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Abstract

We consider a class of compound renewal (Sparre Andersen) risk process
with claim waiting times have a discrete Km distribution (i.e., the proba-
bility generating function (p.g.f.) of the distribution function is a ratio of
two polynomials of order at most m ∈ N+). The classical compound bino-
mial risk model is a special case when m = 1. Both recursive and explicit
formulas are derived for the expected discounted penalty function due at
ruin, for the surplus before ruin and the deficit at ruin.

Many ruin related quantities can be analyzed through the penalty func-
tion, e.g., ruin probability, the p.g.f. of the time of ruin, joint and marginal
distributions of the surplus before ruin and the deficit at ruin, claim causing
ruin, as well as their moments.

Detailed discussions are given in two special cases: claim sizes are ra-
tionally distributed, or the claim sizes distribution have a finite support.

Keywords: Sparre Andersen risk process; Kn family of distributions; Mar-
tingale; Generating function; Generalized Lundberg equation; Recursive
formula

1 Introduction

Problems associated with the calculation of ultimate ruin probabilities, for the
continuous time risk model, have received considerable attention in recent years.
These include studies of the distribution of the ruin time (finite-time ruin pro-
babilities), the surplus before ruin and the deficit at ruin, as well as moments of
these variables.

∗This research was funded by a CAS/SOA Ph.D. Grant.
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We explore analogue problems, but in the discrete time risk model. A recur-
sive formula for the expected discounted penalty due at ruin is given, using the
tool of generating functions, instead of the Laplace transform used for the contin-
uous time model in the recent contributions This discounted penalty depends on
the deficit at ruin and the surplus just before ruin. Hence, our recursive formula
yields the joint distribution of the three random variables time to ruin, the surplus
just before ruin and the deficit at ruin.

Given the discrete nature of our model, probability generating functions
(p.g.f.) are used throughout to analyze the time of ruin and its associated ran-
dom variables. The joint distribution for the compound binomial model is derived
in Cheng et al. (2000) using martingale techniques and a duality argument. Li
and Garrido (2002) gives a recursive formula for the expected discounted penalty
function for the compound binomial risk model. This paper extends the classical
compound binomial risk model to a class of discrete time Sparre Andersen risk
models.

These results can give a better understanding of their analogues in the con-
tinuous time model, but they are also of independent interest. They fill a gap in
the scant literature on discrete time risk theory models. Our formulas are readily
programmable in practice, while they can still reproduce the continuous versions
as limiting cases.

2 Model Description and Notation

Consider the discrete time Sparre Andersen risk process

U(n) = u+ n−
N(n)∑

i=1

Xi , n = 1, 2, . . . ,

where u ∈ N is the initial reserve. The Xi are i.i.d. random variables with
common probability function (p.f.) p(x) = P (X = x), for x = 1, 2, . . . , denoting
the i-th claim amount. Denote by µk = E[Xk] the k-th moment of X and by
p̂(s) =

∑∞
i=1 s

ip(i), s ∈ C its p.g.f.. The counting process {N(n); n ∈ N} denotes
the number of claims up to time n and is defined as N(n) = max{k : W1 +
W2 + · · · +Wk ≤ n}, where the claim waiting times Wi are assumed i.i.d. with
common probability function k(x) = P (W = x), for x = 1, 2, . . . . Denote by
k̂(s) =

∑∞
i=1 s

ik(i), s ∈ C its p.g.f.

We assume that {Wi; i ∈ N+} and {Xi; i ∈ N+} are independent, and
E(W ) = (1 + θ)E(X) = (1 + θ)µ, in order to have a positive loading factor.
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Now define (the possibly defective) random variable T = min{n ∈ N+ :
U(n) < 0} to be the ruin time,

Ψ(u) = P (T <∞|U(0) = u) , u ∈ N ,

to be the ultimate ruin probability and

ψ(u, n) = P (T = n |U(0) = u) , n = 1, 2, 3, . . . ,

to be the ruin probability at time t.

Consider f3(x, y, t |u) = P{U(T − 1) = x, |U(T )| = y, T = t |U(0) = u},
x ∈ N, y ∈ N+, the joint probability function of the surplus just before ruin,
deficit at ruin and ruin time. Let v ∈ (0, 1) be the (constant) discount factor
over one period and define f2(x, y |u) =

∑∞
t=1 v

tf3(x, y, t |u) as a discounted joint
p.d.f. of U(T − 1) and |U(T )|. Similarly, denote by f(x |u) =

∑∞
y=0 f2(x, y |u).

The usual conditional probability formulas give the following relation:

f2(x, y |u) = f(x |u)p(x+ y + 1)

P̄ (x+ 1)
, x ∈ N, y ∈ N+.

Let w(x, y), x, y = 0, 1, 2, . . . be the non-negative values of a penalty function. For
0 < v < 1, define

φ(u) = E
[
vTw

(
U(T − 1), |U(T )|

)
I(T <∞)

∣∣ U(0) = u
]
, u ∈ N . (1)

The quantity w
(
U(T − 1), |U(T )|

)
can be interpreted as the penalty at the time

of ruin for the surplus U(T − 1) and deficit |U(T )|. Then φ(u) is the expected
discounted penalty if v is viewed as a discount rate.

The main objective for the rest of the paper is to evaluate the expected
discounted penalty function φ.

3 An Operator of Discrete Functions

This section gives the definition of an operator to a real valued function with
domain in the positive integers (see Dickson and Hipp (2001) for the continuous
version of the operator).

Define Tr to be an operator of any real valued function f(x), x ∈ N+, by

Trf(y) =
∞∑

x=y

rx−yf(x) =
∞∑

x=0

rx f(x+ y), r ∈ C, y ∈ N+. (2)
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Like for the continuous operator Tr in Dickson and Hipp (2001), its discrete
restriction has many nice properties, which are helpful to simplify calculations,
e.g.,

1. Tr f(1) = f̂(r)
r
, where f̂(r) is the generating function of f .

2. T1 f(y) =
∑∞

x=y f(y).

3. If r1 and r2 are distinct, then

Tr2Tr1 f(y) =
r2 Tr2 f(y) − r1 Tr1 f(y)

r2 − r1
. (3)

4. If r1 is equal to r2, then

T 2
r f(y) = Tr Trf(y) = lim

r1→r
Tr1Trf(y) = lim

r1→r

r1 Tr1 f(y) − r Tr f(y)

r1 − r

=
d [r Trf(y)]

dr
=

∞∑

x=y

(x− y + 1)rx−yf(x). (4)

5. If r1, r2, . . . , rk are distinct, then

Trk
Trk−1

· · · Tr1f(y) =
k∑

j=1

rk−1
j Trif(y)

π′
k(rj)

, (5)

where πk(s) =
∏k

i=1(s− ri). While its p.g.f. transform is given by

s TsTrk
Trk−1

· · ·Tr1f(1) =

[
k∏

i=1

s

s− ri

]
f̂(s) −

k∑

j=1

(
s

s− rj

)
rk−1
j f̂(rj)

π′
k(rj)

.

