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ABSTRACT 

In the British actuarial journals most papers on immunization examine 
the theory as it applies to the valuation of the assets and liabilities of an 
insurance company or a pension fund. The papers deal primarily with 
valuation and little with how to determine investment strategy. This 
paper investigates how the concepts of asset-liability matching can be 
used to shape investment strategy. 

A general model for matching assets and liabilities is developed. Three 
aspects of the investment problem are discussed: initial investment 
strategy, reinvestment strategy, and asset liquidation strategy. Reinvest- 
ments and disinvestments are handled by an investment-year method. 
Explicit provision is made for different new-money rates in each future 
year. 

The model is defined by specifying (1) the schedule of interest and 
principal payments for representative investment instruments comprising 
the initial portfolio, (2) the expected net cash outflows of the pension 
fund or other block of business, (3) rollover rates for reinvestments, and 
(4) a set of patterns of future new-money interest rates. An investment 
strategy is defined to be a specific allocation of investable funds among 
the representative instruments. The model solves for a region of strategies 
that result in a nonnegative total fund value at the end of the investment 
horizon for each interest rate pattern in the set described in item 4. 

Conventional immunization theory is identified as a special case of the 
general model in which each interest rate pattern represents an immedi- 
ate and permanent change in the level of interest rates from the current 
level. The problem of establishing the interest guarantee for a deposit 
fund is discussed as an example where conventional immunization theory 
fails but the general model does not. 
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I. INTRODUCTION 

M 
UCH has been written about the theory of immunization, the 

matching of assets and liabilities, and the role of the actuary 
in the investment operations of an insurance company. Con- 

tributions range from the original paper by Redington [2] to the records 
of concurrent sessions of Society of Actuaries meetings. The Journal of 
the Institute of Actuaries and the Transactions of the Faculty of Actuaries 
are rife with articles about these subjects. Perhaps the works most 
familiar to Nor th  American actuaries are those of Vanderhoof [5, 6], 
who, among actuaries, has almost single-handedly taken up the cause 
on this side of the Atlantic. 

Despite the extensive literature on immunization theory and the fact 
tha t  the ideas have been in existence for more than twenty-five years, 
there has been little practical application of the theory to actual invest- 
ment practice in the United States and Canada. Undoubtedly, one of 
the reasons for the initial lack of enthusiasm was the fact that  interest 
rates were rather stable from the mid-fifties until the late sixties. Since 
then, however, we have experienced high inflation, an uncertain economy, 
and a very different climate for fixed-income instruments. In  such an 
environment the interest rate risks, which immunization is t rying to pro- 
tect against, are apparent. Nevertheless, there still does not appear to 
be a noticeable move toward applying asset-liability matching theory. 
There are several reasons why this is so. 

1. The backgrounds of actuaries and investment officers are different. In gen- 
eral, neither actuaries nor investment personnel understand the other's pro- 
fessional jargon. This is an impediment to a free exchange of ideas. 

2. The organizational structure of most insurance companies segregates invest- 
ment functions from traditional actuarial functions; usually there are"few 
committees with representation from the two organizational areas. 

3. The ideas underlying immunization theory are not well understood by many 
actuaries and most investment officers, and, when understood, appear to 
be difficult to apply in practice. 

4. Immunization theory in its conventional form places rigid constraints on 
investment operations, leaving investment officers with too little latitude 
for making policy decisions. 

5. Immunization theory itself is subject to several fundamental criticisms 
that, if valid, would preclude its use in practical situations. 

Before the barriers imposed by the first two items can be broken down, 
the issues in the last three must be addressed. This is largely a matter  of 
education. We must find better ways of expressing the concepts underlying 
the theory of asset-liability matching and of responding to the explicit 
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criticisms. We then must devise a practical way to apply the theory, a 
way that involves the interaction of actuarial and investment personnel 
from the outset. 

One of the purposes of this paper is to expose some ideas that should 
be helpful in eliminating impediments to the successful application of 
the principles of asset-liability matching. There are many situations today, 
especially with the proliferation of new-money "accumulation" products, 
in which these concepts can and should be applied. The formal equations 
of the theory cannot be used in certain situations, nor should they be 
applied blindly in any event. With sufficient ingenuity, the ideas can be 
put to practical use, if not as a guide to determining investment strategy, 
then as a method of quantifying specific interest rate risks. 

II. IMPORTANCE OF INVESTMENT CONSIDERATIONS 

All actuaries and investment officers recognize that two primary objec- 
tives of investment policy are security of principal and a high rate of 
return. What is less well recognized is the important connection between 
investment operations and noninvestment operations. In establishing the 
benefit structure and contribution level for pension plans and in pricing 
insurance products, it is essential to take this relationship into account. 
Doing so involves the concepts of asset-liability matching. The reason 
for examining the relationship between cash flows from investment 
operations and cash flows from insurance operations lies in an evaluation 
of the interest rate risks to which the pension or insurance fund is sub- 
ject. There are two types of interest rate risk: (a) the risk that funds 
will have to be reinvested when interest rates are lower than those as- 
sumed in funding and pricing calculations and (b) the risk that fixed- 
income assets will have to be liquidated at a capital loss when interest 
rates are high. 

Suppose that assets are invested primarily in short-term instruments 
but the cash-flow requirements of the pension plan or line of business 
extend many years into the future. The fund will have more asset 
maturities than it needs to meet its obligations in the short run and 
may be forced to reinvest funds when interest rates are low, thus running 
the risk of earning interest at a lower rate than that assumed in the 
funding or pricing calculations. 

When the total fund is a "pooled" fund comprising commingled 
pension funds or insurance funds for many different blocks or lines of 
business, the second type of interest rate risk involves issues of equity 
among the components of the total fund. If the assets underlying a par- 
ticular line of business are invested primarily in long-term instruments 
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with repayment of principal many years in the future, it can happen that 
the combination of interest income and premium income is insufficient 
to meet all the benefit payments, expenses, and taxes in the early years. 
Assets would have to be liquidated to make up the deficiency, and this 
would be at a capital loss if interest rates were higher than they were 
when the assets were purchased. Even if the fund as a whole had a net 
cash inflow so that asset holdings would not actually have to be liqui- 
dated, there could be a serious question of equity. For example, suppose 
one line of business is experiencing a net cash outflow but another line is 
experiencing a larger net cash inflow. By diverting the latter to cover 
the former, the fund will not have to liquidate any assets, but the line 
with the net cash inflow will have a much smaller amount to invest at 
the current high interest rates and is deprived of an investment oppor- 
tunity. To avoid having one line support another, an "accounting" cal- 
culation could be instituted to treat the entire situation as if the line 
with the net outflow had been forced to liquidate assets. As will be seen 
in Section IV, it is possible to perform a different but substantially 
equivalent calculation. 

I I I .  NATURE OF THE INVESTMENT PROBLEM 

The problem of determining investment strategy can be separated into 
three parts:  the initial investment strategy, the reinvestment strategy, 
and the disinvestment or liquidation strategy. I t  is necessary to under- 
stand the nature of each of these three pieces before attempting to con- 
struct a general model of the entire investment strategy problem. 

A. Initial Investment Strategy 

Investment officers and portfolio managers keep abreast of current 
money and capital market conditions. They have access to many market 
analyses covering the short-term period (from a few weeks to several 
months to a year or more). The very nature of their job is to assess the 
investment opportunities over this period and to make decisions on the 
allocation of investable funds among various classes of assets and, within 
a class, among instruments posing different credit risks and having 
different maturity dates. 

Over the very short term, investment officers and portfolio managers 
are relatively well informed of the key factors necessary for formulating 
investment strategy: there are reasonably accurate forecasts of the 
amount and incidence of investable funds, the schedule of commitment 
takedowns in the near term is known, and there is little uncertainty in 
yield curves and yield spreads in the public securities markets. 
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B. Reim,estment Strategy 

At first sight it would seem that determining reinvestment strategy is 
no different from determining initial investment strategy. The key point 
is the time at which such strategy is decided upon. If one is attempting 
to make decisions now on how to reinvest funds each year in the future, 
there is considerable uncertainty about all of the factors necessary for 
making a decision. 

Insurance companies channel a significant portion of their funds into 
instruments whose contractual provisions are directly negotiated with 
the borrower. (In practice, the insurer may not have much freedom in 
negotiating these provisions.) When establishing a schedule of commit- 
ments to various borrowers, investment officers must estimate the flow 
of investable funds. These estimates take into account, among other 
things, scheduled maturities of assets in the existing portfolio and short- 
term projections of the net cash inflow from insurance operations. Even 
though funds typically are committed up to a year or two into the future, 
both competitive considerations and the uncertainty of cash-flow pro- 
jections prevent the full commitment of funds for investment at points 
several years into the future. Moreover, good borrowers are not willing 
to tie themselves down to rigid contractual provisions concerning the 
rate of interest, the schedule of principal repayments, early refunding, 
and so on, even if they are able to assess their capital needs several years 
ahead. Thus, apart from publicly traded securities, it is not known with 
certainty what investment instruments will be in ample supply beyond 
the period for which a substantial commitment of funds has been made. 

The general level of interest rates a year or two into the future is mod- 
erately uncertain and beyond that is very uncertain. The more detailed 
structure of interest rates--the yield curves and yield spreads--is also 
uncertain. Recent experience has shown that flat and inverted yield 
curves can arise in situations not expected on the basis of past experience. 
Yield spreads are determined partly by the investors' overall assessment 
of the economy and partly by unusual market conditions, and these are 
completely unpredictable beyond the short term. 

The opening sentence of a speech by Dr. Albert M. Wojnilower, man- 
aging director and economist of the First Boston Corporation, to the 
Sixth Institutional Investor Bond Conference in New York City on 
October 26, 1978, suggests what can be expected for the future: "In less 
than twenty years the practice of finance, in common with so many 
aspects of our lifestyle, has been profoundly transformed in structure 
and habit." The title of his speech, "Suboptimization, or The New Look 
in Interest Rates," and the main topics discussed--decontrol of interest 
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rates, making all assets marketable, shifting the risk from institutions to 
the public, interest rates catching up with inflation, changes in the yield 
curve--point out that it is difficult enough to understand how we arrived 
at the current situation without trying to predict events that will mold 
the future. 

