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ABSTRACT 

Conventional methods for solving stationary population problems require 
integration and multiple integration of  mortality functions. Solutions to these 
problems customarily are expressed as algebraic combinations of certain 
basic functions that are defined by integrals. 

This paper presents a method that uses three-dimensional graphs to solve 
stationary population problems. For each problem, a graph is prepared by 
using a systematic technique. Relevant quantities are then visualized on the 
graph as areas and volumes that correspond to the integrals of the conven- 
tional methods. Finally, such areas and volumes are cut up into areas and 
volumes that correspond to the basic functions customarily used to express 
solutions. Thus, solutions expressed as algebraic combinations of basic 
functions are obtained geometrically without resort to integrations. 

Several examples illustrate the use of this geometric method on a broad 
range of typical problems. It appears to be more concrete and comprehen- 
sible than conventional methods. 

I, AN A N I M A T I O N  OF  THE D E T E R M I N I S T I C  S U R V I V O R S H I P  M O D E L  

C 
LASSICAL life contingency theory considers a hypothetical group of 

l0 newborn lives. The number that survive to age x is denoted by 
Ix (see Fig. I). 

This paper is based on an interpretation of the graph oflx, the survivorship 
curve, as illustrated in Figure 2. Visualize a group of (~ lives, now aged x, 
as a totem pole of height Ix. As time goes by and the lives in the group grow 
older, let the totem pole travel to the right (henceforth called east). At the 
same time, let the survivorship curve descend upon the group, so that they 
die in the order that the curve touches them; the top one dies first, the 
bottom one dies last. This interpretation will be followed throughout this 
paper. 

An immediate consequence of this interpretation is that Z~, the area in 
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Figure 3 under the survivorship curve and east of the Ix pole, represents the 
total future lifetimes of the Ix. lives now aged x. In the conventional approach 
to population theory, 

Tx = fft,dt, 

which is visually evident in Figure 3. 

FIG. 1 
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EXAMPLE 1. Find the average age at death f o r  those who survive to 

age x but die before age x + n [6, p. 176]. 

In Figure  4, of  the Ix lives on AB, only those on the segment  A I  will die 

before age x + n. There  are l~ - I~+, such lives. Their  future lifetime after 

age x is represented by the area of  AIC.  In order  to express  this area in 

terms of  functions customari ly  used in the solution of  populat ion problems,  

L 

FIG. 3 
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the area of AIC is visualized as the area to the east of AB, minus the area 

to the east of CD, minus the area of IBDC; that is, 

Tx - Tx.n - nlx.n. 

Thus, 

Average age at death = x + 

= X W  

Lifetime after age x 

Number of lives 

L -  T~+,-  nlx+n 

II .  V I S U A L I Z A T I O N  OF  T H E  ST AT IONARY P O P U L A T I O N  

The curve Ix can be used to build a population model consistent with the 

survivorship model described above. A population of lives reproducing and 

aging over time is said to be a stationary population if (1) there is no 

migration other than by birth or by death, (2) the relative age distribution 

in the population remains the same at all times, and (3) the total number of 

lives in the population is constant. It can be demonstrated that, in a sta- 

tionary population, the curve (~ represents the age distribution histogram 

at any time as well as the survivorship experience of each cohort group. On 

this basis, one can visualize the stationary population in a way that is 

consistent with the survivorship model described in Section I. 

Since the population is stationary, the number of lives now aged x + n 

equals the number of lives that will be aged x + n after n years have passed. 

The latter group will be the survivors after n years of those now aged x. 

Figure 5 presents these relationships visually. Figure 5 contains Figure 4 on 

plan ABCD~,  which describes the future mortality of those now aged x. A 

totem pole, EF, of height l~+n, and located n units due south of CD, represents 

lives now aged x + n. 

Figure 6 systematically extends the process, representing lives now aged 

x + t due south of, and t units away from, the lives on ABCD~ that will 

be aged x + t after t years. Thus, plane ABEF~,  which makes a 45 ° angle 

with plane ABCDoo, represents the total population now aged x and above. 

For example, ABFE in Figure 6 represents lives now between ages x and 

x + n .  

In these figures, units on the ground represent years, height above the 

ground represents numbers of lives, directions are named east, south, west, 

and north, and each cohort of lives moves east through time. Figures 1--4 

can be regarded as east-west cross-sections of Figure 6. 
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In Figure 6 the curve AC is the l~ curve. The top surface is generated by 
moving the I, curve south and cutting the surface off along the northwest- 
southeast plane passing through AB.The future mortality experience of the 
group of lives now aged x and above, represented by plane ABEFoo, will be 
decided by the surface in Figure 6 as these lives move east through time 
in the manner described in Figure 2. 

An immediate consequence of this interpretation is that Ix, the wedge of 
volume under the surface in Figure 6 and east of  ABEFoo, represents the 
total future lifetimes of the lives now aged x and above. In the conventional 
approach to population theory, 

Y~ = f f  T, dt . 

Age x 
now 

Age x + n < 
n years ] 

North / 
/ 

i ° A / / 
/ / 

/ / 
; / 

Agex  + n / n y e a r s  
- now / / 

i,+., 
L,"' 
F 

FIG. 5 
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Figure 6 makes this visually evident because A B C D ~  represents T~. 
A second consequence of this interpretation is that the number of lives 

represented on a given part of plane ABEFoo equals the area of the corre- 
sponding part on plane A B C D ~  after projection from ABEF~o due north to 
ABCD~o. For example, the group of lives now between ages x and x + n, 
represented by A B F E ,  contains lives equal to the area of A B D C ,  or T~ - 
T,÷,. This projection principle follows from the dual role of the curve Ix in 
the stationary population model, representing both cohort survivorship and 
the age distribution histogram in the population. 