6. If ri = r, for i = 1, 2, . . . , k,

T k
r f(y) = Tr Tr · · ·Tr︸ ︷︷ ︸

k

f(y) = lim
s→r

Ts T
k−1
r =

d[rT k−1
r f(y)]

dr
. (6)
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4 On Martingales and a Generalized Lundberg

Equation

Let τk =
∑k

j=1Wj be the arrival time of the k-th claim and Uk = U(τk) be the
surplus immediately after k-th claim. Defining τ0 = 0 gives U0 = u, and for
k = 1, 2, . . . ,

Uk = U(τk) = u+ τk −
k∑

j=1

Xj = u+
k∑

j=1

[Wj −Xj ].

We seek a number s ∈ C such that the process:

{
vτk s−Uk ; k ∈ N

}
(7)

will form a martingale. Here the martingale condition is equivalent to

E[vW1 sX1−W1 ] = E
[
(v/s)W1 sX1

]
= E

[
(v/s)W1

]
E
[
sX1
]

= 1,

which is
k̂(v/s) p̂(s) = 1. (8)

Equation (8) is a generalized version of Lundberg equation.

In the rest of this paper, we assume that the claim inter-arrival times have a
discrete Km distribution, i.e., the p.g.f. of k(x), x ∈ N+ can be expressed as

k̂(s) =
s[
∏m

i=1(1 − qi) +
∑m−1

j=1 βj(s− 1)j]∏m
i=1(1 − s qi)

, (9)

where 0 < qi < 1, for i = 1, 2, . . . ,m, and the coefficients β1, β2, . . . , βm−1 are such
that k̂′(s) > 0, s ∈ (0, 1), to guarantee that k(x), x ∈ N+ is a p.f.. The mean and
second factorial moment of the claim inter-arrival times r.v.’s are thus given by

E(W ) = k̂′(1) = 1 +
m∑

i=1

qi

(1 − qi)
+

β1∏m
i=1(1 − qi)

. (10)

E[W (2)] = k̂′′(1) =
2β2 + β1

∑m
i=1

qi

(1−qi)∏m
i=1(1 − qi)

+E(W )
m∑

i=1

qi

(1 − qi)
+

m∑

i=1

(
qi

1 − qi

)2

, (11)
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where x(2) = x(x− 1) is the second factorial power of x.

This class of distributions includes, as special cases, the shifted geometric,
shifted or truncated negative binomial, as well as linear combinations (including
mixture) of these.

In particular, if q1, q2, . . . , qm are distinct, by partial fractions, k can be ex-
pressed as a linear combination of m geometric distributions with parameters qi :

k(x) =

m∑

i=1

θi (1 − qi) q
x−1
i , x = 1, 2, . . . , (12)

where θi are such that
∑m

i=1 θi = 1 and given explicitly by

θi =

∑m−1
k=1 βk(1/qi − 1)k +

∏m
j=1(1 − qj)

(1 − qi)
[∏m

j=1, j 6=i(1 − qj/qi)
] . (13)

Under the assumption that k̂(s) is given by (9), the generalized Lundberg equation
k̂(v/s) p̂(s) = 1 simplifies to

γ(s) : =
1

k̂(v/s)
(14)

=

∏m
i=1(s− v qi)

v
[
sm−1

∏m
i=1(1 − qi) +

∑m−1
j=1 βjsm−1−j (v − s)j

] = p̂(s), s ∈ C.

The roots of the equation above play a key role in this paper, and are discussed
in the following theorem.

Theorem 1 For 0 < v < 1, and m ∈ N+, equation (14) has exactly m roots, say
ρi(v), i = 1, 2, . . . ,m with 0 < |ρi| < 1.

Remarks:

1. Define l(s) := p̂(s) − 1

k̂(v/s)
. Since l(1) < 0 and lims→∞ l(s) = +∞, then

if p(x) is sufficiently regular, l(s) = 0 has one root greater than 1. Hence
denote by R(v), which can be called a generalized adjustment coefficient.

2. R(v) → R(1), as v → 1−, and ρj(v) → ρj(1), for 1 ≤ j ≤ m, where R(1)
and ρj(1) are roots to 1

k̂(1/s)
= p̂(s).

3. For simplicity, R(v) and ρj(v) are denoted by R and ρj, for 1 ≤ j ≤ m and
0 < v < 1.
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5 Probability Generating Function

Conditioning the time and amount of the first claim, one obtains that for u ∈ N :

φ(u) = E[vW1φ(U1)] = E[vW1 φ(u+W1 −X1)] =

∞∑

t=1

vt k(t)E[φ(u+ t−X1)].

Now define φ̂(s) =
∑∞

u=0 s
uφ(u) to be the p.g.f. transform of φ, then by (15),

φ̂(s) =
∞∑

u=0

suφ(u) =
∞∑

u=0

su
∞∑

t=1

vt k(t)E[φ(u+ t−X1)]

=
∞∑

u=0

su

∞∑

y=u+1

vy−u k(y − u)E[φ(y −X1)]

=
∞∑

y=1

vy E[φ(y −X1)]

y−1∑

u=0

(s/v)u k(y − u)

=
∞∑

y=1

sy E[φ(y −X1)]

y∑

t=1

(v/s)t k(t). (15)

If q1, q2 . . . , qm are distinct, then k(t) has the form in (12). Substituting it into
(15) yields

φ̂(s) =
m∑

i=1

θi (1 − qi)

qi

∞∑

y=1

sy E[φ(y −X1)]

y∑

t=1

(v/s)t qt
i

=
m∑

i=1

θi (1 − qi)(v/s)

[1 − (v/s) qi]

{
∞∑

y=1

sy E[φ(y −X1)] −
∞∑

y=1

(v qi)
y E[φ(y −X1)]

}

= k̂(v/s)
∞∑

y=1

sy E[φ(y −X1)] −
m∑

i=1

θi(1 − qi) v bi
(s− v qi)

, (16)

where bi =
∑∞

y=1(v qi)
y E[φ(y −X1)]. By definition of φ(u),

E[φ(y −X1)] =

y∑

x=1

φ(y − x) p(x) +
∞∑

x=y+1

w(y − 1, x− y) p(x). (17)

