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Credibility Using Copulas 
 

Abstract 
 

Credibility is a form of insurance pricing that is widely used, particularly in North 
America. The theory of credibility has been called a “cornerstone” of the field of actuarial 
science. Students of the North American actuarial bodies also study loss distributions, the 
process of statistical inference of relating a set of data to a theoretical (loss) distribution. In this 
work, we develop a direct link between credibility and loss distributions through the notion of a 
copula, a tool for understanding relationships among multivariate outcomes.  
 

This paper develops credibility using a longitudinal data framework. In a longitudinal 
data framework, one might encounter data from a cross-section of risk classes (towns) with a 
history of insurance claims available for each risk class. For the marginal claims distributions, 
we use generalized linear models, an extension of linear regression that also encompasses 
Weibull and Gamma regressions. Copulas are used to model the dependencies over time; 
specifically, this paper is the first to propose using a t-copula in the context of generalized linear 
models. The t-copula is the copula associated with the multivariate t-distribution; like univariate 
t-distributions, it seems especially suitable for empirical work. Moreover, we show that the t-
copula gives rise to easily computable predictive distributions that we use to generate credibility 
predictors. Like Bayesian methods, our copula credibility prediction methods allow us to provide 
an entire distribution of predicted claims, not just a point prediction. 

 
We present illustrative example of Massachusetts automobile claims, and compare our 

new credibility estimates with those currently existing in the literature.



Credibility Using Copulas 
 

1. Introduction 

Credibility ratemaking is a technique for predicting future expected claims of a risk class, given 

past claims of that and related risk classes. This technique has a long history in actuarial science, 

with fundamental contributions dating back to Mowbray (1914). Whitney (1918) introduced the 

intuitively appealing concept of using a weighted average of (1) average claims from the risk 

class and (2) average claims over all risk classes to predict future expected claims. The weight 

associated with the risk class under consideration is known as the credibility factor.  

 In part, credibility predictors succeed in practice because they are intuitively appealing. 

By expressing the predictors as weighted averages, credibility predictors are straight-forward to 

explain to consumers of actuarial merchandise. As one piece of evidence of their importance, 

discussion credibility applications can be found in the Actuarial Standard of Practice Number 25 

published by the American Academy of Actuaries.  

 In part, credibility predictors succeed because they are known to be the best possible 

predictors in a broad variety of situations. Bühlmann (1967) described a fundamental model 

containing latent (unobserved) effects that are common to all claims from a risk class; Bühlmann 

called these “structure effects.” The “best” linear unbiased predictors that can be derived from 

this model turn out to be the same intuitively appealing linear credibility predictors described 

above. Bühlmann’s basic model formulation extends readily to encompass a large class of 

models; see Frees, Young and Luo (1999) for a review that is oriented towards linear regression 

and longitudinal data models.  

In Bühlmann’s model formulation, the descriptor “best” means minimum mean squared 

error. Although minimizing a mean square error has proven to be very useful in applied statistics, 

it is well known that it may not be appropriate for skewed or long-tailed distributions such as 

commonly encountered in insurance claims analysis. 

 To account for the entire distribution of claims, a common approach used in credibility is 

to adopt a Bayesian perspective. Keffer (1929) initially suggested using a Bayesian perspective 

for experience rating in the context of group life insurance. Subsequently, Bailey (1945, 1950) 

showed how to derive the linear credibility form from a Bayesian perspective as the mean of a 

predictive distribution. Several authors have provided useful extensions of this paradigm. Jewell 

 1



(1980) extended Bailey’s results to a broader class of distributions, the exponential family, with 

conjugate prior distributions for the structure variables. Klugman (1992) investigated normal 

linear hierarchical models; this restricts the class of distributions but allows the analyst to include 

covariate effects.  

In addition to the works cited above, we also note the work of Miller and Hickman 

(1975) and Pinquet (1997). Miller and Hickman (1975) examined credibility in the context of 

aggregate loss distributions. Pinquet (1997) was also interested in automobile claims; he 

considered collision claims arising from two lines, at fault and no fault coverages. Both of these 

papers assumed parametric distributions for the claims number and amount distributions and 

used Bayesian techniques to develop estimators. 

In the Bayesian framework, one can explicitly account for the distribution of claims 

conditional on the latent structure variable (sampling distribution), make a preliminary  (prior) 

assumption about the distribution of the structure variable and use the data to improve this 

preliminary assumption (and hence compute the posterior distribution). This new posterior 

distribution, together with the sampling distribution, can be then used to compute the predictive 

distribution of a new claim, given prior claims. 

In this paper, we will give a frequentist version of a predictive distribution. With this 

distribution, we will be able to compute the mean, median or any other measure to summarize 

the distribution; thus, this aspect is the same as in Bayesian analysis. However, because we are 

adopting a frequentist perspective, we will not make an assumption concerning the prior 

distribution of the latent variables. As is well known, this may be an advantage or disadvantage, 

depending on the situation. 

