), then q, --- 1, 
and n is automatically determined to be in excess of 100. What is the 
evidence for a number of systems, each of which has more than 100 levels 
of redundancy? 

Mathematically, i f f  is assumed to be the probability of failure of any 
component in a one-year period, then the probability that any compo- 
nent fails between ages x and x + 1 is 

(1 - -  f ) ~ f ,  

and the probability that any component does not fail before age x (i.e., 
survives to age x) is 

(1 - - f ) ' f  = (1 - - f ) ~  = S*(x ) .  
t~a~ 

Now the system fails when all components fail, and hence the prob- 
ability of survival of the system to age x is 

S(x) -- 1 -- [ 1 - -  (1 - - f ) ~ ] " .  
Hence 

S(x) -- S(x + 1) 
q* = S(x) 

= [1 - -  (1 - - / ) ~ + ' ] "  - -  [1 - -  (1 - - f ) * ] "  # f " - * .  
1 - - [ 1 - -  ( 1 - - f ) x ] "  

The authors apparently have confused age x with the number of com- 
ponents (x) that have failed. A simple model for which the expected 
number of component failures by age x equals x has 
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n(1 -- S*(x) )  = x ,  
o r  

S * ( x )  = 1 - x / n  , 
and, thus, 

q .  = S*(x)  - s * ( x  + 1) = 1 

S * ( x )  n - x '  

which is not constant (i.e., f )  as the authors claim. 
There are a number of other models that have been postulated since 

Sacher-Trucco and Strehler-Mildvan. Some of these (e.g., Forbes-Sprott 
[3]) postulate random "hi t"  mechanisms and do not directly assume the 
linear decline in physiological function. Another model (Brown-Forbes 
[1, 2]) does assume the linear decline and has been fitted successfully to 
mortality data for the major causes of death. The successful fitting of 
mortality data is a more essential criterion than merely demonstrating 
that the mortality curves produced follow Gompertz's law. 

In fitting by weighted least squares, the authors must obtain approxi- 
mations for the variances of the transformed rates that  involve assump- 
tions that are not always consistent (e.g., 1 - q "~ 1, but colog (i - q) "~ 
q). Have they checked the fits that  would be obtained by directly esti- 
mating the parameters using maximum-likelihood techniques? With cur- 
rent high-speed computers, three- or four-parameter models can often 
be fitted quickly even when first or second derivatives of the likelihood 
function cannot be found easily. 
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M I C H A E L  C O H E N  : 

The authors are to be congratulated on presenting a very thought- 
provoking, well-researched (with one exception mentioned below), and 
well-written paper. If  its only effect is to wean actuaries from fidelity to 
summation-formula methods of graduation, it will have served its pur- 
pose, but it should have a much more profound influence on actuarial 
thinking. 

However, I was surprised to note an absertce of reference to any work 
undertaken in the United Kingdom other than Gompertz's pioneering 
study. This is particularly surprising in view of British actuaries' aban- 
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donment of summation methods (which, significantly, the second-named 
author identifies with "graduation" in the Introduction) in favor of 
graduation by mathematical formula, and their attempts, stretching back 
fifty years and more, to find explanations for terms in the Gompertz and 
Makeham formulas, as well as adaptations of the Pearson family of 
curves ("logistics") to the graduation of insurance, annuity, and popula- 
tion data. 

Two papers particularly worthy of mention are "On Some Experiments 
in the Graduation of Mortality Statistics" (JIA, LXlI I ,  12) by Perks, 
submitted to the Institute of Actuaries in 1931, and "An Exploration 
into Patterns of Mortality" (JIA, KCV, 243) by Redington, submitted 
in 1969. 

Redington's paper, while far from "scientific" (a fact he admits him- 
self), has an interesting explanation of why mortality falls off at older 
ages. He recasts the familiar Gompertz relationship, ~, = Bc ~, into 
~, = c *-z, where ~.. = c o = 1, z being the age at which the annual force 
of mortality is unity. He then considers that the population consists of 
a mixture of "pure strains" each having its own values of c and z. Plotting 
~ against x on semilog paper gives a straight line for such a "pure strain," 
but obviously produces a curve bending toward the x-axis for mixed z's 
and c's. In other words, the survivors at older ages are there not just 
because of the stochastic process, but because they have a greater re- 
sistance to death, thereby lightening the observed mortality. 

In his paper Redington says, "If posterity passes this way, it will 
drive a paved road where I have used a footpath." Tenenbein and 
Vanderhoof undoubtedly have used that paved road. I t  is a pity that 
they did not spot the footpath on the other side of the ocean, not to 
mention the variety of pathways that have been used by British actu- 
aries over the past half-century and more. 

STUART KLUGMAN : 

Very little has been written on the construction of select mortality 
tables. The authors have provided a clever yet simple approach to this 
problem, and they are to be commended for attacking the problem from 
both a physiological and a statistical viewpoint. My comments relate 
only to their approach for constructing the ultimate portion of the table. 
They cover four areas: the authors' reasons for rejecting other graduation 
methods, the sacrific of accuracy for simplicity, the interpretation of R 2, 
and the use of the terms 0,, as weights. 