EXAMPLE 2. Find  the average  age at death  o f  those  in the s ta t ionary  

popu la t ion  who are now  living be tween  ages  x and  x + n [6, p. 188, 
exercise 20(a)]. 

x 

r \ \  
% 

FIG. 6.--Y, is the volume east of ABEF~ 
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x + n  
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The group of  lives now living be tween ages x and x + n is represented 

by ABFE in Figure 7. By the projection principle, the number  of  lives equals 

the area of  ABDC, which is Tx - Tx+n. All o f  these lives survive to age x. 

The past lifetime from age x until now for the group of  lives now living 

between ages x and x + n is represented by the vo lume ABEFGH, since 

ABGH is the plane of  constant  age x. 

Figure 7 is symmetric with respect to the A B E F  plane; the volume of  

ABEFGH equals the vo lume of  ABEFCD. In order  to express  this vo lume 

in terms of  functions customari ly  used in the solution o f  stationary popu- 

lation problems,  ABEFCD can be visualized as the vo lume of  the 45 ° wedge 

east and southeast  of  AB, minus the volume of  the 45 ° wedge east and 

southeast  of  EF, minus the volume east of  EFCD; that is, 

Yx - Y~+n - nTx+n. 
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The future lifetime of  the group of  lives now living be tween ages x and 

x + n is represented by the vo lume to the east o f  A B F E .  In order  to express 

this vo lume in terms of  functions customari ly used in the solution of  sta- 

t ionary populat ion problems,  it can be visualized as the volume of the 45 ° 

wedge east and southeast  of  AB,  minus the volume of the 45 ° wedge east 

and southeast  o f  EF;  that is, Y~ - E,~,. Thus,  

Lifet ime after age x 
Average  age at death = x + 

N u m b e r  of  lives 

Past lifetime since age x + future lifetime 
= x - t -  

Number  of  lives 

Y ~ -  Y ~ + . -  nT~+, + ) ' i -  Y~.. 
= x q -  

L - L + .  

EXAMPLE 3. Find  the average  age at death  o f  those  in the s ta t ionary  

popu la t ion  now living be tween  ages  x and  x + n and  who will die before 

a t ta in ing  age x + n [6, p. 188, exercise  20(b)]. 

As in the previous examples ,  all quantities related to the solution of  this 

problem will be visualized. The  group is represented on Figure 8 by AIE;  

the I E  boundary reflects death before age x + n. Projecting north, the 

number  of  lives in this group equals the area of  AIC,  which equals 

L -  T ~ + . - n l ~ + , .  

The total lifetime of  the group after age x is represented by the volume of  

AGECI .  This can be visualized as twice the volume o f  A B E F C D  minus the 

volume of I B G H E F C D ,  that is, 

2 ( L  - L + °  - n L + . )  - n ' - I . ° .  

As usual, 

Average  age at death = x + 

= X +  

Lifet ime after age x 

Number  of  lives 

2(Y~ - Y~+, - nT~+.) - n21~+. 

T, - Z~+. - nl~+. 

EXAMPLE 4. Find  the average  age at death  o f  those  per sons  now living 

be tween  ages  20 and  70 who die be tween  ages  60 and  80 [6, p. 184, 

example  2]. 
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In Figure 9 the group is represented by PQYXW. Boundaries PW and QY 
reflect death between ages 60 and 80, while PQ and XY reflect ages now 
between 20 and 70. Projecting north, the number of lives in this group equals 
the area of PQSTR, which equals the area under PRT minus the area under 

QS; that is, 

[40/~o + ( T o  - /-7o) - 5 0 / s o l .  (i) 

The total lifetime of the group after age 20 could be represented by the 
volume of a certain block outlined in Figure 9. However, since the entire 
group will live to age 60, for the purpose of finding their average age at 
death it suffices to consider their total lifetime after age 60. This lifetime is 
represented by the volume to the east of RZVUW in Figure 9. To express 
the volume of this attic in customary terms, it can be visualized as the 

A 

H F 

FIG. 8 
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volume of  the house  minus the vo lume of  the ground floor; that is, the 
vo lume above GDEF, plus that above BCDG, plus that above ABG, minus 
the vo lume of  the ground floor; that is, 

[40(T~ - T~0)] + [Y~o - YT0 - 10Ts0] 

+ [Y6o-  YTo- 10TTo] - [20(50180)]. 

As  usual,  

Average age at death = 60 + 
Lifet ime after age 60 

Number  of  l ives 

(ii) 
= 6 0 + - - .  

(i) 

(ii) 
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EXAMPLE 5. Find an expression for the average attained age o f  those 
persons in a stationary population now between ages 25 and 40 who 

will die between the ages o f  30 and 50 within the next twenty years [1, 

p.  551. 

The group now is representd by KLTZYS on Figure 10. The boundaries 
KS and TZ reflect death between ages 30.and 50, while KL and YZ reflect 
ages now between 25 and 40. The boundary LT reflects death within twenty 
years. It is a projection due west of I J, the intersection of the surface with 
the plane of time twenty years from now. Projecting north, the number of 
lives in this group equals the area of KLRXWQ, which equals the area under 

KQW, minus the area under LRX; that is, 

[560 + (T~0 - T,o)l - [(T, ,  - To)  + 10l~0]. (i) 

The total past lifetime of this group since age 25 is represented by the volume 
of the 45 ° wedge between KLNPOM and KLTZYS. To express this volume 

50 

FIG. 10 
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in customary terms,  it can be visualized as the sum of volumes between 

K L N M  and KLTS:  =-~ 13 o --  (Y45 - Yso - 5T5o) 

1 
M N P O  and STVU:  +5(/'3o - /'4o - 1015o) 

J S T V U  and STZY:  +Y3o - Y~o - 10"T4o - 10.1_....~0 I5o 
2 

(ii) 

Thus,  

Average attained age = 25 + 
Past lifetime since age 25 

Number  of members  

(ii) 
= 2 5 + - - .  