To model the dependencies among claims within a risk class, we use a copula directly in 

lieu of a latent variable framework. Although Bühlmann’s latent variable framework has proved 

successful for many applications, a limitation of this approach is that the unobserved variable 

(structure) is constant over time. This means that dependencies among claims are constant over 

time; this is a strong assumption in time series analysis. To illustrate, for our application 

described below, it will mean that 1998 claims and 1997 claims have the same dependency as 

between 1998 claims and 1993 claims. It is customary in time-series analysis to assume that 

dependencies weaken as random variables become further apart in time. 
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A copula is a tool for understanding relationships among multivariate outcomes; it is a 

function that links univariate marginals to their full multivariate distribution. Copulas were 

introduced in 1959 in the context of probabilistic metric spaces.  Recently, there has been a 

rapidly developing literature on the statistical properties and applications of copulas, particularly 

in the enterprise risk management literature, see for example, Frees and Valdez (1998), Nelsen 

(1999), and Embrechts, Lindskog and McNeil (2001). 

This paper extends earlier work by Frees, Young and Luo (1999, 2001), who showed 

how to produce credibility predictors for linear longitudinal and panel data models, in two ways. 

First, we consider a generalized linear model (GLM) for marginal claims distributions. This 

framework has been applied by actuaries (Haberman and Renshaw, 1996); it allows us to 

consider long-tailed claims through, for example, a Gamma distribution. Moreover, it also gives 

a direct method for incorporating covariate (explanatory) variables into credibility estimators for 

these non-Gaussian situations. 

Second, we replace the latent variable method of inducing dependencies with a copula. 

This direct method of modeling dependencies will allow us to derive models that can be closely 

fit by the data, an important consideration for applied modeling. An important advantage of the 

copula approach is that it preserves the shape of marginal distributions. In actuarial applications, 

we have well-developed methods for estimating marginal distributions; that is, estimating model 

parameters for each time period in isolation of the others. In this paper, we propose using copula 

functions to link these period-by-period estimates of distributions, thus preserving all of the 

standard estimation machinery when developing credibility estimates. 

Our approach is to use all of the tools that actuaries (as well as statisticians) use for 

parametric modeling of the marginal distributions but to connect information in the claims 

history using theory from copulas. Thus, we envision a highly parametric approach to claims 

ratemaking. We document several advantages of this new approach compared to the current 

paradigm in place (as well as some disadvantages). The new approach will be easy to use on a 

computer in that it is likelihood based. It should be applicable to a much broader set of problems 

(such as those listed above), without needing special tools for each problem. We demonstrate 

that the copula formulation is more flexible than positing a (constant) latent variable. In this 

paper we compare and contrast the two approaches by examining the Massachusetts automobile 

claims data set that was used in a previous paper (Frees, 2003) on multivariate credibility (an 
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example where specialized credibility techniques were required). Our intent is to develop a basic 

theory using this data set as our guide.  

 The following is an outline for the remainder of the paper. Section 2 lays out the basic 

stochastic model, including the GLM model for marginal claims and the copula for dependencies 

over time. Section 3 introduces the Massachusetts automobile claims data and Section 4 shows 

how to fit this data to our framework. Section 5 summarizes the prediction and Section 6 

provides summary and concluding remarks. 

 

2. Modeling longitudinal data using copulas 

 This section outlines the theory part of the paper. Section 2.1 describes the marginal 

distributions using a GLM framework. Section 2.2 connects the marginals via a copula and 

Section 2.3 shows how to predict future observations. 

 

2.1 Marginal distribution 

Suppose that there are Ti potential claims for the ith risk class, ( )′=
iiTiiii YYYY ,,,, 321 KY , 

and that the corresponding realizations are ( )′=
iiTiiii yyyy ,,,, 321 Ky , the observed sample. The 

joint distribution function for the ith risk class is denoted by 

( ) ( )
iii iTiTiiiTii yYyYyy ≤≤= ,,Prob,,P 111 KK , 

with marginal distribution functions 

( ) ( ) ( )ititititititit yPyYy θ,PProbP ==≤= . 

We assume independence among risk classes i = 1, …, n. 

With this notation, we assume that the marginal distribution function P(.) for claims Yit is 

common up to a systematic component θit that is known up to K parameters. For applications, we 

typically work with models such that θit is a linear function of unknown parameters and useθit = 

xit
′ β, where xit is a K×1 vector of known explanatory variables (covariates) and β is a K × 1 

vector of unknown parameters. The corresponding marginal density (mass) function is 

( ) ( )ititititit ypy θ,pp == . 

In this paper, we assume that p(.) is from an exponential family. This family encompasses 

the normal, Poisson and Gamma distributions, as well as others that are important in actuarial 
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applications (Haberman and Renshaw, 1996). Thus, the marginal density (mass) function for the 

ith risk class at the tth time point can be written as: 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
= ),S(

b
exp),p( φ

φ it
ititit

itit y
θθy

θy . 

Here, the functions b(.) and S(.,.) are chosen to represent a particular distribution and φ  is a 

known dispersion factor. We can also select a function to link the mean component to the 

systematic component. For illustrative purposes, we focus on the canonical link function so that  

b′ (θit) = E (yit) and θit = xit
′ β = g(E yit). This family, with the use of covariates, is commonly 

known as the generalized linear model (GLM) in statistics, see for example, McCullagh and 

Nelder (1989). The GLM framework is an extension of ordinary regression that also 

encompasses logistic and Poisson regression. Thus, by itself, it is applied statistical model that is 

useful in many applications. 