The best time to make reinvestment decisions is in the future, when 
the reinvestments are actually made and when the market conditions 
are known. However, we are trying to protect against interest rate risks 
brought about by the uncertain future through the choice of an appropri- 
ate initial investment strategy. To do this we must have some realistic 
model for reinvestments, even though it necessarily will be less detailed 
than the model for the initial investment of funds. 

C. Liquidation Strategy 
Several considerations are important in deciding which assets to liqui- 

date. It  may be desirable to improve the quality of the portfolio by 
eliminating assets that have the greatest chance of default. The duration 
of the portfolio can be modified by eliminating selectively short-term or 
long-term assets. However, the dominant consideration is likely to be 
the capital gains or losses realized on liquidation, and the resulting income 
tax implications. 

When commingled funds or all the assets of the insurer's general ac- 
count are involved, there probably will be an overall net inflow of funds 
over a sufficiently long period (three, six, or twelve months) even though 
certain parts of the fund have a net outflow during this period. In such a 
situation it is unlikely that the portfolio manager or investment officers 
would choose deliberately to liquidate assets to meet the demands of 
those parts of the fund with net outflow. Liquidations probably will 
occur only for purposes of altering the composition of the portfolio and 
to optimize the income tax position. It  was pointed out in Section II  
that questions of equity among the separate funds are involved, and it 
may be necessary to allocate investment income in a manner that recog- 
nizes the cash-flow positions of the separate funds. The basis for the 
allocation does not have to be "as if liquidation of assets actually oc- 
curred." This is discussed in the next section. 

IV. A GENERAL MODEL FOR MATCHING ASSETS AND LIABILITIES 

A general model for matching assets and liabilities is developed in this 
section. In Section VI it will be seen that conventional immunization is 
a special case of the general model. 

All attempts to match assets and liabilities begin with an identification 
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of items of cash inflow and outflow. I t  is customary to segregate all cash 
flow into two categories: that arising from investment operations, and 
all the rest, which, for an insurance company, would be called cash flow 
from insurance operations. Since only fixed-income investments are 
considered in this paper, the first category consists of interest and 
principal payments as inflow items and investment expenses as outflow 
items. Cash flow from investment operations can be classified further 
as arising from the initial portfolio of assets or from reinvestments. Cash 
flow from other than investments consists of premiums or contributions 
as inflow items, and benefit payments, commissions, expenses, taxes, and 
policyholder and shareholder dividends as outflow items. 

In each of the two major categories, specific items of cash flow will 
occur throughout the year. To bring the problem to a manageable size, 
it is customary to lump together all items occurring within a year (plan 
year, policy year, or calendar year, depending on the circumstances). 
Funds that cannot be invested long term as soon as they are received 
are invested instead in very short-term instruments such as commercial 
paper and Treasury bills until commitments fall due or other investment 
opportunities open up. When commitment takedowns exceed funds 
available for investment, the insurer must draw on its lines of credit to 
borrow funds. In effect, the company invests its cash flow (and borrowed 
funds) immediately at long-term rates but incurs a short-term borrowing 
cost. This will be a profitable procedure provided that the borrowing 
rate is lower than the long-term rate. The net effect of such investment 
activity can be approximated closely by accumulating the year's cash- 
flow items to year-end at the prevailing long-term rate. 

Let CF~ ~t denote the net cash outflow in year k from items other than 
inz, estments, with cash flow during year k accumulated to the end of the 
year at the prevailing long-term interest rate. The cash flows CF~ ut are 
calculated by a fund projection or model-office projection based on actu- 
arial assumptions concerning the amount and incidence of the specific 
items. 

Since the nature of the initial investment problem is different from that 
of the reinvestment problem, it is customary to treat the cash flow from 
the initial portfolio of assets separately from the investment cash flow 
arising from reinvestments. Let CF~ ~ denote the net cash inflow in year k 
from assets associated with the initial portfolio only, with cash flow during 
year k accumulated to the end of the year at the prevailing long-term 
interest rate. 

Investment officers can identify representative investment instru- 
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merits into which currently investable funds can be channeled. These 
might include public bonds, privately placed bonds, and mortgages. 
Within each of these broad classes of assets, there may be several instru- 
ments, differing by contractual interest rate, maturity date, principal 
repayment pattern, penalties on early refunding, or other characteristics. 
Suppose there is a total of n representative investment instruments. 
Let  al:i denote the net interest and principal payments in year k per 
dollar invested in the j th  instrument, with any payments during the year 
accumulated to year-end at the long-term interest rate. The interest pay- 
ment is net of investment expenses. Moreover, no credit should be taken 
for the default premium in this interest rate unless explicit provision has 
been made in the model for the accumulation of a contingency reserve 
against default. The initial investment strategy problem consists of 
specifying how the initial funds are to be allocated among the n repre- 
sentative instruments. Let pi denote the fraction of initial funds in- 
vested in the j th  instrument. Then 

Pi = 1 ; (1) 
j =  1 

CFik n = ~ akiPi. (2) 

The value of CF~. ~ in equation (2) is equal to the value previously defined, 
divided by the value of the initial fund. In the following analysis, CF°~ ut 
refers to the value previously defined, divided by the value of the initial 
fund. The paper "Achieving Consistency between Investment Practice 
and Investment Assumptions for Single Premium New-Money Products" 
[4] gives examples of typical investment instruments and the associated 
matrix {aki}. 

Before proceeding with the analysis, it is worthwhile to indicate how 
equation (2) would be modified for immunizing an already existing pen- 
sion fund or block of business. In that case, CF~" should include a separate 
term for cash flow from the already existing portfolio of assets backing 
the pension fund or block of business. Such a term will be independent 
of the variables pl, p~ . . . . .  pn that apply only to funds currently avail- 
able for investment. The appropriate modification is 

CF in k = ako + akipj .  (2') 

As each year passes, equation (2') is the starting point for determining 
investment strategy to keep the fund in a matched position. The term 
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ak0 applies to the portfolio of assets existing at the start of the first year 
as a result of investments made in all prior years. For a new fund or 
block of business, a~-0 = 0 for all k. In the remainder of this paper, equa- 
tion (2) is used in lieu of equation (2'). 

From the discussion in the preceding section, we know that it does not 
make sense to establish reinvestment strategy until the future becomes 
the present and the investment climate is better known. In particular, 
no at tempt will be made to identify representative investment instru- 
ments for the reinvestment of funds in the future. To characterize the 
impact of reinvestments on the determination of initial investment 
strategy, it ought to be sufficient to represent the multiplicity of interest 
rates at any point in the future by a single average rate appropriate to 
the average term of the reinvestments. This average interest rate is net 
of investment expenses and excludes an average default premium unless 
explicit provision is being made for a reserve against defaults. 

No mention has been made of how liquidations will be treated in the 
model. I t  is of great theoretical convenience to be able to handle liqui- 
dations in the same fashion as reinvestments. In the preceding section it 
was observed that forced liquidation will not actually occur in a com- 
mingled fund that has an overall net inflow even though some parts of 
the fund have net outflow. Equity in allocating investment income to 
the various parts of the total fund can be achieved by treating each part  
as investing its net cash flow at the prevailing new-money rate, When 
one part  of the fund has a net outflow, the resulting negative investment 
it makes can be considered as a loan by the rest of the fund to cover the 
cash-flow deficiency. This method of allocating investment income is 
equitable because (a) the parts of the total fund experiencing net cash 
outflows are required to pay interest on their loans at the prevailing new- 
money rate and (b) the parts of the total fund experiencing net cash in- 
flows fare no better and no worse than if their funds had been invested 
in actual money market or capital market instruments, since the loans 
bear interest at the prevailing new-money rate. 

What is the "loan's" schedule of principal repayment? The "lending" 
parts of the total fund will be treated fairly if the repayment pattern is 
the same as that of the typical reinvestment that  would have been made 
if their net inflow had not been diverted to cover the cash-flow deficiencies 
of the balance of the fund. The "borrowing" parts of the fund will also 
be treated fairly under this scheme if new-money interest rates in years 
when repayment is made do not depart significantly from the rate the 
loan bears. 
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On the basis of the preceding analysis,  the following general model  is 
postulated.  

1. Investment operations are simulated by an investment-year method. 
2. The model is detailed with respect to the initial investment strategy. The 

initial fund is assumed to be invested in n representative instruments, with 
a fraction Pi allocated to instrument j .  

3. The model is deliberately less detailed with respect to the reinvestment of 
funds. Reinvestment or disinvestment in year k (k >__ 2) is made at the 
beginning of the year at new-money rate i~. The pattern of asset maturities 
from this reinvestment or disinvestment is characterized by a vector of roll- 
over rates r, component ri specifying the fraction of the reinvestment repaid 
j years after the reinvestment is made. 

Investment Cell Payment Pattern 
(Principal and Interest) 

1 

Year 2 ~ ]  i2,  r 

Year N I N I  in, r 

Fio. 1.--Pictorial representation of the investment model 

The inves tment  characterist ics  of the model are pictured in Figure 1. 
The use of a single vector  of rollover rates for all future years  is not  
necessary, bu t  there is no compelling reason to complicate the model 
further.  

Despi te  wha t  was s ta ted  earlier, we now can see how to include the 
term structure  of interest  ra tes  in the re investment  of funds. Reinvest-  
mea t  cell k (k :> 2) can be subdivided into cells according to the fraction 
of funds tha t  will be rolled over 1, 2 , . . .  years  from the t ime of reinvest-  

ment.  These subcells can be characterized by  yields, net of inves tment  
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expenses, applicable to high-quality bonds with terms to maturity of 1, 
2, . . . years, respectively. For example, cell k could be divided into sub- 
cells k l ,  k 2 ,  • . • , k q  bearing new-money rates (at the beginning of year k) 
i~1, ik.~, • . . , ikq, respectively. Of the total funds invested in cell k at the 
start of year k, fractions r~, r .o , . . .  , rq would be allocated to the respective 
subcells. The rates ik~, • . . , i~.q describe the yield curve at the beginning 
of year k. However, the fact that the model can be generalized to account 
for the term structure of interest rates at times in the future does n o t  

mean that it should be. There is considerable uncertainty in the shape 
(rising, flat, inverted) and the slope of the yield curve. Expanding the 
model in such a fashion adds considerably to the complexity and arbitrari- 
ness of the assumptions that must be made, without enhancing the use- 
fulness of the model to any great extent. Accordingly, the form depicted 
in Figure 1 is used in the remainder of the paper. 