(i) 

I I I .  T H E  G E O M E T R I C  M E T H O D  

In each of the preceding examples,  visualization of the problem produces 
the answer  directly upon inspection of the figure. The conventional  method 
of integration, on the other hand,  is based on the following formulas [6, pp. 
170-71]: 

f f  l ~ d x  = I~ - Ib, (i) 

ffl~dx = T~ - To , (ii) 

f f  T~dx = Y. - Y~ , (iii) 

fa 
b 

x l ~ d x  = al~ + T~ - bib - Tb,  (iv) 

~ b 

xlxdx = aT~ + Ya - bTb - Yb. (v) 

The number  of lives and their lifetime are expressed as integrals and eval- 
uated by the above five formulas. 

Can the geometric  me thod  solve all problems that can be solved by 

applying these integration formulas?  The answer  is yes. It is an easy exercise 
to visualize these formulas by using the method presented in the preceding 
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sections. Formulas (iii) and (v) require the three-dimensional figures of Sec- 
tion II. The other three formulas require only the two-dimensional figures 
presented in Section I. Since these formulas, the foundation of the integra- 
tion method, can be proved and visualized by the geometric method, ap- 
plications of these integration formulas can be replaced by direct visual- 
ization on properly prepared figures. 

Many authors have contributed'methods for solving stationary population 
problems. One of the most useful methods, suggested by Grace and Nesbitt 
[5], requires the definition of two auxiliary functions, 

F , = x l x +  T, ,  G , = x L + 2 Y , .  

Here F, represents the total past and future lifetime of the I~ lives now living 
at age x [6, p. 176, line 4], and G, represents the total past and future lifetime 
of the T, lives now living at age x and above [6, p. 181, line 6]. 

The following integration formula follows easily from (iii) and (v): 

f bFllx = G, - Gb. (vi) 

Figure 1 ! provides a visual interpretation of Fx and G~. With this interpre- 
tation, formula (vi) can be visualized. The geometric method begins with 
visualizing the relevant quantities as areas and volumes on the graph, and 
then recognizing these areas and volumes as combinations of !,, T.,, and Yx. 
Now the method can be strengthened by recognizing these areas and vol- 
umes as combinations of F, and Gx. This point will be illustrated in Section 
IV. 

The idea of analyzing stationary population problems with three-dimen- 
sional figures has been studied by Tino [10]. In her presentation, the figures 
are drawn over the Lexis diagram [8], the customary diagram of mathe- 
matical demography [2, 4, 7, 9]. Figure 12 compares theLexis diagram with 
the ground layout used in this paper. Since the Lexis diagram and the ground 
layout of this paper are related by linear transformations, the figures in [10] 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

and the figures in this paper are related by linear transformations on the 
ground; the two methods are theoretically equivalent. As an illustration of  
this equivalence, compare Figure 13, a visualization of Example 3 by Tino's 
method, with Figure 8. 

In spite of their theoretical equivalence, there is a crucial practical dif- 
ference between Figure 8 and Figure 13. While the volume of AGE! and the 
volume of AECI are equal in Figure 13 by computation, they are equal' in 
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Figure. 8 by symmet ry .  Blocks of equal volume are seen to be equal in the 
figures of  this paper; solutions become visible. 

The geometric method presented in this paper uses three-dimensional 
figures. Lifetimes are represented concretely by volumes (triple integrals), 
which can be expressed in customary terms simply by inspection of the 
figures. 

The method of Veit [12] uses Lexis diagrams. Lifetimes are found by 
analyzing the two-dimensional Lexis diagrams and performing double in- 
tegrations over them, or by general reasoning. The information contained 
in the suppressed third dimension is handled analytically (in the setting-up 
of double integrals) or mentally (by general reasoning). 

The method of Grace and Nesbitt [5] implicitly uses one-dimensional 
diagrams (age) and reaches solutions by performing single integrations. The 
information contained in the suppressed dimensions must be manipulated 
mentally, unless it happens to be reflected directly in the auxiliary functions, 
F~ and Gx. 

~0 x 

FIG. 1 l.--Gx is the volume south of F~ 
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The method of Batten [1] uses no diagrams (zero-dimensional diagram) 
and no integration. It reaches solutions solely by general reasoning. All 
information must be handled mentally. 

The geometric method presented in this paper provides detailed, concrete 
representations of all groups and lifetimes involved in stationary population 
problems. It reaches the customary solution solely by inspection of the 
figures. Regardless of which method one prefers to use, this geometric 
method can be a valuable supplement. For problems complicated enough 

x + l  

x + 2  N 

+ 

FIG. 12.--Top: Ground layout in this paper; bottom: Lexis diagram 
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to confound the mental or analytical manipulation of suppressed informa- 
tion, a full three-dimensional diagram can restore comprehension. Even for 
simpler problems, mental reference to the geometric method can help with 
the required manipulation of suppressed information. 

IV. ADDITIONAL EXAMPLES 

EXAMPLE 6. Find tile total lifetime o f  those in the stationary population 
now living between ages 20 and 70 who will die between ages 60 and 
80 within the next f i f ty years [6, p. 188, exercise 25]. 