 

2.2 Modeling the dynamics  

Using copulas for the generalized linear model is a natural idea that has been proposed in 

the biomedical literature; see Meester and MacKay (1994) and Lambert (1996) for early 

discussions and Lambert and Vandenhende (2002) for a more recent contribution. However, the 

idea is not widely known, perhaps because of the nature of the applications investigated. This is 

the first such investigation in a social science context. 

 The joint distribution function of Yi can be expressed as a function of the marginal 

distributions through the copula function 

( ) ( )
ii iTiiTii PPyy ,,C,,P 11 KK = , 

where C is a copula. Thus, the copula allows a fully parametric specification of the probability 

model, we exploit this specification by using maximum likelihood estimation. We assume 

independence among risk classes and use the copula to model dependencies over time. Hence, 

the copula accounts for the dynamic aspect of claims behavior. 

Let c(.) be the probability density function corresponding to the copula distribution 

function C(.) (we now assume continuous claims). Thus, the log-likelihood of the ith risk class is 

( )
i

i

iTii

T

t
ititi PPPθyl ,,,cln),p(ln 21

1

K+= ∑
=

. 

For the GLM framework, we have 
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                       ( ) (
i

i

iTii

T

t

ititit
i PPP

y
constantl ,,,cln

b
21

1

K+
′−′

+= ∑
= φ

βxβx ).                          (2.1) 

 

Although not extensive as with bivariate data (T = 2), there are still several options in the 

choice of a copula function for multivariate data, such as the Archimedean, Markov and elliptical 

copulas (see for example, Joe, 1999, Nelson, 1999). We will focus on the copula associated with 

the multivariate t-distribution, known as the t-copula. This generalization of the normal copula 

retains many of its desirable properties, including tractability and ease of implementation in 

simulation studies. Moreover, it has proven popular in the risk management literature recently 

because of its ability to provide positive large tail dependence. See, for example, Embrechts et al. 

(2001), Venter (2003) and Demarta and McNeil (2004), as well as the discussion in the 

Appendices. 

Appendix B gives the formula for the t-copula density. Substituting the copula density 

into equation (2.1) gives an expression for the log-likelihood of the ith risk class. Nonlinear 

optimization subroutines such as NLPNMS and NLPQN from statistics software package SAS 

provide numerical tools for maximizing the log-likelihood equations. This, together with 

likelihood expressions, is sufficient for standard parametric estimation. Section 4 provides 

illustrations. 

 

2.3 Credibility prediction with copulas 

In Appendix B, we see that the t-copula is parameterized by r, its degrees of freedom, and 

Σ, a correlation matrix. For the T+1 observations from the ith risk class, ( )1,,1 ,,..., +TiTii yyy , we 

may partition this correlation matrix as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

=
•+

•+
+ 11

1
1

TT

TTT
T ρ

ρΣ
Σ . 

That is, ΣT describes that correlations among ( )Tii yy ,1 ,...,  and TT •+1ρ describes the correlation 

between yi,T+1 and ( )Tii yy ,1 ,..., . Using this partition, we may define the conditional 

variance . TTTTTTT •+
−

•+•+ ′−= 1
1

1
2

1 1 ρρσ Σ

In Appendix C, we show that the density function of the predictive distribution is  
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( )
TTTir

TiTi

TT

iTTTTi
rTiiTi vg

θyv
gyyyf

•++

++

•+

−
•++

+ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ′−
=

11,

1,1,

1

1
11,

,11, )(
),p(

,
σσ

ρ vΣ
K ,   (2.2) 

 

where  t = 1, …, T+1  and )),((1
ititrit yPGv −= )',,( 1 iTii vv K=v . Here, Pit(yit) and pit(yit) = p(yit,θit) 

t = 1, …, T+1,  are cumulative and density (mass) distribution functions, respectively, of the 

univariate marginal distribution. Further,  is the distribution function of a t-distribution with r 

degrees of freedom and g

rG

r is the associated density, given by 
2/)1(2

2/1 1
)2/()(

)2/)1(()(
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Γ
+Γ

=
r

r r
z

rr
rzg

π
. 

With the formula for the conditional density in equation (2.2) and the help of 

computational software, we can easily compute the mean, median, or any percentile of the 

conditional distribution for the purpose of application or comparison of prediction methods.  

 

3. Massachusetts Automobile Claims 

To illustrate our proposed procedures, this article considers automobile bodily injury liability 

claims from a sample of n = 29 Massachusetts towns described in Frees (2003). For this 

coverage, we consider annual data from T = 6 years, 1993-98, inclusive. To mitigate the effect of 

time trends, claims amounts have been rescaled to adjust for the effects of inflation. Specifically, 

all claims are in 1991 dollars, using the Consumer Price Index (CPI) for the rescaling factor. We 

study the behavior of average claims per unit of exposure (the pure premium), defined to be 

the total claim amount divided by the amount of exposure, for each town and each year.  

We first present summary statistics of the claims data in Section 3.1. Section 3.2 

examines the marginal claims distribution and Section 3.3 introduces explanatory variables. 