In Section I, six criticisms of commonly used graduation techniques 
are listed. While some are valid, I must disagree with items 2, 3, and 6. 
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Several methods use an understanding of the mortality process. Our 
belief that q~ is a smooth function is incorporated into all these methods. 
The Bayesian approach allows our knowledge of mortality rates to be 
directly incorporated. Items 3 and 6 refer to the observation of devia- 
tions. A residual analysis can accompany any graduation; however, it 
may be more difficult to use the results to alter a biologically based model 
than to adjust a prior opinion. 

A fundamental concern is the balance between the gains from simpli- 
fication and the loss of accuracy. How much error can we tolerate to 
receive the benefits of a mathematical model? There is little doubt that 
Gompertz 's law holds for numerous examples for ages 30-70 [2]. Are the 
errors at other ages insignificant, particularly with respect to financial 
values? How does one decide? Further research into this area may be 
very useful. 

My third comment relates to the statistical analysis. All of the gradu- 
ations produce extremely large values of R =. Even the unsatisfactory 
Model I produces values above 0.87. As an experiment, I gave crude 
values of Y= = In [ - l n  (1 - q,)] and weights 8, for ages 30-70 from the 
1965-70 ultimate combined male study to Professor Johannes Ledolter 
of the University of Iowa's Department of Statistics. Among linear 
models, he selected Y~ -- B0 +/3tx + B2x ~ as providing the best repre- 
sentation. This was done despite the fact that R 2 was equal to 0.99745 
for the first-degree model. Two factors led him to select the quadratic 
function. First, the residuals for the straight-llne fit did not appear to 
be random. They were positive for ages 30-34, negative for 35--49, positive 
for 56-61, and mixed elsewhere. In all, there were 13 sign changes, 
significantly fewer than the 20 expected. Second, when fitting the 
quadratic term, the significance test for /35 yielded t = - - 3 . 5  (p = 
0.0013). Even so, the value of R ~ was raised only to 0.99806. I believe 
there are two reasons for this. First, the high value of R 2 results from the 
steep slope of the line dominating the local fluctuations. Second, the 
weights place little emphasis on ages 30-40, where most of the curvature 
was observed. The above comments lead me to return to the question of 
parsimony raised above. 

Finally, I must comment on assumption d in Section VIII .  When a unit 
other than lives is used for counting exposures and deaths, Var [I~] - 
/~/na 2, where n is the number of lives, a is the average number of dollars 
per life, and B is the average square of the number of dollars [1]. In the 
authors' notation, O.t = n~ta~t and therefore Var [I7.,] ~. [3.t/O~ta.t. Thus, 
0., is an appropriate weight only if B.t/a.t does not vary significantly over 
the various age-duration cells considered. 
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None of the above comments is designed to detract from the authors' 
contribution to the construction of select mortality tables. I also look 
forward to their work describing the second-order versiou of their model. 
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ARTHUR LEVENGLICK : 

Messrs. Tenenbein and Vanderhoof have made an ingenious at tempt 
to provide a strong theoretical foundation for mortality patterns that  
continually recur in humans and other life forms. I would like to com- 
ment briefly on two areas of their work. 

The authors' model relates Gompertz-type mortality patterns to a 
model based upon death defined in terms of the failure of certain systems 
(currently not identifiable). Their approach entails a number of strict 
assumptions. 

1. The systems are mutually independent. 
2. The systems have identical numbers of critical components. 
3. All components in each system have identical probabilities of failure. 
4. The failure rate of components is linear with time. 

Although it is possible to develop a theory with weaker assumptions, the 
theory would be more complicated and less closely related to the Gom- 
pertz law. 

The authors' analysis of select mortality confused me somewhat. In 
Section IV, the authors assumed that each of the mortality classes 
delineated at issue was transformed during the select period into each 
of the other classes. I t  would appear that during this initial period no 
"select" mortality class could be transformed into the "ultimate" class, 
a term apparently reserved to denote those lives selected a long time ago. 
In Section V, however, the authors defined the select group as those 
individuals who could pass a medical examination each year. This 
definition would imply that the terms "select" and "ultimate" have 
nothing to do with the time elapsed since the initial underwriting process 
but rather involve the current state of health of the individuals. For 
example, an individual with high blood pressure who has just been under- 
written and issued a (rated) policy would be considered an "ul t imate"  
life zather than a member of a select substandard mortality class. I think 
that the algorithm presented in the paper is inconsistent with the gen- 
erally accepted usage of the terms "select" and "ultimate." 
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COURTLAND C. SMITH, JR. : 

Messrs. Tenenbein and Vanderhoof are to be complimented for an 
imaginative and challenging paper. 

Essentially this paper seems to say that  since Gompertz's law, ~ = 
B c  ~, assumes ongoing degeneration in physiological processes with ad- 
vance in age, it should be applicable to a group of continuously healthy 
lives qualifying for new life policies as well as to a group of lives in average 
health. In life industry parlance, the healthy lives would be zeroth- 
duration or first-policy-year standard select risks, and the lives in average 
health would be standard ultimate risks. If the ultimate lives remain 
ultimate while the select lives tend to become ultimate in increasing pro- 
portion with advance in duration, then we can express the mortality of 
a cohort at duration t as the weighted mean of zeroth-duration select 
mortality rates and ultimate mortality rates. Finally, if Gompertz's law 
is truly universal, then it should apply equally well to each duration t. 