For simplicity, let ω(y) =
∑∞

x=y+1 w(y− 1, x− y) p(x). Substituting (17) into (16)
yields

φ̂(s) =
k̂(v/s) ω̂(s) −

∑m
i=1

θi(1−qi) v bi

(s−v qi)

[1 − k̂(v/s) p̂(s)]
, (18)
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where ω̂(s) =
∑∞

y=1 s
y ω(y). Multiplying both denominator and numerator by

γ(s) = 1

k̂(v/s)
, (18) can be rewritten as

φ̂(s) =
ω̂(s) − Qm−1(s)

v[sm−1
∏m

i=1(1−qi)+
∑m−1

j=1 βjsm−1−j (v−s)j]

[γ(s) − p̂(s)]
, (19)

whereQm−1(s) = [
∏m

i=1(s− v qi)]
[∑m

i=1
θi(1−qi) v bi

(s−v qi)

]
is a polynomial of degreem−1

or less. Since φ̂(s) is finite for all s such that 0 < |<(s)| < 1, the numerator on the
right hand of (19) must be zero whenever the denominator is zero. Then Qm−1(s)
can be determined by the linear system for j = 1, 2, . . . ,m,

Qm−1(ρj) = ω̂(ρj)

{
v
[
ρj

m−1

m∏

i=1

(1 − qi) +
m−1∑

t=1

βt ρj
m−1−t (v − ρj)

t
]}

.

Further, if ρ1, ρ2, . . . , ρm are distinct, by the Lagrange interpolation formula, one
obtains

Qm−1(s) =
m∑

j=1

cj ω̂(ρj)

[
m∏

k=1,k 6=j

(s− ρk)

(ρj − ρk)

]
, (20)

where cj = v
[
ρj

m−1
∏m

i=1(1− qi) +
∑m−1

t=1 βt ρj
m−1−t (v− ρj)

t
]
, for j = 1, 2, . . . ,m.

We remark that if some qi are equal, formula (19) still holds, and (20) still
holds for the case where ρ1, ρ2, . . . , ρm are distinct, by the continuity property.

6 Analysis when u = 0

We now turn to finding ruin related quantities when u = 0. For simplicity, we
assume that the ρ1, ρ2, . . . , ρm are distinct. First

φ(0) = lim
s→0

φ̂(s) = lim
s→0

ω̂(s) − Qm−1(s)

v[sm−1
∏m

i=1(1−qi)+
∑m−1

j=1 βjsm−1−j (v−s)j]

[γ(s)− p̂(s)]

=

∑m
j=1 cj ω̂(ρj)

[∏m
k=1,k 6=j

ρk

ρj−ρk

]

vm
∏m

i=1 qi

=

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj ω̂(ρj)

ρj

∏m
k=1,k 6=j(ρj − ρk)

. (21)
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Since ω(y) =
∑∞

x=y+1 w(y − 1, x − y) p(x) =
∑∞

t=1 w(y − 1, t) p(y + t), and
then

ω̂(s) =
∞∑

y=1

syω(y) =
∞∑

y=1

∞∑

t=1

sy w(y−1, t)p(y+t) =
∞∑

x=0

∞∑

y=1

sx+1w(x, y) p(x+y+1),

therefore, (21) can be rewritten as

φ(0) =

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj
∑∞

x=0

∑∞
y=1 ρj

x+1w(x, y) p(x+ y + 1)

ρj

∏m
k=1,k 6=j(ρj − ρk)

. (22)

On the other hand,

φ(0) = E[vT w(U(T − 1), |U(T )|)I(T <∞)|U(0) = 0]

=
∞∑

x=0

∞∑

y=1

w(x, y)f2(x, y | 0). (23)

Comparing these two formulas yields

f2(x, y | 0) =

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj ρj
x p(x + y + 1)∏m

k=1,k 6=j(ρj − ρk)
, x ∈ N, y ∈ N+, (24)

so

f1(x |0) =

∞∑

y=1

f2(x, y|0) =

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj ρj
x P̄ (x+ 1)∏m

k=1,k 6=j(ρj − ρk)
, x ∈ N, (25)

where P̄ (x+ 1) = P (X > x+ 1) =
∑

y=x+2 p(y), finally,

g(y) := g(y | 0) =

∞∑

x=0

f2(x, y | 0) =

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj
∑∞

x=0 ρj
x p(x+ y + 1)∏m

k=1,k 6=j(ρj − ρk)
,

=

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj Tρjp(y + 1)∏m
k=1,k 6=j(ρj − ρk)

, y ∈ N+, (26)

where Tr is an operator defined in section 3.

The function g is a defective distribution function. It plays a very important
role in this paper. Define ĝ(s) =

∑∞
y=1 s

y g(y) to be the generating function of g,
then we have the following Lemma.

9



Lemma 1 The generating function of g is given by

ĝ(s) = 1 −
∏m

i=1(s− v qi) − v p̂(s)[sm−1
∏m

i=1(1 − qi) +
∑m−1

j=1 βjs
m−1−j (v − s)j](∏m

i=1
v qi

ρi

)∏m
i=1(s− ρi)

.

(27)

Using Lemma 1, one obtains

φT (0) = E[vTI(T <∞)|U(0) = 0] =
∞∑

y=1

g(y) = lim
s→1

ĝ(s)

= 1 −
[ m∏

i=1

ρi

v qi

][∏m
i=1(1 − v qi) − v

[∏m
i=1(1 − qi) +

∑m−1
t=1 βt (v − 1)t

]
∏

i=1(1 − ρi)

]

= 1 −
[ m∏

i=1

ρi

v qi

][∏m
i=1(1 − v qi)[1 − k̂(v)]∏m

i=1(1 − ρi)

]
< 1, (28)

where the last step follows from the definition of k̂(s).

Finally,

Ψ(0) = lim
v→1−

E[vTI(T <∞)|U(0) = 0]

= 1 − lim
v→1−

[ m∏

i=1

ρi

v qi

][∏m
i=1(1 − v qi)[1 − k̂(v)]∏

i=1(1 − ρi)

]

= 1 −
(

m∏

i=1

1 − qi

qi

)[
m−1∏

i=1

ρi(1)

1 − ρi(1)

]
lim

v→1−

[1−k̂(v)
1−v

]

[1−ρm(v)
1−v

]

= 1 −
(

m∏

i=1

1 − qi

qi

)[
m−1∏

i=1

ρi(1)

1 − ρi(1)

][
k̂′(1)

ρ′m(1)

]

= 1 −
(

m∏

i=1

1 − qi

qi

)[
m−1∏

i=1

ρi(1)

1 − ρi(1)

]
[E(W ) −E(X)] , (29)

where the last step follows from k̂′(1) = E(W ) and ρ′m(1) = E(W )
[E(W )−E(X)]

, which
is obtained by taking derivatives w.r.t. v on both sides of Lundberg’s equation
k̂(v/ρm(v)) p̂(ρm(v)) = 1, letting v → 1−, and noting that limv→1− ρm(v) = 1.