The group is represented in Figure 14 by POMYXW. The boundary OM 
reflects death within fifty years. It is a projection due west of TZ, the in- 
tersection of the surface with the plane of time fifty years from now. The 
number of lives in this group equals the area of  PONSTR,  which equals the 

FIG. 13 



STATIONARY POPULATION PROBLEMS 

area under PRT minus the area under  ONS, that is, 

599 

[40/6o + (T6o - /'70)] - I(/'70 - Tso) + 40/80]. (i) 

Since the entire group will live to age 60, it suffices to consider  their total 

lifetime after age 60. This lifetime is represented by the volume to the east 

of  RKLVUW. As an exercise ,  one may express  this vo lume in cus tomary  
terms,  following Example  4. 

It is also possible to express  the total lifetime of  this group in terms of  

Fx and Gx. At their sixtieth birthday, this group is represented by RKLVUW. 
Their  total l ifetime equals 

[40F6o + (G6o - G7o)] - [(GTo - Gs0) + 40Fs0] , (ii) 

that is, the total lifetime of  those under  RWU, minus the total lifetime of  
those under KLV. 

FIG. 14 
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Expression (ii) can also be obtained from expression (i) by replacing/x 
with Fx, and T~ with Gx, as predicted by Grace and Nesbitt [5, p. 71]. In 
fact, Figure 14 serves as a geometric illustration of  the Grace-Nesbitt  prin- 
ciple [6, p. 185]. 

EXAMPLE 7. Find the number of deaths in 1966-70for those between 
ages 50 and 60 on January 1, 1960, who die between ages 65 and 75 
in the given five-year span; and find the total of their ages at death 
[3, p. 91, problem 8(c), (d)]. 

Figure 15 provides the ground layout of the problem. Since all lives in 
the group survive to age 65, it suffices to consider their lifetime after age 
65. Figure 16 illustrates the mortality experience of the group only after 
their sixty-fifth birthday. At their sixty-fifth birthday, this group is repre- 
sented by PQRS. The boundary PQ, which is parallel to the ground at a 
height of 165, reflects death after age 65; QR reflects death after the start of 
1966 and is a projection due west from QT. Similarly, PS reflects death 
before the start of 1971 and is a projection from PU. The number of lives 
in this group equals the area under PQR, minus the area under PS; that is, 

[516,  + ( T 6 ,  - T ~ ) I  - [ (T~ ,  - T T , ) ] .  ( i )  

50 60 65 

B 

FIG. 15 
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Their total lifetime equals the-total lifetime of those under PQR, minus the 
total lifetime of those under PS; that is, 

[5F65 + (G65 - G66)] - [(Gr~ - GT,)] • (ii) 

Expression (ii) can also be obtained from expression (i) by replacing I~ 
with Fx, and Tx with G~. Thus, Figure 16 gives another geometric illustration 
of the Grace-Nesbit t  principle. In fact, six out of the seven examples (all 
except Example 5) in this paper can be handled efficiently by the Grace- 
Nesbitt principle. 

D F G 

Fm. 16 

71 
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V. CONCLUSION 

Although the stationary population is an idealized model, it provides a 
starting point for analysis in population theory [7, 9], and in the theory of 
pension funding [l I]. The geometric method presented in this paper provides 
a visual aid to the comprehension of population problems. 

Under stationary assumptions, inspection of the figures alone provides 
the solutions to such problems. Considering the time and effort incurred in 
the PreParation of the figures, however, the geometric method seems un- 
likely to be the most efficient method. It could be the most concrete method 
and is more of an educational and analytical tool than a computational 

wizardry. 
Under nonstationary assumptions, the three-dimensional figures of the 

geometric method  can no longer provide solutions. The geometric format ,  

however, can still be very useful. Three-dimensional animations along the 
lines of Figure 2 can transform some dryly computed numerical data into 
lively illustrations. With the reduced cost of computer graphics hardware, 
three-dimensional animation using the geometric format is becoming more 

feasible. 
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D I S C U S S I O N  O F  P R E C E D I N G  P A P E R  

P A U L E ~ F E  TINO" 

With the publication of Dr. Chan's  paper, it is now well established that 
the solution of any stationary population problem can be derived from the 
information read on the representation of the population by the area under 
the 1~ curve. This results from the fact that on this representation can be 
read the past and the future of the Ixdx members now aged x, including the 
designation of who will die within stipulated ages and/or within a given 
period. It follows that the latter problem (number of  deaths) can be solved 
on the same representation for a group defined by an age bracket or oth- 
erwise. 

The calculation of a group's past and future lifetime, keeping the same 
approach, leads to three-dimensional developments. The choice of the path 
along which the population ages is arbitrary. What is important is that the 
surfaces generating the volumes representing future and past lifetime be 
taken from the Ix graph. As a result, taking the representation of the pop- 
ulation at time t = 0 to be vertical, it is sufficient to retain the projection 
on the horizontal plane of the volumes generated by the problem, and to 
refer to the generating surfaces on the vertical plane for evaluating the 
weight of  the relevant areas on the horizontal plane. 

At the risk of being repetitious, I shall illustrate these principles using 
Example 4, referring to the diagram in Figure !. 