3.1 Descriptive statistics 
Table 1 displays the descriptive statistics for average claims (AC) by year. For instance, the 

mean of average claims in 1993 is $133,000 and the standard deviation for the same period is 

$31,590. This table suggests that the claims distribution appears to be stable over time.  
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Table 1. Descriptive Statistics of Average Claims (in thousands of dollars) 
  AC1993 AC1994 AC1995 AC1996 AC1997 AC1998
Mean 133.00 129.03 143.38 141.17 142.94 134.37
Median 131.57 131.45 138.76 149.00 144.73 131.96
Standard deviation 31.59 32.63 38.28 39.28 36.22 32.85
Minimum 80.03 42.74 61.04 66.20 61.68 74.89
Maximum 212.46 209.52 238.22 201.99 248.75 191.05

  

Table 2 displays correlations of claims among the six years. Clearly the multivariate 

average claims variables are not independent. For example, the correlation coefficient between 

the average claims of 1993 and 1994 is 0.81. The smallest correlation coefficient, 0.57, occurs 

between 1994 and 1998. We will demonstrate how copulas can be employed to model these 

relationships in Section 4.  

            
Table 2. Claims correlations 

  AC1993 AC1994 AC1995 AC1996 AC1997 AC1998 
AC1993 1.000      
AC1994 0.811 1.000     
AC1995 0.731 0.668 1.000    
AC1996 0.754 0.670 0.680 1.000   
AC1997 0.761 0.626 0.875 0.745 1.000  
AC1998 0.645 0.573 0.648 0.711 0.674 1.000 

 
 

 

3.2 Marginal claims distributions 
 
To validate our prediction methods in Section 4, the observations for year 1998 are reserved as 

the “hold-out” sample. This leaves T = 5 years of observations for each town at disposal for 

parameter estimation.   

To obtain intuitive knowledge of the distribution of the average claims, several 

probability distribution (q-q or quantile-quantile) plots were produced and presented in Figure 1. 

These plots compare empirical quantiles to quantiles from an estimated parametric model. There 

are two fitted Weibull distributions. One sets the position parameter θ  at zero while estimating 

the scale parameter and shape parameter. The other estimates all three parameters simultaneously. 

Table 3 reports three goodness-of-fit statistics that assess the relation between the empirical 

distribution and the estimated parametric distribution. A large p-value indicates a non-significant 
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difference between the two. Table 3 gives the results of goodness-of-fit for all candidate 

distributions.   

Both probability plots and p-values indicate that, except for the exponential distribution, 

all hypothesized distributions provide a reasonable fit for the average claims variable. The 

variable of interest, average claims, is equal to the sum of all claims amounts divided by the 

number of exposures, which is at least three thousands for each town-year in our sample. 

Theoretically, the central limit theorem suggests that average claims be approximately normally 

distributed and thus have thin tails. Because all of our hypothesized distributions are capable of 

fitting thin-tailed distributions, it is not surprising that they fit well. To illustrate the procedures 

proposed, we chose the Gamma distribution as the fitted marginal distribution of average claims. 

The Gamma distribution also has the flexibility to allow for long-tail claims distributions. 
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Figure 1. Q-Q Plots of Six Marginal Claims Distributions 

 
Weibull (θ =est):                                                          Lognormal 

 
 

Gamma                                                         Normal 

 
 

Exponential                                        Weibull ( 0=θ ) 

 
 
 
 

Table 3. p-values of Goodness-of-Fit 
 Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling 
Exponential <0.001 <0.001 <0.001 

Gamma >0.250 >0.500 >0.500 

Log-Normal >0.250 >0.500 >0.500 

Normal >0.150 >0.250 >0.250 

Weibull (θ = 0) N/A >0.250 >0.150 

Weibull (θ  est) >0.500 >0.500 >0.250 
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3.3 Explanatory variables  

In our study, two explanatory variables, per capita income (PCI) and logarithmic population per 

square mile (PPSM) were identified to be related to the response variable, claims. Population 

estimates of the towns in Massachusetts for years 1993 through 1998 were prepared by 

MISER/State Data Center of Massachusetts and available at http://www.umass.edu/miser. Data 

of per capita income were constructed as follows. We first collected information about per capita 

income in 1989 for each sampled town from the 1990 census report. We then found county 

estimates for median household income on the website of U.S. Census Bureau at 

http://www.census.gov/hhes/www/saipe/stcty for years 1990 through 1999. The annual increase 

rate of median household income in a county was used to proxy that of per capita income of 

towns in the same county, so per capita income for each town can be estimated. Finally all 

income data were deflated to 1991 dollars using CPI index.  

Figures 2 and 3 reveal the association of AC with PCI and with PPSM, respectively.  

Figure 2 suggests that lower bodily injury claims are associated with higher income. A 

reasonable explanation may be that when more money is at disposal people are more willing to 

settle disputes by themselves to avoid the penalty of increased premium that is associated with 

claim payments by the insurance company. In towns of high population density, Figure 3 

indicates average claims tend to be high, which may be a consequence of the more frequent 

occurrences of losses and claims.  

The relationships of average claims with income and population density are supported by 

a regression analysis whose results are displayed in Table 4. For instance, every $1000 increase 

in per capita income is associated with $4.12 decrease in average claim amount per exposure, i.e., 

pure premium. Every 2.72 persons increase in population density (equivalent to increase of 1 in 

logarithmic population per square mile) is associated with $22.60 increase in average claim 

amount. Moreover both covariates are significant at 1% level.  
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Figure 2. Claims versus Per Capita Income (in thousands, PCI) 
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Figure 3. Claims versus Population per Square Mile (in logarithmic units, PPSM). 
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Table 4. Regression of Claim versus PCI and PPSM 

  Coefficients 
Standard 

error t-statistic p-value 
Intercept 76.344 23.357 3.27 0.0014 
PCI -4.123 0.569 -7.25 <.0001 

PPSM 22.604 3.013 7.50 <.0001 

R-square 0.458 

 

 

4.  Inference using copulas 

In this section we show how copulas can be applied to incorporate the dependence structure. 