The investment horizon (shown as N years in Fig. 1) is the period 
until the last benefit is paid. This might occur beyond the time of the 
last scheduled maturity in the initial portfolio of assets. All equations in 
this paper assume that the assets of the initial portfolio mature fully at 
or before the investment horizon. I t  is trivial to modify the equations to 
cover the situation where the terms of some of the initial investments 
exceed the term of the contractual obligations of the fund. In such a 
case, the value of the fund at the investment horizon will include un- 
matured assets in the initial portfolio. 

In circumstances where the contractual obligations of the fund extend 
far beyond the time of the last scheduled maturity in the initial portfolio 
of assets, it may be desirable to choose the investment horizon as the 
time of the last scheduled maturity. All cash flow beyond the investment 
horizon from other than investment operations can be discounted back to 
the horizon at a conservative rate of interest. The resulting present value 
of all obligations beyond the horizon should be included in the net cash 
flow CF°utN • This approach is analogous to the familiar practice of calcu- 
lating asset shares for only N years rather than to the end of the mor- 
tality table, and then "maturing" the remaining policies for the Nth-year 
reserve or cash value. 

Let 6~k (k = 2, 3 , . . .  , N) denote the amount invested in cell k at new- 
money rate ik at the beginning of year k. The model permits ~k to be 
negative as well as positive. The vector of rollover rates applicable to 
reinvestments is r = ( r l ,  r 2 ,  . . . , r q ) ,  with ,~=1 r~ = 1. (In any expression 
in the remainder of this paper, it is to be understood that  r~ = 0 if i > q.) 
Accordingly, the assets remaining in cell k at the start  of years k + 1, 
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4. 

Thus, 
k--1 k - l - I  - -  = ~,-_ o°, [ (-~)] CFk_l)  Y]~ e l  + iz 1 rj ak  (C k-1 + r ~ _ z  . 
1=2 
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k + 2 ,  . . . are (tk(1 - rl), ~.(1 - rl -- r2), • • . . The funds available for 
investment at the start of year k (k > 2) are composed of the following: 

1 .  Interest and maturities during year k - 1 from the initial portfolio of 
in  assets, CF,_I ,  plus 

2 .  Interest during year k - 1 on all reinvestments made in years 2, 3, 
• . . , k - 1, xz=2k-1 i1(~1(1 - ~j~lvk-z--1 r~), plus 
Maturities during year k - 1 from all reinvestments made in years 
2 ,  3 ,  k I ,  ~-1 • • • , -- ~=2 rk_l(i~, less 
Net cash outflow during year k - 1 from all items not associated with 
investment operations, PF~ "t ~" k--l" 

(3) 

In  equation (3) and any of the previous expressions, if the upper limit of 
summation is less than the lower limit of summation, the value of the 
sum is to be considered equal to zero. Equat ion (3) implies tha t  (~k can 
be written in the form 

k - 1  

a ,  = ~ - . , ( c ~ P  - c p ~  °') (k _> 2 ) ,  (4)  
l = l  

where the coefficients "t~z depend only on rollover rates and interest rates. 
The coefficients "m can be determined recursively. 

in  u t  
q ~ .  = ( C F k - 1  - -  OF°k-t) 

k--1 | - -1 k - - | - - I  - - _  

, x [N, , . ,~  ..~F,- - ~ - : , ~ ]  [ . ,_, + , ,  ( ,  - x , , ) ]  
( s )  

/ t ~ i n  t ~  l~ou t  

k - 2  k - 1  k - l - 1  - -  

÷ ?.. t x [, .- ,  ÷ , , ( ,  - ~ , , )]-~,-f~F: ~ - - ~ : ' ~  • 

The latter expression is derived from the former by changing the order 
of the summations over the dummy indexes l and m. From equation (4) 
it follows that  

T~= = 0 ,  r e > k - - 1  

= 1 ,  m = k - t (6)  
k - - l - - 1  - -  k - !  

: , . x  [,,-,  ÷ ,, ( ,  - x , , ) ] , , .  , ,  ,_, . , - ,  > - >- , .  



MATCHING OF ASSETS AND LIABILITIES 275 

For a given pattern of future new-money interest rates and rollover from 
reinvestments, the 3' matrix can be determined. This matrix is inde- 
pendent of all other variables in the investment strategy problem. 

Since the last scheduled maturity in the initial portfolio of assets 
occurs at or prior to the investment horizon, the amount of assets 
(valued at cost) at the investment horizon is 

It  should be noted that AN represents the total amount of assets at the 
end of year N in all reinvestment cells, while ffk represents the amount of 
assets originally invested in cell k at new-money rate i, at the start  of 
year k. 

Upon substituting for ff~ in terms of the 3'-coeffcients and remember- 
ing that CF~ '~ = Z'~=I azsp~, we derive 

~+1"-1 ( N-*+~ " ( i ~  ~ i )  A.-- E E 3",, 1 - -  E r , )  ai,P 

"+i i-' ( ~-~') 
- Y:. F_, 3",, 1 -  ,< c A  ° ' ,  

k = 2  1~1 

and, finally, 

: t t ' - ",) , , ,° , ,] , ,  , # = 1  = (9) 
N + l /  N - ~ - i  \ i - 1  

- -  C "Yt l  t -  l • 
i=I -I l~l 

Although equation (9) appears complicated, it is very neatly struc- 
tured. The assets at the end of the investment horizon, A~, are a linear 
function of the components of P that specify the allocation of initially 
investable funds among the n subcells of the initial portfolio. The co- 
effcients of the variables Ps and the constant term are determined com- 
pletely from the rollover rates for reinvestment r, the matrix {at1} 

(specifying the pattern of interest payments and maturities from the n 
subcells of the initial portfolio), the matrix {3'kt} (determined solely from 
new-money interest rates for future years and rollover rates), and the 
vector of net liability cash outflows C F  °"t. When programming this 
model on a computer, one could write several different subroutines to 
handle the separate pieces of the calculation. A model-offce or fund pro- 
jection would be used to determine the net "liability" outflows. There 
would be a subroutine to define the classes of assets, representative in- 
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vestment instruments within those classes, and the resulting matrix 
{azi} of interest and maturity payments. Finally, there would be a sub- 
routine to compute the elements of the matrix {~'u}. A control program 
would put the pieces together to arrive at equation (9) for AN. This 
fundamental equation, or equations based on it, would serve as input to 
the linear optimization calculation discussed next. 

Let i = (i-o, i s , . . .  , ix) denote a pattern of new-money rates applicable 
to reinvestments at the start of years 2, 3 , . . .  , X.  Let S denote a speci- 
fied set of interest rate patterns i. The generalized problem can be stated 
as follows: 

Determine a region R of initial investment strategies p, each of which 
results in nonnegative Ax  for each i in S. 

For all i in S, every point p in the region R of feasible investment 
strategies must satisfy the constraint Ax '>  0. For any given i, AN is a 
linear function of the components of p. In Section VI it will be seen that, 
in many instances, the set S can be replaced by a finite set of interest rate 
patterns. Under such circumstances, the region R is defined by the follow- 
ing constraints: 

p,->_ O, j = 1 , 2 , . . . , n ;  (10.1) 

I1, 

] ~  p~ = 1 ; (10.2) 
j f f i l  

AN(i~, r;p) > O, l = 1, 2 , . . . ,  m .  (10.3) 

The set S has been replaced by the finite set of interest rate patterns 
{il, i o , . . . ,  i,,}. Constraints (10.1) are known as nonnegativity con- 
straints on the variables Pi. Equation (10.2), which states that we can 
invest only what we have, ensures that region R is bounded. Constraints 
(10.3) are the generalized asset-liability matching constraints and are 
linear in the variables Pi. 

In practice, there will be further linear constraints on the initial invest- 
ment strategy. For example, there might be supply constraints on certain 
investment vehicles, implying upper bounds on some of the pi's. Also, 
the investment department may be unwilling to invest less than a certain 
fraction of funds in a particular asset class. The general model can be 
used to determine the extent to which such operational constraints limit 
the competitiveness of the insurer's products or increase its exposure to 
interest rate risk. 

There may be other constraints that should be imposed on the initial 
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investment strategy. Provided that such constraints are linear in the 
variables pi, the problem can be handled by the linear optimization cal- 
culation described later in this section. For example, it may be desired 
not only to ensure the solvency of the fund under adverse patterns of 
future new-money interest rates but also to ensure that expected profit 
attains a certain minimum level. One way to introduce profit into the 
model is to include a specific "expense" charge for it in the annual 
liability outflows. Alternatively, profit can be defined in terms of the 
value of the fund at the investment horizon. Several equally likely in- 
terest rate patterns can be generated from a stochastic model, and the 
fund value Ax associated with each pattern can be determined. The 
arithmetic mean of these fund values is an estimate of the expected 
profit. The associated expected profit constraint is linear in the vari- 
ables Pi. 

The region R defined by constraints (10.1), (10.2), and (10.3) is known 
as a polytope and is the solution of the asset-liability matching problem. 
R is difficult to visualize if the number of variables exceeds three. More- 
over, if other interest rate patterns are used in (10.3), or if the vector of 
reinvestment rollover rates r is changed, or if the actuarial assumptions 
underlying CF °"t are altered, the region R will change also. It  is useful to 
understand how R changes as the parameters of the problem are modi- 
fied, but this is not easy as the solution is currently defined. Also, it is 
essential that the results of the calculation be capable of communication 
to other actuaries and to investment officers, for, if not, the model will 
never be implemented. 