Symbolically, for attained age x, select duration t, and select propor- 
tion s, where 0 < s < 1, equations (IA) and (1) of Section V may be 
written 

_ _  t z ~,~_,~+~ = s ' ~ j  + (1 sgus = s B~c, + (1 - -  s ' ) B d ,  
or  

ur~-,J+, = u~ + s~(ut,j  - u , ) ,  

where the last term is obviously negative. Here ut,-tl+t is a weighted 
arithmetic mean of the select and ultimate #'s. Since Gompertz's law 
itself depicts a geometric curve, a weighted geometric mean may con- 
stitute an appropriate approximation. Accordingly, Model I I I ,  or Vander- 
hoof's law, is proposed in equations (2) and (8) as 

ut,-,l+t--- (t~t,l)"(u,) ' - ~ ' =  ( B , c ~ ) " ( B c ' )  ' -* '  , 
o r  

lalx-tl+t = B c  z ~ B 4 d ,  

where B, = B ( B , / B ) * '  and c, = c(c,/c)*' .  Thus, tth-duration mortality 
also follows a Gompertz curve. 

The resulting curves for ages 30 and over give a reasonably good fit to 
some recent North American select and ultimate tables for males but 
not to those for females. In the concluding paragraphs, the authors com- 
ment wistfully that  the inclusion of an additional factor in equation (8) 
perhaps may be sufficient " to take into account such irregularities as the 
dip in mortality in the late twenties for males and the development of a 
local maximum or point of inflection" for females. 

I t  is both interesting and instructive to compare this approach with 
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that outlined in a recent paper in the Journal of the Institute of Actuaries, 
entitled "The Age Pattern of Mortality," by L. Heligman and J. H. 
Pollard (CVII, Part I [1980], 49-80). Heligman and Pollard suggest a 
mathematical expression or "law of mortality" for graduating postwar 
Australian national mortality data, of the form 

%/Px = B~ *+s# + B2 exp [--E(ln x -- In F) 2] + Bc ~ . 

(See eq. [1] of their paper.) 
The first term is intended to represent the exponential drop in mortal- 

ity during the early years following the trauma of birth as the child 
"adapts to its new environment and gains immunity from diseases of the 
outside world." The second term, which is lognormal in form, reflects 
the "accident hump" for males and the combined accident and maternal- 
mortality hump for females. The third term, "the well-known Gompertz 
exponential, reflects the near geometric rise in mortality at the adult 
ages, and is considered to represent the ageing or deterioration of the 
body, i.e., senescent mortality." 

Together the three components give a surprisingly good fit to recent 
Australian population data. However, the fit is not completely saris- 
factory, and two modifications of the basic curve are proposed. One 
modification improves the fit for Australian males, where the curvature 
of In (q,/px) is concave downward or flattened at the older ages. A second 
modification fits better for females, where the curvature is concave up- 
ward at the older ages. 

The Heligman/Pollard concluding paragraphs include a conjecture 
that a more general "law of mortality" might be expressed in the form 

qx/Px = ~ B,  exp { - -E , [ f , ( x )  -- F,] a'} . 
i * l  

Normally the papers in the J I A  pay only limited attention to long-term 
selection. Nevertheless, one response to the Tenenbein-Vanderhoof wistful 
comment may well be to propose a "law" of mortality of the Heligman- 
Pollard variety, namely, 

~c*-~]+~ = B~ ~+s#  

t x + B2 exp [--E (ln x -- In F) ~ + Be" + s (B,c, -- B:) , 

where the last term is negative. Alternatively, if we use Vanderhoof's law, 
we have 

ul~_o+ , = B~ ~+s~ -k- B 2 exp [ - E  (In x -- In F) 2 + B4c•, 

where B, and c4 are as defined earlier. 
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All this suggests the following comments  and questions to me: 

1. Tencnbein and Vanderhoof seem to consider mathematical expressions or 
"laws" to be completely antithetical to graduation techniques. Why must 
they be completely antithetical? Can we not graduate statistical data using 
mathematical curves in the Heligman-Pollard manner? 

2. Even if mathematical expressions and graduation techniques should indeed 
be antithetical in part, cannot the ends of science still be satisfied by either 
means? Cannot either means serve to describe observed statistical phe- 
nomena? 

3, At our company we have found the Vanderhoof " law"--Model  I I I - - v e r y  
useful in approximating the intercompany 1965-70 Basic Select and Ulti- 
mate Table. On a computer, it is easier to calculate an array of mortality 
rates from a few parameters than to load all the rates as input. Even so, 
may it not be misleading to give real credence to the notion that select 
mortality in duration t is actually a weighted mean of zeroth-duration 
select mortality and ultimate mortality? Do we really have a combination 
of zeroth-duration select risks and ultimate risks at each renewal duration, 
or do we rather have a continuum of risks in various states of health? 

4. Under current reentry select and ultimate term policies, many companies 
attempt to reselect risks at a renewal duration. Can they really do this 
successfully given the limitations of the underwriting process and the 
realities of the marketplace? 

5. North American reinsurers often experience higher mortality ratios in the 
first policy year than in years 2-5. My query would be: Is there an adjust- 
ment that could be made to the general Heligman-Pollard expression to 
reflect this antiselective force in reinsurance experience? 