Section 4.1 discusses parameterizations of the t-copula. To demonstrate the application of 

copulas in modeling and prediction, we divide our analysis into two stages. Section 4.2 

summarizes estimation that does not involve explanatory variables while concentrating on the 

estimation of copula  and marginal distribution parameters. Section 4.3 incorporates the 

explanatory variables parameters.   

 

4.1 Parameters of the t-copula 

For inference, one needs to estimate the t-copula parameters given by the correlation matrix Σ 

and the degrees of freedom r.  

We will compare four different structures of Σ: the identity, exchangeable, AR(1) and 

band Toeplitz. Essentially, these four choices capture different aspects of the (time-series) 

correlation structure. One well-known fact of t-copulas is that the identity correlation matrix 

implies a type of zero correlation although not independence among observations. (From 

Appendix A, this is because of the common denominator, , used in the definition of the 

multivariate t-distribution.) However, when r tends to infinity, the t-copula tends to a normal 

copula in which case the identity matrix does imply independent components (because 

tends to a constant).  

2
rχ

rr /2χ

The exchangeable structure, also known as “compound symmetry” or “uniform 

correlation” in longitudinal data models (see for example, Frees, 2004), is most closely aligned 

with traditional credibility models. Bühlmann (1967) posited a latent “structure” variable that is 
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common to each claim within a risk class; this structure variables induces dependencies among 

claims within a risk class that does not vary over time. 

In contrast, the AR(1) structure is a traditional time-series representation of temporal 

relationships; this structure implies that the claim experience of current year poses diminishing 

influence on claims of the following years. A band Toeplitz structure is adopted when we assume 

that the claims have a Markovian characteristic; current year claims only affects claims of next 

several, say, l, years. In linear time-series analysis, this structure corresponds to the “moving-

average” model. 

Because the time dimension consists of 5=T  years, the four different structures of Σ can 

be expressed as: 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞
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In expression (4.1) of band Toeplitz matrix, we use a band of l = 2 .  

The number of parameters to be evaluated depends the matrix structure adopted. For 

example, when either the exchangeable or AR(1) structure is employed, two parameters 

determine the t-copula, r and ρ . In addition, there are parameters associated with the fitted 

marginal distribution, Gamma. Generally a two-parameter Gamma distribution has shape 

parameter α  and scale parameter γ. This means we have to evaluate four parameters when the 

structure of Σ is assumed to be exchangeable or AR(1).  

There are at least three approaches to dealing with degrees of freedom, r. One is to treat r 

in the same way as other parameters and estimate it using maximum likelihood by treating it as a 

continuous variable. Specifically, r and other parameters are estimated altogether by maximum 

likelihood, as in Lambert and Vandenhende (2002). Another approach is to estimate other 
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parameters for selected values of r, essentially treating it as discrete. We report results usin

approaches. A third approach is to assume that r is known, either as infinity resulting in a normal 

copula or as a finite value when based on a “degrees of freedom” argument, such as is customary 

in the univariate case. 

 

g both 

4.2 Estimation without explanatory variables 

n can be modeled by a two-parameter Gamma We assume that the marginal claims distributio

distribution with density function 

)exp(
)(

),;(
1

γαγ
γα α

α yyyp −
Γ

=
−

. 

 

o that this can be expressed as a member of the exponential family, one chooses θ  = - 1 / (α γ)  S

and φ = 1/ α.  We also assume that the dependence structure can be modeled by a t-copula with r 

degrees of freedom. With these assumptions, the log-likelihood function for town i over iT  years 

can be expressed as 
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where  and  for t =1, …, Ti. 

At this stage of analysis, we assume that the G n parameters are the same 

for all 

)',,,( 21 iiTiii vvv L=v )),;((1 γαititrit yPGv −=

amma distributio

towns in our sample, so there are only four parameters, ρ , α , γ and r, to be estimated for 

exchangeable and AR(1) models, three for the identity and five or Toeplitz. For estimation, we 

employ the maximum likelihood. Table 5 displays values of Akaike Information Criteria (AIC) 

over several choices of r to compare goodness of fit. For this criterion, smaller values of AIC 

mean a better fit. The entry r = infinity is also added to compare the fitness of t-copula with 

normal copula. Table 5 shows that the t-copula provides a better fit than the normal model 

 f

regardless of the choice of the correlation matrix. 
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Because of this, in Table 6 we only report results using t-copula. We can see from T

6 that all parameters (except r) are statistically sign

able 

ificant. Our major interest is the significance 

of corre

n Criterion (AIC)  
by Correlation Matrix (Σ) and Degrees of Freedom (r). 

No covariates are use  in the model fitting. 

lation coefficients; they are all statistically significant which provides strong evidence 

that the correlation structure is not independent. 