Of the i, 1 lives represented by (x, u0, the lives represented by the segment 
(v, w~) will die between 60 and 80. The number of lives of the population 
between ages 20 and 70, represented by the area (20 m c 70), who will die 
between ages 60 and 80 is therefore represented by the area generated by 
(vt w~)_when x, varies from 20_to 70,-or t h e a r e a ( a b f i c d )  = 40/~_ + Tr0 - - 

TTo - 50/8o. 
All those lives will reach or have reached age 60. For example, for x = 

xl the lives represented by (v~ w~) will be represented by (e f )  in (60 - xt) 
years, the beginning of the twenty-year period over which they will die. For 
the sake of problem solving, I will pretend, as explained before, that the 
plane containing the Ix curve is vertical and that any l~ lives, aged x~, will 
age along a path perpendicular to (20, x) generating an area identical to 
(xt u, ta), the trace of which on the horizontal plane (0t, 0x) is (x, t%). In that 

603 
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interpretation, the weight of (x, coxt) is T,~. The weight of the area (c% x~ oJ,) 
is Y~,. On the line ( N 6 0 )  all lives are aged 60. On the line (MSO) all lives 

are aged 80. 
The aggregate lifetime after age 60 of the lives represented by (v~ w0, seen 

to be equal to area ( e f g )  = T6o - Tso - 20/8o on the vertical plane, is now 
to be seen as segment (A B), affected with the weight T6o - Tso - 20/80, on 

t~ 

177 

20 

N 

M 

I I i  

x, 60 x, I w ~ x 

/ 

/ 

/ 

O).1 I 

Fro. l.--lllustration for Example 4 
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the horizontal plane. When x~ varies from 20 to 60, (AB)  generates the area 
(MN6 OP)  with weight 40 (T60 - Ts0 - 20180). 

If we take x = x2, 60 < x2 < 70, the lives who will die before age 80 are 
represented by (v2u~) and their future lifetime on the vertical plane is rep- 

resented by the area (v2u2g) = Tx2 - T~ - (80 - x2)l~o. However, the aging 
will take place along a path perpendicular to (20, x) leaving the trace (x2E) 
on the horizontal plane. The weight of (x2 E) will be T~ 2 - Ts0 - (80 - x2)lso. 
Note that 80 - x2 is the length of (x, E). The future lifetime of the population 
represented by the area ( e f c  d) on the vertical plane is equal to the weight 
of the area (P 60 70 Q) on the horizontal plane. If the weight of (x2 E) is taken 
to be Tx2 - Ts0, the weight of area (P607OQ) is read to be Yro - YTo - 
10Tso. If the weight of (x2E) is taken to be 18o at all points, the weight of 
(P607OQ) is V2(20 + 10)130. The future lifetime is therefore Yro - YT0 - 

10Ts0- 150/so. 
The aggregate past lifetime since age 60 of the population represented by 

area ( e f c d )  on the vertical plane is equal to its future lifetime to age 70. 
It is therefore to be seen on the horizontal plane as the weight of the area 
(6070R), with generator (x2F), having itself a weight of T~ 2 - TT0 - (70 

- x2)18o. Breaking the evaluation into two steps as above, the aggregate past 
lifetime since age 60 is equal to Yro - YTo - lOTto - 1A(10 x 10)18o. 

The average age at death, [60 + (Lifetime after 60/Number of deaths)], 
can now be found. 

E. S. S H I U :  

The three-dimensional diagrams in this paper are beautiful. The most 
interesting feature of the model is Figure 8, which illustrates the two inter- 
pretations of the quantity Yx - Y~+n - nT~÷;. The corresponding Tino 
geometric model is given in Figure 13, where it is not immediately obvious 
that the volume of A B E F G H  is equal to the volume of  ABEFCD,  since they 
have different shapes. Each horizontal slice of Figure 13, however, is a 
rhombus partitioned by the plane A B E F  into two triangles of equal area; 
thus A B E F G H  and ABEFCD have equal volumes. 

The easiest way to tackle an "average age at death" problem is to apply 
Veit's "in-and-out" method tO deter~n_ ine the total number of deaths, and 
then apply the Grace-Nesbitt transformations to determine their total life- 
time. The two-dimensional Lexis diagrams are very easy to sketch, and 
Mrs. Tino's geometric model (reference [ 10] of the paper) elegantly explains 
that the areas above the vertical and horizontal lines in a Lexis diagram are 
Tx and I~, respectively. To find the number of deaths with Dr. Chan's method, 
we need to draw a three-dimensional diagram, determine the two-dimen- 
sional region corresponding to the deaths, and then project the region north- 
ward to get rid of the factor X/2. To find the lifetime in terms of the traditional 
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actuarial symbols,we need to recognize various shapes and be able to add 
and subtract volumes mentally. 

Many three-dimensional diagrams are awkward to sketch on paper. For 
instance, consider the following problem (reference [3] of the paper, p. 90, 
No. 4b): "How many years do the people who have any birthday from 20th 
to 29th inclusive during 1966 live from that birthday until December 31, 
1975?" It is somewhat difficult to draw a three-dimensional diagram for a 
problem of this type, since such a figure has many faces. However, the 
problem can be solved readily by integration. Let [y] denote the least integer 
greater than or equal to y; then the number of years is 

29 

j=  20 

Despite its many interesting features, Dr. Chan's model might not be an 
effective tool for actuarial students writing the Part 5 examination. Since 
solid geometry is usually absent from the curricula of high schools and 
universities, many students will have difficulty visualizing the diagrams in 
this paper. In the mid-1960s, my colleague H. J. Boom introduced diagrams 
similar to those in Figures 5-8 to his life contingencies classes, but he did 
not pursue the approach because most of his students could  not interpret 
the diagrams in three dimensions. We are hopeful, however, that future 
generations of students will find three-dimensional problems easier because 
of their familiarity with Rubik 's  cube! Students who are good at geometry 
might find it more advantageous to master the Tino geometric model, since 
Lexis diagrams are used in Dr. Chan's  reference [2], which is a textbook 
for the Part 5B examination. Both geometric models can be used to solve 
stationary population problems by inspection of appropriate figures. Stu- 
dents who prefer calculus to geometry should follow J. Maynard 's  advice 
in reference [12] of the paper (p. 263): " A  student who can use the [Lexis] 
diagram to write correct expressions, and has mastered double and single 
integration using actuarial symbols, should have a sure-fire approach to this 
kind of problem." 