7 Recursive Formula for φ(u)

In this section, a recursive formula for φ(u) is given by renewal argument, which
can be used to analyze other ruin related problems. The starting point of the
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recursion φ(0) is given in (21) by

φ(0) =

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj
∑∞

x=0

∑∞
y=1 ρj

xw(x, y) p(x+ y + 1)∏m
k=1,k 6=j(ρj − ρk)

.

For u ≥ 1, by similar arguments as in Gerber and Shiu (1998) for the continuous
case, we condition on the first time when the surplus process drops below the
initial surplus u :

φ(u) =
u∑

y=1

∞∑

x=0

∞∑

t=1

vt φ(u− y) f3(x, y, t|0)

+
∞∑

y=u+1

∞∑

x=0

∞∑

t=1

vtw(x+ u, y − u)f3(x, y, t|0)

=
u∑

y=1

∞∑

x=0

φ(u− y)f2(x, y|0) +
∞∑

y=u+1

∞∑

x=0

w(x+ u, y − u)f2(x, y|0)

=
u∑

y=1

φ(u− y)g(y) +H(u), u ∈ N+, (30)

where

H(u) =

∞∑

y=u+1

∞∑

x=0

w(x+ u, y − u)f2(x, y|0) =

∞∑

y=1

∞∑

x=u

w(x, y)f2(x− u, y + u|0)

=

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj∏m
k=1,k 6=j(ρj − ρk)

∞∑

x=u

ρx−u
j

∞∑

y=1

w(x, y)p(x+ y + 1)

=

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj∏m
k=1,k 6=j(ρj − ρk)

∞∑

x=u

ρx−u
j ω(x+ 1)

=

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj∏m
k=1,k 6=j(ρj − ρk)

Tρjω(u+ 1), u ∈ N+. (31)

Eq. (30) is a recursive formula for φ(u) with the starting point φ(0). In parti-
cular, if w(x, y) = 1, then φ(u) simplifies to the p.g.f. transform of ruin time T
w.r.t. discount factor v, which is now defined as

φT (u) := E[vT I(T <∞) |U(0) = u], u ∈ N.

11



In this case, ω simplifies to ω(u) =
∑∞

x=u+1 p(x) = P̄ (u) = T1p(u), and H(u)
simplifies to

H(u) =

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj∏m
k=1,k 6=j(ρj − ρk)

TρjT1p(u+ 1)

= T1g(u) =

∞∑

y=u+1

g(u), (32)

then φT (u) has the following recursive formula,

φT (u) =

u∑

y=1

φT (u− y) g(y) +

∞∑

y=u+1

g(y), u ∈ N+. (33)

The ruin probability Ψ(u) can thus be obtained by taking limit for φT (u) when
v → 1−, i.e.,

Ψ(u) = lim
v→1−

E[vTI(T <∞)|U(0) = u]

=

u∑

y=1

Ψ(u− y) g1(y) +

∞∑

y=u+1

g1(y), u ∈ N+, (34)

where

g1(y) = lim
v→1−

g(y) = lim
v→1−

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj Tρjp(y + 1)∏m
k=1,k 6=j(ρj − ρk)

=

[
m∏

i=1

ρi(1)

qi

] [
m−1∑

j=1

cj Tρj(1)p(y + 1)∏m
k=1,k 6=j [ρj(1) − ρk(1)]

+

∏m
i=1(1 − qi)T1p(y + 1)∏m−1

i=1 [1 − ρi(1)]

]
,

the last step follows from the fact of limv→1− ρm(v) = 1.

8 Explicit Expression for φ(u)

In this section, we show that the discounted penalty function φ(u) can be expressed
explicitly in terms of a compound geometric d.f.’s. First rewrite (30) as

φ(u) =
1

1 + ξv

u∑

y=1

φ(u− y) l(y) +
1

1 + ξv
M(u), u ≥ 1, (35)

12



where ξv is such that 1
1+ξv

= φT (0), l(y) = (1 + ξv)g(y) is a proper d.f., M(u) =

(1 + ξv)H(u) and φ(0) = 1
1+ξv

K(0) = H(0), specially, if w(x, y) = 1,

φT (u) =
1

1 + ξv

u∑

y=1

φT (u− y) l(y) +
1

1 + ξv
L̄(u), u ≥ 1, (36)

where L̄(u) =
∑∞

y=u+1 l(y) is the tail of l.

Define a compound geometric d.f. by z(u) = ξv

1+ξv

∑∞
n=0

(
1

1+ξv

)n

l∗n(u), for

u ∈ N, with z(0) = ξv

1+ξv
, where ∗ denotes the convolution. Then it is easy to

show, using generating functions, that φT (u) can be expressed as the tail of the
compound geometric d.f. z as follows:

φT (u) = Z̄(u) =

∞∑

y=u+1

z(y) =
ξv

1 + ξv

∞∑

n=1

(
1

1 + ξv

)n

L̄∗n(u), u ≥ 0. (37)

Remarks:

1. Since the support of l(y) is N+, then l∗n(u) = 0, if n > u, therefore z(u) can

be expressed as a finite sum by z(u) = ξv

1+ξv

∑u
n=0

(
1

1+ξv

)n

l∗n(u).

2. L∗n(u) = 0, if n > u, then φT (u) can be expressed as the sum of finite terms
by

φT (u) = 1 − ξv
1 + ξv

u∑

n=0

(
1

1 + ξv

)n

L∗n(u), u ∈ N. (38)

The following theorem shows that, for general w(x, y), the expected dis-
counted penalty function φ(u) can be expressed explicitly in terms of the com-
pound geometric d.f. z(u).