One resolution of the difficulties outlined above is to use a subset of R 
as the "solution" of the matching problem in lieu of R. A good candidate 
for this subset is the largest hypersphere that can be inscribed in R. A 
sphere is completely characterized by its center point (7rl, 1r2,.. .  , 7r,) 
and radius p. In a crude sense the center of the sphere is the "center" of 
the region R and the radius of the sphere measures the "size" of R. 
Changes in R resulting from changes in the parameters of the problem 
lead to a new maximal in-sphere, which can be obtained from the former 
sphere by a translation of the center and an expanding or shrinking of 
the radius. Hence, the sensitivity of the region of feasible investment 
strategies to changes in the parameters is much easier to visualize. If R 
is not very regular in shape, the ratio of the volume of the maximal in- 
sphere to the volume of R is small and the maximal in-sphere is not a 
useful substitute for R; in this case, one is probably restricted to dealing 
with the explicit constraints defining R. 
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The equation of the maximal in-sphere is 

(Pi -- *rJ) ~ = P~. (11) 
i = l  

The parameters ,rj ( j  -- 1, 2, . . . , n) and p depend on the patterns of 
interest rates il, i 2 , . . .  , ira, the reinvestment rollover rates r, the pattern 
of interest and principal payments (ak~.} from the initial portfolio of 
assets, and the actuarial assumptions underlying the liability cash flows 
CF °u*. At the expense of eliminating some feasible investment strategies 
from R, the "solution" to the asset-liability matching problem has been 
expressed in a single equation. Once the 7r/s and p are known, it is very 
easy to check whether a particular initial investment strategy lies within 
the sphere. 

The paper referred to earlier [4) proves that the maximal in-sphere of 
a region defined by linear equality and inequality constraints is the solu- 
tion of a standard linear programming problem. The proof is not dupli- 
cated here, but the Appendix to this paper includes an APL program 
that solves both standard linear optimization and associated maximal 
in-sphere problems. 

Whenever asset-liability matching is discussed, the question arises as 
to whether a deterministic or stochastic model should be used. Un- 
doubtedly both provide insight into the problem. Academicians seem to 
favor stochastic models, since these are representative of the manner in 
which the uncertain world actually works, while practitioners whose ex- 
perience is based largely on evolved history tend to think in terms of 
specific scenarios and favor deterministic models. The academicians indi- 
cate that historical data give but one "snapshot" from the statistical 
ensemble of the ways things could have turned out and, at best, merely 
serve to eliminate certain stochastic models as incapable of explaining 
actual results. Since the future is uncertain, they argue, it is better to 
use a stochastic model and to make probability statements about 
eventualities. For the investment problem studied in this paper, the risks 
are associated with certain "adverse" patterns of future interest rates. 
I t  is important to determine how various investment strategies fare under 
these critical patterns so that strategies that eliminate or reduce the risk 
can be chosen. There may be less concern about how the strategies fare 
under fluctuating interest rate scenarios that lie between the critical pat- 
terns. A deterministic model is adequate in such circumstances, and it is 
this type of model that is used in this paper. Stochastic effects can be 
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explored by scrutinizing particular strategies under several different 
interest rate patterns generated by a stochastic time series model, an 
approach used by Ziock in a paper investigating the effects of an infla- 
tionary economy on profits from nonparticipating insurance policies [7]. 

V. ABSOLUTE MATCHING 

Before analyzing particular interest rate scenarios in the next section, 
it makes sense to mention briefly a model that  is independent of the 
future interest rate environment (except for the possibility of prepay- 
ment or default of assets, or significant dependence of cash withdrawals 
on prevailing interest rates). This model is known in the literature as 
"absolute matching." 

Absolute matching can be expressed mathematically as CFk ~ = CF~ "t 

for k = 1, 2, . . . , N. From equation (4) this implies that (Xk = 0 for 
k = 2, 3 , . . .  , N + 1, and from equation (7) this in turn implies that 
AN = O. These equalities are independent of the pattern of future new- 
money interest rates. Since interest and principal from the initial port- 
folio of assets match exactly the net cash outflow requirements at every 
duration up to the investment horizon, there are never any funds to 
invest during that  period. I t  does not matter  how interest rates behave. 

The absolute matching conditions are very restrictive on investment 
policy. In fact, there may be no investment strategies that permit cash 
inflows and outflows to be matched exactly. The absolute matching con- 
straints can be relaxed to the inequalities C ~  n > CF~ ut (k = 1, 2 . . . .  , N ) .  

A practical application of this more general "matching" model to the 
pricing of single premium immediate annuities is discussed in [4]. 

v I .  I N T E R E S T  RATE SCENARIOS 

A. Level Reinvestment Rates 

Let the set S of interest rate patterns defined earlier consist only of 
level reinvestment rates i = (i¢, i n , . . .  , iN), with is = /3  . . . . .  
iv = i and iL <_ i <_ iv. Since cells 2, 3 , . . .  , N all bear new-money 
interest rate i, there is no distinction among them and they can all be 
replaced by a single reinvestment cell. Moreover, the exact pattern of 
rollover rates is inconsequential; the amount of assets at the end of the 
investment horizon is independent of the vector of rollover rates. Hence, 

N 

A N  = ~ (CFih ~ -- CF~*)(1 + i) N-* • (12) 
k=l 
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If A~ is divided by (1 + i) N, the resulting function of i, denoted by S(i), 
is the gross premium valuation surplus. 

N 

s(i) = ~ ~(cp' ,  n - c ~ ° ' ) .  (13) 
k = l  

Immunization theory attempts to mold the behavior of S(i) as a 
function of i by choosing the initial portfolio of assets appropriately. Let 
i0 be the point in the interval [iL, iu] that is the best estimate of the 
average future reinvestment rate. Expand S(i) in a Taylor series about io: 

(-27-) t ( ~ s )  ( i -  ~o)' + . . . .  04) s q )  = S(io) + d s  (i - ¢o) +-T f .  ~ ,, 
i o 

By choosing the initial investment strategy so that 

( ) >o, dS = 0 and ~ q 
S(io) = -T;-, ,0 Os) 

one may ensure that the surplus function will have a local minimum at 
io. Therefore, for small changes in i, either above io or below io, S(i) will 
be larger than S(io). This is depicted in Figure 2. The question marks 
indicate that higher-order terms of the Taylor series are important for 
sufficiently large deviations from i0, and there is no guarantee that S(i) 
will not bend over and cross the/-axis. Conventional immunization theory 
gives no a priori information concerning the size of the interval about 
i0 for which S(i) > O. Of course, for a given investment strategy satisfying 
the immunization equations, the surplus function can be plotted. The 

s ( i )  

? 

io 
FIo. 2.--Surplus function 
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extent of the "upside" and "downside" protection can then be determined 

from the graph. 
Constraints (15) can be expressed in terms of the cash inflows and 

cash outflows by using equation (13). 

N N 

voCFk  = ~_, v o c  k ; J, m ~,FOUt (16.1) 
k-1  k~ l  

N N 
E ~, kr, y>in eVot.rk = ~_~ kvkoCF°kut , (16.2) 
k~l k.1 

N N 
~:~ . 2  kz - , r i n  . 2  k : F ~ U t  (16.3) R ~ol.~Pk > E ~ r o b  k • 
k~l  k~ l  

Expressions (16) are the familiar forms of the conventional immunization 
equations. 

The derivation of expressions (16) has assumed that  the interest rate 
dependence of the surplus function lies only in the discount factor v. 
More generally, the cash inflows and outflows also depend on the interest 
rate. This can arise in the following ways: First, bonds with call provisions 
and mortgages with prepayment clauses may be refunded prior to their 
full term if interest rates drop sufficiently to make it attractive for the 
issuer to refinance iris debt. This possibility means that C F p  will depend 
on the new-money interest rates/e, • . . ,  i~+l if the initial portfolio con- 
tains assets that permit early refunding. Second, the rate of cash with- 
drawals on investment contracts and the rate of policy loans on perma- 
nent insurance policies depend on the level of prevailing interest rates. 
This should be reflected in CF~ ut. If  an appropriate functional dependence 
of CFik " and CF~ "t on i can he postulated, the immunization equations 
can be rederived taking explicit account of the derivatives of the cash 
flows with respect to the interest rate. These derivatives may dominate 
those arising from the discount factor. 

There are two criticisms of conventional immunization theory that do 
not necessarily afflict the general model developed in this paper. 

1. The immunization expressions (15) constraining the initial investment 
strategy are unduly restrictive because each equality constraint reduces the 
dimensionality of the region of feasible investment strategies. This can be 
alleviated somewhat by using the constraint S(io) > 0 instead of S(io) = O. 

2. The impact of reinvestment of funds in uncertain market conditions can be 
treated more accurately by using a model that permits different new-money 
rates in each future year and recognizes the pattern of rollover from re- 
investments. If a nonlevel pattern of reinvestment rates is used, the repay- 
ment pattern of negative reinvestments (disinvestments) may be important. 
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The second criticism was addressed directly in the formulation of the 
general asset-liability matching model. The following discussion shows 
how alternatives to the immunization constraints can be used to remove 
the first criticism without sacrificing protection against interest rate 
risks. 

Expanding S(i) in a Taylor series about io and ensuring that a local 
minimum in S(i) occurs at i0 is merely a convenient way to force S(i) to be 
positive in a neighborhood of i0. What is important is that S(i) be posi- 
tive in a neighborhood of i0 whether or not a minimum occurs at i0. 
Surplus function $2 in Figure 3 protects against immediate and perma- 

s (o  

f io 
Fro. 3.--Alternative surplus functions 

nent changes in interest rates better than does Sb even though $2 has a 
relative maximum (not a minimum) at i0. 

It  is suggested that the pair of constraints 

S(iL) _> 0 ,  in < i0 (downside risk) , 
(17) 

S(iv) >_ 0 ,  i~: > i0 (upside risk) 

be used in place of the conventional immunization constraints. How 
should iL and iv be chosen? Provided that S(i) is continuous in some 
neighborhood of io, and provided that there exists an investment strategy 
for which S(io) > 0, it is possible to find an iL < io and an iv > i0 such 
that S(i) > 0 for all i in the interval (iL, iv). If downside protection of 
AlL and upside protection of Air are desired, then in = i o -  AlL and 
iu = io +Aiv .  The linear programming problem for the maximal in- 
sphere would then be solved to see whether there are any strategies 
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satisfying constraints (17). If  not, iL will have to be increased and/or  iv 
decreased until a solution exists. For a given strategy satisfying con- 
straints (17), it is necessary to plot the function S(i) on the interval 

[iz, iv] to verify tha t  S(i) has no roots on the interior of the interval. The 
example in Section VI I  illustrates these points. 