ROBERT L.  B R O W N  A N D  BEN W.  L U T E K : *  

Dr. Chan is to be congratulated on his well-written paper, which docu- 
ments a powerful new geometric approach to population problems in the 

* Mr. Lutek, not a member of the Society, is a student of actuarial science at the University 
of Waterloo. 
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flavor of Mrs. Tino's  geometrical model (discussion of Veit's paper, TSA, 

Vol. XV[). Dr. Chan's  paper allows a whole new population (nonstationary) 
of actuarial philosophers to put pen to paper and support their favorite 
method of solving these difficult problems. 

Most students of life contingencies have not read the methods proposed 
by Maynard, Grace and Nesbitt,  Veit, Tino, or Batten, so they depend 
exclusively on the integration approach outlined in chapter viii of Jordan. 

Dr. Chan presents a method that does not require multiple integration, 
and claims that "i t  appears to be more concrete and comprehensible than 
conventional methods." But, as he points out in his conclusion, "Consid- 
ering the time and effort incurred in the preparation of the f i g u r e s . . .  , the 
geometric method seems unlikely to be the most efficient method." We fully 
agree with these comments, and, in the spirit of refining (rather than rein- 
venting) the wheel, we wish to document a convenient and quick technique 
for solving a wide class of stationary population problems in which a group 
of lives is specified by an initial age range and a time-age range for deaths. 
This class includes any problem for which a "death  region" can be sketched 
on a Veit diagram, and furthermore includes all seven examples given in 

Dr. Chan's  paper. 
The method incorporates Grace and Nesbit t ' s  substitutions for total life- 

time, along with equally basic substitutions for past and future lifetimes. 
Dr. Chan is to be commended on providing a visible model, which co- 
discussant B. Lutek used to derive these new substitutions. 

Consider first a Chan diagram (Fig. 1) on which the present group of lives 
is described by a region (A) on the diagonal surface. As Dr. Chan states, 
the projection (B) of this region onto the north !, wall describes the number 
of lives in the group. An eastward projection specifies a "death region" 
(C) on the overhead Ix roof (lives passing through points in this region die). 
The vertical projection of this death region onto the Chan diagram base 
yields a death region (D) that (as Dr. Chan observes) is related directly b y  
a linear transformation to the death region one draws on a Veit diagram. 
The substitutions of Grace and Nesbitt  that link projected lives to volumes 
on Chan's diagrams consequently link lives on a Veit diagram to volumes 
in an implicit three-dimensional s tructureabove the Veit diagram~ The reader 
is invited to convince himself of the substitutions in Table 1 by considering 
the direct relationship between the Chan, Veit, and Grace and Nesbitt  
models. In the table, k is a scalar multiplier, and a is the distance through 
water (Veit's analogy) immediately north of a boundary 's  east end (or simply 
due north of a north-south boundary). Alternatively, ~ is the distance from 
a boundary 's  east end to the north-south Veit diagram axis. Two of Dr. 
Chan's examples serve as illustrations and can be used to explain k and a.  
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I, 

• / 

/ o / 

FIG. l . - - T h e  generic Chan diagram 

N 

TABLE 1 

SUBSTITUTIONS 

Past lifetime . . . . . . . . . . . . . . . . . . . . . . . .  klx(x-a+kl2) (x-oOT~+ Yx 
Future lifetime . . . . . . . . . . . . . . . . . . . . . .  k[(a - k/2)l~ + T~] aTx + Yx 
Total lifetime (Grace and Nesbitt) . . . . .  kF.~=k(xlx+ Tx) G.~=xT~+2Y~ 

"EXAMPLE 5. Find an expression for  the average attained age o f  those 
persons in the stationary population now between ages 25 and 40 who 
will die between the ages o f  30 and 50 within the next twenty years."  

Solution: U s i n g  V e i t ' s  a p p r o a c h  (Fig.  2), we  c a n  q u i c k l y  a s c e r t a i n  t h a t  

the  n u m b e r  o f  m e m b e r s  in  t h e  g r o u p  is 513o + (/'3o - T4o) - [10/so + (T~ 

- /'50)]. To d e t e r m i n e  a v e r a g e  a t t a i n e d  age ,  o n e  m u s t  f ind to ta l  pa s t  l i fe t ime.  

T h i s  c a n  b e  d o n e  u s i n g  o u r  p r o p o s e d  f o r m u l a s .  

F o r  the  t e r m  513o, k = 5 a n d  ct = 5; t h e r e f o r e ,  p a s t  l i f e t ime  = 5/3o(30 - 

5 + 5/2) = 137.5/3o. 

Fo r  t h e  t e r m  (T3o - To),  c~ = 0, s ince  t h e s e  l ives  e n t e r  o n  t h e  e x t r e m e  

" w e s t  f r o n t i e r " ;  t h e r e f o r e ,  p a s t  l i fe t ime  = (30T3o + Y3o) - (40T4o + Y,o). 