Theorem 2

φ(u) =
1

ξv

u∑

y=0

M(u − y) z(y), u ≥ 0. (39)

9 Distribution of the Surplus Before Ruin and

the Deficit at Ruin

In this section, we study the discounted joint and marginal distributions of surplus
before ruin U(T − 1) and deficit at ruin |U(T )|.
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Theorem 3 For x ≥ 0, y ≥ 1, and u ≥ 1 :

f2(x, y |u) =
u∑

z=1

f2(x, y |u− z)g(z) + I(u ≤ x)f2(x− u, y + u | 0), (40)

f1(x |u) =

u∑

z=1

f1(x |u− z)g(z) + I(u ≤ x)

∞∑

l=u+1

f2(x− u, l | 0), (41)

g(y |u) =
u∑

z=1

g(y |u− z)g(z) + g(y + u | 0), (42)

where the starting points f2(x, y | 0), f1(x | 0) and g(y | 0) are given by (24), (25)
and (26), respectively.

Define Z = U(T − 1) + |U(T )| + 1 to be the claim causing ruin and let
h(z |u), z ≥ 2 be its probability distribution, then

Theorem 4 For u ≥ 1 and z ≥ 2,

h(z |u) =
u∑

y=1

h(z |u− y) g(y) + I(z ≥ u+ 2) p(z)A(u), (43)

where

A(u) =

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj (1 − ρz−u−1
j )

(1 − ρj)
∏m

k=1,k 6=j(ρj − ρk)
. (44)

While the starting point is given by

h(z | 0) = p(z)A(0) = p(z)

[
m∏

i=1

ρi

v qi

]
m∑

j=1

cj (1 − ρz−1
j )

(1 − ρj)
∏m

k=1,k 6=j(ρj − ρk)
. (45)

As an application of Theorem 2, we show that f2(x, y|u), f1(x |u), g(y |u)
and h(z |u) all find explicit expressions in terms of the compound geometric p.f. z.

Theorem 5 For x ∈ N, and y ∈ N+,

f2(x, y |u) =





(
1+ξv

ξv

)( ∏m
i=1 ρi∏m

i=1 v qi

)
p(x + y + 1)

m∑
j=1

cj ρx−u
j

∑u
n=0 ρn

j z(n)∏m
k=1,k 6=j (ρj−ρk)

, 0 ≤ u ≤ x,

(
1+ξv

ξv

)( ∏m
i=1 ρi∏m

i=1 v qi

)
p(x + y + 1)

m∑
j=1

cj ρx−u
j

∑u
n=u−x ρn

j z(n)∏m
k=1,k 6=j (ρj−ρk)

, u > x.

(46)

14



Corollary 1 For x ∈ N,

f1(x |u) =





(
1+ξv

ξv

)( ∏m
i=1 ρi∏m

i=1 v qi

)
P̄ (x)

m∑
j=1

cj ρx−u
j

∑u
n=0 ρn

j z(n)∏m
k=1,k 6=j(ρj−ρk)

, 0 ≤ u ≤ x,

(
1+ξv

ξv

)( ∏m
i=1 ρi∏m

i=1 v qi

)
P̄ (x)

m∑
j=1

cj ρx−u
j

∑u
n=u−x ρn

j z(n)∏m
k=1,k 6=j(ρj−ρk)

, u > x.
(47)

Remark: If m = 1, then (46) simplifies to

f2(x, y |u) =





f2(x, y | 0)
(

1+ξv

ξv

) u∑
n=0

ρn−u z(n), 0 ≤ u ≤ x

f2(x, y | 0)
(

1+ξv

ξv

) u∑
n=u−x

ρn−u z(n), u > x
, (48)

which can be found in Li and Garrido (2002). Specially, if setting v = 1, then the
joint distribution of U(T − 1) and |U(T )| is given by

f2(x, y |u) =

{
f2(x, y | 0)1−Ψ(u)

1−Ψ(0)
, 0 ≤ u ≤ x

f2(x, y | 0)Ψ(u−x)−Ψ(u)
1−Ψ(0)

, u > x
, (49)

which is Dickson’s classical formula in the discrete model.

For the distribution of the claim causing ruin Z = U(T − 1) + |U(T )|+1, we
have the following result.

Theorem 6 For u ∈ N, and u+ 2 ≤ z,

h(z |u) =

(
1 + ξv
ξv

)( ∏m
i=1 ρi∏m

i=1 v qi

)
p(z)

m∑

j=1

cj
∑u

n=0(1 − ρz−u+n−1
j ) z(n)

(1 − ρj)
∏m

k=1,k 6=j(ρj − ρk)
, (50)

for 2 ≤ z < u+ 2,

h(z |u) =

(
1 + ξv
ξv

)( ∏m
i=1 ρi∏m

i=1 v qi

)
p(z)

m∑

j=1

cj
∑u

n=u+2−z (1 − ρz−u+n−1
j ) z(n)

(1 − ρj)
∏m

k=1,k 6=j(ρj − ρk)
. (51)

In particular, if m = 1, we have the following Corollary.

Corollary 2 If the claim waiting times are geometrically distributed with k(x) =
(1 − q) qx−1I(x ≥ 1), then

h(z |u) =

{
v(1−ρ)(1−q)

1−v
p(z)

∑u
n=0

1−ρz−u+n−1

1−ρ
z(n), u+ 2 ≤ z

v(1−ρ)(1−q)
1−v

p(z)
∑u

n=u+2−z
1−ρz−u+n−1

1−ρ
z(n), 2 ≤ z < u+ 2

. (52)
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Further, if v = 1, ρ = 1, and ρ′(1) = 1+θ
θ
, then

h(z |u) =

{
(1−q)(1+θ)

θ
p(z)

∑u
n=0(z − u+ n − 1) z(n), u+ 2 ≤ z,

(1−q)(1+θ)
θ

p(z)
∑u

n=u+2−z (z − u+ n− 1) z(n), 2 ≤ z < u+ 2,
(53)

where 0 < θ is the security loading factor.

10 Explicit Results for Two Classes of Claim

Size Distributions

Theorem 2 shows that the expected discounted penalty function φ(u) can be
expressed explicitly in terms of the compound geometric p.f. z(u), with z(0) =
φT (0), and z(u) = φT (u − 1) − φT (u), for u ≥ 1, that is to say, if φT (u) can be
obtained explicitly, then so can φ(u). One such case where φT (u) finds an explicit
expression is when it admits a rational generating function. It follows from (33)
that φ̂T (s) is a rational function if and only if ĝ(s) is a rational function, while
ĝ(s) is rational function if and only if p̂(s) is a rational function. Another case for
which φT (u) has an explicit expression is when p̂(s) is a polynomial (or p(x) has
a finite support), since, in this case, φ̂T (s) also has a rational generating function.