 
Table 5. Informatio

d
Correlation Matrix (Σ) Degrees of 

freedom (r litz (l=2) ) Identity Exchangeable AR(1) Toep
2 89.08 1,426.36 1,357.13 1,379.83 1,3
4 1,427.61 1  ,348.68 1,372.37 1,382.30 
6 1  ,431.07 1,346.39 1,370.61 1,380.86 
8 1  1, 0 ,434.13 1,345.63 370.2 1,380.65 
10 1,436.58 1,345.40 1,370.23 1,380.79 
12 1,438.54 1,345.38 1,370.42 1,381.04 
14 1,440.13 1,345.46 1,370.65 1,381.32 
16 1,441.45 1,345.56 1,370.90 1,381.58 
18 1,442.56 1,345.69 1,371.14 1,381.83 
20 1,443.51 1,345.81 1,371.36 1,382.05 
22 1,444.32 1,345.93 1,371.57 1,382.25 
24 1,445.04 1,346.04 1,371.76 1,382.43 
26 1,445.66 1,346.15 1,371.94 1,382.60 
28 1,446.22 1,346.25 1,372.10 1,382.75 
30 1,446.72 1,346.34 1,372.25 1,382.88 
45 1,449.25 1,346.86 1,373.05 1,383.60 
60 1,450.67 1,347.18 1,373.53 1,384.01 
120 1,453.02 1,347.75 1,374.36 1,384.70 

1  ,000 1,455.37 1,348.34 1,375.22 1,385.40 
10  ,000 1,455.68 1,348.42 1,375.33 1,385.49 

∞  ( al) norm 1,455.72 1,348.43 1,375.34 1,385.51 
                         

Table 6. Maximum Likelihood Estimation Results  
by Correlation Matrix (Σ). 

No covariates are use  in the model fitting. 

                 

 

 

d
 Correlation Matrix (Σ) 

Parameter Identit Toeplitz y R(1) Exchangeable A
ρ1 NA ) 0.478 (0.081) 0.744 (0.067) 0.710 (0.063
ρ NA NA NA 0.402 (0.080) 2
γ 14.410 (2.766) 13 662) 16.728 (2.645) .242 (2.912) 14.123 (2.
α 10.106 (2.044) 10.393 (2.311) 9.759 (1.849) 8.233 (1.319)  
r 2.494 (0.897)  11.236 .225) (8 8.685 (5.338) 7.823 (4.752) 

AIC 1,427.978 1,347.377 1,372.180 1,382.644 
Notes: Standard errors are reported in parentheses.  
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4.3 Estimation with explanatory variables 

The discussion in Subsection 3.3 suggests that PCI and PPSM are useful predictors of claims. 

With Gamma distributed claims, we use a canonical link function so that  θit = xit
′ β = β0 + β1 

PCIit + β2 PPSMit. As is customary in generalized linear models, we assume that the scale 

parameter φ = 1/ α  is constant over towns and years while the shape parameter varies through 

the relation θ it = - 1 / (α γ it ) .  

Now the parameters to be determined include  β0, β1, and β2. Again, we first compare the 

t-copula and normal copula under different correlation structures, as reported in Table 7. Values 

of AIC indicate, as in the case of no covariates, that the t-copula fits our sample data better than 

the normal copula. Another observation about Table 7 is that the AIC for each of the models with 

covariates present is less than that of corresponding model without covariates; this provides 

evidence that covariates provide explanatory information.   

Table 8 displays the results for models with covariates, using the t-copula and different 

matrix structures. Once again we observe that the correlation coefficients for exchangeable, AR(1) 

and Toeplitz are strongly statistically greater than zero (p-values less than 1%), indicating the 

value of the dependence structure. The coefficients of the explanatory variables, β1 and β2, are 

also significant at the 1% level. This substantiates the hypothesis that average income and 

population density are associated with higher bodily injury claims.  
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Table 7. Information Criterion (AIC)  
by Correlation Matrix (Σ) and Degrees of Freedom (r). 

Covariates are used in the model fitting. 
Correlation Matrix (Σ) Degrees of 

freedom (r) Identity Exchangeable AR(1) Toeplitz 
2 1,354.24 1,335.35 1,345.43 1,342.84 

4 1,349.48 1,328.06 1,338.84 1,335.44 
6 1,349.64 1,326.41 1,337.66 1,333.76 

8 1,350.62 1,326.06 1,337.67 1,333.39 

10 1,351.66 1,326.13 1,338.01 1,333.43 

12 1,352.61 1,326.33 1,338.44 1,333.60 

14 1,353.44 1,326.57 1,338.86 1,333.81 

16 1,354.16 1,326.82 1,339.26 1,334.02 
18 1,354.79 1,327.05 1,339.63 1,334.22 

20 1,355.34 1,327.27 1,339.96 1,334.40 

22 1,355.83 1,327.47 1,340.26 1,334.56 

24 1,356.25 1,327.65 1,340.53 1,334.71 
26 1,356.64 1,327.82 1,340.77 1,334.85 

28 1,356.98 1,327.97 1,340.99 1,334.97 

30 1,357.29 1,328.11 1,341.20 1,335.08 

45 1,358.89 1,328.86 1,342.26 1,335.67 

60 1,359.80 1,329.30 1,342.88 1,336.01 

120 1,361.34 1,330.06 1,343.94 1,336.58 

1,000 1,362.90 1,330.84 1,345.02 1,337.15 
10,000 1,363.11 1,330.94 1,345.17 1,337.23 

∞  (normal) 1,363.13 1,330.96 1,345.18 1,337.24 

 
 

Table 8. Maximum Likelihood Estimation Results  
by Correlation Matrix (Σ). 