F o r  t h e  t e r m  1015o, k = 10 a n d  a = 20; t h e r e f o r e ,  pa s t  l i f e t ime  = 10l~o(50 

- 20) + (100/2)/5o = 350/5o. 
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(T3,, - Lo) 
(a = O) 

513,, (a = 5) 

25 ...1 t = 20 Time 

- - - ' ~ _ 1 / / / / / / / / ~ .  ~ I " ~ (Water) 
40 ~ / / / ~  l, 

t . 
s 0  I " "  " ~ ' I I I I A " ' ~  (7,, - T.~o) 

Age 

FIG. 2.--Determination of the number of members in the group for Example 5 

For the term (T45 - Tso), ct = 20; therefore,  past lifetime = [(45 - 20)T45 

+ Y,5] - [ ( 5 0 -  20)T~0 + Y~] = 25T4~ + Y45 - 30T~0-  Y~. 
Putting these four  pieces together,  one quickly arrives at the correct  

answer. 

Example  7 of  Dr. Chan ' s  paper provides  a representat ive  illustration of  

the total lifetime substitutions. 

"EXAMPLE 7. Find the number o f  deaths in 1966-70for those between 
ages 50 and 60 on January 1, 1960, who die between ages 65 and 75 

in the given five-year span; and f ind the total o f  their ages at death." 

Solution: We determine the number  of  members  by using a Veit diagram 

(Fig. 3). In this case,  the age 75 restriction is redundant,  since, of  the original 

- group, n-ooffe-can exce-ed age 71-by Janiiary f, 1971. F rom the Veit d iagram - - 

we see that the number  of  members  is 51~ + (T65 - T~) - (T65 - T70, or  

5165 + TT~ - T~. This is identically the number  of  deaths,  since the group 

is defined according to when its members  die. The sum of  their ages at 

death equals total lifetime, so, by the corresponding substitutions (Grace 

and Nesbitt) ,  we have 

5(65/65 + T65) + (71T7, + 2Y7.) - (66T~ + 2 Y ~ ) .  
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Jan .  Jan .  Jan .  
1960 1966 1971 

50 -a 

55 

( A ,  

60 

66 

70 

71 

75 

~ 5 

(Tk,-  77,) 

FIG. 3 . - -Determinat ion  of the number  of  members  in the group for Example 7 

T h i s  s o l u t i o n  t a k e s  less  t h a n  a m i n u t e .  

N o t e  t h a t  in  E x a m p l e  7 w e  h a v e  

Pas t  l i f e t ime  = 5/6,-(65 - 11 + 5/2)  + (65  - 6)T65 + Y65 

- ( 66  - 6)T66 - Y66 - (65  - l l)T6~ - Y65 

- ( 7 1  - l l ) r 7 ,  + YT, 

= 282.5/65 + 5T65 - 6 0 T s s -  Y66 + 60T7, + )'7, ; 

a n d  
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Future lifetime = 5[(1 1 - 5/2)/65 + T~] + 6T~ + Y65 

- 6 T ~ -  Y s s -  11T65 - Y6s + llT7~ + YTI 

= 42.5/~ - 6T66 - Y~ + l lT ,  i + YT~. 

We offer this methodology as a fast, efficient technique for solving stationary 
population problems. At the same time, we repeat Batten 's  caveat (reference 
[2] of the paper, p. 49): " In  some instances, however, it is the feeling that 
certain short-cut devices have worked against the actuarial student 's best 
interests. If a student finds himself able to solve certain problems with an 
entirely mechanical process, the natural result often is unwillingness to 
investigate the theoretical aspects of the situation, thus defeating the pur- 
poses of the Society examinations." 

H U N G - P I N G  TSAO: 

Beda Chan's paper is excellent for those who need to reinforce their 
understanding of an integral. Although his intention is to avoid integration, 
he is, in fact, explaining what an integral is. Nevertheless, this masterpiece 
of mathematics is worth reviewing at times. 

As stated in the conclusion of the paper, geometric solutions to stationary 
population problems are by no means efficient. I would like to present here 
a rather simple-minded and yet efficient method that uses a concept of flow. 

A stationary population is like a special kind of water flow whose cross- 
sections become smaller and smaller and which runs out at the end. In this 
analogy, I~ corresponds to the amount of  water running through cross-section 
x at any moment. The discussion that follows, however, applies to any flow. 

Solution to Example 4 

Thanks to Grace and Nesbitt, we need only obtain the amount of water 
in question (the number of lives in the case of stationary population prob- 
lems). The same will apply to all other  examples. 

First we construct a simple linear diagram (Fig. 1) depicting the flow. We 
want to obtain the amount, D, of water lost while the water in the part of  

I 
20 

x 
60 70 80 

FIc. l.--Flow diagram for Example 4 
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the flow between cross-sections 20 and 70 (, ,) runs from point 60 with 
the arrow ( J, ) to point  80 with the bar  ( I ). The amount ,  B, of water between 
cross-sections 60 and 70 (x x) is 

Then 
Z •  - TTo  . 

D = B + S - E ,  

where S is the amount  of water  in the part of the flow between cross-sections 
20 and 60 (, x) run through point 60, and E is the amount  of water in 
the part of  the flow between cross-sections 20 and 70 (, ,) run through 
point 80. From Figure 1 we see that 

and 

Therefore, 

S = (60 - 20)/6o 

E = (70 - 20)Is0 . 

D = T6o - TT0 + 4016o - 501go . 

Solution to Example  3 

First  we construct  a diagram (Fig. 2) depicting the flow. We can readily 

see from Figure 2 that 

D = T~ - Tx+. + (x - x)l~ - [(x + n) - x]l~+. 

= L - Tx+. - n t x + . .  