PAUL THOMSON: 

The  authors  of this  fine paper  are to be commended for a valuable  
addi t ion to actuar ia l  science. Wi th  Vanderhoof 's  law, a whole select and 
u l t imate  table  above age 30 can be expressed compact ly  in a formula and 
a few constants ,  thus at  once saving computer  storage space and solving 
graduat ion and interpolat ion problems. Former ly ,  the chief reason for 
fi t t ing Gomper tz  or Makeham curves was to permi t  the  use of uniform 
seniori ty tables  for joint  life functions, bu t  modern computers  have 
obviated this need. In  this work the authors  have shown convincingly 
tha t  the  Gomper tz  model  does after  all essential ly represent  the under-  
lying t rends of mor t a l i t y  rates. 

The  authors  ment ion the problem of mor ta l i t y  falling away from the 
Gomper tz  law at  high ages, and they note tha t  addi t ion of only the  
second-order t e rm in the  power series of c x improves the  fit. I t  occurred 
to me tha t  since Vanderhoof 's  law is a compound Gomper tz  formula with 
an element dependent  on durat ion,  it  might  be made to represent  the 
fal l ing-away phenomenon with dura t ion t measured from a t ransi t ional  
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age T. Up to age T, ratios of consecutive t~x's are fairly constant, with 
the unexplained decline occurring thereafter. To test this application, I 
used the following derivation, which is similar to the authors' but with 
slightly different symbols to avoid confusion, starting with their geo- 
metrical average formula (2): 

~ = ( 8 ° c : )  h' (B~c~)'-", 

where Ba and ca are determined from ages up to T, t -- x - T, and B5 
and cb are to be found. Also, h replaces the authors' s," although it also lies 
between 0 and 1, it represents the rapidity of transition between curves 
in the opposite direction from the select to ultimate process. As in the 
paper, the above can be expressed as 

x x h t 
U~ = BbCb(BcCc) , 

where Be = B , / B 5  and cs = ca/cs. The authors'  Theorem 4 with linear 
regression was used to obtain Ba and ca. For x > T + 1 the following was 
used to find Bb and Cb: 

In [colog (1 -- q~)] ---- In B5 + (x + 0.5) Incb 

+ h'+°'5[ln (Bac~ +°'5) -- In Bb --  (x  + 0.5) In c~] , 
whence 

In [colog (i  -- q,)] -- h t+° 5 In try,ca 
Yx, = 1 - h '+°'5 = a0 + (a + 0 .5 )a t ,  

where a0 = In B5 and at = In Cb. This involves guessing at a value of h, 
and hence requires only simple linear regression and trying other values 
of h if necessary, or finding an optimal value as the authors did, having 
the necessary computing facilities. 

The mortality rates I used are those shown in Table 13 of Francisco 
Bayo's paper "Mortali ty of the Aged" ( T S A ,  Vol. XXIV),  and the 
resulting parameters found are shown in Table 1 of this discussion, with 
the resulting ratios of rates in Table 2. Age 86 seemed appropriate for T 
for all cases except for white females, where it is 95, perhaps because of a 
quirk in the data. Quinquennial ages were used for the range up to T and 
triennial ages above, except that individual ages were used for white 
females aged 96-100. Unweighted least squares were used, since numbers 
of deaths were not available. 

The ratios of rates in Table 2 indicate that the fit may be satisfactory 
in each case, although there is obviously some bending of the original 
rates both below and above age T. A value of 0.90 for h seemed to give 
reasonable results, both in terms of R~ and trends of ratios of consecutive 
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# ' s  w i t h o u t  fu r the r  tr ials ,  except  for wh i t e  males,  where  0.94 reproduced  

the  t r end  b e t t e r  wi th  a small  r educ t ion  in R~. I n  tes t ing  the  con t inu i ty  of 

ra tes  a round  the  junc t ion  at age T, the  whi te  female  group shows a sharp  

drop  in ra t ios  of consecu t ive  u 's ;  however ,  this is a reflect ion of the  same 

p h e n o m e n o n  in the original  data .  

Cons ider ing  where  this  appl ica t ion  of Vanderhoof ' s  law leads for ages 

above  101, i t  can be seen tha t  since h t approaches  zero as t increases,  

e v e n t u a l l y  ~,  ~"  BbC~ at  ex t r eme ly  h igh  ages. W h e t h e r  this will p r o v e  

real is t ic  can be  verified only  by  using far  more  d a t a  than  are  ye t  ava i lab le ;  

TABLE 1 

E S T I M A T E S  OF P A R A M E T E R S  

D A T A  S E T  (FROM BAYO'S  T A B L E  13) 

PARANETER 

Ba X 104 . • 
Ca . . . . . . . .  
:ooP~ . . . .  

T ........ 

h ........ 

BbX 104. • 
Cb . . . . . . . .  
IOOR~ . . . .  

B ~ X  10 4 . . 

Ce . . . . . . . .  