B. Increasing or Decreasing Reinvestment Rates 
Consider the patterns of interest rates shown in Figure 4. For each 

pattern in this family of patterns, the amount  of assets at the end of the 

ik 

/o 

1 2 . . . T Y e a r  k 

FIG. 4.--The family of new-money interest rate patterns is characterized by the 
equation it = 10 + [min (k, T) -- llAi, with k = 1, 2, . . . . Increasing and decreasing 
patterns occur for ai > 0 and ai < 0, respectively. 

investment horizon is a function of i0, Ai, and T. These parameters con- 
trol where the interest rates start, how steeply they rise or fall, and the 

point at which they level off, respectively. The investment problem might 

be posed as finding strategies that  satisfy A~(io, Ai, T; p) ~ 0 for a 

given i0 and all Ai and T, subject to AiL <_ Ai <_ ,My and T = 1, 2 , . . .  , 

Tv, respectively, where all  < 0 and Aiu > 0. 

For a fixed value of T, say To, AN(io, ,~i, To; p) can be expanded in a 
Taylor series: 

(dA~'~ Ai 1 (dZAN'~ (Ai)' 
A~(Ai) = AN(0) + \ dAi/o + -~. \ d-~f iJo + . . . .  (18) 
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The explicit dependence of Ax on i0, To, and p has been suppressed. The 
"immunization" conditions are 

(d_AN) = (ariAN 3 > 
AN(O) >_0, \ d n i J o  0 ,  \d-~-~}0 0 .  (19) 

In many situations the two critical patterns are the steepest rise and 
fall over the longest period; that is, Ai = Air and Ai = AlL with T = 
Tv. The corresponding critical constraints are 

AN(io, Air, Tv; P) >_ 0 (increasing rates) , 
(20) 

A~r(io, AlL, Tv;p ) > 0 (decreasing rates) . 

When the problem has been solved, the function AN(io, &i, T; p) can be 
computed on the two-dimensional region AlL < Ai < Aiu, T = 1, 2 , . . . ,  
Tv to determine whether AN has any roots in the region. This approach 
is bound to be more fruitful than that based on the Taylor series expan- 
sion of AN. First, both "matching" constraints in equation (20) are in- 
equalities rather than equalities, so the dimensionality of the region of 
feasible solutions is not reduced unnecessarily. Second, under conditions 
analogous to those described for level interest rate patterns, it is certain 
that values of AlL and &iv can be found for which A~(Ai, T) has no 
roots in the region & i L < A i <  Air, T =  1, 2 , . . . , T v .  However, 
under those same conditions, there is no guarantee that "immunization" 
strategies exist. 

C. Other Patterns 
I t  is useful to solve the initial strategy problem for a set of interest 

rate scenarios that includes a few patterns with level reinvestment rates 
at high and low levels, a few patterns with increasing and decreasing 
rates that ultimately level off, and adverse patterns of fluctuating rates 
derived from a stochastic time series model. Each pattern gives rise to a 
linear constraint AN > 0. Some of these constraints may be redundant, 
but that poses no theoretical difficulty in solving the linear programming 
problem for the maximal in-sphere of initial investment strategies. How- 
ever, computer core limitations, execution time, and round-off error will 
be important if the number of constraints is large. 

VII. AN EXAMPLE 

The ideas presented in this paper can be given much more meaning 
through an example. The following example involves the determination 
of a level interest guarantee for a three-year period on a deposit fund 
similar to a flexible premium annuity. The purpose of the example is to 
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illustrate the investment aspects of the problem, so most other features 
are glossed over or ignored. 

The contract holder can deposit funds at any time. A certain per- 
centage (called the load) is assessed against each deposit and provides 
for commissions to the sales representative and for some expenses of 
handling the contract. In  addition, there may be periodic service fees 
charged to the contract, but they are not considered here. The net 
deposi t - - the original deposit less the load--accumulates at a guaranteed 
rate of interest (compounded annually) for three years, at which point 
the net deposit with accumulated interest may be rolled over into a new 
three-year interest guarantee to be established at tha t  time. The product  
allows partial or total withdrawal of funds at the end of contract years 
without any asset-liquidation or surrender charges, regardless of the pre- 
vailing level of new-money interest rates. The market  for this product is 
expected to consist of investors having large amounts to invest and desir- 
ing complete security of principal at a rate of return that  is competitive 
for the one- to three-year portion of the yield curve. 

This product  carries two obvious investment risks: 

1. If interest rates rise significantly above the guaranteed rate, it is expected 
that there will be massive cash withdrawals as investors look elsewhere to 
reinvest their funds in low-load or no-load vehicles bearing the current high 
yield. The fund would be faced with the possibility of liquidating assets at 
a capital loss. Since the contract provides for security of principal and a 
guaranteed rate of return, the company would bear the entire loss. 

2. The risk described in item 1 suggests that funds be invested short to provide 
sufficient early maturities to pay off withdrawals if interest rates rise 
sharply. However, if such a strategy is followed and interest rates drop, 
there will be few withdrawals and the fund will be forced to reinvest sub- 
stantial amounts when interest rates are low. The fund may then be unable 
to earn interest at a rate equal to that guaranteed. 

When interest rates are rising, there is likely to be a large inflow of new 
funds coupled with extensive withdrawals on in-force contracts. There- 
fore, the situation discussed in item 1 above may not be so much a mat ter  
of actual asset liquidation as a matter  of recognizing the cash-flow posi- 
tions of the several parts  of the total fund so that  an equitable allocation 
of investment income can be made. Since the rate of interest is guaran- 
teed, it might seem tha t  a method for allocating investment income is 
unnecessary, but  without such an approach the company has no way of 
quantifying its gain and loss positions on the several parts  of the fund. 

The investment officers suggest that  net deposits be invested in one-, 
two-, and three-year government notes. The notes pay  semiannual 
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coupons, but for purposes of this example it will be assumed that interest 
payments are made annually. Principal is fully repaid at the maturity 
date. The initial portfolio consists of three cells. 

Coupon 
Cell Rate 

1-year notes . . . . . . . . . . . . . .  g~ 
2-year notes . . . . . . . . . . . . . .  g2 
3-year notes . . . . . . . . . . . . . .  ga 

Each dollar of net deposit is allocated among the three cells according to 
the fractions Pb p2, and ps, respectively, with pl + / ' 2  + ps = 1. The 

T A B L E  1 

C~LL 

1-year  n o t e s  . . . . . . . .  
2 -year  no t e s  . . . . . . . .  
J - y e a r  no t e s  . . . . . . . .  

PATTEIlI~ oy PRINCIPAL A/CD 
INTE1LE ST P A Y ~ S  

End of 
Year 1 

1 +g~ 
g~ 
ga 

End of 
Year 2 

0 
l+g~ 

gs 

End of 
Year 3 

0 
0 

l+gs 

pattern of cash inflow is shown in Table 1. Thus, the components of CF i" 
are given by 

CF~" = (1 + gx)pt + g~P2 + gJpa, 

in 
CF~ = (1 + g~)p~ + gaPs, 

CF~" = (1 + g~)Ps. 

Since service fees and taxes are being ignored, the only cash outflows 
are fund withdrawals. Let wl and w2 denote the withdrawal rates by 
amount (including both partial and full withdrawals) at the ends of 
years 1 and 2, respectively. Because all funds are withdrawn or rolled 
over at the end of three years, w8 -- 1. Let i a denote the guaranteed 
interest rate. The cash outflows per dollar of net deposit are 

c ~ " '  = w,(1 + i , ) ,  

c H  "' = w , ( i  - w , ) ( t  + i , ) 2 ,  

c p ~ " '  -- (1 - w2)(1 - wOO + i , )  a • 
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A crucial assumption in the determination of the guaranteed interest 
rate is the dependence of the rates of cash withdrawal on the prevailing 
new-money interest rate. It  is assumed that cash withdrawals will 
amount to 10 percent per year as long as interest rates remain at the 
level of the guarantee or drop below that level. To be conservative, it is 
estimated that withdrawals will reach 40 percent if interest rates rise 
2 percent above the guarantee and will level off at 70 percent if interest 
rates soar 5 percent or more above the guarantee. The qualitative aspects 
of this behavior are sketched in Figure 5. The graph resembles a cumula- 

0.70 

0,40 

oAo 

is ix + 2 % Interest Rate i 

FIG. 5 . - -Dependence  of cash withdrawal rate on new-money interest  rate 

tive probability distribution function. Let F(i) denote such a function. 
Then 

w(i) = 0.10 + 0 .60F( i ) ,  
where 

i 

F(i) = f dF(i'). 
- -  o o  

Suppose F(i) is chosen to be the cdf of the normal distribution with mean 
at ia + 0.02 and standard deviation 0.01. Then 

0.60 ~ E 1 ( i '  -- i0 -- 0"02)~] 
w(i) = 0.10 + O.O1v~(2r) -~f exp -- -~ 0.01 - di' .  

The first and second derivatives of w(i) with respect to i can be computed 
easily for use in the conventional immunization constraints. 

For this example it is assumed that the current yields of one-, two-, and 
three-year government notes, net of investment expenses, are 7.50, 7.75, 
and 8.00 percent, respectively. The interest guarantee will lie somewhere 
between 7.50 and 8.00 percent. In attempting to find conventional immu- 
nization strategies, we discovered that the interest rate dependence of the 
withdrawal rate completely overwhelms the interest rate dependence of 
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the discount factor. It  is not possible to select an investment strategy that 
results in a local minimum of S(i) at i = ig. Attempts to match cash in- 
flows with cash outflows at each duration are also thwarted by the in- 
terest rate dependence of the withdrawal rates. For fixed withdrawal 
rates, a guaranteed rate can be chosen so that there is a nonempty 
region of investment strategies for which cash inflows equal or exceed 
cash outflows at the ends of years 1, 2, and 3, but these cash flows are 
not matched if interest rates rise or fall significantly, because the with- 
drawal rates also change. 