Covariates are used in the model fitting. 
 Correlation Matrix (Σ) 
Parameter Identity Exchangeable AR(1) Toeplitz  

ρ1 NA 0.442 (0.105) 0.395 (0.097) 0.275 (0.096) 
ρ2 NA NA NA 0.372 (0.084) 
β0 1.374 (0.861) 1.416 (1.300) 1.714 (1.088) 1.836 (0.947) 
β1 -0.142 (0.029) -0.143 (0.037) -0.147 (0.033)   -0.137 (0.028) 
β2 1.022 (0.204) 1.049 (0.269) 0.987 (0.217) 0.881 (0.169) 
α 27.340 (4.370) 26.309 (4.616) 27.125 (4.326) 29.017 (4.013) 
r 4.686 (1.983) 8.405 (5.200) 6.863 (3.679) 19.230 (22.438) 

AIC 1,351.33 1,328.057 1,339.592 1,336.331 
* : Standard errors are reported in parentheses. 
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5 Prediction with copulas  

Using data for years 1993 through 1997, in Section 4 we estimated parameters associated with 

the t-copula and the coefficients of explanatory variables per capita income and population 

density. Now we can predict the pure premium for 1998, the major interest of this study, and 

compare predictions using copulas to that of standard existing approaches, namely, full 

credibility and Bühlmann credibility. 

On the one hand, when full credibility is granted to past observations, the predicted value 

of the next period equals the mean of prior observations. Specifically, the predicted value of the 

(T+1)-st period for the ith risk class is  

∑
=

=
T

t
iti y

T
y

1

1 . 

On the other hand, Bühlmann credibility suggests that prediction for the ith risk class can 

“borrow” information of other risk classes as well as using its own past experience. Here, the 

credibility predictor is given by 

yyy icredi )1(, ςς −+⋅= , 

where y  is the overall mean and )/( 22
αε σσς += TT  is the credibility factor. Refer to Frees, 

Young and Luo (2001) for details. There is less spread in the credibility predictions compared to 

the mean for each risk class; the credibility predictor for a risk class is “shrunk” to the overall 

mean, y . The shrinkage effect of the Bühlmann credibility predictor, applied to our sample data, 

is shown in Figure 4. From this figure, we see that for our data set, the estimated value of  is 

large relative to  so that the credibility factor is close to one, indicating near full credibility. 

2
ασ

2
εσ
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Figure 4. Shrinkage Effect of Bühlmann Credibility 
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Notes: Each town is connected by a line. The left-hand vertical axis displays the full credibility 
predictions. The right-hand vertical axis displays the predictions using Bühlmann’s credibility. 

 

 For copula-based credibility, we used the parameter estimates in Section 4 and 1998 

covariate values to estimate the predictive density, given in equation (2.2). For this predictive 

density, we computed the mean of the distribution that we refer to as the “copula credibility 

predictor.” Predictions using copula credibility were made with AR(1) as the correlation matrix 

of t-copula. Figure 5 summarizes the predictions for our data set. 
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Figure 5. Shrinkage Effect of Copula Credibility Predictors  
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Notes: Each town is connected by a line. The left-hand vertical axis displays the full 
credibility predictions. The right-hand vertical axis displays the predictions using the 
copula credibility. The graph suggests that the copula credibility predictors preserve the 
shrinkage effect.  

 

Figure 5 shows that copula credibility predictors also have a mild shrinkage effect. On 

the left-hand side of each panel, values of full credibility prediction vary over a broader range 

than values on the right-hand side do, where copula credibility predictions are displayed. Not 

surprisingly, because these copula credibility predictors use covariates, Figure 5 displays some 

cross-over among lines. Unlike linear predictor theory, we do not know of a broad statistical 

principle that would ensure a shrinkage effect. We conjecture that it may be because all of the 

independent risk classes are being used to estimate common parameters. 
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Figure 6. Distributions of copula credibility predictor 
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Notes: Each town is connected by a line. On the horizontal axis, “Full” indicates 
prediction using full credibility. Copula Mean reports the predicted mean using copula 
credibility. Copula Percentile displays the predicted 25% percentile, mean, and 75% 
percentile for two towns. 

 

Figure 6 augments Figure 5 by adding prediction percentiles for two selected towns. For 

each of the two towns, Figure 6 shows the 25th and 75th percentiles of the predictive distribution, 

as well as the mean (for this data set, the mean and median of the predictive distribution are 

close). For more skewed data sets, the median may be more appropriate. The percentiles provide 

the actuary with a range of reliability for assessing the copula credibility predictor for rate-

making purposes. This figure emphasizes that copula credibility predictors share a desirable 

property with Bayesian credibility; namely the ability to provide a full predictive distribution of 

future claims. 