10.1 Kn Claim Size Distribution

From (33), the generating function of φT (s) is given by

φ̂T (s) =
φT (0) − ĝ(s)

(1 − s)[1 − ĝ(s)]
(54)

=

∏m
i=1(s− v qi) − p̂(s)Bm−1(s) −

(∏m
i=1

v qi

ρi

)
[1 − φT (0)]

∏m
i=1(s− ρi)

(1 − s){
∏m

i=1(s− v qi) − p̂(s)Bm−1(s)}
,

where Bm−1(s) = v[sm−1
∏m

i=1(1 − qi) +
∑m−1

j=1 βjs
m−1−j (v − s)j] is a polynomial

of degree m− 1, with leading coefficient Bm−1 = v[
∏m

i=1(1 − qi) +
∑m−1

j=1 (−1)jβj.

In this section, we assume that p(x) is Kn distributed for x, n ∈ N+, i.e., its
generating function is given by

p̂(s) =
En(s)∏n

i=1(1 − sαi)
, <(s) < min

{
1

α1
,

1

α2
, · · · 1

αn

}
, (55)
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where En(s) is a polynomial of degree n with En(0) = 0, En(1) =
∏n

i=1(1 − αi),

and 0 < αi < 1, for i = 1, 2, . . . , n. In this case, φ̂T (s) can be transformed to a
rational function, which is given in the following theorem.

Define Em, n(s) = [
∏m

i=1(s−v qi)][
∏n

i=1(1−sαi)]−En(s)Bm−1(s) to be a poly-
nomial of degree n +m with leading coefficient (−1)n(

∏n
i=1 αi). Then it is easily

verified that the roots to the generalized Lundberg equation (8), ρ1, ρ2, . . . , ρm

with 0 < |ρi| < 1, are m roots to the equation Em,n(s) = 0. Let R1, R2, . . . , Rn

with |Ri| ≥ 1 be the remaining n roots of Em,n(s) = 0. We remark that there is a
relation among the roots ρ1, ρ2, . . . , ρm and R1, R2, . . . , Rn, i.e.,

[
m∏

i=1

ρi

][
n∏

i=1

Ri

]
=

∏n
i=1 v qi∏n
i=1 αi

. (56)

Theorem 7 For above defined p̂(s), the generating function of φT (u) is given by

φ̂T (s) =
$n−1(s)

(R1 − s)(R2 − s) · · · (Rn − s)
, (57)

where $n−1(s) = {
∏n

i=1(Ri − s) − (
∏m

i=1
v qi

ρi
)[1 − φT (0)]

∏n
i=1(1/αi − s)}/(1 − s)

is a polynomial of degree n− 1.

Further, if Ri are distinct, then by partial fractions,

φ̂T (s) =
n∑

i=1

ri

(Ri − s)
. (58)

Accordingly,

φT (u) =

n∑

i=1

(
ri

Ri

)
R−u

i , u ∈ N, (59)

in particular,

φT (0) = 1 −
(

m∏

i=1

ρi

v qi

) ∏n
i=1(Ri − 1)∏n

i=1(1/αi − 1)
, (60)

where ri =
(∏n

k=1
1−Ri αk

1−αk

) (∏n
j=1,j 6=i

Rj−1

Rj−Ri

)
, for i = 1, 2, . . . , n.

Remark: If p̂(s) is given by (55), the ĝ(s) can be simplified to

ĝ(s) = 1 −
(

m∏

i=1

ρi

v qi

)(
n∏

i=1

Ri − s

1/αi − s

)
= 1 −

∏n
i=1(1 − s/Ri)∏n
i=1(1 − αi s)

. (61)
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Example 1 In this example, we assume that the claim waiting times are shifted
negative binomial distributed with k(x) = x (1 − q)2 qx−1I(x ≥ 1), and k̂(s) =
s(1−q)2

(1−s q)2
. Claim amounts have a mixture of two geometric distributions with p(x) =

ϑ (1 − α1)α
x−1
1 + (1 − ϑ)(1 − α2)α

x−1
2 , for x ≥ 1 and 0 < ϑ, α1, α2 < 1. Then

p̂(s) = s[(1−α1)(1−α2)+β(1−s)]
(1−s α1)(1−sα2)

, with β = ϑα2(1 − α1) + (1 − ϑ)α1 (1 − α2).

Since the equation

E2,2(s) = (s−v q)2(1−sα1)(1−sα2)−v (1−q)2 s2[(1−α1)(1−α2)+β(1−s)] = 0,

has two roots, say ρ1, ρ2 with |ρi| < 1, and two roots, say R1, R2 with |Ri| > 1. It

is easy to check that the relation ρ1 ρ2R1R2 = v2 q2

α1 α2
holds.

By (60) and the above relation

φT (0) = 1 − 1

R1 R2

(R1 − 1)(R2 − 1)

(1 − α1)(1 − α2)
, (62)

and for u ≥ 0,

φT (u) =
(1 −R1 α1)(1 −R2 α2)(R2 − 1)R

−(u+1)
1

(1 − α1)(1 − α2)(R2 −R1)

−(1 −R2 α1)(1 −R2 α2)(R1 − 1)R
−(u+1)
2

(1 − α1)(1 − α2)(R2 −R1)
(63)

(61) gives

ĝ(s) =
s
[
(α1 α2 − 1

R1R2
)s+ R1+R2

R1 R2
− (α1 + α2)

]

(1 − sα1)(1 − sα2)
,

inverting yields

g(y) = ς1α
y−1
1 + ς2 α

y−1
2 , y ≥ 1, (64)

where

ς1 =
(R1R2 α1 α2 − 1) + α1[R1 +R2 −R1R2(α1 + α2)]

R1R2(α1 − α2)
,

ς2 =
(R1R2 α1 α2 − 1) + α2[R1 +R2 −R1R2(α1 + α2)]

R1R2(α2 − α1)
.

If setting v = 1, and w(x, y) to be x y, x and y, respectively, then φ(u) simplifies
to the joint and marginal moments of U(T−1) and |U(T )|, which can be obtained
by the recursive formula φ(u) =

∑u
y=1 φ(u− y) g(y) +H(u).
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Now let q = 1
3
, ϑ = 0.6, α1 = 1

2
, α2 = 1

3
, v = 1, then E(W ) = 2 > E(X) =

1.8 means a positive loading. The equation E2,2(s) = 0 gives four roots, ρ1 =
1, ρ2 = 0.2183, R1 = 1.1344 and R2 = 2.6917. This gives

Ψ(u) = 0.7731 × 1.1344−u + 0.00342 × 2.6917−u, u ≥ 0,

g(y) = 0.2941αy−1
1 + 0.1256αy−1

2 , y ≥ 1.