It  is sometimes claimed that conventional immunization theory cannot 
be used when contracts contain guaranteed cash values. This criticism 
is not strictly valid, but it does apply to the example presented here. By 
appealing to the general asset-liability matching model developed in this 
paper, the investment strategy problem for the deposit fund can be 
solved. 

Let A3 denote the total assets at the end of the third year. The general 
problem involves finding strategies for which As >_ 0 under specified 
patterns of future new-money interest rates. Suppose these patterns are 
restricted to level reinvestment rates, corresponding to immediate and 
permanent (three years) changes in the level of interest rates. Let i 
denote such a level rate. The problem is to determine investment strate- 
gies for which As(i) > 0 for all i in some specified interval about the 
guaranteed rate iq. To be specific, suppose that most forecasts call for 
increasing interest rates over the next year. It  is desired to protect the 
fund against immediate increases of 2 percent or less and decreases of 
1 percent or less. The "solution" is the maximal in-sphere of the region 
defined by the following linear constraints. 

pl>_0 ,  p~>_0, 

Pl + p2 + p~ = 

A ~ ( i ~  - 0.01; pl, p2, p~) > 0 

A3(i a + 0.02; pl, p2, p3) >_ 0 

p3>_O; 

1; 

(downside risk) , 

(upside risk) . 

The problem was solved for i~ -- 7.50, 7.55, 7.60, 7.65, and 7.70 
percent. For i~ > 7.71 percent there are no investment strategies satis- 
fying both the downside and the upside constraint. Table 2 and Figure 6 
summarize the results. In Figure 6, the investment strategy associated 
with a particular surplus function is the center of the maximal in-sphere 
corresponding to the guaranteed interest rate that identifies its graph. 

As the interest rate guarantee is increased, it becomes increasingly 
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more difficult to find investment strategies that  cover the interest rate 
risks on both the downside and the upside. This can be seen in the shrink- 
ing of the radius of the maximal in-sphere and the graphs of the surplus 
function. I t  is helpful to view the results pictorially. Figure 7 is applicable 
to an interest guarantee of 7.50 percent. The triangle shown with vertices 
(1, 0, 0), (0, 1, 0), and'(0, 0, 1) is the part  of the plane pl + P~ + p3 = 1 
lying in the positive octant  p~ > 0, p~ > 0, p8 _> 0. The shaded part  of 
the triangle is the region of investment strategies satisfying the down- 
side constraint when i, = 7.50 percent. The downside constraint forces 
us to invest long- - tha t  is, toward vertex (0, 0, 1). Similarly, as shown 
in Figure 8, the upside constraint forces us to invest shor t - - toward  
vertex (1, 0, 0). The upside and downside constraints fight each other. 

TABLE 2 

GUARA~T~ED 
INTEREST 

RATE 

7.50% .... 
7.55 . . . . . .  
7,60 . . . . . .  
7,65 . . . . . .  

7.70 . . . . . .  

CENT~i OF MAxIMAL~-SPHF~E 

TI 

0,209 
0.242 
0.271 
0,298 
0,322 

0.179 
0.133 
0,089 
0,045 
0.002 

W$ 

0 . 6 1 2  

0. 625 
0,640 
0.657 
0. 676 

~tDI'OS 

0.219 
0,163 
0,109 
0,055 
0.002 

~ $t5 
£3 i~ ~ 7.50% 

Z 
O 

0 Reinvestment 
9 Rate (%) 

"~ 11% I 2~ I 

\ ,  

",i~ ~- 730% 

~ - - $ I 0  g 
~-$15- 
> 

FIG. &--Relationship of investment strategy to valuation surplus for various 
guaranteed interest rates. 
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The region of feasible investment strategies is the compromise solution 
of this fight. That region and its maximal in-sphere are shown in Figure 9. 

As the interest guarantee is increased, the fight between the downside 
and the upside constraints intensifies until, for ig > 7.70 percent, there 
are no feasible solutions. Upside protection of 2 percent and downside 
protection of 1 percent cannot be provided simultaneously if the guaran- 
tee exceeds 7.70 percent. Figure 10 illustrates how the region of feasible 
investment strategies shrinks as the interest guarantee increases toward 
7.70 percent. The locus of the center points is shown as a dotted line. 

(0, O, 1)!P3 

:;!' '::::::::::. 

(o, 1, O) P~ 

(1, o, 0 

p, 
FIG. 7.--Shaded area represents region of investment strategies satisfying downside 

constraint. 

The analysis of this example would not be complete without consider- 
ation of other interest rate patterns. Rollover from reinvestments affects 
the constraints of the general model only when future interest rates are not 
level. Rollover rates used in the calculations presented in the remainder 
of this section were determined iteratively to be consistent with the 
center point of the maximal in-sphere for the interest guarantee at the 
maximum value for which feasible solutions exist. For this limiting 
situation, roll-off from reinvestments is approximately the same as that 
from the initial investment. I t  should be pointed out that A a depends 
only on the first component of the rollover vector. 



p3 

( 

p2 

(1 ,  O, 

pi 
FIG. 8.--Shaded area represents region of investment strategies satisfying upside 

constraint. 

(o, o, 1) 

(1, o, o) (o, 1, o) 
Ftc. 9.--Shaded area shows region of feasible investment strategies and its maximal 

in-sphere. 
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Table 3 gives the solution of the inves tment  s t ra tegy problem when 
r = (0, ~, ½) and there are two interest  ra te  p a t t e r n s - - a n  increasing one 
with/2 = ig -I- l½ percent  and i3 = iq + 3 percent ,  and a decreasing one 
with ~ = ig --  ~ percent  and is = ig - l~ percent.  For  ig > 7.68 percent  
there are no feasible solutions. 

Although the l imiting values of the interest  guarantees under the two 
different sets of interest  ra te  pa t te rns  are very close, the l imiting invest-  
ment  s trategies are quite different. Both  strategies lie on the boundary  
of the tr iangle formed by  the intersection of the  coordinate planes with 
the plane p~ q- p2 + ps = 1. For the level pa t terns ,  the limiting s t ra tegy 

( 0 ,  0 

(1, 0, 0) 

1) 

(o, 1, o) 
FIo. 10.--Maximal in-spheres 1, 2, 3, 4, and 5 correspond to guaranteed interest 

rates of 7.50, 7.55, 7.60, 7.65, and 7.70 percent, respectively. 

TABLE 3 

GUAllANTEED 
L~TEitEST 

RATZ 

7.50% . . . . .  
7.55 . . . . . . .  
7.60 . . . . . . .  
7.65 . . . . . . .  
7.67 . . . . . . .  

CEN't~R OF MAXlMALIR-S~RE 

0.182 
0.133 
0.083 
0.031 
0.010 

0. 236 
0.304 
0.370 
0.436 
0.461 

T |  

0.582 
0.563 
0.547 
0.533 
0.529 

R~Ivs 

O. 223 
O. 163 
O. 102 
0.038 
0.012 
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is approximately ~ = (-~, 0, -~), while for the increasing and decreasing 
patterns the limiting strategy is approximately ~ = (0, ~, ½). How 
should the initial investment strategy be chosen? 

The obvious way to proceed is to analyze the problem under a set of 
patterns that includes both immediate and permanent changes in the level 
of interest rates, and also increasing and decreasing patterns. Table 4 
gives solutions that satisfy A3 >_ 0 for each of the four patterns examined 
previously, but this time considered simultaneously. The vector of roll- 
over rates is (0.167, 0.298, 0.535). There are no feasible solutions for 
i~ ~_ 7.66 percent. 

The center of the maximal in-sphere does not move much as the 
interest guarantee is raised from 7.50 to 7.65 percent. The limiting point 

TABLE 4 

~ U A I t A N ' ~  

l~x . z  

7.50% . . . .  
7.55 . . . . . . .  
7.60 ....... 

7.65 . . . . . .  

Cl~'rzm Olr MAXIKAL I.N-Sl~gnz 

!" 1 

0.177 
0.177 
0.173 
0.167 

0.243 
0.262 
0. 281 
0. 298 

~ra 

0.580 
0. 561 
0.546 
0.535 

RADIUS 

0. 208 
0.139 
0.071 
0.005 

does not lie on the boundary of the previously mentioned triangle. In- 
creasing the interest guarantee merely decreases the size of the region of 
feasible investment strategies; it does not change appreciably the invest- 
ment strategy on which the region is "centered." The model has pointed 
to a relatively unambiguous way to invest the net deposits regardless of 
the actual interest guarantee. 

Weighting the net yields of the one-, two-, and three-year government 
notes by the corresponding allocation of investable funds shown in the 
last line of the immediately preceding table results in 

(0.167 X 7.50%) "4" (0.298 X 7.75%) -4- (0.535 X 8.00%) = 7.84%. 

To cover the interest rate risks associated with guaranteeing 7.65 percent 
for three years and providing annual withdrawal privileges without asset- 
liquidation (surrender) charges, it is necessary to strip 19 basis points 
from the initial portfolio's weighted net rate of return. 
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VIII. SUMMARY 

A recent paper by Shedden [3] has examined immunization theory 
under a deterministic model of the yield curve, and another by Boyle [1] 
has used a stochastic model for the term structure of interest rates. I t  is 
important to indicate why the general model developed in this paper 
appears to attach less significance to the term structure. The above papers 
are concerned with the relationship of immunization to the valuation of 
the company's assets and liabilities. If an asset is to be valued on a 
liquidation basis, the prevailing yield appropriate to its term must be 
used to discount future interest and principal payments in order to 
arrive at the proper market value. Thus, the structure of the prevailing 
yield curve is essential to valuing assets at market. This paper has 
focused on the investment strategy problem, not the valuation problem. 
Currently prevailing yield curves and yield spreads are recognized ex- 
plicitly in the matrix {aki} describing the n representative instruments 
of the initial portfolio. For reasons stated in Sections I I I  and IV, no 
attempt is made in the reinvestment problem to identify specific invest- 
ment instruments or to recognize the term structure of interest rates. 
The effects of reinvestments are characterized by a single interest rate 
in each future year, together with a vector of rollover rates. 