FEMALE 

Nonwhite  

0. 9654 
1.08638 

99.7% 
86 
0.90 

19.327 
1.04798 

99.4% 
499. 508 

1.03664 

White  

0. !537 
1.11009 

99.9% 
95 
0.90 
2.241 
1.07271 

96.7% 
685. 855 

1.03485 

Nonwhite 

3. 8964 
1. 07234 

99.8% 
86 
0.90 

221.556 
1.02323 

94.4% 
175.865 

1.04799 

MALg 

White 

1. 736O 
1. 08320 

99.98% 
86 

O. 94 
64. 839 

1.04148 
97.4% 

267. 740 
1.04006 

TABLE 2 

RATIO OF ESTIMATED MORTALITY RATES TO DATA MORTALITY RATES 

~6 . . . .  
71 . . . .  
76 . . . .  
?,1 . . . .  
36 . . . .  
g9 . . . .  
92 . . . .  
~5 . . . .  
~8 . . . .  
101... 

AOE 

Nonwhite 

1. 042 
0. 973 
0. 968 
0. 984 
1.034 
1.006 
0. 987 
1.001 
1 . 001  
1.004 

FEMALE 

White  

1 . 031  
1.004 
0.997 
0.966 
0.955 
0.975 
1.023 
1.042 
0.995 
1.006* 

Nonwhite  

1 . 03 1  
0.975 
0.981 
0.994 
1.020 
1.008 
0.984 
0.991 
1.013 
1 . 0 0 1  

MALE 

White 

0.999 
1 .0 0 1  
1.009 
1.006 
0.993 
1.006 
0.993 
0.989 
0.992 
1 . 0 1 6  

* Ratio a t  age 100. 
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meanwhile, there may be some utility in using this approach in extending 
mortality rates of annuitants and others toward assigned tabular closing- 
out ages. 

F R A N K  A. W E C K :  

The authors set themselves the task of discovering and then formu- 
lating the basic laws that govern mortality. I believe they not only have 
succeeded in offering new and useful mathematical expressions for the 
mortality curve but also have developed a theory of aging that opens 
new avenues for research into the nature of mortality itself. 

To explain the nature of the mortality curve, the authors have linked 
two hypotheses: (a) the linearity of loss of function of biological systems 
with advancing age and (b) the redundancy of biological systems. Physio- 
logical and biological studies lend support to each of these hypotheses, at 
least as a first approximation. It  was brilliant insight on the part of the 
authors to see the possibility of combining these two hypotheses to 
derive mortality laws. 

In the case of utlimate mortality, especially for the middle and older 
ages, the arguments in favor of the authors' approach seem to me to be 
quite persuasive. At the infantile ages, the complex of forces probably 
precludes quantification into a simple enveloping mathematical formula. 
During childhood and at the younger adult ages, external forces (and 
childbearing, in the case of females) have significant impacts on mortal- 
ity. It  probably is best, as the authors propose, to treat the effects of these 
impacts by means of modifications superimposed on the formulas applica- 
ble to the older ages. 

In the case of select mortality, it seems to me that several questions 
remain to be resolved. Some of these questions flow from the purpose to 
be served by a select mortality table, while others involve the theory 
relating select to ultimate mortality. 

For underwriting purposes, a cohort of lives (policies) should be viewed 
as select to the end of the mortality table. Whether or not such select 
mortality merges with some ultimate table is irrelevant. The degree of 
selection, that is, the difference between select and ultimate mortality, 
usually is determined from experience tabulated by age at entry and 
duration. Some allowance may be made for changes in underwriting 
standards during the period of experience. Adjustments are made less 
commonly for changes in mortality levels by calendar year of experience. 
Rarely are mortality levels projected into the future to reflect current 
trends or the impact of changing life-styles and medical progress. Yet 
allowance for the effect of each of these factors is important if past ex- 
perience is to be used as a guide for underwriting. 
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Some of the apparent anomalies and unexplained differences between 
select and ultimate mortality, which have been evidenced in various 
mortality studies, may be the consequence of giving too little weight to 
changes in underwriting processes and standards and to variations by 
calendar year of experience. The authors' approach commends itself as a 
natural point of departure from which to make allowance for the latter. 
It  would be interesting to pursue such an investigation, if suitable data 
were to become available. Also of interest would be an indication by the 
authors of how their formulas could be used to recognize various assump- 
tions regarding future mortality. 

It  has always been difficult to develop a satisfactory transition from 
select to ultimate mortality. This has been due not only to the lack of 
suitable experience data but also to the absence of any generally accepted 
theoretical concept. Here again, the authors have filled the breach by 
proposing an appealing theoretical foundation for relating select to ulti- 
mate mortality. 

The authors consider that at time of issue all lives can be grouped into 
a number of distinguishable classes with expected mortality levels rang- 
ing, in order, from low to high mortality. Following this approach, select 
lives at issue are considered to be those that are included in the classes 
with expected mortality at or below the maximum for standard insur- 
ance. Each year after issue there is assumed to be a "transformation" of 
classes. At the beginning of the second year (and at the beginning of each 
subsequent year) the membership of each class, which now includes non- 
standard as well as standard lives, is assumed to include representatives 
from all the classes existing at the beginning of the previous year. As a 
consequence of this assumption, ultimate mortality will contain repre- 
sentatives from all classes, and any initial distribution of select classes 
will be "transformed gradually 
unselected group." 