Table 1 gives the joint and marginal moments of the surplus before ruin and
deficit at ruin, together with the mean of the claim amount causing ruin. It shows
that: (i) the joint moment given ruin occurs is increasing in u; (ii) the first two
moments of U(T − 1) and |U(T )| are increasing in u, while the effect of u on the
first two moments of U(T −1) is greater than that of |U(T )|; (iii) the mean of the
claim causing ruin is increasing in u, and greater than the mean of claim amount
r.v.’s; (iv) finally, the effect of u on all these quantities is greater for small u, and
smaller for big initial surplus values u.

Table 2 gives the covariance and correlation coefficient of the surplus before
ruin and the deficit at ruin, given that ruin occurs. It can be seen that the covari-
ance is increasing in u, and the two random variables are positively correlated,
while the smaller correlation coefficient mean that they are weakly correlated.

10.2 Claim Amounts Distributions with Finite Support

In this section, we assume that the claim amount distribution has a finite support,
i.e., for N ≥ 2 :

p(n) = P (X = n) = pn, n = 1, 2, . . . N. (65)

Then

p̂(s) = DN (s) := p1 s+ p2 s
2 + · · · + pN s

N , −1 < <(s) < 1, (66)

is a polynomial of degree N . For example, the binomial distribution, the discrete
uniform, and the hyper-geometric distribution all have a finite support.

Define V (s) := DN (s)Bm−1(s) −
∏m

i=1(s− v qi) to be a polynomial of degree
N+m−1, with leading coefficient VN+m−1 = pN Bm−1, where Bm−1 = v[

∏m
i=1(1−

qi) +
∑m−1

j=1 (−1)jβj] is the leading coefficient of polynomial Bm−1(s). Of all the
N+m−1 roots to the equation V (s) = 0, ρ1, ρ2, . . . , ρm arem roots with 0 < |ρi| <
1. Let R1, R2, . . .RN−1 with |Ri| > 1 be the remaining N − 1 roots. Therefore,
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Table 1: Moments for the surplus before ruin and deficit at ruin for different u

u A B C D E F
0 1.9107 0.9904 1.8784 2.8557 5.2716 3.8688
1 2.95803 1.53196 1.89591 4.53027 5.37623 4.4279
2 3.53798 1.82529 1.90329 6.02392 5.42065 4.7286
3 3.86556 1.98875 1.90645 7.17367 5.43939 4.8952
4 4.05238 2.08156 1.90785 8.00108 5.44744 4.9894
5 4.15964 2.13462 1.90838 8.57300 5.45077 5.0430
6 4.22144 2.16502 1.90862 8.95754 5.45238 5.0736
7 4.25669 2.18245 1.90879 9.21084 5.45301 5.0912
8 4.27691 2.19274 1.90889 9.37486 5.45347 5.1016
9 4.28879 2.19854 1.90913 9.48004 5.45368 5.1077
10 4.29552 2.20187 1.90917 9.54631 5.45399 5.1110
11 4.29957 2.20366 1.90942 9.58805 5.45424 5.1131
12 4.30171 2.20491 1.90932 9.61360 5.45411 5.1142
13 4.30269 2.20535 1.90935 9.62939 5.45403 5.1147
14 4.30409 2.20612 1.90966 9.63979 5.45443 5.1158
15 4.30447 2.20586 1.90899 9.64538 5.45502 5.1149

A: joint moments of U(T − 1) and U(T ), given that ruin occurs
B: mean of U(T − 1), given that ruin occurs
C: mean of |U(T )|, given that ruin occurs
D: second moment of U(T − 1) about the origin, given that ruin occurs
E: second moment of |U(T )| about the origin, given that ruin occurs
F: mean of the claim amount causing ruin, given that ruin occurs

Table 2: Covariance and coefficient of correlation between the surplus before ruin
and the deficit at ruin for different u

u 0 1 2 3 4 5 6 7
G 0.05036 0.05356 0.06391 0.07411 0.08109 0.08599 0.08921 0.09085
H 0.02785 0.02716 0.02905 0.03075 0.03149 0.03189 0.03209 0.03202

u 8 9 10 11 12 13 14 15
G 0.09121 0.09151 0.09173 0.09185 0.09189 0.09192 0.09216 0.09349
H 0.03173 0.03156 0.03148 0.03139 0.03132 0.03131 0.03104 0.03178

G stands for the covariance, H stands for the coefficient of correlation.
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V (s) can be factored as V (s) = VN+m−1 [
∏m

i=1(s − ρi)] [
∏N−1

i=1 (s − Ri)]. Setting
s = 0, it is easily shown that

(−1)NVN+m−1

( m∏

i=1

ρi

)(N−1∏

i=1

Ri

)
=

m∏

i=1

(v qi). (67)

Then (54) can be rewritten as

φ̂T (s) =
VN+m−1

∏N−1
i=1 (s−Ri) +

∏m
i=1(

v qi

ρi
)[1 − φT (0)]

VN+m−1(1 − s)
∏N−1

i=1 (s−Ri)
, (68)

Since s = 1 is a removable singularity of φ̂T (s), then we have

1 − φT (0) = −VN+m−1

[
m∏

i=1

ρi

v qi

] [N−1∏

i=1

(1 −Ri)
]

=

N−1∏

i=1

Ri − 1

Ri
(69)

and (68) simplifies to

φ̂T (s) =
FN−2(s)∏N−1

i=1 (Ri − s)
, −1 < <(s) < 1, (70)

where FN−2(s) :=
∏N−1

i=1 (Ri−s)−
∏N−1

i=1 (Ri−1)

(1−s)
is a polynomial of degree N − 2. By

partial fractions,

φ̂T (s) =
N−1∑

i=1

ri

(Ri − s)
=

N−1∑

i=1

(
ri

Ri
)

1

(1 − s
Ri

)
, (71)

where ri =
∏N−1

j=1,j 6=i

(
Rj−1

Rj−Ri

)
. Inverting yields

φT (u) =
N−1∑

i=1

(
ri

Ri

)
R−u

i , u ∈ N+. (72)

Finally, if p̂(s) is given by (66), then ĝ(s) simplifies to

ĝ(s) = 1 + VN+m−1

(
m∏

i=1

ρi

v qi

)
N−1∏

i=1

(s−Ri) = 1 −
N−1∏

i=1

Ri − s

Ri
. (73)
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Isolating the coefficient of sn gives g(n), for n = 1, 2, . . . , N − 1, e.g.,

g(1) =

[
N−1∑

i=1

1

Ri

]
, (74)

g(2) = −
∑

1≤i<j≤N−1

1

RiRj
, (75)

...
...