This paper has been concerned with the extent to which the require- 
ments of asset-liability matching constrain the setting of investment 
policy. The accompanying example illustrated the connection between 
product design and investment strategy. In the context of determining 
investment strategy, the following two criticisms can be made of con- 
ventional immunization theory: 

1. Conventional immunization theory restricts investment strategy unneces- 
sarily. 

2. Only immediate and permanent changes in the level of interest rates are 
considered in the conventional theory. 

The solution of the investment problem is a region of feasible invest- 
ment strategies. Regarding the first criticism, the general model produces 
regions of higher dimensionality than does immunization theory. More- 
over, there are situations in which no conventional immunization strate- 
gies exist but for which there are other strategies that provide adequate 
protection against interest rate risks. To assist in visualizing the region 
of feasible strategies and to facilitate communication of the results be- 
tween investment officers and actuaries, the idea of a "maximal sphere" 



MATCHING OF ASSETS AND LIABILITIES 295 

of initial investment strategies was introduced. The example proved the 
value of this construct. 

The general model presented in this paper is not subject to the second 
limitation above. I t  is based on an investment-year method, and, the- 
oretically, any number of patterns of future new-money interest rates 
can be included in the model, although the size of the resulting linear 
programming problem may pose computational difficulties. 

The coordination of investment operations and insurance operations 
is an area that is ripe for research and creative thinking. There are many 
ways in which the general model can be expanded. In particular, it would 
be interesting to explore the stochastic version. From a practical view- 
point, however, it is more important to adapt the model as it stands to 
real-life situations. 

IX. ACKNOWLEDGMENTS 

The author would like to express his gratitude to Robert P. Clancy, 
Judith Markland, and Joseph A. Tomlinson for their constructive 
criticism of early drafts of this paper. Incorporating their suggestions 
has led to a clearer and more accurate exposition. 

REFERENCES 

1. BOYLE, P. P. "Immunization under Stochastic Models of the Term Struc- 
ture," JIA, CV (1978), 177. 

2. REDINGTON, F. M. "A Review of the Principles of Life Office Valuation," 
JIA, LXXVIII (1952), 286. 

3. S~EDDEN, A. D. "A Practical Approach to Applying Immunisation Theory," 
TFA, XXXV (1977), 313. 

4. TILLEY, J. A. "Achieving Consistency between Investment Practice and 
Investment Assumptions for Single Premium New-Money Products," TSA, 
XXXI (1980), 63. 

5. VANDERI~OOF, I. T. "Choice and Justification of an Interest Rate," TSA 
XXV (1974), 417. 

6. ~ .  "The Interest Rate Assumption and the Maturity Structure of the 
Assets of a Life Insurance Company," TSA, XXIV (1973), 157. 

7. ZIOCK, R. W. "A Realistic Profit Model for Individual Non-participating 
Life Insurance," Journal of Risk and Insurance, XL (1973), 357. 



296 M A T C H I N G  O F  A S S E T S  A N D  L I A B I L I T I E S  

APPENDIX 

Consider the general linear programming problem with n variables 
and ~n constraints• 

Maximize (Minimize) the function 

y = clx~ + c~x~ + . . .  + c,x~ 

subject to the constraints 

(allx~ + a~x~ + . . .  + a l , x , )  r~ ( h )  , 

(a~Ixl + a~x,  + . . .  + a ~ x , )  r~ (l,~) , 

(a,~lxl + a,~x~ + . . .  + a,~,x~) r~, (b,~) , 

where each r~ is one of _<, = ,  or > .  

The APL function S I M P L E X  included in Exhibit I solves the above 
problem using the simplex method. The left argument A of the function 
is the "character" vector (rl, r2 . . . .  , r,,). The right argument B of the 
function is the following numeric matrix: 

Cl C2 • . • C~ 0 

a n  a12 • a l n  bl  

• • . o 

L a m l a m 2  • 6mnbm 

The function S I M P L E X  has been designed to determine the radius 
and center point of the largest sphere that can be inscribed in the closed 
convex region defined by the constraints. To indicate that the maximal 
in-sphere is desired, all elements of the first row of the right-hand argu- 
ment of the function should be set equal to zero. The function S I M P L E X  
invokes the functions SPHERE and UNIQUE. 

The programs as listed were written for an MCM-800. Minor modifica- 
tions are required before they can be used on any of the APL time- 
sharing systems. In particular, the function SPHERE invokes the func- 
tion IN V  in line 10. Apart from returning the explicit result 0 (scalar) 
if its argument is a singular matrix, the function INV is identical with 
the monadic domino primitive 1~. 



[lj 
[2j 
[3~ 
[4J 
IS] 
[6] 
[7] 
[81 
69] 
[ l o ]  

[ 1 2 j  
[~3J 

" [%5] 

[~73 

[~9] 
[20] 
[21~ 
[22] 
[233 
[ 24 j 
[2s] 
[26] 
[271 
[28] 
[29] 

EXHIBIT I 

A SIMPLEX B ;M;N;NI~;MIN;MAX;REG;ART;BASIS;IN;OUT;CTR;R;S 
R 

ATHE FIRST PABT OF THE PROGRAV VALIDATES THE INPUT AGAINST CONFOR,~AgILITY CONDITIONS. 
M 

-~(2=ppB)/I]LC+2 
~0 o ~+'RIGHT ARGUMENT MUST BE RANK 2' 

N~--I+(pB)[2] o M*--I+(pB)[I] 
~(O=B[I;N+I J)/~LC+2 
÷0 o ~-'LAST ELE.YE~IT OF FIRST ROW OF RIGHT ARGUr4E~;T '4UST BE ZERO' 
-w(l=ppA)/~LC÷2 
"~0 o ~÷'LEFT ARGUMEf¢T MUST BE RANK i' 
"~(^/A('~:~' )/F]LC+2 
"*0 o ~+'LEFT ARGUMENT MUST 8E LITEHAL AND COETAI/; ONLY >-, :, AND ~' 
-*(M=pA) IULC+2 
~'0 o ~÷'LENGTH OF 6EFT ARGU'4ENT ~fUST BE ONE LESS THAN /lO. OF ROWS IN RIGHT AhGUVEqT' 
a 

~THE FOLLOWING PART OF THE PRO~hA,V SETS UP THE IHITIAL SIMPLEX TABLEAU. 
ATHE FIRST ROW OF WHICH IS ADJUSTED ACCORDING TO THE 'BIG V' METHOD. 

MIN*-~MAX,-I 
-~LI x~ A/BE I ; J:0 
-~LIxI(MAX~'A/'MAX':R)vMItI"A/'MIN':Rw'-3*:¶'NAX OR MIN PROBLFV? ' 
'INVALID RESPONSE' 
*[}LC- 2 

L I :B '~Bx~( (N+I ) .M+I )pR+(VIN-MAX)  ,1,1.(B[ ;N+I ]~ 'O)-B[  ;t/÷l ~,<0 
A*'(IW, R)x( '~;' :A ) - ' z '=A  
"*L2 x * REG"-v/B[ i ; .I zO 
" 0  x ~ -SPHERE 

L2:B'-I4)(-I~)B) ,((~M+I)o.:I+IM),(O,R)~-(I+/R)o.:I+/R÷A:-I 
R ' ( - ( ~ N N )  ,~N+ART*'(Azl ) / I / ' ! }  / INN*'(pB) [ 2 ] 
BEI;RJ"-B[I ;RJ-+fB[ART+I ;R]x i000x[ /  I B [ I ; ]  



EXHIBIT I--Continued 

[31] 
[32j ATHE NEXT PAkT OF THE PROGRA~f USES THE SIMPLEX ALGORITR¥ TO 
[33j ~OETER~INE A FINITE OPTI~AL BASIC FEASISLE SOLUTION, IF ONE EXISTS. 

[ 3 5 ]  BASIS÷N+I.M o CTR'*'I 
[35] LOOP:'*EHDx*-IE-2OSB[ I;I/I~'A~[/R4--I+B[I;]J 
[37] ~EilDxlO:pR~(B[;INi>iE-20)/1~t+l 
[ 3 8 ]  BASIS[-%+OUT÷R[S~L/S4-B[R;NNJ{B[R;I[~J]J~-IN 
[39] B4"B-(B[;INjxOUTZlV,+I)o.xB[OUT;J+B[OUT;]~B[OUT;IN] 
[40j -~LOOP o CTR÷CTR÷I 
[41_I END:~,CHECKxI~v/IE-20<~O,B[I+BASIS~(BASIScN+ART)/BASIS;NN] 
[42] "~0 o Fly-'NO FEASIBLE SOLUTION' 
[ 4 3 j  CHECK:~L3x~.O<pR 
[44j ~0 o FI~'UNBOU~IDED SOLUTION' 

oo [ 4 5 ]  
[46] ATRE LAST PAET OF THE PROGRAY PRINTS THE OUTPUT. 
[ 4 7 ]  ,~ 
[48 ]  L3:-~L4xIREG 
[ 49 ]  I]4-'RABIUS OF MAXIWAL IN-SPHERE: ',,~B[1;NN] 
[50] U÷'COORDINATES OF CENTER POINT' 
[51 . ,  ~-' VARIABLE VALUE' 
[ 52 i  []'-(2 3plO 0 0 14 0 -I),t~(2.~V-1)p(IN-I),(N-I)'t((INN-I)(BASIS)kB[I+IABASIS;NN] 
[ 53 ) -~L5 
[54] L4::J~'BASIS VARIAgLE VALUE' 
[ 55 ]  d"'(2 3p9 0 0 16 0 -I)v~(2.,W)pBASIS[R].FJ[I+Rw'$BASIS;NN] 
[5,5] L]÷((6pWAX.'4IN)/'MMAIXN').'IMUV VALUE OF OBJECTIVE FUNCTION: '.vB[I;NN]xMAX-MIN 
[57 ]  L5:'-,'LSxL,",/IE-IO<[ (~ ( INN- I ) (~gAS IS ) / - I ~B [ I ; ]  
[58] Ut~IQUE 
[59] L,5:~-'NUVBER OF ITE~ATIOiIS: ',vCTH 

V 
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E X H I B I T  I--Continued 

V Z~'SPHERE ;C;D;J~K~V 

[2] ASUBPROGRAM OF 'SIWPLEX' MODIFYING THE CO~STRAI~T VECTOR 'A' 
[3J ~COEbFICIENT MATRIX 'B' DEElt~ED IN PROGRA~ 'SIMPLEX' SO THAT 
[4] aTHE MAXI~4AL Ii4"SPHERE CA~ BE FOUND. THE EXPLICIT RESULT 
[5] afS i IF NO DIFFICULTIES ARE ENCOU.VTERED, OTHERWISE O. 