I think it is difficult to know 
that  members from each of the 

into the distribution of the ultimate or 

how far it is stretching facts to assume 
select classes can end up in each of the 

ultimate classes. There must be some classes eligible for standard insur- 
ance whose members never can have expected mortality as low as the 
expected mortality of the best classes. An example might be family 
history; another might be history of radiation exposure. I doubt whether 
data exist that could be used to provide quantitative tests of this aspect 
of the authors' theory. Perhaps the underwriters could evaluate the 
significance of this matter, but I consider it a theoretical caveat of only 
minor significance. What the authors have done, I think, is to strike a 
good balance between theoretical and practical considerations, which 
leads to some useful formulas. 
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I have some other minor reservations in regard to the formulas that 
the authors have developed as models for select mortality. This is not to 
say that their models are unreasonable; rather, their basic assumptions 
provide a point of departure from which a multitude of formulas could be 
constructed. The tests of their three models do not seem to me to be 
conclusive, if only because the raw data are flawed by the lack of adjust- 
ment for calendar year of experience. Even if the raw data are deemed to 
provide a suitable test, the variation in the magnitude of the several 
constants in the models leaves one in doubt as to which model, if any, 
deserves the title of "law." 

Moreover, there is no reason to require that select mortality merge 
with ultimate mortality, except for practical convenience. While Gom- 
pertz's law can be defended as a logical approximation to the ultimate 
mortality curve, it may well be that a model for select mortality that 
embraces all durations would provide an even better expression for what 
is termed ultimate mortality. One merit of the authors' models is that 
they can be applied to reach the limiting age of the mortality table. 

No mathematical formula can be more than an imperfect expression of 
a mortality "law." Graduation can, I believe, improve adherence to the 
underlying mortality law. By smoothing the raw data, graduation bridges 
the categories by age, duration, and so on, and thereby minimizes fluctu- 
ations due to small numbers. Moreover, graduation does not merely 
smooth; it can reflect broad trends as well. 

While the authors rightly disavow graduation as the best means of 
arriving at a meaningful mortality curve, their formulas do produce 
graduated results. In fact, they point out that their preferred model 
"provides an additional dimension of smoothness as compared with 
traditional graduation techniques." I would suggest that one test of the 
authors' formulas would be to graduate the departures of the raw mor- 
tality rates from those produced by their formulas. Any broad and con- 
sistent divergence would seem to call for further investigation. 

Much of the paper is devoted to computational models and procedures. 
Formulas are presented that deal with force of mortality, mortality rates, 
and q,. Some of the computational complications could be avoided by the 
device of working with what may be termed "the mean annual mortality 
rate." The mean annual mortality rate over an interval of age, t, may be 
symbolized by tta~, where 

1 ' 

t (which may be fractional) being expressed in years. 
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For research along the lines on which the authors have embarked, the 
major advantages in working with t/~ include the following. 

1. Exponential expressions for ~ retain an exponential form in tu~. 
2. The rate 1~ may be translated exactly into q~ (and vice versa) by 

using the formulas 

q~ = 1 - -  e - ~ ,  lU~ = - - l o g ( 1  -- q~), 

or may be very closely approximated by using the formulas 

1#~ q ~  . q'-l+½(~,,)' ~ - l -½q,  
3. For component causes of mortality, for example, causes r~, r 2 , . . .  , 

such as the authors have considered in connection with biological sys- 
tems, the following equalities hold: 

Cor respond ing l y ,  

t ] 2 z  t l d x  t ~ - x  • . . 

and 
q('~) 1 -- exp ~ -(,1)~ 

and similarly for r2, • • . .  The other formulas in paragraph 2 above also 
apply to individual causes. 

4. The quantity t/a~ may be derived directly from raw data by using the 
formula 

Observed deaths 
Crude , ~  = Exposure (with deaths treated the same as a n y '  

other increment or decrement, that  is, exposed 
until time of death) 

and exactly the same formula, with the same denominator, applies to any 
component cause (e.g., rl) of mortality. 

For a more extensive treatment of the foregoing formulas, reference 
may be made to F. A. Weck, "The Mortality Rate and Its Derivation 
from Actual Experience," RAIA, X X X V I  (1947), 23-54. 

(AUTHORS' REVIEW OF DISCUSSION) 

AARON TENENBEIN AND IRWIN T. VANDERHOOF: 

The authors would like to thank all the discussants for their comments, 
many of which were very detailed and thought-provoking. We appreci- 
ate the time the discussants spent on their very thorough reading of the 
paper. We will respond to the comments in alphabetical order. 
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Wilbur M. Bolton 

Mr. Bolton's discussion of the attempts to fit the Makeham curve to 
the Commissioners 1980 Standard Ordinary Mortality Tables is very 
interesting. His measure of relative deviation is essentially the same mea- 
sure of fit we used in Tables 6 and 7 of our paper. His query on the nega- 
tive value of A can be resolved by setting A equal to zero; this results 
in a Gompertz curve. In fact, the value of A is very close to zero. This 
issue is an important one in curve-fitting because the value of A should 
be constrained to be greater than or equal to zero. The fact that .4 

became zero may be an indication that the accidental death rate does 
not have a substantial relative effect for these data in the over-40 age 
range. 