g(N − 2) = (−1)N−3

[
N−1∏

i=1

1

Ri

]
N−1∑

i=1

Ri, (76)

g(N − 1) = (−1)N−2

N−1∏

i=1

1

Ri
. (77)

Example 2 In this example, we assume that the claim waiting times have a
negative binomial(2, q) distribution, with k(x) = x (1 − q)2 qx−1I(x ≥ 1) and

k̂(s) = s(1−q)2

(1−s q)2
. The claim sizes are uniformly distributed with P (X = 1) = P (X =

2) = P (X = 3) = 1
3

and with p̂(s) = (s+s2+s3)
3

. Then V (s) = p̂(s)B1(s) − (s −
v q)2 = v(1−q)2

3
(s2 + s3 + s4) − (s− v q)2 is a polynomial of degree 4 with leading

coefficient v(1−q)2

3
. It can be factored as V (s) = v(1−q)2

3
(s− ρ1)(s− ρ2)(s−R1)(s−

R2). We remark that the relation ρ1 ρ2R1R2 = − 3v q2

(1−q)2
holds by setting s = 0 in

the above factorization.

(69) together with above relation gives

φT (0) = 1 +
(1 − q)2 ρ1 ρ2

3 v q2
(R1 − 1)(R2 − 1) =

R1 +R2 − 1

R1R2
,

and for u ∈ N+,

φT (u) =
R2 − 1

R2 −R1
R

−(u+1)
1 +

R1 − 1

R1 −R2
R

−(u+1)
2 . (78)

Together (74) and (77) give that

g(1) =
R1 +R2

R1R2
, g(2) = − 1

R1R2
and g(i) = 0, for i ≥ 3. (79)

Thus the recursive formula for φ(u) simplifies to

φ(0) = H(0),

φ(1) = φ(0) g(1) +H(1),

φ(u) = φ(u− 1) g(1) + φ(u− 2) g(2) +H(u), u ≥ 2,
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where in this example, H(0) = ρ1 ρ2(1−q)2

3v q2 [w(0, 1) + w(0, 2) + (ρ1 + ρ2)w(1, 1)],

H(1) = ρ1 ρ2(1−q)2

3v q2 w(1, 1), and H(u) = 0, for u ≥ 2.

φ(u) can also be evaluated explicitly by

φ(u) =
1

1 − φT (0)

u∑

y=1

H(u− y) z(y) +H(u), u ≥ 1, (80)

where 1
1−φT (0)

= R1 R2

(R1−1)(R2−1)
, and

z(u) = φT (u− 1) − φT (u) =
(R1 − 1)(R2 − 1)

R2 −R1
[R

−(u+1
1 −R

−(u+1)
2 ].

Thus (80) simplifies to

φ(u) =
R2

R2 −R1

u∑

y=1

H(u− y)R−y
1 +

R1

R1 −R2

u∑

y=1

H(u− y)R−y
2 +H(u). (81)

Since H(u) is not zero only at u = 0 and u = 1, the above formula is equivalent
to

φ(0) = H(0), φ(1) = H(1) +
R1 +R2

R1R2
H(0),

φ(u) =
R1R2

R2 −R1

{
H(0)

[
R

−(u+1)
1 −R

−(u+1)
2

]
+H(1)

[
R−u

1 −R−u
2

]}
, u ≥ 2.

Setting w(x, y) = I(x+ y + 1 = z), for z = 2, 3, . . . , and v = 1, implies that
φ(u) simplifies to the distribution function h(z |u) of Z = U(T−1)+|U(T )|+1. In

particular, z = 2, H(0) = (1−q)2ρ1 ρ2(ρ1+ρ2)
3 q2 = − 1

R1R2
and H(i) = 0, for i = 1, 2, . . . .

Then

h(2 |u) =
R

−(u+1)
1 −R

−(u+1)
2

R1 −R2
, u ≥ 0.

Similarly, z = 3, H(0) = −1+ρ1+ρ2

R1 R2
, H(1) = − 1

R1 R2
and H(i) = 0, for i ≥ 2. Then

h(3 |u) =
1 + ρ1 + ρ2

R1 −R2

[
R

−(u+1)
1 −R

−(u+1)
2

]
+

1

R1 −R2

[
R−u

1 −R−u
2

]
, u ≥ 0.

Finally, for z ≥ 4, h(z |u) = 0, for all u ≥ 0.
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If instead, we set v = 1 and w(x, y) = xy (alternatively x, or y), then φ(u)
simplifies to E[U(T−1)|U(T )|I(T <∞)

∣∣U(0) = u] (E[U(T−1)I(T <∞)
∣∣U(0) =

u], or E[|U(T )|I(T <∞)
∣∣U(0) = u]), and

E[U(T − 1)|U(T )|I(T <∞)
∣∣U(0) = u]

= E[U(T − 1)I(T <∞)
∣∣U(0) = u]

=
(ρ1 + ρ2)[R

−(u+1)
1 −R

−(u+1)
2 ] + (R−u

1 −R−u
2 )

R1 −R2
,

E[|U(T )|I(T <∞)
∣∣U(0) = u]

=
(3 + ρ1 + ρ2)[R

−(u+1)
1 −R

−(u+1)
2 ] + (R−u

1 −R−u
2 )

R1 −R2
.

Now setting q = 0.35, implies that E(W ) = 1+q
1−q

= 2.077 > E(X) = 2 and
equation

V (s) =
(1 − q)2

3
(s2 + s3 + s4) − (s− q)2 = 0

has four roots, say, ρ1 = 1, ρ2 = 0.2449, R1 = 1.0708 and R2 = −3.3158. The
following table gives the moments of U(T−1) and |U(T )|, as well as the covariance,
for u = 0, 1, 2, . . . , 10.

Table 3: Moments and covariance of the surplus before ruin and the deficit at ruin
for different u

u Joint Moment E[U(T − 1)|T <∞] E[|U(T )|
∣∣T <∞] Cov

0 0.3836 0.3836 1.3081 -0.1182
1 0.5856 0.5856 1.2072 -0.1213
2 0.5207 0.5207 1.2396 -0.1248
3 0.5417 0.5417 1.2291 -0.1241
4 0.5349 0.5349 1.2325 -0.1244
5 0.5371 0.5371 1.2314 -0.1243
6 0.5364 0.5364 1.23176 -0.12432
7 0.5366 0.5366 1.23165 -0.12430
8 0.53656 0.53656 1.23169 -0.12432
9 0.53657 0.53657 1.23168 -0.124312
10 0.53656 0.53656 1.23168 -0.124310

Joint Moment stands for E[U(T − 1)|U(T )|
∣∣T <∞].
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