X )( "~ I1 

FiG. 2.--Flow diagram for Example 3 

Solution to Example  5 

In this case, we construct  a somewhat  more elaborate diagram (Fig. 3) 
to depict the flow. Since the loss of water accounts for only the next  20 
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I 

, ,  
a r ~  

30 40 45 50 

Fro. 3.--Flow diagram for Example 5 

points  of  t ime,  D should  exc lude  the  am oun t ,  T45 - Tso, of  wa te r  be tween  

c ross -sec t ions  45 and  50 (x--  - -  ----x), less the  amoun t ,  (50 - 45)150, of  wa te r  

in the  par t  of  the  flow be twe en  c ross - sec t ions  45 and  50 run  th rough  poin t  

50 wi th  the  do t ted  a r row ( ~ ). There fore ,  

D = (T3o - T4o) + (30 - 25)13o - (40 - 25)!50 

- [(T45 - Tso) - (50 - 45)!50] 

= 7"3o - T4o - T45 + Tso + 513o - 10150. 

Solution to Example 6 

Firs t  we cons t ruc t  the  flow d iagram (Fig. 4). F r o m  the  figure we see  tha t  

D = T6o - 7"7o + 4016o - 501so - (7"7o - T8o - 101so) 

= T6o - 2T7o + Tso + 40 /6o  - 4 0 / 8 0 .  

Solution to Example 7 

The wa te r  in the  par t  of  the  flow b e t w e e n  c ross - sec t ions  55 and  60 

(,--------~) has  to run  th rough  point  65 and  has  to be  lost  comple te ly  before  

I 
20 

' I I 

t 
x 
60 70 80 

Fro. 4.--Flow diagram for Example 6 
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1 I 

55 60 

X - ' - - - - - - ~  
65 66 71 

FXG. 5.--Flow diagram for Example 7 

the running section matches the part of the flow between cross-sections 66 
and 71 ( x - - - - - - x ) .  Hence the flow diagram appears as in Figure 5. From 
the figure we see that 

D = (60 - 55)/65 - (Tin - T71) 

= 5/65 - T66 + TTl. 

(AUTHOR'S REVIEW OF DISCUSSION) 

BEDA CHAN" 

I wish to thank the discussants for adding valuable materials to the solution 
of stationary population problems. 

It is trivial to verify that 

L = [ / d 2 ~ ] ( o ~  - x )  2 

under de Moivre's hypothesis, but it will take more work to show that 

T~ = [loe B~n c/In c]El(ot) 

under Gompertz's hypothesis and to show that 

T~ = [loe B~n c e - ~ l c t z  In c]F(z, or) 

under Makeham's hypothesis. Here, 

et = Bc~ / ln  c ,  z = - A / l n  c ; 

E l ( a )  = I e - ' t - ~ d t  
c t  
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is the exponential integral function; and 

F(z, or) = f e-'t=-~dt 

is the incomplete gamma function. 
It probably is because of elaborate computations such as those encoun- 

tered above that questions on stationary populations where I, assumes spe- 
cific analytic forms are seldom considered. Instead, l~ is assumed axiomat- 
ically to be some nonincreasing, nonnegative function defined on the 
nonnegative real axis. Integration is used as a concept to represent quantities 
but not as a tool for computation. Thus, as the paper has shown, the concept 
of integration alone will be sufficient to carry out all necessary analysis. 

This approach of avoiding integration is again illustrated by Mrs. Tino's 
discussion. In her earlier discussion (TSA, XXI [1969], 289-95) of Batten's 
paper (reference [1] of my paper), she introduced a method that begins with 
a diagram constructed within the l, curve and arrives at the solution by 
integration. In her current discussion, she expands her diagram and makes 
integration unnecessary. 

The purpose of this paper is to present the theory of the stationary pop- 
ulation at the most elementary level. An intuitive illustration of a concept 
is frequently more comprehensible than, and historically can appear before, 
its analytic formulation. An example is Cavalieri's principle (1629), which 
preceded the integral calculus: Solids with the same height and with cross- 
sections of equal area have the same volume. This principle explains the 
equality of the two volumes AGEI and AECI in Figure 13, establishes the 
equivalence of Tino's method (reference [10]) and the geometric method in 
this paper, and delivers the solution to the following problem (Brian Bam- 
brough, Problem Solving in Life Contingencies, p. 12.5): "What is the 
aggregate time lived in the next year by those dying between ages x and x 
+ n in the next year?" The solid that represents the aggregate time has 
height It - I~.n and cross-sections of congruent triangles with area 72. Its 
volume, by Cavalieri's principle, is (l, - l~+n)/2. I thank Dr. Shiu for bringing 
my attention to this problem. 

I agree with Messrs. Brown and Lutek and with Dr. Shiu that Veit's "in- 
and-out" method followed by the Grace-Nesbitt principle is the most effi- 
cient, at least for most people on most problems. The effectiveness of this 
method is further enhanced by the expressions for past and future lifetime 
given in Messrs. Brown and Lutek's discussion. In place of Veit's method, 
Mr. Tsao suggests the analogy of fluid flow to determine the number of lives 
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and presents a shorthand notation for remembering the three-dimensional 
information suppressed in his diagrams. 

I agree also that the classical method of  integration is powerful. The 
problem solved so compactly by integration in Dr. Shiu's discussion will 
take up more space by the geometric method: for those who have their 
twentieth birthday during 1966, mental reference to the geometric method 
will show that they live /'20 - Y29 + Y30 person-years until December 31, 
1975. Thus, for the twentieth through the twenty-ninth birthday, the answer 
is 

9 

T2o+, - r29+, + r3o+, .  
k = 0  

I thank the discussants again for their stimulating discussions. 