K. S. Brown 

Dr. Brown's comments involve three basic themes: (1) the biological 
assumptions are inconsistent; (2) the variances of the transformed rates 
involve inconsistent approximations; and (3) the use of maximum- 
likelihood estimation may produce better fits. We will respond to each 
of these comments. 

1. Dr. Brown's first point is that the value o f f  should vary over the 
life span. This is an unnecessary assumption, for two reasons. First, the 
form of the proposed model is such that the reduction of redundancy in 
living systems can be represented by a reduction in the number of com- 
ponents. I t  is not necessary for this model to represent the same reduc- 
tion in redundancy twice. 

Second, the assumption of identical distributions of components for 
different systems is obviously the simplest assumption that can be made. 
Another more complex assumption could be made, provided the justifi- 
cation for such an assumption existed. In general, the assumption of 
identical distributions and rates of failure of components is what we 
would expect from consideration of the evolutionary process. If there were 
a system that was weaker than any other, evolutionary forces eventually 
would weed it out. While there is necessarily a considerable range of 
redundancy of systems between individuals, consistent weaknesses are 
eliminated by evolution. The assumption used in the paper is, then, not 
only the simplest but also, generally, the most plausible. 

Dr. Brown interprets the paper as saying that,  if a component fails in 
one period, it has left the system. This is not our argument. Our argu- 
ment is that components leave the system only through age, not through 
failure in an earlier period. This is consistent with the common observa- 
tion that damaged parts of the body are repaired or replaced. Dr. Brown 
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then implies that the authors are confused because they have followed 
this argument rather than the argument tha t  he presents. If we had used 
the assumptions he used, which we did not, wc would have reached his 
conclusion, which we did not. 

2. We used the approximations 1 -  q ~  1 and colog ( 1 -  q) - q. 
Dr. Brown seems to imply that  these two approximations are incon- 
sistent because colog (1 - q) - colog i = 0. 

If  this is what is being implied, it is erroneous. The impact of these 
approximations is the relative error that  results from their use, because in 
a weighted least-squares procedure the relative value of these weights 
becomes important.  The relative error in the first of these approxima- 
tions is 

l - - q - - 1  
. q ~  

1 - - q  

or approximately 100q percent. The relative error in the second approxi- 
mation is 

co log(1  -- q) -- q _  q 
colog (I -- q) " 2 ' 

or approximately 100(q/2) percent. Both of these relative errors are 
satisfactorily low. The relative error in the third approximation (which 
we did not use) is 

colog (1 -- q) -- 0 
colog (1 -- q) _ 1 . 

This is a 100 percent relative error which, of course, is not satisfactory. 
3. We did not use maximum-likelihood estimation because the data  

on mortali ty rates are based on amount  and not on number, which makes 
it difficult to specify the likelihood function. If  this difficulty could be 
overcome, either with other data  or with approximate maximum-likeli- 
hood techniques, it would be useful to compare maximum-likelihood 
techniques with weighted least-squares methods. The approximations 
for the variances are consistent as explained under comment 2. 

Michael Cohen 

Mr. Cohen's comments relate to our omission of the work of British 
actuaries on graduation by mathematical  formula. The main thrust of 
our paper was the fitting of select mortali ty rates, which are not used in 
the United Kingdom to the extent they are used here. To our knowledge, 
British actuaries have made no a t tempt  to form select mortali ty models 
because they do not deal with this kind of data. As a result, we did not  
make reference to this literature. However, Mr. Cohen's comments are 
justified and we apologize for this omission. Another article of interest is 



180 NEW MATHEMATICAL LAWS OF MORTALITY 

the Heligman and Pollard paper mentioned by Mr. Smith in his dis- 
cussion. 

Stuart Klugman 

Dr. Klugman's comment on the use of residual analysis, rather than 
R 2, to determine fit is a very important point in any regression analysis. 
We discussed this issue in Section X I I  and presented results of a residual 
analysis in Tables 6 and 7 of our paper. His comment on the relative con- 
stancy of ~,t/a~, over the various age-duration cells is correct. This ratio 
can be expressed as ~ ,  + a~t/~,t, where ~,t and ~ ,  represent the mean 
and standard deviation of the face amounts in each age-duration cell. 
The assumption of relative constancy implies that the mean face amount 
does not vary appreciably from cell to cell and the standard deviation of 
face amounts is negligible. 

Arthur Levenglick 

As Mr. Levenglick points out, a number of strong assumptions are 
required to arrive precisely at Gompertz's law. We believe, however, 
that  using weaker assumptions leads to a power-series version of Gom- 
pertz's law, which may be necessary in any case if we argue that  each 
cause of death should follow Gompertz's law and that an individual may 
die of only one cause. 

Mr. Levenglick also points out some inconsistency in terminology. We 
blushingly agree that consistent use of the term "standard" to represent 
lives that can now pass underwriting, and "select" to denote lives that  
have passed underwriting at some time in the past, would have been 
better. 

Courtland C. Smith, Jr. 