 Another examination of the usefulness of copula credibility is displayed in Table 9: the 

sum of squared prediction errors (SSPE). The error of prediction is defined as the difference 

between the actual average claim of 1998 and the predicted value using different methods. Table 

9 shows that the SSPE of copula credibility methods are less than that of full credibility and the 

SSPE of the AR(1) and exchangeable correlation copula are less than that of Bühlmann 

predictors; this suggests that copula credibility deserves a position in the toolbox of actuaries. 
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This result is not surprising in that the copula credibility predictors use the information in the 

distribution of claims, the dynamic dependencies and the associated explanatory variables. 

 
 

Table 9 Comparisons of Sum of Squared Prediction Error 
Copula Credibility Full Credibility Bühlmann 

Credibility AR(1) Exchangeable  Toeplitz 
15,700.8 14,916.4 14,437.5 14,255.6  15,265.446 

 
 

 

6. Summary and concluding remarks 

Credibility estimators are designed to predict claims for a risk class, given prior claims from a 

risk class and claims from other risk classes. In the traditional linear random effects setting, one 

models dependencies among claims through latent random quantities known as structure 

variables; predictors of claims are minimum mean square error among the class of all linear 

unbiased predictors. This paper considers claims distributions that may be skewed so that the 

mean square error criterion may not be suitable. Claims distributions are modeled parametrically; 

this allows one to calculate predictive distributions for future claims given past claims. With the 

predictive distribution, one can compute means, medians or any other measure to summarize the 

predictive distribution. 

 Computing predictive distributions is an exercise well known to Bayesian enthusiasts of 

credibility. From this perspective, it is traditional in credibility theory to assume a prior 

distribution for the structure variables and use posterior distributions to compute predictive 

distributions. Instead, in this paper we directly use a copula to model dependences among claims 

for a risk class. In this way, we need not make assumptions about prior distribution. Moreover, 

we need not assume that the common latent variable induces an exchangeable structure among 

claims; we can and do investigate time-series models of claims. 

 For this paper, we used claims from a Gamma family and provided the necessary 

theoretical underpinnings for the exponential family of distributions that also includes the normal 

and Weibull distributions. Although any parametric family of copulas fits within the framework 

described here, this paper explores the advantages of the t-copula. We find that this is a desirable 

dependence structure, at least for the bodily injury liability automobile claims data investigated 
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here. We hope to explore the robustness of the choice of marginal distributions, covariates and 

the copula in subsequent work. 

 For our data, we compared the copula-based credibility predictors and found that they 

performed well compared to traditional credibility estimators. They even demonstrated the well-

known “shrinkage” characteristic that actuaries find appealing for traditionally estimators. This 

may not be a general characteristic of copula-based credibility predictors; we are not aware of 

general conditions under which an actuary could expect that these new predictors will possess 

this characteristic. We leave this a problem for future investigation. 

We do not anticipate that currently available credibility ratemaking techniques will 

disappear; to illustrate, the proposed structure does not enjoy the intuitively appealing linear 

credibility theory formula that actuarial students learn. However, we illustrated procedures that 

are easy to implement in today’s computing environment and that should be applicable in a 

broad set of circumstances. We did this by positing a stochastic model of insurance claims and 

developing algorithms for producing credibility forecasts based on this model. We showed how 

the algorithms work with real data and compared our new procedures to existing methods. 
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Appendix. The Multivariate t-Copula 

 In this appendix, we collect properties about the t-copula that actuaries will find useful 

for GLM modeling. Important references include Johnson and Kotz (1972), Embrechts, 

Lindskog and McNeil (2001) and Venter (2003). 

 

Appendix A. The multivariate t-distribution 

 Suppose (N1, …, NT)′ has a joint standardized multivariate normal distribution with 

correlation matrix Σ. Further suppose that  has a chi-square distribution with 2
rχ r  degrees of 

freedom and is independent of (N1,…, NT).  Then, the joint distribution of 12 )/( −= rNZ rtt χ , t 

=1 ,…, T constitutes a multivariate t-distribution with r  degrees of freedom. One property of this 

distribution is that each marginal distribution is a t-distribution with r  degrees of freedom, 

denoted by Gr. Moreover, subsets have the same family as the joint. Thus, if we assume that (Z1, 

…, ZT+1) has a multivariate t-distribution, then (Z1, …, ZT) also has a multivariate t-distribution. 

The joint probability density function of (Z1, …, ZT)′ is   
2/)(
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where z = (z1, …, zT)´. See, for example, Johnson and Kotz (1972).  

 Conditional distributions can be derived in a straightforward manner. Suppose that the 

correlation matrix associated with (N1, …, NT+1)′ is given by 
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Then, from standard multivariate normal theory, we have that NT+1 | {N1, …, NT} is normal with 

mean and variance . Thus, Z( ′′ −
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distribution of , we have that Z2
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+  tTT •+1σ r, where tr is a t–distributed random variable with r degrees of freedom. Thus, the 

conditional density function is 
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where gr(.) is the probability density function of a t-distribution with r degrees of freedom.  

 

Appendix B. The t-copula 

We are now ready to define the multivariate t-copula, a function defined for all 

 by T
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where gr(.) is the probability density function associated with Gr, that is, a t-distribution with r 

degrees of freedom.  

 The conditional density function  
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can be evaluated using equation (A.2). 
 
Appendix C. Predictive density 

The joint density function is given by 
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where ( ) ( ititititit ypy )θ,pp ==  and Pit(yit) = Pit is the corresponding distribution function. Thus, 

using equations (A.2) and (B.2), the predictive distribution is 
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