[ 7 ]  B~,-((1,AzO)-/B).-,(-(tN)o.=Lla÷I)-,C4-(O,A=O)-/B 
[8 ]  K,-+/O=A÷((AxO)/A) , (Np l ) , (A=O) /A 
[9]  V~-mJ~-.I 
[ 10] LI:-,-/-,2xIIE-6<Z-,-I Ip/NV D+. x(~D.,,-0 -14.B[J+l;]-~C 
[11] .*Z*-0 * 04-'NO FEASIBLE SOLUTION' 
[12]  L2:V~'V,A[J]~Z*.5 
[13j  "~LIxtKeJ4-J+I 
[143 B4-1C~(-I'bB),((M+N+I),I)pV.(M+N'K)pO 
[15]  N÷N*Z÷I • M'M+N 

A[VD 



EXHIBIT I--Continual 

[ I ]  

[3.~ 

[53 
[B] 
[7] 
[8] 
[9] 
[1o] 
[llj 
[12J 
[13J 

V U~I~UE ;R;T;X 
R 

A 

~LET 'X' BE THE ~AI'MIX FORUED BY KEEPI~C ONLY THOSE COLUMNS OF THE FINAL 
~$IVPLEX TABLEAU ASSOCIATED WITH NON-BASIC VARIABLES AND FOR WHICH THE 
~FIRST EL~EHT IS ZERO. THEN, THE OPTI~AL SOLUTION IS NOT UNIQUE IF AND 
~ONLY IF FOR SOME COLUWN OF 'X', EITHE~ 
m 

(I) THERE ARE ONLY NON-POSITIVE ELEMENTS, OR 
M (2) THE MINIMUM OF THE RATIOS OF THE ELEMENTS OF THE LAST COLUMN 

OF THE FINAL SIMPLEX TABLEAU TO THE CORRESPONDIt~G ELEMENTS OF 
R THE COLUMN OF 'X' (IGNORING NON-POSITIVE DE~O.VINATORS) IS 
A POSITIVE. 
R 

X~(IE-IOaX[T~I;J)/X~(~(INN-I)(SASIS)/O -I+B 
[15] TEST:~LOOpxIIE-IO~L/B[R;NN]÷X[R~(X[&TJ>I~-IO)/I,V+I;T] 
[16] ~0 • []~'SOLUTION IS ~OT UNIQUE' 
[17] LOOP:~TESTx~(-I*oX):T~T÷I 

V 



DISCUSSION OF P R E C E D I N G  PAPER 

BENTTI O. HOISKA: 

Mr. Tilley's paper provides a very clear and useful explanation of his 
extension of immunization theory. This discussion reformulates his 
theory for the special case of absolute matching (Sec. V) and shows that 
this reformulation allows the solution set for the absolute-matching 
problem to be narrowed greatly. Furthermore, tbe solution set for the 
reformulated problem has a minimum-cost (economic) interpretation 
instead of a maximal-sphere (geometric) interpretation. Finally, we show 
that the maximal in-sphere may fail to contain the minimum-cost 
absolute-matching solution. 

Absolute matching occurs when the cash flow from initial investments 
(typically fixed income) covers the benefit payments due in each future 
year. If  the final benefit payment is due before the latest maturity date 
of the available assets, then absolute matching can be achieved simply 
by investing a large amount in each available asset. Obviously, such a 
crude approach can be very expensive. The best approach is to find the 
mix of initial assets that allows benefits to be matched at minimum cost. 
This is the approach described below. 

We start  by introducing some additional notation. Recalling that k 
denotes years and j denotes asset classes, let 

akj = Cash flow (interest plus principal) in year k, per unit of asset j ;  
A = (akj) = Cash-flow matrix (N rows by n columns); 
bk = Projected benefit payments due in 3"ear k; 
xj = Units of asset j initially purchased; 
x = (xl, . • . ,  x,) = Asset-mix vector; 

p~ = Current market  price of a unit of asset j ;  
P = (pl, . . . .  Pn) = Market price vector; 
F = Total market  value of initial assets 

= pax1 + . . .  + p , ,x , .  

The absolute-matching problem now can be formulated as the follow- 
ing linear program. 

Minimize 
F = p x x x + . . . +  pnx,~ 

subject to 

a~axx + . . . + a k , x ,  >_ bk ( k  = 1, . . . , N )  , 

x j  > 0 ( j  = 1 , . . . ,  n )  . 

301 
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Using vectors and matrices, we can rewrite this linear program more 
concisely as 

Minimize 
F = p . x  

subject to 
A x > b ,  x > O .  

The objective is to minimize the initial dollar investment F while satisfy- 
ing the cash-flow constraints. The first N inequalities require that cash 
flow cover benefits in each year k. The n nonnegativity constraints pro- 
hibit negative investments (i.e., "short" positions). These constraints 
are similar to TiUey's equations (1) and (2). 

Tilley's approach is to determine the sphere with maximal radius that  
can be inscribed in the polytope of feasible solutions to the linear pro- 
gram. The idea is to give the investment department some discretion in 
picking the asset-mix vector x. But, as we have argued, there is no need 
to give the investment department discretion in the absolute-matching 
case, because the minimum-cost solution is best. (However, see remark 
3 below.) 

I t  is easy to show that  minimizing the initial investment is equivalent 
to maximizing the yield on the initial fund. In effect, the linear program 
examines the shape of the current yield curve to find the highest-yielding 
assets. If  the yield curve is positively sloped, the maturity structure 
described by the solution has maximum duration. If the yield curve is 
inverted, the opposite is true. If  the yield curve is fiat, all feasible solu- 
tions are optimal. These statements can be proved using the duality 
theory for linear programming. 

Four final remarks: 

1. Since Tilley's in-sphere does not completely fill the feasible set (polytope), 
it is possible for the minimum-cost asset-mix vector x to fall outside this 
sphere. In that case, absolute matching is not achieved at minimum cost if 
the asset-mix vector is restricted to the maximal in-sphere. 

2. By minimizing the required initial investment, our approach allows the 
company to charge the lowest annuity premiums or, alternatively, to realize 
the largest contribution to surplus for a given premium schedule. 

3. Although the set of immunized strategies has been narrowed greatly (per- 
haps to a single point), the above formulation still leaves the investment 
department with an important role to play. Indeed, the investment depart- 
ment must specify the list of investment candidatesj (3" = 1 , . . . ,  n) among 
which funds are to be allocated. Presumably, this list will be determined on 
the basis of such considerations as quality rating, call protection, and 
diversification. Diversification requirements determine the number of 
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assets n to be considered. Furthermore, if no more than a specified amount 
can be allocated to a particular asset, constraints of the form xi _< ci ( j  -- 
1 , . . . ,  n) must be added to the linear program. 

Since the linear programming solution depends on the level and shape 
of the yield curve, the investment department also can exercise its market- 
timing judgment to indicate whether investments should be made now or 
later. However, anticipating yield-curve shifts runs counter to the spirit of 
immunization. 

4. Absolute matching is usually associated with single premium immediate 
annuities. However, a noninsured pension fund can use the above approach 
to immunize the benefits for retired lives. The solution specifies the minimum 
size and composition of the segregated fund that, when set aside, will meet 
the retired life liability given current investment opportunities. 

(AUTHOR'S REVIEW OF DISCUSSION) 

JAMES A. TILLEY: 

I would like to thank Mr.  Hoiska  for his discussion of m y  paper .  The  
absolute-matching condit ions he describes are identical with those 
developed in m y  paper  "Achieving Consistency between Inves tmen t  
Pract ice  and Inves tment  Assumptions  for Single Premium New-Money  
Produc ts"  (reference 4 of the paper) .  M y  principal  mot ivat ion  for con- 
s t ruct ing a more general asset- l iabi l i ty  matching model was a dissatisfac- 
t ion with the impract ical i t ies  of absolute matching:  

1. In many circumstances, the liability cash flows extend beyond the latest 
maturity of the securities under consideration and absolute matching can- 
not be achieved. 

2. Implicit in the formulation of absolute matching is the assumption that both 
asset and liability cash flows are independent of prevailing interest rates. 
This certainly is not true of assets having call or prepayment provisions, 
nor is it true of products where cash withdrawals or loans against policy 
values are permitted. Even the liabilities of a closed group of pensioners 
may be linked indirectly to interest rate movements through cost-of-living 
adjustments. 

3. Absolute matching will be upset if there are substantial deviations from the 
expected liability cash flow, as might occur in a pension fund if retirees live 
longer than originally assumed. 

4. Absolute matching is such a restrictive investment strategy that feasible 
solutions do not exist in many situations. Often a more flexible immuniza- 
tion strategy can be used whether or not absolute matching can be used. 

The  paper  mentioned previously highlights some difficulties in achieving 
absolute  matching for single premium immedia te  annuities.  

Mr .  Hoiska states  tha t  i t  is possible for his minimum-cost  asset-mix 
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vector x to fall outside the maximal in-sphere of investment strategies. 
If the sphere has a positive radius, this is not only possible but certain! 
Unless there are multiple optimal solutions, his minimum-cost solution 
must lie at a corner point of the polytope of feasible strategies, and no 
inscribed sphere can touch a corner point. As was pointed out in mv 
paper, the sphere is useful only if there is no natural objective function 
to optimize and if the polytope is sufficiently regular that the sphere 
contains a large proportion of all feasible investment strategies. However, 
in man)" practical applications, these considerations are moot because 
the actuary is forced to price his product so competitively that only a 
single feasible strategy (if an)') exists. 

In general, it is not true that the best of all investment strategies 
satisfying given asset-liability matching constraints is the one with 
maximum yield to maturity. For example, often one must sacrifice going- 
in yield to be able to offer the highest interest guarantee for a guaranteed 
investment contract while meeting all the matching constraints. A bet-ter 
goal than maximum initial yield might be maximum expected surplus at 
the end of a specified period. 