We appreciate the comments from Mr. Smith and believe, along with 
him, that the additional factors utilized by Heligman and Pollard may 
provide an answer to the problem of the peculiar bumps in the mortality 
curve at ages under thirty for males and at ages under fifty for females. 
We are currently investigating the possible uses of this factor and other 
similar factors to improve the fit of the equations. We have experienced 
some difficulty thus far. We would like to point out, however, that,  even 
though the proposed formula does not fit the female data as well as we 
would like, the fit is very nearly as good as that of the published gradu- 
ated tables. The evidence would seem to be, therefore, that the real 
pattern has not been caught either by us or by the graduators. We will 
report when our present efforts are completed. 
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Our response to Mr. Smith's numbered comments is as follows: 
1 and 2. Mr. Smith's argument concerning graduation is a strong one, 

perhaps unduly so. Certainly he, and anyone else, has the right to use 
graduation techniques and represent the results as being just as scientific 
as those of others. I t  seems to us, however, that the use of graduation 
techniques implies a lack of understanding of the underlying phenomena. 
The faith expressed in this paper is that all phenomena eventually can 
be understood. As far as we can tell, this was the first attempt to develop 
a mathematical form for select mortality. The simplicity of the argu- 
ments that  lead to the mathematical form must lead to the conclusion 
that the same, or a better, result could have been achieved by very 
many others--if  they had believed that it was possible. The paper then 
can be looked upon as a demonstration that phenomena can be under- 
stood, and when they are understood graduation techniques can be dis- 
carded. Until they are understood, of course, we have to use the less 
satisfying technique. 

3. Mr. Smith raises the problem of the actual composition of the 
groups at various durations. We have developed the argument that leads 
to the formulas but better answers Mr. Smith's point. I t  involves assum- 
ing that, at  the end of one year, a certain number of lives become im- 
paired and we can associate with them a number of unimpaired lives, so 
that this new collective exhibits ultimate mortality. This group should 
continue to exhibit ultimate mortality in the future, and, eventually, 
substantially all the original standard lives are associated with such im- 
paired lives to form the total ultimate group. As was mentioned in the 
paper, the characteristics of an ultimate group are such that the dis- 
tribution of lives within underwriting classes must be stable after it is 
formed. Only moderately strong assumptions are necessary to develop 
the argument completely, but the argument itself is long and complex 
and was, therefore, discarded in favor of the simpler intuitive argument 
presented. Certainly, as Mr. Smith points out, the final ultimate group 
must be composed of lives in all categories, since many of them can 
obtain standard insurance. 

4. The financial viability of policies providing the option of reselection 
has not yet been demonstrated. We believe that there is a theoretical set 
of rates that could apply, but the rates we have seen do not always seem 
adequate. 

5. In view of our remarks concerning Mr. Smith's comments under 1 
and 2, we would have to argue that the experience of reinsurers for the 
years mentioned can be modeled, but we cannot now present an answer 
because we have not done it. 
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Paul Thomson 

Mr. Thomson's comments on the use of the model to allow for bending 

of rates at higher ages are very interesting. The paper by  Heligman and 
Pollard, which was mentioned in Mr. Smith's discussion of our paper, 
a t tempts to do the same thing. 

Frank A. Week 

Mr. Weck brings up a number of interesting points. We believe that a 
large part of the observed differences between select mortality at very 
high durations and ultimate mortality is a result of their being drawn 
from different bodies of experience. We have not published the fitting of 
the proposed law of select mortality to nonmedical select data. In addi- 
tion, the published ultimate data are reasonably consistent with the 
theory that they are a combination of these two separate bodies of data. 
Since the published ultimate data do include both medical and non- 
medical policies, we believe that  this is a reasonable explanation for the 
failure of the published select medical data to converge to the published 
ultimate table. 

On the question of the assertion that a life in any class can end up in 
any other class, Mr. Weck misses a small point, but one that was inten- 
tionally introduced. The classes are always the classes into which an 
individual is put, or would be put, by an underwriter. Underwriters can 
make mistakes and are sometimes provided with incorrect data. An indi- 
vidual classified in one way because of a reported heart attack can move 
into the best class if the attending physician's report was in error. We 
know of precisely such a case. The argument was not put in this form 
just to catch the unwary reader, however. The reason for the insistence 
on underwriter classes rather tban true status was so that the composi- 
tion of groups was always, at least in principle, discoverable. We have 
avoided requiring at any stage knowledge of the true status of individuals. 
We developed the arguments, content with what could be actually per- 
ceived. 

His questions about the various models and the use of the word "law" 
are appropriate. However, the third model has been tested by using a 
very wide variety of data going back to the last century. For every body 
of data developed since the American experience table, the parameter 
that represents the pattern of the development of select to ultimate 
mortality has shown most reasonable stability. Stability of this crucial 
parameter seems a real basis for arguing that there is something more 
than a chance relationship--that is, that there is a law. In addition, it 
is well known that the second-named author considers false modesty 
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such a grievous sin that he will go to any length, and take any risk, to 
avoid it. 

We do not agree with Mr. Weck's next point. We believe that there is 
no reasonable basis for accepting a discontinuity between select and 
ultimate experience. We believe that the two must converge, unless they 
are representative of different pools of experience. 

His last point, in connection with the fit of the formulas, is an interest- 
ing one, and one that we have considered. The simple result, which fol- 
lows from the inspection of the residuals, is that there are peculiarities 
in the first several years. We believe that this is evidence of antiselection. 
The random pattern of the residuals, along with very high levels of R 2, 
precludes the existence of large persistent deviations from the fitted 
formula. 




